MPC99J93ACR2 [NXP]

99J SERIES, PLL BASED CLOCK DRIVER, 5 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, LQFP-32;
MPC99J93ACR2
型号: MPC99J93ACR2
厂家: NXP    NXP
描述:

99J SERIES, PLL BASED CLOCK DRIVER, 5 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, LQFP-32

驱动 输出元件 逻辑集成电路
文件: 总8页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPC99J93  
Rev 3, 05/2005  
Freescale Semiconductor  
Technical Data  
Intelligent Dynamic Clock Switch  
(IDCS) PLL Clock Driver  
MPC99J93  
The MPC99J93 is a PLL clock driver designed specifically for redundant clock  
tree designs. The device receives two differential LVPECL clock signals from  
which it generates 5 new differential LVPECL clock outputs. Two of the output  
pairs regenerate the input signals frequency and phase while the other three  
pairs generate 2x, phase aligned clock outputs.  
INTELLIGENT DYNAMIC  
CLOCK SWITCH  
PLL CLOCK DRIVER  
Features  
Fully Integrated PLL  
Intelligent Dynamic Clock Switch  
LVPECL Clock Outputs  
LVCMOS Control I/O  
3.3 V Operation  
FA SUFFIX  
32-LEAD LQFP PACKAGE  
CASE 873A-03  
32-Lead LQFP Packaging  
32-Lead Pb-Free Package Available  
Functional Description  
The MPC99J93 Intelligent Dynamic Clock Switch (IDCS) circuit continuously  
monitors both input CLK signals. Upon detection of a failure (CLK stuck HIGH or  
LOW for at least 1 period), the INP_BAD for that CLK will be latched (H). If that  
CLK is the primary clock, the IDCS will switch to the good secondary clock and  
phase/frequency alignment will occur with minimal output phase disturbance.  
The typical phase bump caused by a failed clock is eliminated. (See Application  
Information section).  
AC SUFFIX  
32-LEAD LQFP PACKAGE  
Pb-FREE PACKAGE  
CASE 873A-03  
PLL_En  
Clk_Selected  
Inp1bad  
DYNAMIC  
SWITCH  
Inp0bad  
Man_Override  
Alarm_Reset  
LOGIC  
Qb0  
Qb0  
OR  
Sel_Clk  
Qb1  
Qb1  
CLK0  
CLK0  
CLK1  
CLK1  
Qb2  
Qb2  
÷2  
÷4  
PLL  
Qa0  
Qa0  
Ext_FB  
Ext_FB  
200 – 360 MHz  
Qa1  
Qa1  
MR  
Figure 1. Block Diagram  
© Freescale Semiconductor, Inc., 2005. All rights reserved.  
24 23 22  
21 20 19  
18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
Qa1  
Qa1  
Qa0  
Qa0  
Inp0bad  
Inp1bad  
Clk_Selected  
MPC99J93  
V
CC  
GND  
Ext_FB  
V
CC_PLL  
Man_Override  
PLL_EN  
Ext_FB  
GND  
1
2
3
4
5
6
7
8
Figure 2. 32-Lead Pinout (Top View)  
Table 1. Pin Descriptions  
Pin Name  
I/O  
Pin Definition  
CLK0, CLK0  
CLK1, CLK1  
LVPECL Input  
LVPECL Input  
Differential PLL clock reference (CLK0 pulldown, CLK0 pullup)  
Differential PLL clock reference (CLK1 pulldown, CLK1 pullup)  
Ext_FB, Ext_FB  
Qa0:1, Qa0:1  
Qb0:2, Qb0:2  
Inp0bad  
LVPECL Input  
Differential PLL feedback clock (Ext_FB pulldown, Ext_FB pullup)  
LVPECL Output Differential 1x output pairs. Connect one QAx pair to Ext_FB.  
LVPECL Output Differential 2x output pairs  
LVCMOS Output Indicates detection of a bad input reference clock 0 with respect to the feedback signal. The output is  
active HIGH and will remain HIGH until the alarm reset is asserted  
Inp1bad  
LVCMOS Output Indicates detection of a bad input reference clock 1 with respect to the feedback signal. The output is  
active HIGH and will remain HIGH until the alarm reset is asserted  
Clk_Selected  
Alarm_Reset  
LVCMOS Output ‘0' if clock 0 is selected, ‘1' if clock 1 is selected  
LVCMOS Input ‘0' will reset the input bad flags and align Clk_Selected with Sel_Clk. The input is “one-shotted”  
(50kpullup)  
Sel_Clk  
LVCMOS Input ‘0' selects CLK0, ‘1' selects CLK1 (50kpulldown)  
Manual_Override  
PLL_En  
LVCMOS Input ‘1' disables internal clock switch circuitry (50kpulldown)  
LVCMOS Input ‘0' bypasses selected input reference around the phase-locked loop (50kpullup)  
LVCMOS Input ‘0' resets the internal dividers forcing Q outputs LOW. Asynchronous to the clock (50kpullup)  
MR  
V
V
Power Supply  
Power Supply  
Power Supply  
Power Supply  
PLL power supply  
Digital power supply  
PLL ground  
CCA  
CC  
GNDA  
GND  
Digital ground  
MPC99J93  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
2
Table 2. Absolute Maximum Ratings(1)  
Symbol  
Characteristics  
Min  
–0.3  
–0.3  
–0.3  
Max  
Unit  
V
Condition  
V
Supply Voltage  
3.9  
CC  
V
DC Input Voltage  
DC Output Voltage  
DC Input Current  
DC Output Current  
V
V
+0.3  
V
IN  
CC  
CC  
V
+0.3  
V
OUT  
I
±20  
mA  
mA  
°C  
IN  
I
±50  
OUT  
T
Storage Temperature  
–65  
125  
S
1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these  
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated  
conditions is not implied.  
Table 3. General Specifications  
Symbol  
Characteristics  
Output Termination Voltage  
Min  
Typ  
– 2  
Max  
Unit  
V
Condition  
V
V
TT  
CC  
MM  
HBM  
CDM  
LU  
ESD Protection (Machine model)  
ESD Protection (Human body model)  
ESD Protection (Charged device model)  
Latch-Up Immunity  
175  
1500  
1000  
100  
V
V
V
mA  
pF  
C
Input Capacitance  
4.0  
Inputs  
IN  
θ
Thermal Resistance Junction to Ambient  
JESD 51-3, single layer test board  
JA  
83.1  
73.3  
68.9  
63.8  
57.4  
86.0  
75.4  
70.9  
65.3  
59.6  
°C/W Natural convection  
°C/W 100 ft/min  
°C/W 200 ft/min  
°C/W 400 ft/min  
°C/W 800 ft/min  
JESD 51-6, 2S2P multilayer test board  
59.0  
54.4  
52.5  
50.4  
47.8  
60.6  
55.7  
53.8  
51.5  
48.8  
°C/W Natural convection  
°C/W 100 ft/min  
°C/W 200 ft/min  
°C/W 400 ft/min  
°C/W 800 ft/min  
θ
Thermal Resistance Junction to Case  
23.0  
26.3  
°C/W MIL-SPEC 883E  
JC  
Method 1012.1  
(1)  
T
Operating Junction Temperature  
110  
°C  
J
(continuous operation)  
MTBF = 9.1 years  
1. Operating junction temperature impacts device life time. Maximum continuous operating junction temperature should be selected according  
to the application life time requirements (See application note AN1545 for more information). The device AC and DC parameters are  
specified up to 110°C junction temperature allowing the MPC99J93 to be used in applications requiring industrial temperature range. It is  
recommended that users of the MPC99J93 employ thermal modeling analysis to assist in applying the junction temperature specifications  
to their particular application.  
MPC99J93  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
3
Table 4. DC Characteristics (VCC = 3.3 V ± 5%, TA = –40° to +85°C)  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
LVCMOS Control Inputs (MR, PLL_En, Sel_Clk, Man_Override, Alarm_Reset)  
V
Input High Voltage  
Input Low Voltage  
2.0  
V
+ 0.3  
CC  
V
V
IH  
V
I
0.8  
IL  
(1)  
Input Current  
±100  
µA  
V
= V or GND  
IN  
IN  
CC  
LVCMOS Control Outputs (Clk_selected, Inp0bad, Inp1bad)  
V
Output High Voltage  
Output Low Voltage  
2.0  
0.1  
V
V
I
I
= -24 mA  
= 24 mA  
OH  
OH  
OL  
V
0.55  
1.3  
OL  
(2)  
(4)  
LVPECL Clock Inputs (CLK0, CLK1, Ext_FB)  
(3)  
V
DC Differential Input Voltage  
Differential Cross Point Voltage  
V
V
Differential operation  
Differential operation  
PP  
V
V
–1.8  
V
–0.3  
CMR  
CC  
CC  
(1)  
I
Input Current  
±100  
µA  
V
= V or GND  
IN  
IN CC  
LVPECL Clock Outputs (QA[1:0], QB[2:0])  
V
Output High Voltage  
Output Low Voltage  
V
–1.20  
–1.90  
V
V
–0.95  
–1.75  
V
V
–0.70  
V
V
Termination 50 to V  
Termination 50 to V  
OH  
CC  
CC  
CC  
CC  
CC  
CC  
TT  
V
V
–1.45  
OL  
TT  
Supply Current  
Maximum Power Supply Current  
Maximum PLL Supply Current  
I
180  
15  
mA GND pins  
mA pin  
GND  
I
V
CC_PLL  
CC_PLL  
1. Inputs have internal pull-up/pull-down resistors affecting the input current.  
2. Clock inputs driven by differential LVPECL compatible signals.  
3. V is the minimum differential input voltage swing required to maintain AC characteristics.  
PP  
4. V  
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V  
(DC)  
CMR  
CMR  
range and the input swing lies within the V (DC) specification.  
PP  
MPC99J93  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
4
Table 5. AC Characteristics (VCC = 3.3 V ± 5%, TA = –40°C to +85°C)(1)  
Symbol  
Characteristics  
Input Reference Frequency  
Min  
50  
Typ  
Max  
90  
Unit  
Condition  
f
÷4 feedback  
÷4 feedback  
MHz PLL locked  
MHz  
ref  
(2)  
f
VCO Frequency Range  
Output Frequency  
200  
360  
VCO  
f
QA[1:0]  
QB[2:0]  
50  
100  
90  
180  
MHz PLL locked  
MHz  
MAX  
f
Reference Input Duty Cycle  
Propagation Delay  
25  
75  
%
refDC  
(3)  
t
SPO, static phase offset  
–0.15  
0.9  
+0.17  
1.8  
ns  
ns  
PLL_EN = 1  
PLL_EN = 0  
()  
CLK0, CLK1 to any Q  
(4)  
V
Differential Input Voltage  
(peak-to-peak)  
0.25  
1.3  
V
V
PP  
CMR  
sk(O)  
(5)  
V
Differential Input Crosspoint Voltage  
V
–1.7  
V
–0.3  
CC  
CC  
t
Output-to-Output Skew  
within QA[2:0] or QB[1:0]  
50  
80  
ps  
ps  
within device  
(6)  
Rate of Change of Period  
QA[1:0]  
QB[2:0]  
QA[1:0]  
QB[2:0]  
20  
10  
200  
100  
50  
25  
400  
200  
ps  
ps  
ps  
ps  
per/cycle  
(6)  
(7)  
(7)  
DC  
Output Duty Cycle  
45  
50  
25  
55  
%
ps  
ms  
ns  
t
Cycle-to-Cycle Jitter  
Maximum PLL Lock Time  
Output Rise/Fall Time  
RMS (1 σ)  
JIT(CC)  
t
10  
LOCK  
t , t  
0.05  
0.70  
20% to 80%  
r
f
1. AC characteristics apply for parallel output termination of 50 to V – 2 V.  
CC  
2. The input reference frequency must match the VCO lock range divided by the feedback divider ratio (FB): f = f  
÷ FB.  
VCO  
ref  
3. CLK0, CLK1 to Ext_FB.  
4. V is the minimum differential input voltage swing required to maintain AC characteristics including SPO and device-to-device skew.  
PP  
Applicable to CLK0, CLK1 and Ext_FB.  
5. V  
(AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V  
(AC)  
CMR  
CMR  
range and the input swing lies within the V (AC) specification. Violation of V  
(AC) or V (AC) impacts the SPO, device and part-to-part  
PP  
CMR  
PP  
skew. Applicable to CLK0, CLK1 and Ext_FB.  
6. Specification holds for a clock switch between two input signals (CLK0, CLK1) no greater than 400 ps out of phase. Delta period change per  
cycle is averaged over the clock switch excursion.  
7. Specification holds for a clock switch between two input signals (CLK0, CLK1) at any phase difference (±180°). Delta period change per  
cycle is averaged over the clock switch excursion.  
MPC99J93  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
5
APPLICATIONS INFORMATION  
The MPC99J93 is a dual clock PLL with on-chip Intelligent  
both INP_BADs will be latched (H) after one Ext_FB period  
and Clk_Selected will be latched (L) indicating CLK0 is the  
PLL reference signal. While neither INP_BAD is latched (H),  
the Clk_Selected can be freely changed with Sel_Clk.  
Whenever a CLK switch occurs, (manually or by IDCS),  
following the next negative edge of the newly selected PLL  
reference signal, the next positive edge pair of Ext_FB and  
the newly selected PLL reference signal will slew to  
alignment.  
To calculate the overall uncertainty between the input  
CLKs and the outputs from multiple MPC99J93's, the  
following procedure should be used. Assuming that the input  
CLKs to all MPC9993's are exactly in phase, the total  
uncertainty will be the sum of the static phase offset, max I/O  
jitter, and output to output skew.  
Dynamic Clock Switch (IDCS) circuitry.  
Definitions  
primary clock: The input CLK selected by Sel_Clk.  
secondary clock: The input CLK NOT selected by  
Sel_Clk.  
PLL reference signal: The CLK selected as the PLL  
reference signal by Sel_Clk or IDCS. (IDCS can override  
Sel_Clk).  
Status Functions  
Clk_Selected: Clk_Selected (L) indicates CLK0 is  
selected as the PLL reference signal. Clk_Selected (H)  
indicates CLK1 is selected as the PLL reference signal.  
During a dynamic switch, the output phase between two  
devices may be increased for a short period of time. If the two  
input CLKs are 400ps out of phase, a dynamic switch of an  
MPC99J93 will result in an instantaneous phase change of  
400ps to the PLL reference signal without a corresponding  
change in the output phase (due to the limited response of  
the PLL). As a result, the I/O phase of a device, undergoing  
this switch, will initially be 400ps and diminish as the PLL  
slews to its new phase alignment. This transient timing issue  
should be considered when analyzing the overall skew  
budget of a system.  
INP_BAD: Latched (H) when it's CLK is stuck (H) or (L) for  
at least one Ext_FB period (Pos to Pos or Neg to Neg).  
Cleared (L) on assertion of Alarm_Reset.  
Control Functions  
Sel_Clk: Sel_Clk (L) selects CLK0 as the primary clock.  
Sel_Clk (H) selects CLK1 as the primary clock.  
Alarm_Reset: Asserted by a negative edge. Generates a  
one-shot reset pulse that clears INPUT_BAD latches and  
Clk_Selected latch.  
PLL_En: While (L), the PLL reference signal is substituted  
Hot insertion and withdrawal  
for the VCO output.  
In PECL applications, a powered up driver will experience  
a low impedance path through an MPC99J93 input to its  
powered down VCC pins. In this case, a 100 ohm series  
resistance should be used in front of the input pins to limit the  
driver current. The resistor will have minimal impact on the  
rise and fall times of the input signals.  
MR: While (L), internal dividers are held in reset which  
holds all Q outputs LOW.  
Man Override (H)  
(IDCS is disabled, PLL functions normally). PLL reference  
signal (as indicated by Clk_Selected) will always be the CLK  
selected by Sel_Clk. The status function INP_BAD is active  
in Man Override (H) and (L).  
Acquiring Frequency Lock  
1. While the MPC99J93 is receiving a valid CLK signal,  
assert Man_Override HIGH.  
Man Override (L)  
(IDCS is enabled, PLL functions enhanced). The first CLK  
to fail will latch it's INP_BAD (H) status flag and select the  
other input as the Clk_Selected for the PLL reference clock.  
Once latched, the Clk_Selected and INP_BAD remain  
latched until assertion of Alarm_Reset which clears all  
latches (INP_BADs are cleared and Clk_Selected = Sel_Clk).  
NOTE: If both CLKs are bad when Alarm_Reset is asserted,  
2. The PLL will phase and frequency lock within the  
specified lock time.  
3. Apply a HIGH to LOW transition to Alarm_Reset to reset  
Input Bad flags.  
4. De-assert Man_Override LOW to enable Intelligent  
Dynamic Clock Switch mode.  
MPC99J93  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
6
PACKAGE DIMENSIONS  
4X  
0.20  
H
A-B D  
6
D1  
3
A, B, D  
e/2  
D1/2  
32  
PIN 1 INDEX  
1
25  
F
F
A
B
E1/2  
6
E1  
E
4
DETAIL G  
E/2  
DETAIL G  
8
17  
NOTES:  
9
7
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994.  
3. DATUMS A, B, AND D TO BE DETERMINED AT  
DATUM PLANE H.  
D
4
D/2  
4X  
D
4. DIMENSIONS D AND E TO BE DETERMINED AT  
SEATING PLANE C.  
0.20  
C
A-B D  
5. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED  
THE MAXIMUM b DIMENSION BY MORE THAN  
0.08-mm. DAMBAR CANNOT BE LOCATED ON THE  
LOWER RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSION AND ADJACENT LEAD OR  
PROTRUSION: 0.07-mm.  
H
28X e  
32X  
0.1 C  
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.25-mm PER SIDE. D1 AND E1 ARE MAXIMUM  
PLASTIC BODY SIZE DIMENSIONS INCLUDING  
MOLD MISMATCH.  
7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
8. THESE DIMENSIONS APPLY TO THE FLAT  
SECTION OF THE LEAD BETWEEN 0.1-mm AND  
0.25-mm FROM THE LEAD TIP.  
SEATING  
PLANE  
C
DETAIL AD  
BASE  
METAL  
PLATING  
b1  
c
c1  
MILLIMETERS  
DIM  
A
A1  
A2  
b
b1  
c
c1  
D
MIN  
1.40  
0.05  
1.35  
0.30  
0.30  
0.09  
0.09  
MAX  
1.60  
0.15  
1.45  
0.45  
0.40  
0.20  
0.16  
b
5
8
8X (θ1˚)  
M
0.20  
C
A-B  
D
R R2  
SECTION F-F  
R R1  
9.00 BSC  
D1  
e
E
E1  
L
L1  
q
q1  
R1  
R2  
S
7.00 BSC  
0.80 BSC  
9.00 BSC  
7.00 BSC  
A2  
A
0.25  
GAUGE PLANE  
0.50  
1.00 REF  
0˚ 7˚  
12 REF  
0.70  
(S)  
A1  
L
θ˚  
0.08  
0.08  
0.20  
---  
(L1)  
0.20 REF  
DETAIL AD  
CASE 873A-03  
ISSUE B  
32-LEAD LQFP PACKAGE  
MPC99J93  
Advanced Clock Drivers Device Data  
Freescale Semiconductor  
7
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MPC99J93  
Rev. 3  
05/2005  

相关型号:

MPC99J93FA

PLL Based Clock Driver, 5 True Output(s), 0 Inverted Output(s), PQFP32, PLASTIC, LQFP-32
MOTOROLA

MPC99J93FA

PLL BASED CLOCK DRIVER, 5 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, PLASTIC, LQFP-32
NXP

MPC99J93FA

PLL Based Clock Driver, 99J Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, LQFP-32
IDT

MPC99J93FAR2

PLL BASED CLOCK DRIVER, 5 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, PLASTIC, LQFP-32
NXP

MPC99J93FAR2

PLL Based Clock Driver, 5 True Output(s), 0 Inverted Output(s), PQFP32, PLASTIC, LQFP-32
MOTOROLA

MPCC-2-16-2-L-44-04.53-S

Board Connector, 20 Contact(s), 4 Row(s), Female, Crimp Terminal,
SAMTEC
SAMTEC

MPCC-2-16-2-L-44-26.65-D-NUS

Cable Assembly, 14AWG,
SAMTEC

MPCC-2-16-2-L-44-40.01-D-NUS

Cable Assembly, 14AWG,
SAMTEC

MPCC-2-16-2-L-44-70.00-D-NUS

Cable Assembly, 14AWG,
SAMTEC

MPCC-2-16-2-L-44-98.40-S

Board Connector, 20 Contact(s), 4 Row(s), Female, Crimp Terminal,
SAMTEC

MPCC-2-16-2-L-44-99.99-D-NUS

Cable Assembly, 14AWG,
SAMTEC