MRF6V12500GSR5 [NXP]

RF Power Field-Effect Transistor, 1-Element, L Band, Silicon, N-Channel, Metal-oxide Semiconductor FET;
MRF6V12500GSR5
型号: MRF6V12500GSR5
厂家: NXP    NXP
描述:

RF Power Field-Effect Transistor, 1-Element, L Band, Silicon, N-Channel, Metal-oxide Semiconductor FET

放大器 光电二极管 晶体管
文件: 总18页 (文件大小:805K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6V12500H  
Rev. 5, 7/2016  
Freescale Semiconductor  
Technical Data  
RF Power LDMOS Transistors  
MRF6V12500H  
MRF6V12500HS  
MRF6V12500GS  
N--Channel Enhancement--Mode Lateral MOSFETs  
These RF power transistors are designed for applications operating at  
frequencies between 960 and 1215 MHz such as distance measuring  
equipment (DME), transponders and secondary radars for air traffic control.  
These devices are suitable for use in pulse applications, including Mode S  
ELM.  
960--1215 MHz, 500 W, 50 V  
PULSE  
RF POWER LDMOS TRANSISTORS  
Typical Pulse Performance: VDD = 50 Volts, IDQ = 200 mA  
(1)  
P
Freq.  
(MHz)  
G
D
out  
ps  
Application  
Signal Type  
(W)  
(dB) (%)  
Narrowband  
Short Pulse  
Pulse  
500 Peak  
1030  
19.7 62.0  
(128 sec, 10% Duty Cycle)  
Narrowband  
Pulse  
500 Peak  
1030  
19.7 62.0  
Mode S ELM (48 (32 sec on, 18 sec off),  
Period 2.4 msec,  
6.4% Long--term Duty Cycle)  
NI--780H--2L  
MRF6V12500H  
Broadband  
Pulse  
500 Peak 960--1215 18.5 57.0  
(128 sec, 10% Duty Cycle)  
1. Minimum output power for each specified pulse condition.  
Capable of Handling 10:1 VSWR @ 50 Vdc, 1030 MHz, 500 Watts Peak  
Power  
Features  
NI--780S--2L  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
MRF6V12500HS  
Internally Matched for Ease of Use  
Qualified up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
NI--780GS--2L  
MRF6V12500GS  
Gate  
Drain  
1
2
(Top View)  
Note: The backside of the package is the  
source terminal for the transistor.  
Figure 1. Pin Connections  
Freescale Semiconductor, Inc., 2009--2010, 2012, 2015--2016. All rights reserved.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +110  
--6.0, +10  
-- 65 to +150  
150  
Unit  
Vdc  
Vdc  
C  
Drain--Source Voltage  
V
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
C
C  
(1,2)  
T
J
225  
C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Impedance, Junction to Case  
Case Temperature 80C, 500 W Peak, 128 sec Pulse Width, 10% Duty Cycle  
Z
0.044  
C/W  
JC  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
2, passes 2600 V  
B, passes 200 V  
IV, passes 2000 V  
Table 4. Electrical Characteristics (T = 25C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Gate--Source Leakage Current  
(V = 5 Vdc, V = 0 Vdc)  
I
110  
10  
Adc  
Vdc  
GSS  
GS  
DS  
Drain--Source Breakdown Voltage  
(V = 0 Vdc, I = 200 mA)  
V
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
20  
Adc  
Adc  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
I
200  
(V = 90 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 1.32 mA)  
V
V
0.9  
1.7  
1.7  
2.4  
2.4  
3.2  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 50 Vdc, I = 200 mAdc, Measured in Functional Test)  
DD  
D
Drain--Source On--Voltage  
(V = 10 Vdc, I = 3.26 Adc)  
V
0.25  
GS  
D
(4)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
0.2  
697  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
1391  
iss  
(V = 50 Vdc, V = 0 Vdc 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.nxp.com/RF/calculators.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.  
4. Part internally matched both on input and output.  
(continued)  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
2
Table 4. Electrical Characteristics (T = 25C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Functional Tests (In Freescale Narrowband Test Fixture, 50 ohm system) V = 50 Vdc, I = 200 mA, P = 500 W Peak (50 W Avg.),  
DD  
DQ  
out  
f = 1030 MHz, 128 sec Pulse Width, 10% Duty Cycle  
Power Gain  
G
18.5  
58.0  
19.7  
62.0  
-- 1 8  
22.0  
dB  
%
ps  
D
Drain Efficiency  
Input Return Loss  
IRL  
-- 9  
dB  
Typical Broadband Performance — 960--1215 MHz (In Freescale 960--1215 MHz Test Fixture, 50 ohm system) V = 50 Vdc,  
DD  
I
= 200 mA, P = 500 W Peak (50 W Avg.), f = 960--1215 MHz, 128 sec Pulse Width, 10% Duty Cycle  
DQ  
out  
Power Gain  
Drain Efficiency  
G
18.5  
57.0  
dB  
%
ps  
D
Table 5. Ordering Information  
Device  
Tape and Reel Information  
Package  
MRFE6V12500HR5  
MRFE6V12500HSR5  
MRFE6V12500GSR5  
NI--780H--2L  
NI--780S--2L  
R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel  
NI--780GS--2L  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
3
V
SUPPLY  
+
+
R3  
R1  
V
BIAS  
C5  
C12 C13  
C14  
C15  
C9  
Z3  
C8  
Z4  
C7  
C3  
Z19  
RF  
OUTPUT  
Z9  
Z10  
Z11 Z12 Z13 Z14 Z15 Z16 Z17  
Z18  
RF  
INPUT  
C2  
Z1  
Z2  
Z5  
Z6  
Z7  
Z8  
Z21  
C1  
DUT  
Z20  
R4  
R2  
C6  
C16  
C11  
C10  
C4  
Z1  
0.457x 0.080Microstrip  
0.250x 0.080Microstrip  
0.605x 0.040Microstrip  
0.080x 0.449Microstrip  
0.374x 0.608Microstrip  
0.118x 1.252Microstrip  
0.778x 1.710Microstrip  
0.095x 1.710Microstrip  
0.482x 0.050Microstrip  
0.138x 1.500Microstrip  
Z11  
0.161” x 1.500Microstrip  
0.613” x 1.281Microstrip  
0.248” x 0.865Microstrip  
0.087” x 0.425Microstrip  
0.309” x 0.090Microstrip  
0.193” x 0.516Microstrip  
0.279” x 0.080Microstrip  
0.731” x 0.080Microstrip  
0.507” x 0.040Microstrip  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
Z12  
Z13  
Z14  
Z15  
Z16  
Z17  
Z18  
Z9, Z20  
Z10  
Z19, Z21  
PCB  
Arlon CuClad 250GX--0300--55--22, 0.030, = 2.55  
r
Figure 2. MRF6V12500H(HS) Test Circuit Schematic  
Table 6. MRF6V12500H(HS) Test Circuit Component Designations and Values  
Part  
Description  
Part Number  
Manufacturer  
ATC  
C1, C2  
5.1 pF Chip Capacitors  
ATC100B5R1CT500XT  
ATC100B330JT500XT  
GRM55DR61H106KA88L  
2225X7R225KT3AB  
C3, C4, C5, C6  
C7, C10  
33 pF Chip Capacitors  
ATC  
10 F, 50 V Chip Capacitors  
2.2 F, 100 V Chip Capacitors  
22 F, 25 V Chip Capacitor  
1 F, 100 V Chip Capacitor  
470 F, 63 V Electrolytic Capacitors  
56 , 1/4 W Chip Resistors  
0 , 3 A Chip Resistors  
Murata  
ATC  
C8, C11, C13, C16  
C9  
TPSD226M025R0200  
GRM31CR72A105KA01L  
MCGPR63V477M13X26--RH  
CRCW120656R0FKEA  
CRCW12060000Z0EA  
AVX  
C12  
Murata  
Multicomp  
Vishay  
Vishay  
C14, C15  
R1, R2  
R3, R4  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
4
C14  
C12  
R3  
C15  
C13  
C8  
C7  
C5  
C9  
C3  
MRF6V12500H Rev. 1  
R1  
C2  
C1  
R2  
C11 C10  
C6  
C4  
R4  
C16  
Figure 3. MRF6V12500H(HS) Test Circuit Component Layout  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
5
TYPICAL CHARACTERISTICS  
10000  
1000  
160  
C
140  
120  
100  
80  
iss  
P
= 475 W  
out  
C
oss  
100  
10  
1
Measured with 30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
P
= 525 W  
out  
V
GS  
P
= 500 W  
out  
60  
40  
V
= 50 Vdc, I = 200 mA  
DQ  
DD  
20  
0
C
rss  
f = 1030 MHz, Pulse Width = 128 sec  
0.1  
0
5
10  
15  
20  
25  
0
10  
V
20  
30  
40  
50  
DUTY CYCLE (%)  
, DRAIN--SOURCE VOLTAGE (VOLTS)  
DS  
Figure 5. Safe Operating Area  
Figure 4. Capacitance versus Drain--Source Voltage  
22  
80  
70  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
P3dB = 57.6 dBm (575 W)  
21  
20  
19  
18  
Ideal  
G
ps  
P1dB = 57.1 dBm (511 W)  
60  
50  
40  
Actual  
D
17  
16  
30  
20  
10  
0
V
= 50 Vdc, I = 200 mA, f = 1030 MHz  
DQ  
Pulse Width = 128 sec, Duty Cycle = 10%  
DD  
V
= 50 Vdc, I = 200 mA, f = 1030 MHz  
DQ  
DD  
15  
14  
Pulse Width = 128 sec, Duty Cycle = 10%  
30  
100  
1000  
30  
32  
34  
36  
38  
40  
42  
P
, OUTPUT POWER (WATTS) PEAK  
P , INPUT POWER (dBm) PEAK  
in  
out  
Figure 6. Power Gain and Drain Efficiency  
versus Output Power  
Figure 7. Output Power versus Input Power  
22  
21  
20  
19  
18  
17  
22  
21  
20  
19  
18  
17  
I
= 800 mA  
DQ  
50 V  
600 mA  
I
= 200 mA, f = 1030 MHz  
DQ  
400 mA  
Pulse Width = 128 sec  
45 V  
16  
15  
14  
Duty Cycle = 10%  
200 mA  
40 V  
35 V  
V
= 30 V  
DD  
V
= 50 Vdc, f = 1030 MHz  
Pulse Width = 128 sec, Duty Cycle = 10%  
DD  
13  
12  
30  
100  
1000  
30  
100  
1000  
P
, OUTPUT POWER (WATTS) PEAK  
P
, OUTPUT POWER (WATTS) PEAK  
out  
out  
Figure 9. Power Gain versus Output Power  
Figure 8. Power Gain versus Output Power  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
6
TYPICAL CHARACTERISTICS  
700  
22  
80  
70  
G
ps  
T
= --30_C  
C
21  
20  
19  
18  
17  
16  
15  
14  
600  
500  
T
= --30_C  
55_C  
C
85_C  
60  
50  
40  
30  
20  
10  
0
25_C  
25_C  
85_C  
55_C  
400  
300  
200  
D
V
= 50 Vdc, I = 200 mA, f = 1030 MHz  
DQ  
Pulse Width = 128 sec, Duty Cycle = 10%  
DD  
100  
0
V
= 50 Vdc, I = 200 mA, f = 1030 MHz  
DQ  
Pulse Width = 128 sec, Duty Cycle = 10%  
DD  
0
2
4
6
8
10  
12  
30  
100  
, OUTPUT POWER (WATTS) PEAK  
1000  
P , INPUT POWER (dBm) PEAK  
P
in  
out  
Figure 10. Output Power versus Input Power  
Figure 11. Power Gain and Drain Efficiency versus  
Output Power  
9
10  
V
P
= 50 Vdc  
= 500 W Peak  
DD  
out  
8
Pulse Width = 128 sec  
Duty Cycle = 10%  
10  
D
= 62%  
7
10  
6
10  
5
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (C)  
J
Note: MTTF value represents the total cumulative operating time  
under indicated test conditions.  
MTTF calculator available at http://www.nxp.com/RF/calculators.  
Figure 12. MTTF versus Junction Temperature  
V
= 50 Vdc, I = 200 mA, P = 500 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
1030  
1.36 -- j1.27  
2.50 -- j0.17  
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
Z
load  
=
Test circuit impedance as measured from  
drain to ground.  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
load  
source  
Figure 13. Series Equivalent Source and Load Impedance  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
7
C11  
C9  
C17  
C5  
C15  
C13  
C7  
C18  
R1  
C3  
C1  
C8  
C2  
MRF6V12500  
Rev. 1  
C4  
R2  
C14  
C16  
C10  
C6  
C12  
Figure 14. MRF6V12500H(HS) Test Circuit Component Layout — 960--1215 MHz  
Table 7. MRF6V12500H(HS) Test Circuit Component Designations and Values — 960--1215 MHz  
Part  
Description  
Part Number  
ATC100B2R2JT500XT  
ATC100B0R2BT500XT  
ATC100B330JT500XT  
G2225X7R225KT3AB  
T491X226K035AT  
Manufacturer  
C1  
2.2 pF Chip Capacitor  
ATC  
ATC  
ATC  
ATC  
C2  
0.2 pF Chip Capacitor  
C3, C4  
33 pF Chip Capacitors  
C5, C6, C11, C12  
C7  
2.2 F, 100 V Chip Capacitors  
22 F, 35 V Tantalum Capacitor  
8.2 pF Chip Capacitor  
Kemet  
ATC  
C8  
ATC100B8R2CT500XT  
ATC100B390JT500XT  
C1825C223K1GAC  
C1812F104K1RAC  
C9, C10  
C13, C14  
C15, C16  
C17, C18  
R1, R2  
39 pF Chip Capacitors  
ATC  
0.022 F, 100 V Chip Capacitors  
0.10 F, 100 V Chip Capacitors  
470 F, 63 V Electrolytic Capacitors  
22 , 1/4 W Chip Resistors  
Kemet  
Kemet  
Multicomp  
Vishay  
Arlon  
MCGPR63V477M13X26--RH  
CRCW120622R0FKEA  
AD255A  
PCB  
0.030, = 2.55  
r
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
8
TYPICAL CHARACTERISTICS — 960--1215 MHz  
20  
19  
18  
17  
16  
15  
66  
G
ps  
64  
62  
60  
58  
D
56  
0
14  
13  
12  
11  
IRL  
-- 5  
-- 1 0  
V
= 50 Vdc, P = 500 W Peak (50 W Avg.), I = 200 mA  
out DQ  
Pulse Width = 128 sec, Duty Cycle = 10%  
DD  
-- 1 5  
-- 2 0  
1300  
10  
900  
950  
1000 1050 1100 1150 1200 1250  
f, FREQUENCY (MHz)  
Figure 15. Power Gain, Drain Efficiency and IRL  
versus Frequency  
22  
21  
20  
19  
18  
17  
65  
60  
55  
50  
45  
40  
V
I
= 50 Vdc  
= 200 mA  
DD  
1215 MHz  
1150 MHz  
DQ  
Pulse Width = 128 sec  
Duty Cycle = 10%  
D
960 MHz  
1030 MHz  
1150 MHz  
960 MHz  
G
ps  
1030 MHz  
450  
1215 MHz  
550 600  
200  
250  
300  
350  
400  
500  
P
, OUTPUT POWER (WATTS) PEAK  
out  
Figure 16. Power Gain and Drain Efficiency versus  
Output Power  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
9
Z = 5   
o
f = 1215 MHz  
f = 1215 MHz  
Z
source  
Z
load  
f = 960 MHz  
f = 960 MHz  
V
= 50 Vdc, I = 200 mA, P = 500 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
960  
2.25 -- j1.78  
2.51 -- j1.02  
2.69 -- j0.73  
2.71 -- j0.65  
2.48 -- j0.76  
1.38 -- j1.53  
1.48 -- j1.11  
1.51 -- j0.78  
1.53 -- j0.49  
1.53 -- j0.33  
1030  
1090  
1150  
1215  
Z
=
=
Test circuit impedance as measured from  
gate to ground.  
source  
Z
load  
Test circuit impedance as measured from  
drain to ground.  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
load  
source  
Figure 17. Series Equivalent Source and Load Impedance — 960--1215 MHz  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
10  
PACKAGE DIMENSIONS  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
11  
RF Device Data  
Freescale Semiconductor, Inc.  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
12  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
13  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
14  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
15  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
16  
PRODUCT DOCUMENTATION AND SOFTWARE  
Refer to the following resources to aid your design process.  
Application Notes  
AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
To Download Resources Specific to a Given Part Number:  
1. Go to http://www.nxp.com/RF  
2. Search by part number  
3. Click part number link  
4. Choose the desired resource from the drop down menu  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
Sept. 2009  
Apr. 2010  
Initial Release of Data Sheet  
Operating Junction Temperature increased from 200C to 225C in Maximum Ratings table and related  
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 1  
Added RF High Power Model availability to Product Software, p. 9  
2
3
Sept. 2010  
June 2012  
Maximum Ratings table: corrected V  
from --0.5, +100 to --0.5, +110 Vdc, p. 2  
DSS  
Added 960--1215 MHz Broadband application as follows:  
-- Typical Performance, p. 1, 2  
-- Fig. 13, Test Circuit Component Layout and Table 6, Test Circuit Component Designations and Values, p. 8  
-- Fig. 14, Pulsed Power Gain, Drain Efficiency and IRL versus Frequency, p. 9  
-- Fig. 15, Power Gain and Drain Efficiency versus Output Power, p. 9  
-- Fig. 16, Series Equivalent Source and Load Impedance, p. 10  
Table 3, ESD Protection Characteristics: added the device’s ESD passing level as applicable to each ESD  
class, p. 2  
Modified figure titles and/or graph axes labels to clarify application use, p. 5, 6, 9  
Fig. 6, Output Power versus Input Power: corrected P , Output Power unit of measure to watts, p. 5  
out  
Fig. 9, Output Power versus Input Power: corrected P , Output Power unit of measure to watts, p. 6  
out  
Fig. 11, MTTF versus Junction Temperature: MTTF end temperature on graph changed to match maximum  
operating junction temperature, p. 6  
4
5
Mar. 2015  
July 2016  
MRF6V12500HR3 tape and reel option replaced with MRF6V12500HR5 and MRF6V12500HSR3 tape and  
reel option replaced with MRF6V12500HSR5 per PCN15551  
Modified figure titles and/or graph axes labels to clarify application use, pp. 6, 7, 9  
Typical performance table: added Narrowband Mode S ELM application data, p. 1  
Added part number MRF6V12500GS, pp. 1, 3  
Added NI--780GS--2L package isometric, p. 1, and Mechanical Outline, pp. 15--16  
MRF6V12500H MRF6V12500HS MRF6V12500GS  
RF Device Data  
Freescale Semiconductor, Inc.  
17  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for  
each customer application by customer’s technical experts. Freescale does not convey  
any license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address: freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,  
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their  
respective owners.  
E 2009--2010, 2012, 2015--2016 Freescale Semiconductor, Inc.  
Document Number: MRF6V12500H  
Rev. 5, 7/2016  

相关型号:

MRF6V12500H

RF Power Field Effect Transistors
FREESCALE

MRF6V12500HR3

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6V12500HR3_10

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6V12500HR5

RF Power Field Effect Transis
FREESCALE

MRF6V12500HR5

L BAND, Si, N-CHANNEL, RF POWER, MOSFET, ROHS COMPLIANT, NI-780, CASE 465-06, 2 PIN
NXP

MRF6V12500HSR3

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6V12500HSR3

L BAND, Si, N-CHANNEL, RF POWER, MOSFET, ROHS COMPLIANT, NI-780S, CASE 465A-06, 2 PIN
NXP

MRF6V12500HSR5

Pulsed Lateral N-Channel RF Power MOSFET, 960-1215 MHz, 500 W, 50 V
NXP

MRF6V13250HR3

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6V13250HSR3

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6V14300HR3

RF Power Field Effect Transistors
FREESCALE

MRF6V14300HR3

L BAND, Si, N-CHANNEL, RF POWER, MOSFET, ROHS COMPLIANT, CASE 465-06, NI-780, 2 PIN
NXP