OQ2535HP [NXP]

SDH/SONET STM16/OC48 multiplexer; SDH / SONET STM16 / OC48多路复用器
OQ2535HP
型号: OQ2535HP
厂家: NXP    NXP
描述:

SDH/SONET STM16/OC48 multiplexer
SDH / SONET STM16 / OC48多路复用器

复用器
文件: 总19页 (文件大小:110K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
OQ2535HP  
SDH/SONET STM16/OC48  
multiplexer  
Product specification  
1999 Oct 04  
Supersedes data of 1997 Nov 27  
File under Integrated Circuits, IC19  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
FEATURES  
GENERAL DESCRIPTION  
Normal and loop (test) modes  
The OQ2535HP is a 32-channel multiplexer intended for  
use in STM16/OC48 applications. It combines data from a  
total of 32 × 78 Mbits/s input channels onto a single  
2.5 Gbits/s output channel. It features 3.3 V TTL data  
inputs and a 5 V TTL clock output at the low speed  
interface, and CML compatible inputs and outputs at the  
high speed interface.  
3.3 V TTL compatible data inputs  
Differential Current-Mode Logic (CML) clock and data  
outputs  
5 V TTL clock output (low speed interface)  
High input sensitivity (100 mV for the high speed clock  
input)  
Boundary Scan Test (BST) at low speed interface, in  
accordance with “IEEE Std 1149.1-1990”  
Low power dissipation (typically 1.65 W).  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
OQ2535HP  
HLQFP100 plastic heat-dissipating low profile quad flat package; 100 leads;  
body 14 × 14 × 1.4 mm  
SOT470-1  
BLOCK DIAGRAM  
90  
91  
DOUT  
2.5 Gbits/s  
622 Mbits/s  
78  
Mbits/s  
(1)  
DOUTQ  
D0  
to  
D31  
4 ×  
8 : 1 MUX  
4
4 : 1 MUX  
82  
83  
32  
COUT  
COUTQ  
62  
ENL  
load  
pulse  
clock  
65  
66  
59  
58  
OQ2535HP  
DLOOP  
SYNSEL1  
SYNSEL2  
SYNCHRONIZATION  
DLOOPQ  
2
5
3
7
6
TRST  
TMS  
TCK  
TDI  
68  
69  
CLOOP  
CLOOPQ  
622 MHz  
DIVIDE BY 8  
TDO  
2.5 GHz  
71  
72  
CIN  
78 MHz  
13  
CDIV  
DIVIDE BY 4  
CINQ  
74  
75  
DIOA  
DIOC  
BAND GAP  
REFERENCE 1  
BAND GAP  
REFERENCE 2  
(2)  
14, 37,  
63, 85, 86  
12, 39,  
87, 88  
61  
38  
10  
78  
16  
60  
5
4
31  
GND  
REFC2  
REFC1  
BGCAP1  
BGCAP2 V  
V
V
V
CC  
MGK351  
CC(T) DD  
EE  
(1) See Chapter “Pinning” for D0 to D31 pin numbers.  
(2) Pins 1, 4, 8, 9, 11, 15, 17, 21, 25, 36, 40, 56, 64, 67, 70, 73, 76, 77, 79, 80, 81, 84, 89, 92 to 98 and 100.  
Fig.1 Block diagram.  
1999 Oct 04  
2
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
PINNING  
SYMBOL  
GND  
PIN  
TYPE(1)  
DESCRIPTION  
1
S
I
ground  
TRS  
TCK  
GND  
TMS  
TDO  
TDI  
2
test reset input for BST mode (active LOW)  
test clock input for BST mode  
ground  
3
I
4
S
I
5
test mode select input for BST mode  
serial test data output for BST mode  
serial test data input for BST mode  
ground  
6
O
I
7
GND  
GND  
BGCAP1  
GND  
VEE  
8
S
S
A
S
S
O
S
S
S
S
I
9
ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
pin for connecting external band gap decoupling capacitor (4 × 8 : 1 MUX)  
ground  
supply voltage (4.5 V)  
CDIV  
VDD  
78 MHz clock output  
supply voltage (+3.3 V)  
GND  
VCC(T)  
GND  
D31  
D27  
D23  
GND  
D19  
D15  
D11  
GND  
D7  
ground  
supply voltage for TTL buffer (+5.0 V); not connected internally to VCC  
ground  
78 Mbits/s data input channel for D31  
78 Mbits/s data input channel for D27  
78 Mbits/s data input channel for D23  
ground  
I
I
S
I
78 Mbits/s data input channel for D19  
78 Mbits/s data input channel for D15  
78 Mbits/s data input channel for D11  
ground  
I
I
S
I
78 Mbits/s data input channel for D7  
78 Mbits/s data input channel for D3  
78 Mbits/s data input channel for D30  
78 Mbits/s data input channel for D26  
78 Mbits/s data input channel for D22  
78 Mbits/s data input channel for D18  
78 Mbits/s data input channel for D14  
78 Mbits/s data input channel for D10  
78 Mbits/s data input channel for D6  
78 Mbits/s data input channel for D2  
ground  
D3  
I
D30  
D26  
D22  
D18  
D14  
D10  
D6  
I
I
I
I
I
I
I
D2  
I
GND  
VDD  
S
S
A
supply voltage (+3.3 V)  
REFC2  
pin for connecting external reference decoupling capacitor (3.3 V CMOS  
reference)  
VEE  
39  
S
supply voltage (4.5 V)  
1999 Oct 04  
3
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
SYMBOL  
GND  
PIN  
TYPE(1)  
DESCRIPTION  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
S
I
ground  
D29  
D25  
D21  
D17  
D13  
D9  
78 Mbits/s data input channel for D29  
78 Mbits/s data input channel for D25  
78 Mbits/s data input channel for D21  
78 Mbits/s data input channel for D17  
78 Mbits/s data input channel for D13  
78 Mbits/s data input channel for D9  
78 Mbits/s data input channel for D5  
78 Mbits/s data input channel for D1  
78 Mbits/s data input channel for D28  
78 Mbits/s data input channel for D24  
78 Mbits/s data input channel for D20  
78 Mbits/s data input channel for D16  
78 Mbits/s data input channel for D12  
78 Mbits/s data input channel for D8  
78 Mbits/s data input channel for D4  
ground  
I
I
I
I
I
D5  
I
D1  
I
D28  
D24  
D20  
D16  
D12  
D8  
I
I
I
I
I
I
D4  
I
GND  
D0  
S
I
78 Mbits/s data input channel for D0  
selection input 2 for synchronization pulse timing  
selection input 1 for synchronization pulse timing  
supply voltage (+5.0 V)  
SYNSEL2  
SYNSEL1  
VCC  
I
I
S
A
REFC1  
pin for connecting external reference decoupling capacitor (for standard  
TTL reference)  
ENL  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
I
loop mode enable (active LOW)  
VDD  
S
S
O
O
S
O
O
S
I
supply voltage (+3.3 V)  
GND  
ground  
DLOOP  
DLOOPQ  
GND  
data output to demultiplexer IC OQ2536 (loop mode)  
inverted data output to demultiplexer IC OQ2536 (loop mode)  
ground  
CLOOP  
CLOOPQ  
GND  
clock output to demultiplexer IC OQ2536 (loop mode)  
inverted clock output to demultiplexer IC OQ2536 (loop mode)  
ground  
CIN  
clock input from VCO IC  
CINQ  
GND  
I
inverted clock input from VCO IC  
S
A
A
S
S
A
S
ground  
DIOA  
DIOC  
GND  
anode of temperature diode array  
cathode of temperature diode array  
ground  
GND  
ground  
BGCAP2  
GND  
pin for connecting external band gap decoupling capacitor (4 : 1 MUX)  
ground  
1999 Oct 04  
4
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
SYMBOL  
GND  
PIN  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
TYPE(1)  
DESCRIPTION  
S
S
O
O
S
S
S
S
S
S
O
O
S
S
S
S
S
S
S
ground  
GND  
COUT  
COUTQ  
GND  
VDD  
ground  
clock output to laser driver IC  
inverted clock output to laser driver IC  
ground  
supply voltage (+3.3 V)  
VDD  
supply voltage (+3.3 V)  
VEE  
supply voltage (4.5 V)  
VEE  
supply voltage (4.5 V)  
GND  
DOUT  
DOUTQ  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
i.c.  
ground  
data output to laser driver IC  
inverted data output to laser driver IC  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
internally connected, to be left open-circuit  
ground  
GND  
S
Note  
1. Pin type abbreviations: O = Output, I = Input, S = power Supply, A = Analog function.  
1999 Oct 04  
5
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
GND  
TRST  
TCK  
1
2
75 DIOC  
DIOA  
GND  
74  
73  
3
GND  
4
72 CINQ  
71 CIN  
TMS  
5
TDO  
6
GND  
70  
69  
TDI  
7
CLOOPQ  
GND  
8
68 CLOOP  
67 GND  
GND  
9
BGCAP1  
GND  
10  
11  
12  
13  
14  
15  
16  
DLOOPQ  
DLOOP  
66  
65  
V
64 GND  
EE  
OQ2535HP  
CDIV  
63  
62  
61  
60  
V
DD  
V
ENL  
DD  
GND  
REFC1  
V
V
CC(T)  
CC  
GND 17  
59 SYNSEL1  
D31  
D27  
D23  
18  
19  
20  
SYNSEL2  
D0  
58  
57  
56 GND  
55 D4  
GND 21  
D19 22  
D15 23  
D11 24  
GND 25  
D8  
54  
53  
D12  
52 D16  
51 D20  
MGK350  
Fig.2 Pin configuration.  
6
1999 Oct 04  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
FUNCTIONAL DESCRIPTION  
The outputs CLOOP, CLOOPQ, DLOOP and DLOOPQ  
are terminated internally with 100 resistors to GND and  
are specifically designed to drive 50 printed-circuit  
board transmission lines.  
The OQ2535HP is a 32-channel multiplexer intended for  
use in STM16/OC48 applications. It multiplexes  
32 × 78 Mbits/s input channels onto a single 2.5 Gbits/s  
output channel.  
The 2.5 GHz clock connected to CIN and CINQ is  
terminated internally with 50 to GND.  
The multiplexing is performed in two stages. The 32 input  
channels are fed into four 8 : 1 multiplexers to generate  
four 622 Mbits/s channels. These four channels are then  
combined into a single 2.5 Gbits/s data stream.  
Power supply connections  
The power supply pins need to be individually decoupled  
using chip capacitors mounted as close as possible to the  
IC. If multiple decoupling capacitors are used for a single  
supply node, they must be placed close to each other to  
avoid RF resonance.  
The ENL control input is used for switching between  
normal and loop modes. When loop mode is enabled,  
(ENL = LOW), the output signal is switched to DLOOP and  
DLOOPQ (these outputs could be connected to the  
DLOOP and DLOOPQ inputs on the OQ2536HP  
demultiplexer to form part of a test loop).  
To minimize low frequency switching noise in the vicinity of  
the OQ2535HP, all power supply lines should be filtered  
once by an LC-circuit with a low cut-off frequency (as  
shown in the application diagram, Fig.6). VCC(T) needs to  
be filtered separately via an LC-circuit because of the high  
switching currents present at the CDIV TTL output. As this  
current contains only 78 MHz harmonics, filtering can be  
achieved with relatively small values of L and C.  
The 2.5 GHz clock at CIN and CINQ is used as the system  
reference. It is divided down to 78 MHz and made  
available on the CDIV TTL output for timing the input data  
(D0 to D31).  
Low bit rate stage: 4 × 8 : 1 MUX  
This part of the circuit consists of four 8-bit shift registers,  
each acting as an 8 : 1 multiplexer, together with a  
synchronization block.  
Ground connection  
The ground connection on the printed-circuit board needs  
to be a large copper area fill connected to a common  
ground plane with low inductance.  
The 32 data input signals are loaded into the shift registers  
before being shifted out on a 622 MHz clock.  
RF connections  
The load pulse for the shift registers is generated in the  
synchronization block. The inputs SYNSEL1 and  
SYNSEL2 can be used to adjust the phase of the load  
pulse with respect to the input data (see Table 3) to  
synchronize the data and clock signals.  
A coupled stripline or microstrip with an odd mode  
characteristic impedance of 50 (nominal value) should  
be used for the RF connections on the printed-circuit  
board. The connections should be kept as short as  
possible. This applies to the CML differential line pairs CIN  
and CINQ, DOUT and DOUTQ, COUT and COUTQ,  
DLOOP and DLOOPQ, and CLOOP and CLOOPQ. In  
addition, the following lines should not vary in length by  
more than 5 mm:  
High bit rate stage: 4 : 1 MUX  
The four 622 Mbits/s data outputs from the low bit rate  
stage are combined into a single 2.5 Gbits/s data stream  
in two stages: two 2 : 1 multiplexers are used to generate  
two 1244 Mbits/s data streams; these signals are then fed  
into a third 2 : 1 multiplexer to generate the 2.5 Gbits/s  
data stream.  
CIN and CINQ  
DOUT, DOUTQ, COUT and COUTQ  
DLOOP, DLOOPQ, CLOOP and CLOOPQ.  
The 2.5 Gbits/s serial data stream is passed either to the  
DOUT and DOUTQ outputs (normal mode), or to the  
DLOOP and DLOOPQ outputs (loop mode). The output  
sequence is D31 (MSB) to D0 (LSB). Data and clock  
output buffers are terminated internally with 100 Ω  
resistors to GND and are capable of driving 50 loads.  
The unused output buffers are switched off to help  
minimize power dissipation.  
Interface to transmit logic  
The 78 Mbits/s interface lines, CDIV and D0 to D31,  
should not vary in length by more than 20 mm.  
The parasitic capacitance of these lines should be as  
small as possible.  
1999 Oct 04  
7
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
ESD protection  
1
1
Rth h-a  
1 Rth j-c Rth c-h  
(4)  
-------- -------------  
Rth R th j-a  
All pads are protected by ESD protection diodes with the  
exception of the high frequency outputs DOUT, DOUTQ,  
DLOOP, DLOOPQ, COUT, COUTQ, CLOOP and  
CLOOPQ and clock inputs CIN and CINQ.  
where:  
Rth h-a = thermal resistance from heatsink to ambient  
Rth c-h = thermal resistance from case to heatsink  
Cooling  
Rth j-c = thermal resistance from junction to case,  
see Chapter “Thermal characteristics”.  
In many cases it is necessary to mount a special cooling  
device on the package. The thermal resistance from  
junction to case, Rth j-c and from junction to ambient, Rth j-a  
are given in Chapter “Thermal characteristics”. Since the  
heat-slug in the package is connected to the die, the  
cooling device should be electrically isolated.  
If for instance Rth c-h = 0.5 K/W and Rth j-a = 33 K/W then:  
,
1  
1
1
Rth h-a  
3.1  
(5)  
----------- ------  
12.5 33  
17.0 K/W  
To calculate if a heatsink is necessary, the maximum  
allowed total thermal resistance Rth is calculated as:  
Built in temperature sensor  
Tj Tamb  
Three series-connected diodes have been integrated for  
measuring junction temperature. The diode array,  
accessed by means of the DIOA (anode) and DIOC  
(cathode) pins, has a temperature dependency of  
approximately 6 mV/°C. With a diode current of 1 mA, the  
voltage will be somewhere in the range of 1.7 to 2.5 V,  
depending on temperature.  
Rth  
=
(1)  
-----------------------  
Ptot  
where:  
Rth = total thermal resistance from junction to ambient in  
the application  
Tj = junction temperature  
Tamb = ambient temperature.  
Boundary Scan Test (BST) interface  
As long as Rth is greater than Rth j-a of the OQ2536HP  
including environmental conditions such as air flow and  
board layout, no heatsink is necessary.  
For example if Tj = 120 °C, Tamb = 55 °C and  
Ptot = 1.65 W, then:  
Boundary scan test logic has been implemented for all  
digital inputs and outputs on the low frequency interface, in  
accordance with “IEEE Std 1149.1-1990”. All scan tests  
other than SAMPLE mode are available. The boundary  
scan test logic consists of a TAP controller, a BYPASS  
register, a 2-bit instruction register, a 32-bit identification  
register and a 36-bit boundary scan register (the last two  
are combined). The architecture of the TAP controller and  
the BYPASS register is in accordance with IEEE  
recommendations. The four command modes, selected by  
means of the instruction register, are: EXTEST (00),  
PRELOAD (01), IDCODE (10) and BYPASS (11). All  
boundary scan test inputs, TDI, TMS, TCK and TRST,  
have internal pull-up resistors. The maximum test clock  
frequency at TCK is 12 MHz.  
(120 55)  
R th  
=
= 39.4 K/W  
(2)  
--------------------------  
1.65  
which is more than the worst case Rth j-a = 33 K/W, so no  
heatsink is necessary.  
Another example; if for safety reasons Tj should stay as  
low as 110 °C, while Tamb = 85 °C and Ptot = 2 W, then:  
(110 85)  
Rth  
=
= 12.5 K/W  
(3)  
--------------------------  
2.0  
In this case extra cooling is needed. The thermal  
resistance of the heatsink is calculated as follows:  
Table 1 BST identifier code  
VERSION  
OQ  
2535 (BINARY)  
PHILIPS SEMICONDUCTORS  
LSB(1)  
0001  
01  
00 1001 1110 0111  
0000 0010 101  
1
Note  
1. LSB is shifted out first on the TDO pin.  
1999 Oct 04  
8
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
Table 2 BST bit order  
BIT NUMBER  
SYMBOL  
CDIV  
PIN  
35 (MSB)  
13  
62  
58  
59  
18  
28  
41  
49  
19  
29  
42  
50  
20  
30  
43  
51  
22  
31  
44  
52  
23  
32  
45  
53  
24  
33  
46  
54  
26  
34  
47  
55  
27  
35  
48  
57  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
ENL  
SYNSEL2  
SYNSEL1  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
8
D8  
7
D7  
6
D6  
5
D5  
4
D4  
3
D3  
2
D2  
1
D1  
0 (LSB)(1)  
D0  
Note  
1. LSB is shifted out first on the TDO pin.  
1999 Oct 04  
9
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
MIN.  
0.5  
MAX.  
+6.0  
UNIT  
VCC, VCC(T) supply voltage  
V
V
V
VEE  
VDD  
Vn  
supply voltage  
supply voltage  
DC voltage  
6.0  
0.5  
+0.5  
+5.0  
pins 18 to 20, 22 to 24, 26 to 35, 41 to 55 and 57  
pins 2, 3, 5, 7, 38, 61 and 62  
pins 65, 66, 68, 69, 71, 72, 82, 83, 90 and 91  
pins 10 and 78  
0.5  
0.5  
1.0  
V
DD + 0.5  
V
V
V
V
V
VCC + 0.5  
+0.5  
VEE 0.5 0.5  
pins 74 and 75  
VEE 0.5 VCC + 0.5  
In  
DC current  
pins 6 and 13  
50  
mA  
mA  
W
pins 74 and 75  
10  
Ptot  
Tj  
total power dissipation  
junction temperature  
2.35  
120  
°C  
Tstg  
storage temperature  
65  
+150  
°C  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth j-c  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
thermal resistance from junction to  
case  
2.6  
K/W  
Rth j-a  
thermal resistance from junction to  
ambient  
see note 1  
airflow = 0 ft/min  
33  
28  
25  
22  
20  
K/W  
K/W  
K/W  
K/W  
K/W  
airflow = 100 ft/min  
airflow = 200 ft/min  
airflow = 400 ft/min  
airflow = 600 ft/min  
Note  
1. The thermal resistance from junction to ambient is strongly depending on the board design and airflow. The values  
given in the table are typical values and are measured on a single sided test board with dimensions of  
76 × 114 × 1.6 mm. Better values can be obtained when mounted on multilayer boards with large ground planes.  
1999 Oct 04  
10  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
DC CHARACTERISTICS  
All typical values are at Tamb = 25 °C and at typical supply voltages; minimum and maximum values are valid over the  
entire ambient temperature range and supply voltage range.  
SYMBOL  
General  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
V
CC, VCC(T) supply voltage  
note 1  
4.75  
5.0  
5.25  
V
V
V
VEE  
VDD  
ICC  
supply voltage  
4.75  
4.5  
3.3  
2.3  
20  
4.25  
3.47  
4
supply voltage  
3.14  
supply current  
mA  
mA  
mA  
mA  
W
ICC(T)  
IEE  
supply current  
40  
supply current  
265  
20  
400  
28  
IDD  
supply current  
Ptot  
Tj  
total power dissipation  
junction temperature  
ambient temperature  
1.65  
2.35  
120  
+85  
°C  
Tamb  
40  
°C  
TTL 3.3 V inputs: D0 to D31; note 2  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
0.8  
V
2.0  
65  
0
V
0
µA  
µA  
IIH  
110  
TTL inputs: ENL, SYNSEL1, SYNSEL2, TDI, TCK, TMS and TRST  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
0.8  
V
2.0  
100  
0
V
note 3  
note 3  
0
µA  
µA  
IIH  
210  
CML clock inputs: CIN and CINQ; note 4  
Vi(p-p)  
VIO  
input voltage (peak-to-peak value)  
permitted input offset voltage  
input voltages  
50 Ω  
measurement  
system  
100  
25  
600  
250  
500  
+25  
+250  
mV  
mV  
mV  
VI, VIQ  
Zi  
single ended input impedance  
for DC signal  
50  
TTL outputs: CDIV and TDO; note 5  
VOL  
VOH  
IOZ  
LOW-level output voltage  
IOL = 4 mA  
0.3  
4.0  
0.5  
V
HIGH-level output voltage  
IOH = 400 µA 2.4  
V
output current in high-impedance state  
1
µA  
CML outputs in normal mode: COUT, COUTQ, DOUT and DOUTQ; note 4  
Vo(p-p)  
VOO  
output voltage (peak-to-peak value)  
output offset voltage  
outputs  
230  
300  
0
500  
+25  
0
mV  
mV  
mV  
terminated  
externally with  
50 resistors  
25  
VO, VOQ  
output voltages  
600  
Zo  
output impedance  
for DC signal  
100  
1999 Oct 04  
11  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
CML outputs in loop mode: CLOOP, CLOOPQ, DLOOP and DLOOPQ; note 4  
Vo(p-p)  
VOO  
output voltage (peak-to-peak value)  
output offset voltage  
outputs  
230  
300  
500  
mV  
terminated  
externally with  
50 Ω  
25  
0
+25  
0
mV  
mV  
VO, VOQ  
output voltages  
600  
Zo  
output impedance  
for DC signal  
100  
Temperature diode array  
VDIOA-DIOC diode voltage range; note 6  
II(d) = 1 mA  
2.1  
V
Notes  
1. VCC and VCC(T) require the same power supply voltage. However, a filter is needed to isolate VCC(T) because of the  
high peak currents that occur at 78 MHz.  
2. The output sequence is D31 (MSB) to D0 (LSB).  
3. Only for inputs ENL, SYNSEL1 and SYNSEL2. TDI, TMS, TCK and TRST are connected to VCC through 90 kΩ  
resistors.  
4. See Fig.3 for symbol definitions.  
5. TDO is switched to high impedance state if BST is inactive.  
6. The temperature diode array can be used to measure the temperature of the die. The temperature dependency of  
this voltage is approximately 6 mV/K.  
CML INPUT  
CML OUTPUT  
V
I(max)  
GND  
GND  
V
O(max)  
V
V
IQH  
OQH  
V
V
OH  
IH  
V
V
i(p-p)  
o(p-p)  
V
V
V
IQL  
V
OQL  
OO  
IO  
V
V
OL  
IL  
V
V
O(min)  
I(min)  
MGK144  
Fig.3 Logic level symbol definitions for CML.  
1999 Oct 04  
12  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
TIMING  
Typical values at Tamb = 25 °C and at typical supply voltages; minimum and maximum values are valid over the entire  
ambient temperature range and supply voltage range.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
TTL input timing  
fclk(CDIV)  
low speed output clock frequency  
fclk(CIN) = 2.488 GHz  
capacitive load of 15 pF  
note 1  
77.76  
MHz  
tr(CDIV), tf(CDIV) CDIV rise/fall time  
2600  
ps  
ps  
ps  
tsu  
th  
input data set-up time  
input data hold time  
1200  
2600  
note 1  
CML output timing; note 2  
fclk(COUT) output clock frequency  
tCDV  
fclk(CIN) = 2.488 GHz  
2.488  
GHz  
ps  
clock edge to data valid time  
data invalid time  
250  
120  
150  
55  
tDI  
ps  
tr(CML), tf(CML) CML output rise/fall time  
ps  
δCOUT  
output clock duty factor  
45  
50  
%
Notes  
1. The set-up and hold times given are valid for SYNSEL1 = SYNSEL2 = HIGH. Different SYNSEL1, SYNSEL2  
combinations will produce different set-up and hold times (see Table 3).  
2. All CML outputs must be terminated externally with 50 to GND. The specified timing characteristics are applicable  
in both normal and loop modes.  
Table 3 Timing relationship between the clock edge and the data valid region (minimum values)  
SYNSEL2  
SYNSEL1  
tsu  
th  
UNIT  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
LOW  
HIGH  
LOW  
1200  
2800  
1700  
3300  
2600  
1000  
2100  
500  
ps  
ps  
ps  
ps  
1999 Oct 04  
13  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
T
cy(CDIV)  
t
t
f
r
2.0 V  
1.5 V  
0.8 V  
CDIV  
1.5 V  
D0 to D31  
t
h
valid data  
MGK352  
t
su  
Fig.4 TTL input timing.  
T
t
t
r
cy(COUT)  
f
+100 mV  
0 V  
COUT COUTQ,  
CLOOP CLOOPQ  
100 mV  
+100 mV  
DOUT DOUTQ,  
DLOOP DLOOPQ  
100 mV  
MGK353  
t
CDV  
t
DI  
Fig.5 CML output timing.  
14  
1999 Oct 04  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
APPLICATION INFORMATION  
system reference  
DATA  
INTERFACE  
PHASE  
DETECTOR  
D0 to D31  
D0 to D31  
CDIV  
13  
V
EE  
10 nF  
BGCAP1  
10  
V
EE  
10 nF  
BGCAP2  
REFC1  
78  
61  
PLL  
LOOP  
FILTER  
ENL  
68 nF  
68 nF  
62  
micro-  
controller  
REFC2  
38  
SYNSEL1  
SYNSEL2  
GND  
or  
TDI  
7
59  
58  
V
TCK  
3
CC  
CIN  
TMS  
71  
72  
BOUNDARY SCAN  
TEST EQUIPMENT  
5
2
6
VCO  
2.488 GHz  
CINQ  
TRST  
TDO  
ferrite  
bead  
OQ2535  
V
CC  
60  
16  
100  
nF  
1 µF  
1 µF  
ferrite  
bead  
V
CC(T)  
100  
nF  
DLOOP  
DLOOPQ  
CLOOP  
ferrite  
bead  
65  
66  
68  
69  
DLOOP  
V
DD  
(1)  
(2)  
(3)  
DLOOPQ  
100  
nF  
OQ2536  
DMUX  
1 µF  
1 µF  
CLOOP  
ferrite  
bead  
CLOOPQ  
CLOOPQ  
V
EE  
100  
nF  
GND  
90  
91  
82  
83  
COUTQ  
DOUT DOUTQ  
COUT  
D
DQ  
CLQ  
CL  
(1) VDD pins 14, 37, 63, 85 and 86 should be  
OQ2545  
LASER DRIVER  
connected together, and to the filter network.  
(2) VEE pins 12, 39, 87 and 88 should be connected  
together, and to the filter network.  
LA  
LAQ  
(3) All GND pins (pins 1, 4, 8, 9, 11, 15, 17, 21, 25, 36,  
40, 56, 64, 67, 70, 73, 76, 77, 79, 80, 81, 84, 89,  
92 to 98 and 100) must be connected directly to  
the printed-circuit board ground plane.  
LASER DIODE  
MGK354  
Fig.6 Application diagram.  
15  
1999 Oct 04  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
PACKAGE OUTLINE  
HLQFP100: plastic heat-dissipating low profile quad flat package;  
100 leads; body 14 x 14 x 1.4 mm  
SOT470-1  
y
X
A
51  
75  
50  
76  
Z
E
e
H
E
J
E
A
2
A
(A )  
3
w M  
p
A
1
b
θ
L
p
pin 1 index  
L
detail X  
100  
26  
1
25  
Z
D
v
M
A
e
w M  
b
p
D
B
H
v M  
B
D
0
5
scale  
10 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
E
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
J
L
L
v
w
y
Z
D
Z
θ
1
2
3
p
E
p
max.  
7o  
0o  
0.20 1.5  
0.05 1.3  
0.28 0.18 14.1 14.1  
0.16 0.12 13.9 13.9  
16.25 16.25 10.15  
15.75 15.75 9.15  
0.75  
0.45  
1.15 1.15  
0.85 0.85  
mm  
1.6  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Notes  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
2. Heatsink intrusion 0.0127 maximum.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-01-13  
SOT470-1  
1999 Oct 04  
16  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
SOLDERING  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Manual soldering  
Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
1999 Oct 04  
17  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 multiplexer  
OQ2535HP  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
BGA, LFBGA, SQFP, TFBGA  
WAVE  
not suitable  
REFLOW(1)  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS  
PLCC(3), SO, SOJ  
not suitable(2)  
suitable  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(3)(4) suitable  
not recommended(5)  
suitable  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1999 Oct 04  
18  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
68  
SCA  
© Philips Electronics N.V. 1999  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
465012/50/02/pp20  
Date of release: 1999 Oct 04  
Document order number: 9397 750 03901  

相关型号:

OQ2535HP-T

IC MUX/DEMUX, PQFP100, ATM/SONET/SDH IC
NXP

OQ2536HP

SDH/SONET STM16/OC48 demultiplexer
NXP

OQ2538HP

SDH/SONET STM16/OC48 main amplifiers
NXP

OQ2538HP-T

IC ATM/SONET/SDH SUPPORT CIRCUIT, PQFP48, ATM/SONET/SDH IC
NXP

OQ2538HP/S1

IC ATM/SONET/SDH SUPPORT CIRCUIT, PQFP48, 7 X 7 X 1.40 MM, PLASTIC, LQFP-48, ATM/SONET/SDH IC
NXP

OQ2538HPB-S

IC ATM/SONET/SDH SUPPORT CIRCUIT, PQFP48, 7 X 7 X 1.40 MM, PLASTIC, LQFP-48, ATM/SONET/SDH IC
NXP

OQ2538HP_97

SDH/SONET main amplifier
NXP

OQ2538U

SDH/SONET STM16/OC48 main amplifiers
NXP

OQ2541BHP

IC CLOCK RECOVERY CIRCUIT, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-313-2, LQFP-48, ATM/SONET/SDH IC
NXP

OQ2541BU

IC CLOCK RECOVERY CIRCUIT, UUC48, DIE-48, ATM/SONET/SDH IC
NXP

OQ2541HP

SDH/SONET data and clock recovery unit STM1/4/16 OC3/12/48 GE
NXP

OQ2541HPB-S

IC CLOCK RECOVERY CIRCUIT, PQFP48, PLASTIC, SOT-313, LQFP-48, ATM/SONET/SDH IC
NXP