PC33662BSEFR2 [NXP]

DATACOM, INTERFACE CIRCUIT, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8;
PC33662BSEFR2
型号: PC33662BSEFR2
厂家: NXP    NXP
描述:

DATACOM, INTERFACE CIRCUIT, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8

电信 光电二极管 电信集成电路
文件: 总31页 (文件大小:735K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC33662  
Rev. 6.0, 1/2014  
Freescale Semiconductor  
Advance Information  
LIN 2.1 / SAEJ2602-2, LIN  
Physical Layer  
33662  
The Local Interconnect Network (LIN) is a serial communication  
protocol, designed to support automotive networks in conjunction with  
a Controller Area Network (CAN). As the lowest level of a hierarchical  
network, LIN enables cost-effective communication with sensors and  
actuators when all the features of CAN are not required.  
LINCELL  
The three 33662 versions are designed to operate at different  
maximum baud rates. The 33662LEF and 33662BLEF, and the  
33662SEF and 33662BSEF, offer a normal baud rate (20 kbps), and  
the 33662JEF and 33662BJEF, a slow baud rate (10 kbps). They  
integrate a fast baud rate (above 100 kbps), as reported by the RXD pin  
for test and programming modes. They provide excellent EMC  
(Electromagnetic Compatibility) and Radiated Emission performance,  
ESD (Electrostatic Discharge) robustness, and safe behavior, in the  
event of a LIN bus short-to-ground, or a LIN bus leakage during low-  
power mode. This device is powered by SMARTMOS technology.  
Features  
EF SUFFIX (PB-FREE)  
98ASB42564B  
• Operational from a VSUP of 7.0 to 18 V DC, functional up to 27 V DC,  
and handles 40 V during Load Dump  
8-PIN SOICN  
• Compatible with LIN Protocol Specification 1.3, 2.0, 2.1, and  
SAEJ2602-2  
• Active bus wave shaping, offering excellent radiated emission  
performance  
Applications  
• Automotive Market:  
• Body electronics (BCM, gateway, roof, door,  
lighting, HVAC)  
• Powertrain (EMS, start & stop), BMS  
• Safety & Chassis (TPMS, seat belt)  
• Sustains up to 15.0 kV minimum ESD IEC61000-4-2 on the LIN Bus,  
20 kV on the WAKE pin, and 25 kV on the VSUP pin  
• Very high immunity against electromagnetic interference  
• Low standby current in Sleep mode  
• Overtemperature protection  
• Local and remote Wake-up capability reported by the RXD pin  
• Fast baud rate selection reported by RXD pin  
• 5.0 V and 3.3 V compatible digital inputs without any required  
external components  
VBAT  
33662  
VSUP  
WAKE  
CAN SBC  
or  
VDD  
MCU  
Regulator  
INH  
LIN  
EN  
12 V  
RXD  
TXD  
LIN Interface  
5.0 V  
or 3.3 V  
GND  
Figure 1. 33662 Master LIN Bus Simplified Application Diagram  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© Freescale Semiconductor, Inc., 2011-2014. All rights reserved.  
DEVICE VARIATIONS  
DEVICE VARIATIONS  
Table 1. Device Variations  
Freescale Part No.  
(Add an R2 suffix for Tape and Reel  
orders)  
Temperature Range (T )  
Package  
Maximum Baud Rate  
A
MC33662LEF (1)  
PC33662BLEF  
20 kbps  
MC33662SEF (1)  
PC33662BSEF  
20 kbps with restricted limits for  
transmitter and receiver symmetry  
-40 to 125 °C  
8 SOICN  
MC33662JEF (1)  
PC33662BJEF  
10 kbps  
Notes  
1. In Sleep mode, the total module current consumption may be higher than expected if the external pull-up resistor on the RxD pin  
is implemented. There may be an unexpected glitch on RxD as INH goes low.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
2
INTERNAL BLOCK DIAGRAM  
INTERNAL BLOCK DIAGRAM  
VSUP  
X 1  
INH_ON  
INH  
LIN  
EN  
EN-SLEEP  
200 kΩ  
Control Unit  
30 kΩ  
725 kΩ  
RXD  
RXD_INT  
Receiver  
EN_RXD  
LIN_EN  
Slope  
Control  
35 μΑ  
TXD_INT  
TXD  
WAKE  
GND  
Figure 2. 33662 Simplified Internal Block Diagram  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
3
PIN CONNECTIONS  
PIN CONNECTIONS  
RXD  
1
2
3
4
INH  
8
7
VSUP  
EN  
WAKE  
TXD  
LIN  
6
5
GND  
Figure 3. 33662 8-SOICN Pin Connections  
Table 2. 33662 8-SOICN Pin Definitions  
A functional description of each pin can be found in the Functional Pin Description section beginning on page 21.  
Pin  
PIN NAME Pin Function  
Formal Name  
Definition  
This pin is the receiver output of the LIN interface which reports the state  
of the bus voltage to the MCU interface.  
1
RXD  
Output  
Data Output  
This pin controls the operation mode of the interface.  
2
3
EN  
Input  
Input  
Enable Control  
Wake Input  
This pin is a high-voltage input used to wake-up the device from Sleep  
mode.  
WAKE  
This pin is the transmitter input of the LIN interface which controls the  
state of the bus output.  
4
TXD  
Input  
Data Input  
This pin is the device ground pin.  
5
6
GND  
LIN  
Ground  
Ground  
LIN Bus  
This bidirectional pin represents the single-wire bus transmitter and  
receiver.  
Input/Output  
This pin is the device battery level power supply.  
7
8
VSUP  
INH  
Power  
Output  
Power Supply  
Inhibit Output  
This pin can have two main functions: controlling an external switchable  
voltage regulator having an inhibit input, or driving an external bus  
resistor in the master node application.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
4
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 3. Maximum Ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or  
permanent damage to the device.  
Ratings  
Symbol  
Value  
Unit  
ELECTRICAL RATINGS  
Power Supply Voltage  
Normal Operation (DC)  
V
V
-0.3 to 27  
SUP(SS)  
Transient input voltage with external component (according to ISO7637-2 & ISO7637-  
3 & “Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive  
Applications” specification Rev1.1 / December 2nd, 2009) (See Table 4 and Figure 4)  
- Pulse 1 (test up to the limit for Damage - Class A(2)  
)
V
-100  
+75  
SUP(S1)  
SUP(S2A)  
SUP(S3A)  
SUP(S3B)  
SUP(S5B)  
- Pulse 2a (test up to the limit for Damage - Class A(2)  
- Pulse 3a (test up to the limit for Damage - Class A(2)  
- Pulse 3b (test up to the limit for Damage - Class A(2)  
- Pulse 5b (Class A)(2)  
)
)
)
V
V
V
V
-150  
+100  
-0.3 to 40  
WAKE  
Normal Operation within series 2*18 kΩ resistor (DC)  
V
V
-27 to 40  
WAKE(SS)  
Transient input voltage with external component (according to ISO7637-2 & ISO7637-  
3 & “Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive  
Applications” specification Rev1.1 / December 2nd, 2009) (See Table 4 and Figure 5)  
- Pulse 1 (test up to the limit for Damage - Class D(3)  
)
V
-100  
+75  
WAKE(S1)  
- Pulse 2a (test up to the limit for Damage - Class D(3)  
- Pulse 3a (test up to the limit for Damage - Class D(3)  
)
)
)
V
V
V
WAKE(S2A)  
WAKE(S3A)  
WAKE(S3B)  
-150  
+100  
- Pulse 3b (test up to the limit for Damage - Class D(3)  
Logic Voltage (RXD, TXD, EN Pins)  
LIN Bus Voltage  
V
-0.3 to 5.5  
V
V
LOG  
Normal Operation (DC)  
V
-27 to 40  
BUS(SS)  
Transient (Coupled Through 1.0 nF Capacitor, according to ISO7637-2 & ISO7637-3  
& “Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive  
Applications” specification Rev1.1 / December 2nd, 2009) (See Table 4 and Figure 6)  
- Pulse 1 (test up to the limit for Damage - Class D(3)  
)
V
-100  
+75  
BUS(S1)  
- Pulse 2a (test up to the limit for Damage - Class D(3)  
- Pulse 3a (test up to the limit for Damage - Class D(3)  
)
)
)
V
V
V
BUS(S2A)  
BUS(S3A)  
BUS(S3B)  
-150  
+100  
- Pulse 3b (test up to the limit for Damage - Class D(3)  
INH Voltage/Current  
DC Voltage  
V
V
-0.3 to V  
+0.3  
SUP  
INH  
Transient (Coupled Through 1.0 nF Capacitor, according to ISO7637-2 & ISO7637-3  
& “Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive  
Applications” specification Rev1.1 / December 2nd, 2009) (See Table 4 and Figure 7)  
- Pulse 1 (test up to the limit for Damage - Class D(3)  
)
V
-100  
INH(S1)  
INH(S2A)  
INH(S3A)  
INH(S3B)  
- Pulse 2a (test up to the limit for Damage - Class D(3)  
- Pulse 3a (test up to the limit for Damage - Class D(3)  
- Pulse 3b (test up to the limit for Damage - Class D(3)  
)
)
)
V
V
V
+75  
-150  
+100  
Notes  
2. Class A: All functions of a device/system perform as designed during and after exposure to disturbance.  
3. Class D: At least one function of the transceiver stops working properly during the test, and will return to proper operation automatically  
when the exposure to the disturbance has ended. No physical damage of the IC occurs.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
5
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 3. Maximum Ratings (continued)  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or  
permanent damage to the device.  
Ratings  
ELECTRICAL RATINGS (CONTINUED)  
Symbol  
Value  
Unit  
ESD Capability - AECQ100  
V
Human Body Model - JESD22/A114 (C  
= 100 pF, R  
= 1500 Ω)  
ZAP  
ZAP  
V
V
V
±10.0 k  
±8.0 k  
±4.0 k  
ESD1-1  
ESD1-2  
ESD1-4  
LIN pin versus GND  
Wake pin versus GND  
All other pins  
Charge Device Model - JESD22/C101 (C  
= 4.0 pF)  
ZAP  
V
V
±750  
±500  
Corner pins (Pins 1, 4, 5 and 8)  
All other pins (Pins 2, 3, 6 and 7)  
ESD2-1  
ESD2-2  
Machine Model - JESD22/A115 (C  
All pins  
= 220 pF, R  
= 0 Ω)  
ZAP  
ZAP  
V
±200  
ESD3-1  
According to “Hardware Requirements for LIN, CAN and Flexray Interfaces in  
Automotive Applications” specification Rev1.1 / December 2nd, 2009 (C = 150 pF,  
ZAP  
R
= 330 Ω)  
ZAP  
Contact Discharge, Unpowered  
LIN pin without capacitor  
LIN pin with 220 pF capacitor  
VSUP (10 µF to ground)  
WAKE (2*18 kΩ serial resistor)  
INH pin  
V
V
V
V
V
V
±15 k  
±15 k  
±25 k  
±20 k  
±2.0 k  
>±15 k  
ESD4-1  
ESD4-2  
ESD4-3  
ESD4-4  
ESD4-5  
ESD4-6  
LIN pin with 220 pF capacitor and indirect ESD coupling (according to ISO10605  
- Annex F)  
According to ISO10605 - Rev 2008 test specification  
(2.0 kΩ / 150 pF) - Unpowered - Contact discharge  
LIN pin without capacitor  
V
V
V
V
±20 k  
±25 k  
±25 k  
±25 k  
ESD5-1  
ESD5-2  
ESD5-3  
ESD5-4  
LIN pin with 220 pF capacitor  
VSUP (10 µF to ground)  
WAKE (2*18 kΩ serial resistor)  
(2.0 kΩ / 330 pF) - Powered - Contact discharge  
LIN pin without capacitor  
±8 k  
±10 k  
±12 k  
±15 k  
V
V
V
V
ESD6-1  
ESD6-2  
ESD6-3  
ESD6-4  
LIN pin with 220 pF capacitor  
VSUP (10 µF to ground)  
WAKE (2*18 kΩ serial resistor)  
THERMAL RATINGS  
Operating Temperature  
°C  
T
A
-40 to 125  
-40 to 150  
Ambient  
Junction  
T
J
Storage Temperature  
TSTG  
RθJA  
-40 to 150  
150  
°C  
°C/W  
°C  
Thermal Resistance, Junction to Ambient  
Peak Package Reflow Temperature During Solder Mounting (4)  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis Temperature  
Notes  
T
240  
SOLDER  
T
150 to 200  
20  
°C  
SHUT  
HYST  
T
°C  
4. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause malfunction or permanent damage to the device.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
6
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 4. Limits / Maximum Test Voltage for Transient Immunity Tests  
Pulse repetition  
Test Pulse  
VS [V]  
frequency [Hz] Test Duration [min]  
(1/T1)  
Ri [Ω]  
Remarks  
1
-100  
+75  
2
10  
2
t2 = 0 s  
1 for function test  
10 for damage test  
2a  
3a  
3b  
2
-150  
+100  
10000  
10000  
50  
50  
DUT  
Transient Pulse  
Generator  
(Note)  
VSUP  
D1  
10 µF  
GND  
DUT GND  
Note Waveform per ISO 7637-2. Test Pulses 1, 2a, 3a, 3b.  
Figure 4. Test Circuit for Transient Test Pulses (VSUP)  
DUT  
Transient Pulse  
Generator  
(Note)  
1.0 nF  
WAKE  
18 k  
18 k  
GND  
DUT GND  
Note Waveform per ISO 7637-2. Test Pulses 1, 2a, 3a, 3b.  
Figure 5. Test Circuit for Transient Test Pulses (WAKE)  
DUT  
Transient Pulse  
Generator  
(Note)  
1.0 nF  
LIN  
GND  
DUT GND  
Note Waveform per ISO 7637-2. Test Pulses 1, 2a, 3a, 3b.  
Figure 6. Test Circuit for Transient Test Pulses (LIN)  
DUT  
Transient Pulse  
Generator  
(Note)  
1.0 nF  
INH  
GND  
DUT GND  
Note Waveform per ISO 7637-2. Test Pulses 1, 2a, 3a, 3b.  
Figure 7. Test Circuit for Transient Test Pulses (INH)  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
7
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 5. Static Electrical Characteristics  
Characteristics under conditions 7.0 V VSUP 18 V, -40°C TA 125°C, GND = 0 V, unless otherwise noted. Typical  
values reflect the approximate parameter means at TA = 25°C under nominal conditions, unless otherwise noted.  
Characteristic  
VSUP PIN (DEVICE POWER SUPPLY)  
Symbol  
Min  
Typ  
Max  
Unit  
Nominal Operating Voltage  
V
7.0  
6.7  
13.5  
18.0  
27  
V
V
V
V
SUP  
Functional Operating Voltage(5)  
Load Dump  
VSUPOP  
VSUPLD  
VPOR  
40  
Power-On Reset (POR) Threshold  
VSUP Ramp Down and INH goes High to Low  
3.5  
5.3  
Power-On Reset (POR) Hysteresis  
VPORHYST  
270  
mV  
V
V
Undervoltage Threshold (positive and negative)  
VUVL, VUVH  
SUP  
Transmission disabled and LIN bus goes in recessive state  
Undervoltage Hysteresis (VUVL - VUVH  
5.8  
6.7  
V
)
VUVHYST  
130  
mV  
SUP  
Supply Current in Sleep Mode  
13.5 V, Recessive State  
μA  
V
I
6.0  
11  
20  
70  
SUP  
S1  
13.5 V < V  
< 27 V  
I
SUP  
S2  
I
24  
V
13.5 V, Shorted to GND  
S3  
SUP  
Supply Current in Normal or Slow or Fast Mode  
Bus Recessive, Excluding INH Output Current  
Bus Dominant, Excluding INH Output Current  
mA  
I
4.0  
6.0  
6.0  
8.0  
S(REC)  
I
S(DOM)  
RXD OUTPUT PIN (LOGIC)  
Low Level Output Voltage  
V
V
V
OL  
I
1.5 mA  
0
0.9  
IN  
High Level Output Voltage  
V
OH  
V
V
= 5.0 V, I  
= 3.3 V, I  
250 μA  
250 μA  
4.25  
3.0  
5.25  
3.5  
EN  
EN  
OUT  
OUT  
TXD INPUT PIN (LOGIC)  
Low Level Input Voltage  
High Level Input Voltage  
Input Threshold Voltage Hysteresis  
Pull-up Current Source  
V
2.0  
100  
0.8  
V
V
IL  
V
IH  
V
300  
600  
mV  
μA  
INHYST  
I
PU  
V
= 5.0 V, 1.0 V < V  
< 3.5 V  
-60  
-35  
-20  
EN  
TXD  
EN INPUT PIN (LOGIC)  
Low Level Input Voltage  
High Level Input Voltage  
V
0.8  
V
V
IL  
V
2.0  
100  
100  
IH  
Input Voltage Threshold Hysteresis  
Pull-down Resistor  
V
400  
230  
600  
350  
mV  
kohm  
INHYST  
RPD  
5. For the functional operating voltage, the device is functional and all features are operating. The electrical parameters are noted under  
conditions 7.0 V VSUP 18 V, -40oC TA 125o C, GND = 0 V.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
8
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 5. Static Electrical Characteristics (continued)  
Characteristics under conditions 7.0 V VSUP 18 V, -40°C TA 125°C, GND = 0 V, unless otherwise noted. Typical  
values reflect the approximate parameter means at TA = 25°C under nominal conditions, unless otherwise noted.  
Characteristic  
LIN PHYSICAL LAYER - TRANSCEIVER LIN(6)  
Operating Voltage Range(7)  
Symbol  
Min  
Typ  
Max  
Unit  
VBAT  
VSUP  
8.0  
7.0  
18  
18  
40  
V
V
Supply Voltage Range  
Voltage Range (within which the device is not destroyed)  
VSUP_NON_OP  
IBUS_LIM  
-0.3  
V
Current Limitation for Driver Dominant State  
Driver ON, VBUS = 18 V  
mA  
40  
-1.0  
90  
200  
Input Leakage Current at the Receiver  
Driver off; VBUS = 0 V; VBAT = 12 V  
IBUS_PAS_DOM  
mA  
µA  
Leakage Output Current to GND  
IBUS_PAS_REC  
Driver Off; 8.0 V < VBAT < 18 V; 8.0 V < VBUS < 18 V; VBUS VBAT  
VBUS VSUP  
;
20  
Control Unit Disconnected from Ground(8)  
IBUS_NO_GND  
mA  
GNDDEVICE = VSUP; VBAT = 12 V; 0 < V  
< 18 V  
-1.0  
1.0  
BUS  
V
Disconnected; VSUP_DEVICE = GND; 0 V < V  
< 18 V(9)  
BUS  
IBUSNO_BAT  
VBUSDOM  
VBUSREC  
10  
0.4  
µA  
BAT  
Receiver Dominant State(10)  
Receiver Recessive State(11)  
VSUP  
VSUP  
VSUP  
0.6  
Receiver Threshold Center  
(VTH_DOM + VTH_REC)/2  
VBUS_CNT  
0.475  
0.5  
0.525  
Receiver Threshold Hysteresis  
VHYS  
VSUP  
(VTH_REC - VTH_DOM  
)
0.175  
LIN dominant level with 500 Ω, 680 Ω and 1.0 kΩ load on the LIN bus  
VLINDOM_LEVEL  
VSHIFT_BAT  
VSHIFT_GND  
VBUSWU  
0
0.25  
11.5%  
11.5%  
5.3  
VSUP  
VBAT  
VBAT  
V
VBAT_SHIFT  
GND_SHIFT  
0
LIN Wake-up Threshold from Sleep Mode  
4.3  
30  
LIN Pull-up Resistor to V  
SUP  
RSLAVE  
20  
60  
kΩ  
LIN Internal Capacitor(12)  
CLIN  
30  
pF  
Overtemperature Shutdown(13)  
Overtemperature Shutdown Hysteresis  
TLINSD  
150  
160  
20  
200  
°C  
TLINSD_HYS  
°C  
Notes  
6. Parameters guaranteed for 7.0 V VSUP 18 V.  
7. Voltage range at the battery level, including the reverse battery diode.  
8. Loss of local ground must not affect communication in the residual network.  
9. Node has to sustain the current that can flow under this condition. The bus must remain operational under this condition.  
10. LIN threshold for a dominant state.  
11. LIN threshold for a recessive state.  
12. This parameter is guaranteed by process monitoring but not production tested.  
13. When an overtemperature shutdown occurs, the LIN transmitter and receiver are in recessive state and INH switched off. This parameter  
is tested with a test mode on ATE and characterized at laboratory.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
9
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 5. Static Electrical Characteristics (continued)  
Characteristics under conditions 7.0 V VSUP 18 V, -40°C TA 125°C, GND = 0 V, unless otherwise noted. Typical  
values reflect the approximate parameter means at TA = 25°C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
INH OUTPUT PIN  
Driver ON Resistance (Normal Mode)  
IINH = 50 mA  
INH  
Ω
ON  
50  
30  
Current load capability  
IINH_LOAD  
mA  
μA  
From 7.0 V < VSUP < 18 V  
Leakage Current (Sleep Mode)  
I
LEAK  
0 < V  
< V  
SUP  
-5.0  
5.0  
INH  
Overtemperature Shutdown(14)  
TINHSD  
150  
160  
20  
200  
°C  
°C  
Overtemperature Shutdown Hysteresis  
WAKE INPUT PIN  
TINHSD_HYS  
High to Low Detection Threshold (5.5 V < VSUP < 7 V)  
Low to High Detection Threshold (5.5 V < VSUP < 7 V)  
Hysteresis (5.5 V < VSUP < 7 V)  
VWUHL1  
VWULH1  
VWUHYS1  
VWUHL2  
VWULH2  
VWUHYS2  
IWU  
2.0  
2.4  
0.2  
2.4  
2.9  
0.2  
3.9  
4.3  
0.8  
3.9  
4.3  
0.8  
5.0  
V
V
V
High to Low Detection Threshold (7 V VSUP < 27 V)  
Low to High Detection Threshold (7 V VSUP < 27 V)  
Hysteresis (7 V VSUP < 27 V)  
V
V
V
Wake-up Input Current (VWAKE < 27 V)  
µA  
Notes  
14. When an overtemperature shutdown occurs, the INH high side is switched off and the LIN transmitter and receiver are in recessive state.  
This parameter is tested with a test mode on ATE and characterized at laboratory.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
10  
ELECTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTIC  
DYNAMIC ELECTRICAL CHARACTERISTIC  
Table 6. Dynamic Electrical Characteristics  
Characteristics under conditions 7.0 V VSUP 18 V, -40°C TA 125°C, GND = 0 V, unless otherwise noted. Typical  
values reflect the approximate parameter means at TA = 25°C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
LIN PHYSICAL LAYER  
(15) (16)  
,
DRIVER CHARACTERISTICS FOR NORMAL SLEW RATE - 20.0 KBIT/SEC ACCORDING TO LIN PHYSICAL LAYER SPECIFICATION  
33662L AND 33662S DEVICES  
Duty Cycle 1:  
D1  
D2  
THREC(MAX) = 0.744 * VSUP  
THDOM(MAX) = 0.581 * VSUP  
%
0.396  
D1 = tBUS_REC(MIN)/(2 x tBIT), tBIT = 50 µs, 7.0 V VSUP 18 V  
Duty Cycle 2:  
THREC(MIN) = 0.422 * VSUP  
THDOM(MIN) = 0.284 * VSUP  
0.581  
D2 = tBUS_REC(MAX)/(2 x tBIT), tBIT = 50 µs, 7.6 V VSUP 18 V  
LIN PHYSICAL LAYER  
(15) (16)  
,
DRIVER CHARACTERISTICS FOR SLOW SLEW RATE - 10.4 KBIT/SEC ACCORDING TO LIN PHYSICAL LAYER SPECIFICATION  
33662J DEVICE  
Duty Cycle 3:  
D3  
THREC(MAX) = 0.778 * VSUP  
THDOM(MAX) = 0.616 * VSUP  
%
0.417  
D3 = tBUS_REC(MIN)/(2 x tBIT), tBIT = 96 µs, 7.0 V VSUP 18 V  
Duty Cycle 4:  
D4  
THREC(MIN) = 0.389 * VSUP  
THDOM(MIN) = 0.251 * VSUP  
0.590  
100  
D4 = tBUS_REC(MAX)/(2 x tBIT), tBIT = 96 µs, 7.6 V VSUP 18 V  
LIN PHYSICAL LAYER  
DRIVER CHARACTERISTICS FOR FAST SLEW RATE  
Fast Bit Rate (Programming Mode)  
BRFAST  
kBit/s  
LIN PHYSICAL LAYER  
TRANSMITTER CHARACTERISTICS FOR NORMAL SLEW RATE - 20.0 KBIT/SEC  
33662S DEVICE  
(19)  
Symmetry of Transmitter delay(18)  
μs  
tTRAN_SYM  
-7.25  
7.25  
tTRAN_SYM = MAX (tTRAN_SYM60%, tTRAN_SYM40%  
tTRAN_SYM60% = | tTRAN_PDF60% - tTRAN_PDR60%  
tTRAN_SYM40% = | tTRAN_PDF40% - tTRAN_PDR40%  
)
|
|
Notes  
15. Bus load RBUS and CBUS 1.0 nF / 1.0 kΩ, 6.8 nF / 660 Ω, 10 nF / 500 Ω. Measurement thresholds: 50% of TXD signal to LIN signal  
threshold defined at each parameter. See Figure 8.  
16. See Figure 9.  
17. See Figure 10.  
18. See Figure 11  
19. VSUP from 7.0 to 18 V, bus load RBUS and CBUS 1.0 nF / 1.0 kΩ, 6.8 nF / 660 Ω, 10 nF / 500 Ω. Measurement thresholds: 50% of TXD  
signal to LIN signal threshold defined at each parameter. See Figure 8.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
11  
ELECTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTIC  
Table 6. Dynamic Electrical Characteristics (continued)  
Characteristics under conditions 7.0 V VSUP 18 V, -40°C TA 125°C, GND = 0 V, unless otherwise noted. Typical  
values reflect the approximate parameter means at TA = 25°C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
LIN PHYSICAL LAYER  
RECEIVER CHARACTERISTICS ACCORDING LIN2.1  
33662L AND 33662J AND 33662S DEVICES  
(20)  
Propagation Delay and Symmetry(21)  
μs  
tREC_PD  
Propagation Delay of Receiver, tREC_PD = MAX (tREC_PDR, tREC_PDF  
Symmetry of Receiver Propagation Delay, tREC_PDF - tREC_PDR  
)
)
6.0  
2.0  
tREC_SYM  
-2.0  
LIN PHYSICAL LAYER  
RECEIVER CHARACTERISTICS WITH TIGHTEN LIMITS  
(22)  
33662S DEVICE  
Propagation Delay and Symmetry(23)  
μs  
tREC_PD_S  
Propagation Delay of Receiver, tREC_PD = MAX (tREC_PDR, tREC_PDF  
Symmetry of Receiver Propagation Delay, tREC_PDF - tREC_PDR  
5.0  
1.3  
tREC_SYM_S  
-1.3  
LIN PHYSICAL LAYER  
RECEIVER CHARACTERISTICS - LIN SLOPE 1.0 V/ns  
(22)  
33662S DEVICE  
Propagation Delay and Symmetry(24)  
μs  
tREC_PD_FAST  
Propagation Delay of Receiver, tREC_PD _FAST= MAX (tREC_PDR_FAST  
tREC_PDF_FAST  
,
6.0  
1.3  
)
tREC_SYM_FAST  
Symmetry of Receiver Propagation Delay, tREC_PDF_FAST - tREC_PDR_FAST  
-1.3  
SLEEP MODE AND WAKE-UP TIMINGS  
Sleep Mode Delay Time (25)  
tSD  
µs  
after EN High to Low to INH High to Low with 100 µA load on INH  
50  
91  
WAKE-UP TIMINGS  
Bus Wake-up Deglitcher (Sleep Mode) (26)  
EN Wake-up Deglitcher (27)  
EN High to INH Low to High  
tWUF  
40  
10  
70  
48  
100  
15  
μs  
μs  
tLWUE  
Wake-up Deglitcher (28)  
tWF  
μs  
Wake state change to INH Low to High  
70  
TXD TIMING  
TXD Permanent Dominant State Delay(29)  
FIRST DOMINANT BIT VALIDATION  
First dominate bit validation delay when device in Normal Mode(30)  
Notes  
tTXDDOM  
3.75  
5.0  
50  
6.25  
80  
ms  
µs  
tFIRST_DOM  
20. VSUP from 7.0 to 18 V, bus load RBUS and CBUS 1.0 nF / 1.0 kΩ, 6.8 nF / 660 Ω, 10 nF / 500 Ω. Measurement thresholds: 50% of TXD  
signal to LIN signal threshold defined at each parameter. See Figure 8.  
21. See Figure 12.  
22. VSUP from 7.0 to 18 V, bus load RBUS and CBUS 1.0 nF / 1.0 kΩ, 6.8 nF / 660 Ω, 10 nF / 500 Ω. Measurement thresholds: 50% of TXD  
signal to LIN signal threshold defined at each parameter. See Figure 8.  
23. See Figure 12  
24. See Figure 13  
25. See Figure 25 and 26  
26. See Figure 16, 19, and Figure 20  
27. See Figure 14, 17, Figure 21, Figure 25 and Figure 26  
28. See Figure 15, 18, Figure 25 and Figure 26  
29. The LIN is in recessive state and the receiver is still active.  
30. See Figure 14, 17, 15, 18, 16, 19 and Figure 24  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
12  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
Table 6. Dynamic Electrical Characteristics (continued)  
Characteristics under conditions 7.0 V VSUP 18 V, -40°C TA 125°C, GND = 0 V, unless otherwise noted. Typical  
values reflect the approximate parameter means at TA = 25°C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
FAST BAUD RATE TIMING  
EN Low Pulse Duration to Enter in Fast Baud Rate using Toggle Function (31)  
t1  
μs  
45  
EN High to Low and Low to High  
TXD Low Pulse Duration to Enter in Fast Baud Rate using Toggle Function (31)  
t2  
t3  
12.5  
µs  
µs  
Delay Between EN Falling Edge and TXD Falling Edge to Enter in Fast Baud  
Rate Using Toggle Function (31)  
12.5  
12.5  
Delay Between TXD Rising Edge and EN Rising Edge to Enter in Fast Baud  
Rate Using Toggle Function (31)  
t4  
t5  
µs  
µs  
RXD Low Level duration after EN rising edge to validate the Fast Baud Rate  
entrance(31)  
1.875  
6.25  
Notes  
31. See Figure 22 and 23  
TIMING DIAGRAMS  
V
SUP  
VSUP  
TXD  
R0  
LIN  
RXD  
GND  
C0  
Note R0 and C0: 1.0 kΩ/1.0 nF, 660 Ω/6.8 nF, and 500 Ω/10 nF.  
Figure 8. Test Circuit for Timing Measurements  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
13  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
TXD  
TBIT  
TBIT  
t
(MAX)  
t
(MIN)  
BUS_REC  
BUS_DOM  
VLIN_REC  
REC(MAX)74.4% VSUP  
TH  
Thresholds of  
receiving node 1  
58.1% V  
SUP  
TH  
TH  
DOM(MAX)  
LIN  
Thresholds of  
receiving node 2  
42.2% V  
28.4% V  
SUP  
TH  
REC(MIN)  
SUP  
DOM(MIN)  
t
(MIN)  
BUS_DOM  
t
(MAX)  
BUS_REC  
RXD  
Output of receiving Node 1  
t
REC_PDF(1)  
t
REC_PDR(1)  
RXD  
Output of receiving Node 2  
t
REC_PDF(2)  
t
REC_PDR(2)  
Figure 9. LIN Timing Measurements for Normal Baud Rate (33662L and 33662S)  
TXD  
TBIT  
TBIT  
t
(MAX)  
t
(MIN)  
BUS_REC  
BUS_DOM  
VLIN_REC  
REC(MAX)77.8% VSUP  
Thresholds of  
receiving node 1  
TH  
61.6% V  
SUP  
TH  
DOM(MAX)  
LIN  
Thresholds of  
receiving node 2  
38.9% V  
25.1% V  
SUP  
SUP  
TH  
REC(MIN)  
TH  
DOM(MIN)  
t
(MIN)  
BUS_DOM  
t
(MAX)  
BUS_REC  
RXD  
Output of receiving Node 1  
t
REC_PDF(1)  
t
REC_PDR(1)  
RXD  
Output of receiving Node 2  
t
REC_PDF(2)  
t
REC_PDR(2)  
Figure 10. LIN Timing Measurements for Slow Baud Rate (33662J)  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
14  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
TXD  
VLIN_REC  
LIN BUS SIGNAL  
60% V  
40% V  
SUP  
V
BUSREC  
V
SUP  
SUP  
V
BUSDOM  
t
t
t
TRAN_PDR40%  
TRAN_PDF60%  
TRAN_PDF40%  
t
TRAN_PDR60%  
Figure 11. LIN Transmitter Timing for 33662S  
VLIN_REC  
60% V  
40% V  
SUP  
V
BUSREC  
V
SUP  
LIN BUS SIGNAL  
SUP  
V
BUSDOM  
RXD  
t
t
REC_PDF  
REC_PDR  
Figure 12. LIN Receiver Timing  
VLIN_REC  
1V/ns  
60% V  
40% V  
SUP  
V
BUSREC  
V
SUP  
LIN BUS SIGNAL  
SUP  
V
BUSDOM  
RXD  
t
t
REC_PDF_FAST  
REC_PDR_FAST  
Figure 13. LIN Receiver Timing LIN slope 1V/ns  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
15  
ELECTRICAL CHARACTERISTICS  
FUNCTIONAL DIAGRAMS  
FUNCTIONAL DIAGRAMS  
EN  
INH  
VBUSWU  
LIN  
tWUF  
Normal Mode  
tLWUE  
INH  
EN  
tFIRST_DOM  
TXD  
tFIRST_DOM  
TXD  
LIN  
Awake Mode  
(High Z)  
RXD  
RXD  
(High Z)  
WAKE  
WAKE  
Figure 16. LIN Bus Wake-up with TXD High  
Figure 14. EN Pin Wake-up with TXD High  
WAKE  
EN  
INH  
WAKE after deglitcher  
tLWUE  
tWF  
Normal Mode  
INH  
tFIRST_DOM  
TXD  
LIN  
tFIRST_DOM  
EN  
TXD  
RXD  
(High Z)  
LIN  
RXD  
(High Z)  
Awake Mode  
WAKE  
Figure 15. WAKE Pin Wake-up with TXD High  
Figure 17. EN Pin Wake-up with TXD Low  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
16  
ELECTRICAL CHARACTERISTICS  
FUNCTIONAL DIAGRAMS  
WAKE  
VBUSWU  
tWUF  
WAKE after deglitcher  
LIN  
tWF  
INH  
EN  
tFIRST_DOM  
INH  
tFIRST_DOM  
EN  
TXD  
TXD  
Awake Mode  
(High Z)  
RXD  
LIN  
RXD  
(High Z)  
Awake Mode  
WAKE  
Figure 18. WAKE Pin Wake-up with TXD Low  
Figure 19. LIN Bus Wake-up with TXD Low  
INH  
EN  
TXD  
LIN  
No wake-up  
t>tWUF  
RXD  
(High Z)  
WAKE  
Preparation to Sleep Mode  
No communication available  
Sleep Mode  
Awake  
mode  
No communication available  
Device in  
Communication Mode  
Normal Mode  
LIN wake-up event not take into  
account  
Wake & LIN wake-up events  
allowed  
t
SD  
Figure 20. LIN Bus Wake-up with LIN bus in Dominant During the Preparation to Sleep Mode  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
17  
ELECTRICAL CHARACTERISTICS  
FUNCTIONAL DIAGRAMS  
EN pin  
t
LWUE  
EN internal signal  
t
LWUE  
EN pin  
t < t  
LWU  
E
EN internal signal  
5V  
5V  
EN pin  
t < t  
LWU  
E
EN internal signal  
Figure 21. EN Pin Deglitcher  
t1 (45 μs)  
EN  
Fast Baud Rate entrance  
t2 (12.5 μs)  
TXD  
t
(12.5  
μs)  
t4 (12.5 μs)  
3
LIN  
Fast Baud Rate validation  
RXD  
t5  
Figure 22. Fast Baud Rate Selection (Toggle Function)  
t1 (45 μs)  
EN  
Exit Fast Baud Rate  
t2 (12.5 μs)  
TXD  
t
(12.5  
μs)  
t4 (12.5 μs)  
3
LIN  
RXD stays High for Normal or Slow mode validation  
RXD  
Figure 23. Fast Baud Rate Mode Exit (back to Normal or Slow slew rate)  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
18  
ELECTRICAL CHARACTERISTICS  
FUNCTIONAL DIAGRAMS  
VSUP  
VUVL  
POR (3.5-5.3 V)  
POR (3.5-5.3 V)  
VSUP  
EN  
160 µs  
EN  
(High or Low)  
Normal Mode  
INH  
INH  
tFIRST_DOM  
(High or Low)  
TXD  
(High or Low)  
TXD  
LIN  
LIN  
Awake Mode  
RXD  
(High Z)  
RXD  
(High Z)  
*: this parameter is guaranteed by design  
Figure 24. Power Up and Down Sequences  
INH  
t
LWUE  
EN  
TXD  
LIN  
(High Z)  
RXD  
t
WF  
WAKE  
WAKE after deglitcher  
Preparation to Sleep Mode  
Sleep  
Mode  
Device in  
Communication Mode  
No communication allowed  
LIN wake-up event not take into  
account  
t
SD  
Figure 25. Sleep Mode Sequence  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
19  
ELECTRICAL CHARACTERISTICS  
FUNCTIONAL DIAGRAMS  
INH  
INH  
EN  
t
t
LWUE  
LWUE  
EN  
TXD  
TXD  
No communication  
No communication  
allowed  
LIN  
LIN  
allowed  
(High Z)  
(High Z)  
RXD  
RXD  
WAKE  
(case 1)  
WAKE  
(case 2)  
WAKE after deglitcher  
(case 1)  
WAKE after deglitcher  
(case 2)  
t = tWF  
t = tWF  
Awake Mode  
Preparation to  
Sleep Mode  
Awake Mode  
Device in  
Communication Mode  
Device in  
Communication Mode  
t < t  
SD  
Sleep Mode (t < tSD  
)
Preparation to  
The device does not enter in Sleep Mode  
The device does not enter in Sleep Mode  
INH  
EN  
t
LWUE  
TXD  
No communication  
allowed  
LIN  
(High Z)  
RXD  
WAKE  
(case 3)  
t = tWF  
WAKE after deglitcher  
(case 3)  
t = tSD  
Device in  
Communication Mode  
Sleep  
Mode  
Preparation to  
Sleep Mode  
Awake Mode  
Figure 26. Examples of Sleep Mode Sequences  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
20  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
The 33662L, 33662J, and 33662S are a physical layer  
component dedicated to automotive LIN sub-bus  
applications.  
LIN bus short-to-ground, or a LIN bus leakage during low  
power mode.  
Digital inputs are 5.0 and 3.3 V compatible without any  
external required components.  
The 33662L and 33662S features include a 20 kbps baud  
rate and the 33662J a 10 kbps baud rate. They integrate fast  
baud rate for test and programming modes, excellent ESD  
robustness, immunity against disturbance, and radiated  
emission performance. They have safe behavior in case of a  
The INH output can be used to control an external voltage  
regulator, or to drive a LIN bus pull-up resistor.  
FUNCTIONAL PIN DESCRIPTION  
POWER SUPPLY PIN (VSUP)  
LIN overtemperature  
OR  
The VSUP supply pin is the power supply pin for the  
33662L, or 33662J, or 33662S. In an application, the pin is  
connected to a battery through a serial diode, for reverse  
battery protection. The DC operating voltage is from 7.0 to  
18 V. This pin can sustain a standard automotive load dump  
condition up to 40 V. To avoid a false bus message, an  
undervoltage on VSUP disables the transmission path (from  
TXD to LIN) when VSUP falls below 6.7 V. Supply current in  
Sleep mode is typically 6.0 μA.  
INH overtemperature  
INH switched off &  
LIN transmitter and receiver disabled  
VSUP  
LIN Wake up  
INH_ON  
INH  
LIN Driver  
Slope Control  
EN_sleep  
VSUP Undervoltage  
TXD Dominant  
30 kΩ  
725 kΩ  
LIN  
X 1  
EN  
35µA  
GROUND PIN (GND)  
TXD  
RXD  
In case of a ground disconnection at the module level, the  
33662L, 33662J, and 33662S do not have significant current  
consumption on the LIN bus pin when in the recessive state.  
Receiver  
Figure 27. LIN Interface  
LIN BUS PIN (LIN)  
Transmitter Characteristics  
The LIN driver is a low side MOSFET with internal  
overcurrent thermal shutdown. An internal pull-up resistor  
with a serial diode structure is integrated so no external pull-  
up components are required for the application in a slave  
node. An additional pull-up resistor of 1.0 kΩ must be added  
when the device is used in the master node.  
The LIN pin represents the single-wire bus transmitter and  
receiver. It is suited for automotive bus systems, and is  
compliant to the LIN bus specification 1.3, 2.0, 2.1, and  
SAEJ2602-2.  
The LIN interface is only active during Normal mode (See  
Figure 27).  
The LIN pin exhibits no reverse current from the LIN bus  
line to VSUP, even in the event of a GND shift or VSUP  
disconnection. The 33662 is tested according to the  
application conditions (i.e. in normal mode and recessive  
state during communication).  
The transmitter has a 20 kbps baud rate (Normal baud  
rate) for the 33662L and 33662S devices, or 10 kbps baud  
rate (Slow baud rate) for the 33662J device. As soon as the  
device enters in Normal mode, the LIN transmitter will be able  
to send the first dominant bit only after the tFIRST_DOM delay.  
t
FIRST_DOM delay has no impact on the receiver. The receiver  
will be enabled as soon as the device enters in Normal mode.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
21  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL PIN DESCRIPTION  
Receiver Characteristics  
EN  
The receiver thresholds are ratiometric with the device  
supply pin.  
X 1  
200 kΩ  
If the VSUP voltage goes below the VSUP undervoltage  
LIN_RXD  
VSUP  
threshold (V , VUVH), the bus enters into a recessive state  
RXD  
UVL  
even if communication is sent to TXD.  
EN_RXD  
In case of LIN thermal shutdown, the transceiver and  
receiver are in recessive and INH turned off. When the  
30 kΩ  
Receiver  
LIN  
temperature is below the T  
, INH and LIN will be  
LINSD  
automatically enabled.  
Slope  
Control  
The Fast Baud Rate selection is reported by the RXD pin.  
Fast Baud Rate is activated by the toggle function (See  
Figure 22). At the end of the toggle function, just after EN  
rising edge, RXD pin is kept low for t5 to flag the Fast Baud  
Figure 28. RXD Interface  
The RXD output pin is the receiver output of the LIN  
Rate entry (See Figure 22).  
interface. The low level is fixed. The high level is dependent  
on EN voltage. If EN is set at 3.3 V, RXD VOH is 3.3 V. If EN  
is set at 5.0 V, RXD VOH is 5.0 V.  
To exit the Fast Baud Rate and return in Normal or Slow  
baud rate, a toggle function is needed. At the end of the  
toggle function, the RXD pin stays high to signal Fast Baud  
Rate exit (See Figure 23). The device enters into Fast Baud  
Rate at room and hot temperature.  
In Sleep mode, RXD is high-impedance. When a wake-up  
event is recognized from the WAKE pin or from the LIN bus  
pin, RXD is pulled LOW to report the wake-up event. An  
external pull-up resistor may be needed.  
DATA INPUT PIN (TXD)  
The TXD input pin is the MCU interface to control the state  
of the LIN output. When TXD is LOW (dominant), LIN output  
is LOW; when TXD is HIGH (recessive), the LIN output  
transistor is turned OFF. TXD pin thresholds are 3.3 V and  
5.0 V compatible.  
ENABLE INPUT PIN (EN)  
EN input pin controls the operation mode of the interface.  
If EN = 1, the interface is in Normal mode, TXD to LIN after  
tFIRST_DOM delay and LIN to RXD paths are both active. EN  
pin thresholds are 3.3 V and 5.0 V compatible. RXD VOH  
level follows EN pin high level. The device enters the Sleep  
mode by setting EN LOW for a delay higher than tSD (70 µs  
typ. value) and if the WAKE pin state doesn’t change during  
this delay (see Figure 25).  
This pin has an internal pull-up current source to force the  
recessive state if the input pin is left floating.  
If the pin stays low (dominant sate) more than 5.0 ms  
(typical value), the LIN transmitter goes automatically into  
recessive state.  
A combination of the logic levels on the EN and TXD pins  
allows the device to enter into the Fast Baud Rate mode of  
operation (see Figure 22).  
DATA OUTPUT PIN (RXD)  
RXD output pin is the MCU interface, which reports the  
state of the LIN bus voltage.  
INHIBIT OUTPUT PIN (INH)  
In Normal or Slow baud rate, LIN HIGH (recessive) is  
reported by a high voltage on RXD; LIN LOW (dominant) is  
reported by a low voltage on RXD.  
The INH output pin is connected to an internal high side  
power MOSFET. The pin has two possible main functions. It  
can be used to control an external switchable voltage  
regulator having an inhibit input. It can also be used to drive  
the LIN bus external resistor in the master node application,  
thanks to its high drive capability. This is illustrated in  
Figure 30 and 31.  
The RXD output structure is a tristate output buffer (See  
Figure 28).  
In Sleep mode, INH is turned OFF. If a voltage regulator  
inhibit input is connected to INH, the regulator will be  
disabled. If the master node pull-up resistor is connected to  
INH, the pull-up resistor will be unpowered and left floating.  
In case of a INH thermal shutdown, the high side is turned  
off and the LIN transmitter and receiver are in recessive state.  
An external 10 to 100 pF capacitor on INH pin is advised  
in order to improve EMC performances.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
22  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL PIN DESCRIPTION  
lower than tWF, the device will not enter the Sleep mode, but  
will go into Awake mode (See Figure 26).  
WAKE INPUT PIN (WAKE)  
The WAKE pin is a high voltage input used to wake-up the  
device from the Sleep mode. WAKE is usually connected to  
an external switch in the application.  
An internal filter is implemented to avoid a false wake-up  
event due to parasitic pulses (See Figure 15 and 18). WAKE  
pin input structure exhibits a high-impedance, with extremely  
low input current when voltage at this pin is below 27 V. Two  
serial resistors should be inserted in order to limit the input  
current mainly during transient pulses and ESD. The total  
recommended resistor value is 33 kΩ. An external 10 to  
100 nF capacitor is advised for better EMC and ESD  
performances.  
The WAKE pin has a special design structure and allows  
wake-up from both HIGH to LOW or LOW to HIGH  
transitions. When entering into Sleep mode, the device  
monitors the state of the WAKE pin and stores it as a  
reference state. The opposite state of this reference state will  
be the wake-up event used by the device to enter again into  
Normal mode.  
Important The WAKE pin should not be left open. If the  
wake-up function is not used, WAKE should be connected to  
ground to avoid a false wake-up.  
If the Wake pin state changes during the Sleep mode  
Delay Time (tSD) or before EN goes low with a deglitcher  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
23  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
As described below and depicted in Figure 29 and  
Table 7, the 33662L, 33662J, and 33662S have two  
operational modes, Normal and Sleep. In addition, there are  
two transitional modes: Awake mode and Preparation to  
Sleep mode. The Awake mode allows the device to go into  
Normal mode. The Preparation to Sleep mode allows the  
device to go into Sleep mode.  
If the WAKE pin state changes during tSD and if tWF is  
reached after end of tSD then the device goes into Sleep  
mode after the end of tSD timing.  
If the WAKE pin state changes during tSD and tWF delay  
has been reached before the end of tSD then the device goes  
into Awake mode.  
If the WAKE pin state changes before tSD and the delay  
tWF ends during tSD then the device goes into Awake mode.  
NORMAL OR SLOW BAUD RATE  
If EN goes high for a delay higher than tLWUE, the 33662  
returns to Normal mode.  
In the Normal mode, the LIN bus can transmit and receive  
information.  
The 33662L and 33662S (20 kbps) have a slew rate and  
timing compatible with Normal Baud Rate and LIN protocol  
specification 1.3, 2.0, and 2.1.  
SLEEP MODE  
To enter into Sleep mode, EN must be low for a delay  
longer than tSD and the Wake pin must stay in the same state  
(High or Low) during this delay.  
The 33662J (10 kbps) has a slew rate and timing  
compatible with Low Baud Rate.  
The device conditions to not enter in Sleep mode but enter  
in Awake mode are detailed in the Preparation into Sleep  
mode chapter. See Figure 26.  
From Normal mode, the three devices can enter into Fast  
Baud Rate (Toggle function).  
In Sleep mode, the transmission path is disabled and the  
device is in Low Power mode. Supply current from VSUP is  
very low (6.0 µA typical value). Wake-up can occur from LIN  
bus activity, from the EN pin and from the WAKE input pin. If  
during the preparation to Sleep mode delay (tSD), the LIN bus  
goes low due to LIN network communication, the device still  
enters into the Sleep mode. The device can be awakened by  
a recessive to dominant start, followed by a dominant to  
FAST BAUD RATE  
In Fast Baud Rate, the slew rate is around 10 times faster  
than the Normal Baud Rate. This allows very fast data  
transmission (>100 kbps) -- for instance, for electronic  
control unit (ECU) tests and microcontroller program  
download. The bus pull-up resistor might be adjusted to  
ensure a correct RC time constant in line with the high baud  
rate used.  
recessive state after t > tWUF  
After a Wake-up event, the device enters into Awake  
mode.  
.
Fast Baud Rate is entered via a special sequence (called  
toggle function) as follows:  
1- EN pin set LOW while TXD is HIGH  
2- TXD stays HIGH for 12.5 µs min  
3- TXD set LOW for 12.5 µs min  
In the Sleep mode, the internal 725 kOhm pull-up resistor  
is connected and the 30 kOhm is disconnected.  
DEVICE POWER-UP (Awake Transitional Mode)  
4- TXD pulled HIGH for 12.5 µs min  
5- EN pin set LOW to HIGH while TXD still HIGH  
At power-up (VSUP rises from zero), when VSUP is above  
the Power On Reset voltage, the device automatically  
switches after a 160 µs delay time to the Awake transitional  
mode. It switches the INH pin to a HIGH state and RXD to a  
LOW state. See Figure 24.  
The device enters into the Fast Baud Rate if the delay  
between Step 1 to Step 5 is 45 µs maximum. The toggle  
function is described in Figures 22. Once in Fast Baud Rate,  
the same toggle function just described previously is used to  
bring the device back into Normal Baud Rate.  
DEVICE WAKE-UP EVENTS  
Fast Baud Rate selection is reported to the MCU by RXD  
pin. Once the device enters in this Fast Baud Rate, the RXD  
pin goes at low level for t5. When the device returns in Normal  
Baud Rate with the same toggle function, the RXD pin stays  
high. Both sequences are illustrated in Figures 22 and 23.  
The 33662L, 33662J, and 33662S can be awakened from  
Sleep mode by three wake-up events:  
• Remote wake-up via LIN bus activity  
• Via the EN pin  
• Toggling the WAKE pin  
PREPARATION TO SLEEP MODE  
Remote Wake from LIN Bus (Awake Transitional Mode)  
To enter the Preparation to Sleep mode, EN must be low  
The device is awakened by a LIN dominant pulse longer  
than tWUF. Dominant pulse means: a recessive to dominant  
transition, wait for t > tWUF, then a dominant to recessive  
for a delay higher than tLWUE  
.
If the WAKE pin state doesn’t change during tSD and tLWUE  
then the 33662 goes into Sleep mode.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
24  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
transition. This is illustrated in Figure 16 and 19. Once the  
wake-up is detected (during the dominant to recessive  
transition), the device enters into Awake mode, with INH  
HIGH and RXD pulled LOW.  
17. Once in Normal mode, the device has to wait tFIRST_DOM  
delay before transmitting the first dominant bit.  
Wake-up from WAKE Pin (Awake Transitional Mode)  
Once in the Awake mode, the EN pin has to be set to 3.3 V  
or 5.0 V (depending on the system) to enter into Normal  
mode. Once in Normal mode, the device has to wait tfirst_dom  
delay before transmitting the first dominant bit.  
Just before entering the Sleep mode, the WAKE pin state  
is stored. A change in the level longer than the deglitcher time  
(70 µs maximum) will generate a wake-up, and the device  
enters into the Awake Transitional mode, with INH HIGH and  
RXD pulled LOW. See Figure 15 and 18. The device goes  
into Normal mode when EN is switched from LOW to HIGH  
and stays HIGH for a delay higher than tLWUE. Once in  
Normal mode, the device has to wait tFIRST_DOM delay before  
transmitting the first dominant bit.  
Wake-up from EN pin  
The device can be waked-up by a LOW to HIGH transition  
of the EN pin. When EN is switched from LOW to HIGH and  
stays HIGH for a delay higher than tLWUE, the device is  
awakened and enters into Normal mode. See Figure 14 and  
FAIL-SAFE FEATURES  
The table below describes the 33662 protections.  
BLOCK  
FAULT  
FUNCTIONAL  
MODE  
CONDITION  
RESPONSE  
RECOVERY  
CONDITION  
RECOVERY  
FUNCTIONALITY MODE  
Device goes in Awake  
mode whatever the  
previous device mode  
Power  
Supply  
Power on Reset  
(POR)  
V
< 3.5 V (min)  
SUP  
then power up  
All modes  
No internal supplies  
Condition gone  
Condition gone  
Normal,  
Awake &  
Preparation to  
Sleep modes  
INH high side turned  
off. LIN transmitter  
and receiver in  
INH Thermal  
Shutdown  
Temperature >  
160 °C (typ)  
Device returns in same  
functional mode  
INH  
recessive state  
LIN transmitter in  
recessive state  
Device returns in same  
functional mode  
V
undervoltage  
V
< V  
UVL  
Condition gone  
Condition gone  
SUP  
SUP  
Normal  
TXDPinPermanent  
Dominant  
TXD pin low for more  
than 5.0 ms (typ)  
LIN transmitter in  
recessive state  
Device returns in same  
functional mode  
LIN  
LIN transmitter and  
receiver in recessive  
state  
Normal mode  
LIN Thermal  
Shutdown  
Temperature >  
160 °C (typ)  
Device returns in same  
functional mode  
Condition gone  
INH high side turned  
off  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
25  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
Power Up  
EN HIGH to LOW for t > t  
LWUE  
Fast Baud  
Rate (10x)  
V
> V  
POR  
SUP  
Toggle  
Function  
(33)  
EN LOW to HIGH for t > t  
LWUE  
Awake  
(30)  
Internal WAKE  
state  
changes during t  
SD  
Normal Baud Rate for  
33662L and 33662S  
or  
EN HIGH to LOW  
for t > t  
LIN bus dominant pulse  
(31)  
WUF  
LWUE  
for t > t  
or  
WAKE pin state  
Preparation  
to Sleep  
Slow Baud Rate  
for 33662J  
Toggle  
Function  
(33)  
EN LOW to HIGH  
(32)  
changes for t > t  
for t > t  
WF  
LWUE  
(30)  
Internal WAKE  
state  
doesn’t change during t  
SD  
Sleep  
EN LOW to HIGH for t > t  
LWUE  
Notes  
32. Internal WAKE is the WAKE signal filtered by t  
(WAKE deglitcher)  
WF  
33. See Figure 15 and Figure 18  
34. See figures Figure 14 and Figure 17  
35. The Toggle Function is guaranteed at ambient and hot temperature  
Figure 29. Operational and Transitional Modes State Diagram  
Table 7. Explanation of Operational and Transitional Modes State Diagram  
Operational/  
Transitional  
LIN  
INH  
EN  
TXD  
RXD  
(36)  
Recessive state, driver off with  
725 kΩ pull-up  
High-impedance.  
Sleep  
OFF  
(low)  
LOW  
X
HIGH if external pull-up to V  
DD  
Recessive state, driver off.  
725 kΩ pull-up active  
LOW.  
Awake  
ON  
LOW  
X
X
If external pull-up, HIGH-to-LOW  
transition reports wake-up  
(high)  
Recessive state, driver off with  
725 kΩ pull-up  
High-impedance. HIGH if  
external pull-up to V  
Preparation to  
Sleep mode  
ON  
LOW  
HIGH  
DD  
(high)  
Driver active. 30 kΩ pull-up active  
Normal Baud Rate for 33662L  
and 33662S  
LOW to drive LIN bus in dominant Report LIN bus state:  
Normal mode  
ON  
• Low LIN bus dominant  
• High LIN bus recessive  
HIGH to drive LIN bus in recessive  
(high)  
Slow Baud Rate for 33662J  
Fast Baud Rate (> 100 kbps) for  
33662L, 33662S, & 33662J  
X = Don’t care.  
Notes  
36. Only applies to 33662B. The 33662 will have a leakage current of typically 95 μA if a pull-up resistor is implemented.  
The LIN 2.1 physical layer and is backward compatible  
with the LIN 1.3 physical layer, but not the other way around.  
The LIN 2.1 physical layer sets harder requirements, i.e. a  
node using the LIN 2.1 physical layer can operate in a LIN 1.3  
cluster.  
COMPATIBILITY WITH LIN1.3  
Following the Consortium LIN specification Package,  
Revision 2.1, November 24, 2006, Chapter 1.1.7.1  
Compatibility with LIN1.3, page 15.  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
26  
TYPICAL APPLICATIONS  
TYPICAL APPLICATIONS  
The 33662 can be configured for several applications.  
Figure 30 and 31 show master and slave node applications.  
An additional pull-up resistor of 1.0 kΩ in series with a diode  
between the INH and LIN pins must be added when the  
device is used in the master node.  
C1  
D1  
C2  
100nF  
VBAT  
22µF  
VSUP  
R2  
R3  
R4  
18kΩ 18kΩ  
2.2kΩ  
X 1  
INH_ON  
INH  
EN  
I/O  
EN_sleep  
D2  
Control  
Unit  
VDD  
VDD  
Regulator  
200 kΩ  
MCU  
R1  
*
*
12V  
1.0 kΩ  
RXD  
30 kΩ  
725 kΩ  
VDD  
RXD  
5V or  
3.3V  
RXD_Int  
LIN_en  
LIN  
Receiver  
LIN Bus  
EN_RXD  
TXD  
35µA  
Slope  
Control  
TXD_Int  
TXD  
WAKE  
C3  
100nF  
GND  
*: Optional. 2.2k if implemented  
Figure 30. Master Node Typical Application  
C1  
D1  
C2  
100nF  
VBAT  
22µF  
VSUP  
R2  
R3  
R4  
18kΩ 18kΩ  
2.2kΩ  
X 1  
INH_ON  
INH  
LIN  
EN  
I/O  
EN_sleep  
Control  
Unit  
VDD  
VDD  
*
Regulator  
200 kΩ  
MCU  
12V  
*
RXD  
30 kΩ  
725 kΩ  
VDD  
RXD  
5V or  
3.3V  
RXD_Int  
LIN_en  
Receiver  
LIN Bus  
EN_RXD  
TXD  
35µA  
Slope  
Control  
TXD_Int  
TXD  
WAKE  
C3  
100nF  
GND  
*: Optional. 2.2k if implemented  
Figure 31. Slave Node Typical Application  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
27  
PACKAGING  
PACKAGE DIMENSIONS  
PACKAGING  
PACKAGE DIMENSIONS  
Important For the most current revision of the package, visit www.Freescale.com and do a keyword search on the 98A  
drawing number below.  
EF SUFFIX  
8-PIN  
98ASB42564B  
REVISION V  
33662  
Analog Integrated Circuit Device Data  
28  
Freescale Semiconductor  
PACKAGING  
PACKAGE DIMENSIONS  
EF SUFFIX  
8-PIN  
98ASB42564B  
REVISION V  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
29  
REVISION HISTORY  
PACKAGE DIMENSIONS  
REVISION HISTORY  
REVISION  
DATE  
8/2011  
9/2011  
1/2014  
DESCRIPTION OF CHANGES  
3.0  
4.0  
5.0  
Initial release  
Changed the PC part numbers in the Ordering Information Table to MC  
Added MC33662BLEF, MC33662BJEF, and MC33662BSEF to the ordering information.  
Updated Device Variations table  
Changed LIN dominant level with 500 Ω, 680 Ω and 1.0 kΩ load on the LIN bus from 0.3 to  
0.25  
Changed LIN Wake-up Threshold from Sleep Mode from 5.0 to 5.3  
MC33662LEF/MC33662SEF/MC33662JEF INH pin HBM level 8.0 KV removed to reflect  
performance  
Corrected MC33662BLEF, MC33662BJEF, and MC33662BSEF to PC in the ordering  
information.  
Minor corrections to format.  
6.0  
1/2014  
33662  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
30  
Information in this document is provided solely to enable system and software implementers to use Freescale products.  
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no  
warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others.  
Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:  
freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.  
SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their  
respective owners.  
© 2014 Freescale Semiconductor, Inc.  
Document Number: MC33662  
Rev. 6.0  
1/2014  

相关型号:

PC33701DWB

3A SWITCHING REGULATOR, 400kHz SWITCHING FREQ-MAX, PDSO32, PLASTIC, SOIC-32
MOTOROLA

PC33701DWB

3A SWITCHING REGULATOR, 400kHz SWITCHING FREQ-MAX, PDSO32, PLASTIC, SOIC-32
NXP

PC33701DWBR2

Switching Regulator, Current-mode, 3A, 400kHz Switching Freq-Max, PDSO32, PLASTIC, SOIC-32
MOTOROLA

PC33701DWBR2

3A SWITCHING REGULATOR, 400kHz SWITCHING FREQ-MAX, PDSO32, PLASTIC, SOIC-32
NXP

PC33702DWB

3.0 A Switch-Mode Power Supply with Linear Regulator
MOTOROLA

PC33702DWB/R2

3.0 A Switch-Mode Power Supply with Linear Regulator
MOTOROLA

PC33702DWBR2

Switching Regulator, Current-mode, 6A, 400kHz Switching Freq-Max, PDSO32, PLASTIC, SOIC-32
MOTOROLA

PC33710EW

Dual Output DC-DC & Linear Regulator IC
FREESCALE

PC33710EW

IC,SMPS CONTROLLER,VOLTAGE-MODE,SSOP,32PIN,PLASTIC
NXP

PC33710EW/R2

0.7A SWITCHING REGULATOR, 260kHz SWITCHING FREQ-MAX, PDSO32, 0.65 MM PITCH, ROHS COMPLIANT, PLASTIC, SOIC-32
NXP

PC33710EWR2

Dual Output DC-DC & Linear Regulator IC
FREESCALE

PC33813AE

One Cylinder Small Engine Control IC
FREESCALE