PC34708VK [NXP]

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PBGA206, 8 X 8 MM, 0.50 MM PITCH, LEAD FREE, MO-275CCCE-1, MAPBGA-206;
PC34708VK
型号: PC34708VK
厂家: NXP    NXP
描述:

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PBGA206, 8 X 8 MM, 0.50 MM PITCH, LEAD FREE, MO-275CCCE-1, MAPBGA-206

文件: 总190页 (文件大小:6323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document order number: MC34708  
Rev. 7.0, 10/2011  
Freescale Semiconductor  
Advance Information  
Power Management Integrated  
Circuit (PMIC) for i.MX50/53  
Families  
34708  
The MC34708 is the Power Management Integrated Circuit (PMIC)  
designed specifically for use with the Freescale i.MX50 and i.MX53  
families.  
POWER MANAGEMENT  
Features  
• Six multi-mode buck regulators for direct supply of the processor  
core, memory, and peripherals  
• Boost regulator for USB OTG support  
• Eight regulators with internal and external pass devices for thermal  
budget optimization  
VK SUFFIX (PB-FREE)  
206 MAPBGA  
8.0 X 8.0 (0.5 MM PITCH) 13.0 X 13.0 (0.8 MM PITCH)  
VM SUFFIX (PB-FREE)  
206 MAPBGA  
• Dual input switching charger for single cell Li-Ion battery, supports  
universal charging standard for selection of optimal charging profile  
• Dual path charger design enables power-on with a dead/ no battery  
• Coulomb counter support module for fuel gauge monitoring  
• USB/UART/Audio switching for mini-micro USB connector  
• 10-bit ADC for monitoring battery and other inputs  
• Real time clock and crystal oscillator circuitry with coin cell backup/  
charger  
Applications  
Tablets  
Smart Mobile Devices  
eReaders  
Portable Navigation Devices  
• SPI/I2C bus for control and register interface  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃꢄꢁ  
!!ꢍ  
!ꢊꢋꢌꢋ"  
ꢂ"#ꢇꢐꢉꢋꢈ$ꢋꢌꢐ  
ꢅꢇꢈꢛꢔ  
ꢗꢀ  
ꢅꢏꢐꢉꢑꢈꢒ  
ꢎꢏ31ꢍ&ꢉ#ꢊ  
4!2  
ꢅꢈꢊꢈ  
ꢁ#ꢇꢏ"1  
ꢂꢏ&ꢋ1ꢏ&5"#ꢊ  
4ꢁꢆ  
!ꢊꢋꢌꢋ"  
(")ꢋꢌ  
%ꢋꢈꢇꢉ%"&ꢋꢐ  
4!2  
ꢍ56  
4!21!)ꢏꢊ3%  
ꢁꢇꢈꢉꢊꢋꢌ  
(")ꢋꢌ  
ꢀ%ꢈꢌ0ꢋꢌ1ꢂꢃꢅ  
ꢂꢏ1ꢍ"&12ꢈꢊꢊꢋꢌꢒ  
 "#3%  
!3ꢌꢋꢋ&  
ꢀ"ꢏ&1ꢀꢋꢑꢑ  
2ꢈꢊꢊꢋꢌꢒ  
78  
ꢀꢁꢂꢃꢄꢅꢁꢆ  
7
77  
8
7E  
@
A
F
C
B
D
9
ꢆ ꢀ  
Figure 1. MC34708 Simplified Application Diagram  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© Freescale Semiconductor, Inc., 2011. All rights reserved.  
Table of Contents  
1
2
Orderable Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Part Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.2 Format and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1 Simplified Internal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1 Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.2 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3
4
5
5.2.1  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.3.1  
5.3.2  
General PMIC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6
7
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.1 Startup Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.2 Bias and References Block Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.3 Clocking and Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.3.1  
7.3.2  
7.3.3  
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SRTC Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Coin Cell Battery Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.4 Interrupt Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.4.1  
7.4.2  
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Interrupt Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.5 Power Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.5.6  
Power Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Power Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Buck Switching Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Boost Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Linear Regulators (LDOs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
7.6 Battery Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.7  
7.6.8  
7.6.9  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Buck Charger Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Over-voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Thermal Fold back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Charge Source Input Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Trickle Charge Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Battery Thermistor Check Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Charge LEDs Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Coulomb Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
7.6.10 Charger Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
2
7.7 Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
7.7.1  
7.7.2  
7.7.3  
7.7.4  
7.7.5  
Input Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Dedicated Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Touch Screen Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
ADC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
7.8 Auxiliary Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
7.8.1  
7.8.2  
7.8.3  
General Purpose I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
PWM Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Mini/Micro USB Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
7.9 Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
7.9.1  
7.9.2  
7.9.3  
SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
SPI/I2C Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
7.10 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
7.10.1 Register Set structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
7.10.2 Specific Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
7.10.3 SPI/I2C Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
7.10.4 SPI Register’s Bit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
8.1 Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
8.2 Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
8.3 MC34708 Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
8
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.3.6  
General board recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
General Routing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Parallel Routing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Differential Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Switching Regulator Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
8.4 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
8.4.1  
8.4.2  
Rating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Estimation of Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
9
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
9.1 Package Mechanical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
10 Reference Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
MC34708  
Analog Integrated Circuit Device Data  
3
Freescale Semiconductor  
Orderable Parts  
1
Orderable Parts  
This section describes the part numbers available to be purchased along with their differences. Valid orderable part numbers are  
provided on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part  
number search for the following device numbers.  
Table 1. Orderable Part Variations  
Part Number (1)  
Temperature (T )  
Package  
A
MC34708VK  
MC34708VM  
Notes  
206 MAPBGA - 8.0 x 8.0 mm - 0.5 mm Pitch  
206 MAPBGA - 13 x 13 mm - 0.8 mm Pitch  
-40 to 85 °C  
1. To Order parts in Tape & Reel, add the R2 suffix to the part number.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
4
Part Identification  
2
Part Identification  
This section provides an explanation of the part numbers and their alpha numeric breakdown.  
2.1  
Description  
Part numbers for the chips have fields that identify the specific part configuration. You can use the values of these fields to  
determine the specific part you have received.  
2.2  
Format and Examples  
Part numbers for a given device have the following format, followed by a device example:  
Table 2 - Part Numbering - Analog:  
MC tt xxx r v PPP RR - MC34708VKR2  
2.3  
Fields  
These tables list the possible values for each field in the part number (not all combinations are valid).  
Table 2: Part Numbering - Analog  
FIELD  
MC  
DESCRIPTION  
VALUES  
• MC- Qualified Standard  
• PC- Prototype Device  
Product Category  
• 33 = -40 °C to > 105 °C  
• 34 = -40 °C to 105 °C  
• 35 = -55 °C to 125 °C  
tt  
Temperature Range  
xxx  
r
Product Number  
Revision  
• Assigned by Marketing  
• (default blank)  
v
Variation  
• (default blank)  
PPP  
RR  
Package Identifier  
Tape and Reel Indicator  
• Varies by package  
• R2 = 13 inch reel hub size  
MC34708  
Analog Integrated Circuit Device Data  
5
Freescale Semiconductor  
Internal Block Diagram  
3
Internal Block Diagram  
3.1  
Simplified Internal Diagram  
MC34708  
Block Diagram  
Rev 0.66  
Freescale  
SW1IN  
Semiconductor  
Confidential  
Proprietary  
SW1ALX  
GNDSW1A  
SW1FB  
O/P  
Switching Charger  
Battery Interface &  
Drive  
Interface and Control, Protection,  
Protection  
Trickle Generation  
SW1  
Dual Phase  
GP  
SW1CFG  
SW1VSSSNS  
LICELL, UID, Die Temp  
2000 mA  
Buck  
Voltage /  
Current  
GNDADC  
ADIN9  
SW1BLX  
GNDSW1B  
O/P  
Drive  
Sensing &  
10 Bit GP  
A/D Result  
Translation  
ADC  
DVS  
CONTROL  
SW1PWGD  
ADIN10  
ADIN11  
A/D  
Control  
SW2IN  
SW2LX  
MUX  
O/P  
Drive  
SW2  
ADIN12/TSX1  
ADIN13/TSX2  
ADIN14/TSY1  
ADIN15/TSY2  
TSREF  
GNDSW2  
LP  
`
SW2FB  
1000 mA  
SW2PWGD  
Buck  
Touch  
Screen  
Interface  
Die Temp &  
Thermal Warning  
Detection  
SW3IN  
To Interrupt  
Section  
SW3  
INT MEM  
500 mA  
Buck  
O/P  
Drive  
SW3LX  
GNDSW3  
SW3FB  
BPTHERM  
NTCREF  
SW4AIN  
SW4ALX  
GNDSW4A  
SW4FBA  
O/P  
BATTISNSCCP  
Drive  
SW4  
Dual Phase  
DDR  
1000 mA  
Buck  
BATTISNSCCN  
CFP  
Coulomb  
Counter  
CCOUT  
SW4CFG  
To SPI  
Package Pin Legend  
SW4BIN  
CFN  
SW4BLX  
GNDSW4B  
SW4BFB  
O/P  
Drive  
Output Pin  
Input Pin  
SPIVCC  
Shift Register  
Bi-directional Pin  
CS  
CLK  
SPI  
SW5IN  
Interface  
SW5  
I/O  
1000 mA  
Buck  
O/P  
Drive  
SW5LX  
GNDSW5  
SW5FB  
SPI  
+
MOSI  
MISO  
To Enables & Control  
Muxed  
I2C  
Registers  
Optional  
Interface  
GNDSPI  
Shift Register  
SWBSTIN  
SWBSTLX  
SWBSTFB  
O/P  
Drive  
SWBST  
380 mA  
Boost  
VALWAYS  
VCORE  
GNDSWBST  
VCOREDIG  
VDDLP  
Reference  
Generation  
MC34708  
SPI Control  
VINREFDDR  
VHALF  
VCOREREF  
GNDCORE  
GNDREF  
VREFDDR  
10mA  
VREFDDR  
SPKR  
SPKL  
MIC  
VINPLL  
VPLL  
VPLL  
50 mA  
Pass  
FET  
VUSB2DRV  
VUSB2  
TXD  
RXD  
Pass  
FET  
VUSB2  
350mA  
VBUS/ID  
Detectors, Host  
Auto detection  
DPLUS  
DMINUS  
VDACDRV  
VDAC  
VDAC  
250mA  
UART Switches  
Audio Switches  
To  
Trimmed  
Circuits  
DP  
DM  
GNDUSB  
UID  
SPI  
Trim-In-Package  
Control  
Logic  
VINGEN1  
VGEN1  
VGEN1  
250mA  
Pass  
FET  
VBUS  
Startup  
Sequencer  
Decode  
Trim?  
OVP  
Control  
Logic  
VGEN2DRV  
VGEN2  
PUMSx  
PLL  
Switchers  
Pass  
FET  
VGEN2  
250mA  
VINUSB  
VUSB  
Monitor  
Timer  
VUSB  
Regulator  
RTC +  
32 KHz  
LDOVDD  
Calibration  
Internal  
Osc  
SPI Result  
Registers  
Interrupt  
Inputs  
Enables &  
Control  
32 KHz  
Buffers  
Best  
of  
GNDREG1  
GNDREG2  
GNDREF1  
GNDREF2  
BP  
LCELL  
Switch  
LICELL  
Supply  
PWM  
Outputs  
32 KHz  
Crystal  
Osc  
GPIO Control  
Li Cell  
Charger  
VSRTC  
Figure 2. MC34708 Simplified Internal Block Diagram  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
6
Pin Connections  
4
Pin Connections  
4.1  
Pinout Diagram  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
A
B
C
D
E
F
TRICKLESEL  
GNDACHRG  
BATT  
CFP  
BP  
VBUSVIN  
CHRGLX  
GNDCHRG  
LEDVDD  
LICELL  
PWM1  
GPIOVDD  
PUMS4  
AUXVIN  
AUXVIN  
VAUX  
AUXVIN  
AUXVIN  
GOTG  
PRETMR  
SUBSANA3  
GAUX  
BPTHERM  
NTCREF  
SDWNB  
INT  
CFN  
GBAT  
VBUSVIN  
VBUSVIN  
VBUSVIN  
BATTISNSP  
BATTISNSN  
GLBRST  
MIC  
CHRGLX  
CHRGLX  
GNDCHRG  
GNDCHRG  
GNDCHRG  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SW1VSSSNS  
CHRGLEDG  
PWM2  
GPIOLV1  
GPIOLV3  
GPIOLV2  
GPIOLV0  
GNDREF2  
SW3FB  
GNDGPIO  
PUMS1  
PUMS3  
GNDSW2  
SW2LX  
PUMS2  
GNDSW2  
SW2LX  
SUBSANA2  
GNDSW2  
SW2LX  
CHRGFB  
BPSNS  
CHRGLX  
ICTEST  
PUMS5  
RESETB  
MISO  
GNDCTRL  
GNDSPI  
CS  
PWRON2  
MOSI  
BATTISNSCCN  
BATTISNSCCP  
ITRIC  
CHRGLEDR  
SW2FB  
SW2IN  
SW2IN  
SW2IN  
SPIVCC  
RXD  
RESETBMCU  
TXD  
SUBSPWR1  
PWRON1  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
GNDREF1  
SWBSTIN  
GNDSWBST  
SWBSTFB  
VPLL  
SWBSTIN  
GNDSWBST  
CLK32K  
GNDSW3  
SW3LX  
GNDSW3  
SW3LX  
G
H
J
CLK  
VINUSB  
UID  
SW2PWGD  
CLK32KMCU  
VDACDRV  
VHALF  
VBUS  
VUSB  
VALWAYS  
VDDLP  
TSX1  
SUBSREF  
STANDBY  
SUBSPWR1  
TSY2  
CLK32KVCC  
VINPLL  
SW3IN  
SW3IN  
DM  
SPKR  
VCOREDIG  
VCORE  
GNDUSB  
TSY1  
VSRTC  
SWBSTLX  
GNDRTC  
LDOVDD  
VUSB2DRV  
VINGEN1  
GNDSW1B  
GNDSW1B  
SWBSTLX  
SUBSLDO  
XTAL2  
K
L
DP  
SPKL  
ADIN10  
ADIN9  
VGEN2  
VDAC  
GNDREG1  
VUSB2  
DPLUS  
DMINUS  
VCOREREF  
TSREF  
GNDCORE  
GNDREF  
GNDADC  
GNDSW4A  
SW4ALX  
WDI  
TSX2  
ADIN11  
SUBSPWR1  
SW5FB  
SW1CFG  
SW1FB  
VINREFDDR  
SW1PWGD  
SW1IN  
GNDREG2  
M
N
P
R
SW4CFG  
VGEN1  
XTAL1  
GNDADC  
GNDADC  
SW4AIN  
GNDADC  
GNDADC  
SW4BIN  
SW5IN  
SW5LX  
SW5LX  
SW5LX  
GNDSW5  
GNDSW5  
GNDSW5  
SW1IN  
SW1IN  
SW1IN  
SUBSANA1  
SW1BLX  
SW1BLX  
VGEN2DRV  
VREFDDR  
SW4BFB  
SW4BLX  
SW4AFB  
SW5IN  
GNDSW1A  
GNDSW1A  
SW1ALX  
SW1ALX  
GNDSW4B  
SW5IN  
Legend  
Regulators  
Switchers  
Control Logic  
Charger  
RTC  
Ground  
USB  
ADC  
SPI/I2C  
No Connect  
Figure 3. MC34708 Top View Ballmap  
MC34708  
Analog Integrated Circuit Device Data  
7
Freescale Semiconductor  
Pin Connections  
4.2  
Pin Definitions  
Table 3. MC34708 Pin Definitions  
Pin  
Pin Number  
Pin Name  
Rating  
# Balls  
Definition  
Function  
Charger  
A7  
B7  
C7  
D7  
1. Main charger input  
VBUSVIN  
I
7.5  
4
2. Main output to battery supplied accessories  
B1  
B2  
C1  
C2  
1. Aux charger input  
AUXVIN  
VAUX  
I
I
7.5  
20  
4
1
4
Aux VIN sense  
D1  
A8  
B8  
C8  
D8  
Charger switch node connection  
CHRGLX  
O
7.5  
Charger regulator feedback  
C5  
D2  
D3  
C6  
CHRGFB  
GOTG  
I
7.5  
20  
1
1
1
1
Gate drive for external P-channel switch MVBUS  
Gate drive for external P-channel Switch MAUX  
BP sense point  
O
O
I
GAUX  
20  
BPSNS  
5.5  
1. Application supply point  
2. Input supply to the IC core circuitry  
3. Application supply voltage sense  
A6  
BP  
I
5.5  
1
Driver output for battery path FET  
Trickle charger output  
B6  
E8  
E7  
F7  
GBAT  
ITRIC  
O
O
I
5.5  
5.5  
5.5  
5.5  
1
1
1
1
Battery current sensing point  
Battery current sensing point  
BATTISNSP  
BATTISNSN  
I
1. Battery positive terminal  
2. Battery current sensing point 2  
3. Battery supply voltage sense  
A4  
BATT  
I
5.5  
1
Accumulated counter current sensing point  
Accumulated current counter current sensing point  
Trickle current programming input  
Precharge timer programming input  
Accumulated current filter cap plus terminal  
Accumulated current filter cap minus terminal  
Trickle LED supply  
F6  
E6  
BATTISNSCCP  
BATTISNSCCN  
TRICKLESEL  
PRETMR  
I
5.5  
5.5  
3.6  
3.6  
4.8  
4.8  
20  
1
1
1
1
1
1
1
1
1
1
I
A2  
I
B3  
I
A5  
CFP  
I
B5  
CFN  
I
A10  
E10  
B10  
A3  
LEDVDD  
O
Trickle Red LED driver  
CHRGLEDR  
CHRGLEDG  
GNDACHRG  
I
I
7.5  
7.5  
-
Trickle Green LED driver  
Analog ground for charger interface  
GND  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
8
Pin Connections  
Table 3. MC34708 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Rating  
# Balls  
Definition  
Function  
A9  
B9  
C9  
D9  
Ground for charger interface  
GNDCHRG  
GND  
--  
4
Bias voltage for battery thermistor  
Battery pack temperature thermistor  
Indication of imminent system shutdown  
C4  
B4  
NTCREF  
BPTHERM  
SDWNB  
O
I
3.6  
3.6  
3.6  
1
1
1
D4  
O
IC Core  
K3  
Regulated supply for the IC analog core circuitry  
Regulated supply for the IC digital core circuitry  
Best of supply between battery and charger input  
Main bandgap reference  
VCORE  
VCOREDIG  
VALWAYS  
VCOREREF  
VDDLP  
I
3.6  
1.5  
7.5  
3.6  
3.6  
-
1
1
1
1
1
1
1
J3  
I
H4  
I
N1  
I
VDDLP reference  
J4  
I
Ground for the IC core circuitry  
L2  
GNDCORE  
GNDREF  
GND  
GND  
Ground reference for the IC core circuitry  
M2  
-
Switching Regulators  
N11  
N12  
SW1 input  
SW1IN  
I
5.5  
4
P12  
R12  
P11  
R11  
SW1A switch node connection  
SW1 feedback  
SW1ALX  
SW1FB  
O
I
5.5  
3.6  
-
2
1
2
M10  
P10  
R10  
Ground for SW1A  
GNDSW1A  
GND  
SW1 sense  
L9  
SW1VSSSNS  
SW1PWGD  
GND  
O
-
1
1
Powergood signal for SW1  
M11  
3.6  
P13  
R13  
SW1B switch node connection  
SW1BLX  
O
5.5  
2
P14  
R14  
Ground for SW1B  
GNDSW1B  
SW1CFG  
GND  
I
-
2
1
SW1A/B mode configuration  
L10  
3.6  
E13  
E14  
E15  
SW2 input  
SW2IN  
I
5.5  
3
D13  
D14  
D15  
SW2 switch node connection  
SW2 feedback  
SW2LX  
SW2FB  
O
I
5.5  
3.6  
3
1
E12  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
9
Pin Connections  
Table 3. MC34708 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Rating  
# Balls  
Definition  
Function  
C13  
C14  
C15  
Ground for SW2  
GNDSW2  
GND  
-
3
Powergood signal for SW2  
SW3 input  
G10  
SW2PWGD  
SW3IN  
O
I
3.6  
5.5  
1
2
H14  
H15  
G14  
G15  
SW3 switch node connection  
SW3 feedback  
SW3LX  
SW3FB  
O
I
5.5  
3.6  
-
2
1
2
G11  
F14  
F15  
Ground for SW3  
GNDSW3  
GND  
Ground reference for switching regulators  
SW4A input  
F11  
R3  
R2  
P6  
P2  
R4  
R5  
P5  
R6  
M6  
GNDREF2  
SW4AIN  
GND  
-
1
1
1
1
1
1
1
1
1
1
I
5.5  
5.5  
3.6  
-
SW4A switch node connection  
SW4A feedback  
SW4ALX  
SW4AFB  
GNDSW4A  
SW4BIN  
O
I
Ground for SW4A  
GND  
SW4B input  
I
5.5  
5.5  
3.6  
-
SW4B switch node connection  
SW4B feedback  
SW4BLX  
SW4BFB  
GNDSW4B  
SW4CFG  
O
I
GND  
I
Ground for SW4B  
SW4A/B mode configuration  
3.6  
N7  
P7  
R7  
SW5 input  
SW5IN  
I
5.5  
3
N8  
P8  
R8  
SW5 output  
SW5LX  
SW5FB  
O
I
5.5  
3.6  
-
3
1
3
SW5 feedback  
Ground for SW5  
M7  
N9  
P9  
R9  
GNDSW5  
GND  
Ground reference for Switching Regulators  
Boost Regulator BP supply  
L8  
GNDREF1  
SWBSTIN  
GND  
I
-
1
2
F12  
F13  
5.5  
J14  
J15  
SWBST switch node connection  
Boost Regulator feedback  
Ground for boost Regulator  
SWBSTLX  
SWBSTFB  
GNDSWBST  
O
I
7.5  
5.5  
-
2
1
2
H12  
G12  
G13  
GND  
Regulators  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
10  
Pin Connections  
Table 3. MC34708 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Rating  
# Balls  
Definition  
Function  
VREFDDR input supply  
L11  
P15  
K10  
J11  
J12  
J10  
K12  
L14  
VINREFDDR  
VREFDDR  
VHALF  
I
O
3.6  
1.5  
1.5  
5.5  
2.5  
5.5  
3.6  
5.5  
1
1
1
1
1
1
1
1
VREFDDR regulator output  
Half supply reference for VREFDDR  
VPLL input supply  
O
VINPLL  
I
VPLL regulator output  
VPLL  
O
Drive output for VDAC regulator using external PNP device  
VDAC regulator output  
VDACDRV  
VDAC  
O
O
Supply pin for VUSB2, VDAC, and VGEN2  
1. VUSB2 input using internal PMOS FET  
2. Drive output for VUSB2 regulator using external PNP device  
VUSB2 regulator output  
LDOVDD  
I
I
M14  
VUSB2DRV  
5.5  
1
O
L13  
N14  
M13  
VUSB2  
VINGEN1  
VGEN1  
O
3.6  
2.5  
2.5  
1
1
1
VGEN1 input supply  
I
VGEN1 regulator output  
O
1. VGEN2 input using internal PMOS FET  
2. Drive output for VINT regulator using external PNP device  
VGEN2 regulator output  
I
N15  
VGEN2DRV  
5.5  
1
O
K11  
J13  
VGEN2  
VSRTC  
O
3.6  
2.5  
-
1
1
1
1
1
1
1
1
1
1
1
1
Output regulator for SRTC module on processor  
Ground for regulators 1  
O
K13  
GNDREG1  
GNDREG2  
GPIOVDD  
GPIOLV0  
GPIOLV1  
GPIOLV2  
GPIOLV3  
PWM1  
GND  
GND  
I
Ground for regulators 2  
L12  
-
Supply for GPIOLV pins  
A13  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
-
General purpose input/output 0  
General purpose input/output 1  
General purpose input/output 2  
General purpose input/output 3  
PWM output 1  
E11  
I/O  
I/O  
I/O  
I/O  
O
B11  
D11  
C11  
A12  
PWM output 2  
C10  
PWM2  
O
GPIO ground  
B12  
GNDGPIO  
GND  
Control Logic  
1. Coin cell supply input  
A11  
LICELL  
I/O  
3.6  
1
2. Coin cell charger output  
32.768 kHz Oscillator crystal connection 1  
32.768 kHz Oscillator crystal connection 2  
Ground for the RTC block  
M15  
L15  
K14  
H11  
H13  
H10  
E1  
XTAL1  
XTAL2  
I
2.5  
2.5  
-
1
1
1
1
1
1
1
1
I
GND  
I
GNDRTC  
Supply voltage for 32 k buffer  
CLK32KVCC  
CLK32K  
3.6  
3.6  
3.6  
3.6  
3.6  
32 kHz Clock output for peripherals  
32 kHz Clock output for processor  
Reset output for peripherals  
O
CLK32KMCU  
RESETB  
O
O
Reset output for processor  
F5  
RESETBMCU  
O
MC34708  
Analog Integrated Circuit Device Data  
11  
Freescale Semiconductor  
Pin Connections  
Table 3. MC34708 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Rating  
# Balls  
Definition  
Function  
Watchdog input  
L4  
WDI  
STANDBY  
INT  
I
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Standby input signal from processor  
Interrupt to processor  
J5  
I
E4  
O
Power on/off button connection 1  
Power on/off button connection 2  
Global Reset  
G8  
PWRON1  
PWRON2  
GLBRST  
PUMS1  
PUMS2  
PUMS3  
PUMS4  
PUMS5  
ICTEST  
GNDCTRL  
SPIVCC  
CS  
I
E3  
I
G7  
I
Power up mode supply setting 1  
Power up mode supply setting 2  
Power up mode supply setting 3  
Power up mode supply setting 4  
Power up mode supply setting 5  
Normal mode, test mode selection  
Ground for control logic  
C12  
I
B14  
I
B13  
I
A14  
I
D12  
I
D10  
I
E2  
GND  
Supply for SPI bus  
F4  
I
3.6  
3.6  
3.6  
3.6  
3.6  
-
Primary SPI select input  
G2  
I
Primary SPI clock input  
G1  
CLK  
I
I
Primary SPI write input  
F3  
MOSI  
Primary SPI read output  
F1  
MISO  
O
Ground for SPI interface  
F2  
GNDSPI  
GND  
USB  
USB OTG transceiver cable ID  
USB Ground  
H3  
UID  
GNDUSB  
DP  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
O
5.5  
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L3  
USB Data +  
K1  
-1.3-5.5  
-1.3-5.5  
5.5  
USB Data –  
J1  
DM  
Processor D+  
Processor D-  
L1  
DPLUS  
DMINUS  
RXD  
M1  
5.5  
UART Receive  
UART Transmit  
Mic output  
G4  
5.5  
G5  
TXD  
I/O  
O
5.5  
H7  
MIC  
5.5  
Speaker right  
Speaker left  
J2  
SPKR  
SPKL  
VBUS  
VUSB  
VINUSB  
I
-1.3-5.5  
-1.3-5.5  
20  
K2  
I
USB transceiver cable interface VBUS & OTG supply output  
USB transceiver regulator output  
H1  
I/O  
O
H2  
3.6  
Input option for UVUSB; tie to SWBST at top level.  
G3  
I
5.5  
A to D Converter  
ADC generic input channel 9  
ADC generic input channel 10,  
K7  
K6  
ADIN9  
I
I
4.8  
4.8  
1
1
ADIN10  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
12  
Pin Connections  
Table 3. MC34708 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Rating  
# Balls  
Definition  
ADC generic input channel 11  
Function  
L6  
K4  
L5  
J7  
J6  
P1  
ADIN11  
O
I/O  
I/O  
I/O  
I/O  
-
4.8  
4.8  
4.8  
4.8  
4.8  
4.8  
1
1
1
1
1
1
Touch Screen Interface X1 or ADC generic input channel 12  
Touch Screen Interface X2 or ADC generic input channel 13  
Touch Screen Interface Y1 or ADC generic input channel 14  
Touch Screen Interface Y2 or ADC generic input channel 15  
Touch Screen Reference  
TSX1/ADIN12  
TSX2/ADIN13  
TSY1/ADIN14  
TSY2/ADIN15  
TSREF  
N2  
N3  
N4  
P3  
P4  
Ground for A to D circuitry  
GNDADC  
GND  
GND  
-
-
5
1
Thermal Grounds  
Substrate ground connection for reference circuitry  
H5  
SUBSREF  
E9  
F8  
F9  
L7  
G9  
H6  
H8  
H9  
J8  
Substrate ground connection for power devices SW1, SW4, SW5,  
and for analog circuitry of SW2, SW3, SWBST, and charger  
SUBSPWR1  
GND  
-
12  
J9  
K8  
K9  
K15  
N13  
SUBSLDO  
GND  
GND  
Substrate ground connection for all LDOs  
-
-
1
1
Substrate ground connection for analog circuitry of SW1, SW4,  
SW5  
SUBSANA1  
Substrate ground connection for analog circuitry of SW2, SW3,  
SWBST  
B15  
C3  
SUBSANA2  
SUBSANA3  
GND  
GND  
-
-
1
1
Substrate ground connection for analog circuitry of charger  
MC34708  
Analog Integrated Circuit Device Data  
13  
Freescale Semiconductor  
General Product Characteristics  
5
General Product Characteristics  
5.1  
Maximum Ratings  
Table 4. Maximum Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
ELECTRICAL RATINGS  
Charger Input Voltage Sense Pins  
-
-
V
V
VBUSSENSE  
VAUXSENSE  
/
20  
• VBUS, VAUX  
Charger Input Voltage  
• VBUSVIN, AUXVIN  
VBUSVIN  
/
7.5  
VAUXVIN  
-
-
-
-
ICTEST Pin Voltage  
Battery Voltage  
BP Voltage  
V
V
V
V
V
VICTEST  
VBATT  
VBP  
1.8  
4.4  
4.5  
3.6  
Coin cell Voltage  
VLICELL  
VESD  
ESD Ratings  
(2)  
(2)  
(3)  
-
-
-
-
• Human Body Model All pins  
2000  
500  
• Charge Device Model All pins  
• Air Gap Discharge Model for UID, VBUS, DP and DM pins  
• Human Body Model (HBM) for UID, VBUS, DP and DM pins  
15000  
8000  
Notes  
2. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 ), and the Charge Device  
Model (CDM), Robotic (CZAP = 4.0 pF).  
3. Need external ESD protection diode array to meet IEC1000-4-2 15000 V Air Gap discharge requirement. (CZAP= 150 pF,  
RZAP=330 ohm).  
5.2  
Thermal Characteristics  
Table 5. Thermal Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
THERMAL RATINGS  
Ambient Operating Temperature Range  
Operating Junction Temperature Range  
-
-
-
-
°C  
°C  
TA  
TJ  
-40 to 85  
-40 to 125  
-65 to 150  
Note 4  
Storage Temperature Range  
°C  
°C  
TST  
(4), (5)  
Peak Package Reflow Temperature During Reflow  
TPPRT  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
14  
General Product Characteristics  
Table 5. Thermal Ratings (continued)  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
8.0 X 8.0 MM, THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS  
(6), (7)  
(6), (8)  
(6), (8)  
(6), (8)  
Junction to Ambient Natural Convection  
• Single layer board (1s)  
-
93  
53  
80  
49  
RθJA  
°C/W  
°C/W  
°C/W  
°C/W  
-
Junction to Ambient Natural Convection  
• Four layer board (2s2p)  
RθJMA  
RθJMA  
RθJMA  
-
-
Junction to Ambient (@200 ft/min.)  
• Single layer board (1s)  
Junction to Ambient (@200 ft/min.)  
• Four layer board (2s2p)  
-
-
-
(9)  
Junction to Board  
Junction to Case  
34  
25  
RθJB  
RθJC  
θJT  
°C/W  
°C/W  
°C/W  
(10)  
(11)  
Junction to Package Top  
• Natural Convection  
3.0  
13 X 13 MM, THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS  
-
-
-
-
(6), (7)  
Junction to Ambient Natural Convection  
• Single layer board (1s)  
57  
36  
48  
32  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
(6), (7),  
(8)  
Junction to Ambient Natural Convection  
• Four layer board (2s2p)  
RθJMA  
RθJMA  
RθJMA  
(6), (8)  
(6), (8)  
Junction to Ambient (@200 ft/min.)  
• Single layer board (1s)  
Junction to Ambient (@200 ft/min.)  
• Four layer board (2s2p)  
-
-
-
(9)  
Junction to Board  
Junction to Case  
22  
15  
°C/W  
°C/W  
°C/W  
RθJB  
RθJC  
θJT  
(10)  
(11)  
Junction to Package Top  
• Natural Convection  
3.0  
Notes  
4. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause a malfunction or permanent damage to the device.  
5. Freescale's Package Reflow capability meets the Pb-free requirements for JEDEC standard J-STD-020C, for Peak Package Reflow  
Temperature and Moisture Sensitivity Levels (MSL).  
6. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
7. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
8. Per JEDEC JESD51-6 with the board horizontal.  
9. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top  
surface of the board near the package.  
10. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
11. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per  
JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
MC34708  
Analog Integrated Circuit Device Data  
15  
Freescale Semiconductor  
General Product Characteristics  
5.2.1  
Power Dissipation  
During operation, the temperature of the die should not exceed the maximum junction temperature. To optimize the thermal  
management scheme and avoid overheating, the MC34708 PMIC provides a thermal management system. The thermal  
protection is based on a circuit with a voltage output that is proportional to the absolute temperature. This voltage can be read  
out via the ADC for specific temperature readouts, see Serial Interfaces.  
This voltage is monitored by an integrated comparator. Interrupts THERM110, THERM120, THERM125 and THERM130 will be  
generated when respectively crossing in either direction the thresholds specified in Table 6. The temperature range can be  
determined by reading the THERMxxxS bits.  
Thermal protection is integrated to power off the MC34708 PMIC and disables the charger circuitry in case of over dissipation.  
This thermal protection will act above the maximum junction temperature to avoid any unwanted power downs. The protection is  
debounced for 8.0 ms in order to suppress any (thermal) noise. This protection should be considered as a fail-safe mechanism  
and therefore the application design should be dimensioned such that this protection is not tripped under normal conditions. The  
temperature thresholds and the sense bit assignment are listed in Table 6.  
Table 6. Thermal Protection Thresholds  
Parameter  
Thermal 110 °C threshold (THERM110)  
Min  
Typ  
Max  
Units  
Notes  
105  
115  
120  
125  
2.0  
110  
120  
125  
130  
-
115  
125  
130  
135  
4.0  
°C  
°C  
°C  
°C  
°C  
°C  
Thermal 120 °C threshold (THERM120)  
Thermal 125 °C threshold (THERM125)  
Thermal 130 °C threshold (THERM130)  
Thermal warning hysteresis  
(12)  
Thermal protection threshold  
130  
140  
150  
Notes  
12. Equivalent to approx. 30 mW min, 60 mW max  
5.3  
Electrical Characteristics  
General PMIC Specifications  
5.3.1  
Table 7. General Electrical Characteristic  
Internal  
Pin Name  
Max (20)  
Parameter  
Load Condition  
Min  
Unit  
Notes  
Termination (17)  
(14)  
(14)  
(19)  
(19)  
Input Low  
Input High  
47 kOhm  
1.0 MOhm  
-
0.0  
0.3  
VCOREDIG  
0.3  
V
V
V
V
V
V
V
V
V
V
PWRON1, PWRON2,  
GLBRST  
Pull-up  
1.0  
Input Low  
0.0  
STANDBY, WDI  
CLK32K  
Weak Pull-down  
CMOS  
Input High  
Output Low  
Output High  
Output Low  
Output High  
Output Low  
-
0.9  
3.6  
-100 A  
100 A  
-100 A  
100 A  
-2.0 mA  
0.0  
0.2  
CLK32KVCC - 0.2  
CLK32KVCC  
0.0  
0.2  
VSRTC  
0.4  
CLK32KMCU  
CMOS  
VSRTC - 0.2  
(18)  
(18)  
RESETB,  
Open Drain  
0.0  
-
RESETBMCU,  
SDWNB, SW1PWGD,  
SW2PWGD  
3.6  
Output High  
Open Drain  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
16  
General Product Characteristics  
Table 7. General Electrical Characteristic  
Internal  
Pin Name  
Max (20)  
Parameter  
Load Condition  
Min  
Unit  
Notes  
Termination (17)  
Off /Coin cell mode  
-
1.15  
1.15  
1.28  
1.25  
V
V
PUMS[4 :0] =  
(0110, 0111, 1000,  
1001)  
1.2 V setting  
VSRTC  
Voltage Output  
PUMS[4 :0] =  
(0110, 0111, 1000,  
1001)  
1.3 V setting  
1.25  
1.35  
V
Input Low  
-
0.0  
0.3 * GPIOVDD  
GPIOVDD + 0.3  
0.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Input High  
Output Low  
Output High  
Output Low  
Output High  
Output Low  
Output High  
Input Low  
-
0.7 * GPIOVDD  
CMOS  
-
0.0  
GPIOLV1,2,3,4  
-
GPIOVDD - 0.2  
GPIOVDD  
0.4  
-2.0 mA  
0
Open Drain  
CMOS  
Open Drain  
-
GPIOVDD + 0.3  
0.2  
-
0.0  
PWM1, PWM2  
CLK, MOSI  
CS  
-
GPIOVDD - 0.2  
GPIOVDD  
0.3 * SPIVCC  
SPIVCC + 0.3  
0.4  
(13)  
(13)  
(13)  
(13)  
-
0.0  
Input High  
Input Low  
-
0.7 * SPIVCC  
-
0.0  
Weak Pull-down  
Input High  
Input Low  
-
1.1  
SPIVCC + 0.3  
0.3 * VCOREDIG  
VCOREDIG  
0.2  
(13) (21)  
-
0.0  
0.7 * VCOREDIG  
0.0  
,
Weak Pull-down  
on CS  
CS, MOSI (at Booting  
for SPI / I2C decoding)  
(13) (21)  
Input High  
-
,
-100 A  
MISO  
Output Low  
Output High  
(13) (22)  
MISO, INT  
CMOS  
100 A  
SPIVCC - 0.2  
SPIVCC  
0.3  
V
V
V
MISO  
(13) (22)  
(15)  
(15)  
Input Low  
PUMSxS = 0  
-
-
0.0  
1.0  
PUMS1,2,3,4,5  
Input High  
VCOREDIG  
PUMSxS = 1  
(16)  
(16)  
Input Low  
Input High  
Input Low  
Input Mid  
Input High  
Input Low  
Input Float  
Input High  
-
-
-
-
-
-
-
-
-
0.0  
1.1  
0.0  
1.3  
2.5  
0.0  
Open  
1.3  
-
0.3  
1.7  
V
V
V
V
V
V
V
V
V
ICTEST  
0.3  
SW1CFG, SW4CFG  
2.0  
3.1  
0.3  
PRETMR, ITRICKLE  
ADIN8,9,10  
Open  
2.0  
Input must not  
exceed  
BP  
MC34708  
Analog Integrated Circuit Device Data  
17  
Freescale Semiconductor  
General Product Characteristics  
Table 7. General Electrical Characteristic  
Internal  
Pin Name  
Max (20)  
Parameter  
Load Condition  
Min  
Unit  
Notes  
Termination (17)  
TSX1,TSX2, TSY1,  
TSY2  
Input must not  
exceed  
-
-
BP or VCORE  
V
Notes  
13. SPIVCC is typically connected to the output of buck regulator SW5 and set to 1.800 V  
14. Input has internal pull-up to VCOREDIG equivalent to 200 kOhm  
15. Input state is latched in first phase of cold start, refer to Serial Interfaces for a description of the PUMS configuration  
16. Input state is not latched  
17. A weak pull-down represents a nominal internal pull-down of 100 nA unless otherwise noted  
18. RESETB, RESETBMCU, SDWNB, SW1PWGD, SW2PWGD have open drain outputs, external pull-ups are required  
19. SPIVCC needs to remain enabled for proper detection of WDI High to avoid involuntary shutdown  
20. The maximum should never exceed the maximum rating of the pin as given in Pin Connections  
21. The weak pull-down on CS is disabled if a VIH is detected at startup to avoid extra consumption in I2C mode  
22. The output drive strength is programmable  
5.3.2  
Current Consumption  
The current consumption of the individual blocks is described in detail throughout this specification. For convenience, a summary  
table follows for standard use cases.  
Table 8. Current Consumption Summary (25)  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Mode  
Description  
Typ  
Max  
Unit  
Notes  
All blocks disabled, no main battery attached, coin cell is attached to LICELL   
(at 25°C only)  
4.0  
8.0  
A  
• RTC Logic  
RTC / Power  
cut  
• VCORE Module  
• VSRTC  
• 32 k Oscillator  
• Clk32KMCU buffer active(10 pF load)  
All blocks disabled, main battery attached * Core and RTC module  
20  
55  
A  
• Digital Core  
• RTC Logic  
OFF (good  
battery)  
• VSRTC  
• 32 k Oscillator  
• CLK32KMCU buffer active (10 pF load)  
• Charger (detect)  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
18  
General Product Characteristics  
Table 8. Current Consumption Summary (25)  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Low Power Mode (Standby pin asserted and ON_STBY_LP=1)  
260  
424  
A  
• Digital Core  
• RTC Logic  
• VCORE Module  
• VSRTC  
• CLK32KMCU/CLK32K active (10 pF load)  
• 32 k Oscillator  
• IREF  
ON Standby  
• SW1, SW2, SW3, SW4A, SW4B, SW5 in PFM (24),(28)  
• VDDREF, VPLL, VGEN1, VGEN2, VUSB2, VDAC  
in low power mode (23),(26)  
• Charger  
• Mini-USB  
Digital Core  
370  
561  
A  
• RTC Logic  
• VCORE module  
• VSRTC  
• CLK32KMCU/CLK32K active (10pF load)  
• 32 k Oscillator  
• Digital  
ON Standby  
• IREF  
• SW1, SW2, SW3 SW4A, SW4B, SW5 in PFM (24),(28)  
• VDDREF, VPLL, VGEN1, VGEN2, VUSB2, VDAC on   
in low power mode (24),(26)  
• Charger  
• Mini-USB  
• PLL (for mini USB)  
Typical use case  
1600  
3000  
A  
• Digital Core  
• RTC Logic  
• VCORE Module  
• VSRTC CLK32KMCU/CLK32K active (10pf)  
• 32 k Oscillator  
• IREF  
ON  
• SW1, SW2, SW3 SW4A, SW4B, SW5 in Apskip SWBST (24),(27),(28)  
• VDDREF, VPLL, VGEN1, VGEN2, VUSB2, VDAC on   
in low power mode (23),(26)  
• Digital  
• PLL  
• Charger  
• Mini-USB  
Notes  
23. Equivalent to approx. 30 mW min, 60 mW max  
24. Current in RTC Mode is from LICELL=2.5 V; in all other modes from BP = 3.6 V.  
25. External loads are not included (1)  
26. VUSB2, VGEN2 external pass PNPs  
27. SWBST in auto mode  
28. SW4A output 2.5 V  
MC34708  
Analog Integrated Circuit Device Data  
19  
Freescale Semiconductor  
General Description  
6
General Description  
The MC34708 is the PMIC designed specifically for use with the Freescale i.MX50 and i.MX53 families. As the companion PMIC  
on several i.MX reference designs, it is a proven solution, which enables a faster time to market with fewer resources.  
6.1  
Features  
Battery Management  
• Buck Switching Charger for Single Cell Li-Ion Batteries  
• Wall/USB Charger Input  
• Coulomb Counter for Main Battery Charge Monitoring  
• OV/UV Protection And Short-circuit Detection  
• Dual LED Driver for Charge/Fault Indication  
• Coin Cell Charger  
Power Generation  
• Six Buck Switching Regulators  
• Two Single/Dual Phase Buck Regulators  
• Four Single Phase Buck Regulators  
• PFM/Auto Pulse Skip/PWM Operation Mode  
• Dynamic Voltage Scaling  
• 5V Boost Regulator  
• USB On-the-go Support  
• Eight LDO Regulators  
• Two with Selectable Internal or External Pass Devices  
• Five with Embedded Pass Devices  
• One with an External PNP Device  
Analog to Digital Converter  
• Seven General Purpose Channels  
• Eight Dedicated Channels for Monitoring the Charger  
• Resistive Touchscreen Interface  
Auxiliary Circuits  
• Mini/Micro USB Switch  
• Bidirectional Audio/Data/UART  
• Accessory Identification Circuit  
• General Purpose I/Os  
• PWM Outputs  
Clocking and Oscillators  
• Real Time clock  
• Time and day Counters  
• Time of day Alarm  
• 32.768 kHz Crystal Oscillator  
• Coin Cell Battery Backup  
Serial Interface  
• SPI  
• I2C  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
20  
General Description  
6.2  
Block Diagram  
6 BUCK  
REGULATORS  
Processor Core  
Split Power Domains  
DDR Memory  
I/O  
5V BOOST  
REGULATOR  
USB On The Go  
Supply  
MINI/MICRO USB  
INTERFACE  
USB/UART/Audio  
Auto Accessory Detect  
8 LDO REGULATORS  
Peripherals  
10 BIT ADC CORE  
General Purpose  
Resistive Touch  
Screen Interface  
GENERAL PURPOSE  
I/O & PWM OUTPUTS  
MC34708  
32.768 kHz CRYSTAL  
OSCILLATOR  
POWER CONTROL  
LOGIC  
Real Time Clock  
SRTC Support  
State Machine  
BATTERY MANAGEMENT  
Single Cell Li-Ion Charger  
Wall/USB Charger Input  
OV/UV & Short Circuit Protection  
Coin Cell Charger  
BIAS &  
REFERENCES  
Trimmed Bandgap  
CONTROL  
INTERFACE  
SPI/I2C  
Coulomb Counter  
LED Charging/Fault Indicator  
Figure 4. MC34708 - Functional Block Diagram  
6.3  
Functional Description  
The MC34708 Power Management Integrated Circuit (PMIC) represents a complete system power solution in a single package.  
Designed specifically for use with the Freescale i.MX50/53 families. The MC34708 integrates six multi-mode buck regulators and  
eight LDO regulators for direct supply of the processor core, memory and peripherals.  
The integrated switching charger supports single cell applications with up to 1.55A of charge current, enabling faster charging.  
The dual path design enables power on with a dead or no battery. An integrated coulomb counter measures the state of charge  
of the battery.  
The USB switch enables the use of a single, mini or micro USB connector for USB, UART and audio connections, switching the  
relevant signals to the connector depending on the type of device connected. With support for the Universal Charging Standard,  
the charge current is varied automatically depending on the capability of the source. In addition, the MC34708 also integrates a  
real time clock, coin cell charger, a 16- channel 10-bit ADC, 5V USB Boost regulator, two PWM outputs, touch-screen interface,  
status LED drivers and four GPIOs.  
MC34708  
Analog Integrated Circuit Device Data  
21  
Freescale Semiconductor  
Functional Block Description  
7
Functional Block Description  
7.1  
Startup Requirements  
At power up, switching and linear regulators are sequentially enabled in time slots of 2.0 ms steps, to limit the inrush current after  
an initial delay of 8.0 ms, in which the core circuitry gets enabled. To ensure a proper power up sequence, the outputs of the  
switching regulators that are not enabled are discharged at the beginning of the Cold start with weak pull downs on the output.  
For that same reason, a 8.0 ms delay allows the outputs of the linear regulators to be fully discharged as well, through the built  
in discharge path. The peak inrush current per event is limited. Any under-voltage detection at BP is masked while the power up  
sequencer is running. When the switching regulator is enabled it will start in PWM mode and for 3.0 ms and then it will switch  
over to the mode that it is programmed to in the SPI.  
The Power Up Mode Select pins PUMSx (x = 1,2,3,4,5) are used to configure the startup characteristics of the regulators. Supply  
enabling and output level options are selected by hardwiring the PUMSx pins for the desired configuration. The recommended  
power up strategy for end products is to bring up as little of the system as possible at booting, essentially sequestering just the  
bare essentials to allow processor startup and software to run. With such a strategy, the startup transients are controlled at lower  
levels, and the rest of the system power tree can be brought up by software. This allows optimization of supply ordering, where  
specific sequences may be required, as well as supply default values. Software code can load up all of the required  
programmable options, to avoid sneak paths, under/over-voltage issues, startup surges, etc, without any change in hardware.  
The state of the PUMSx pins are latched in before any of the switching or linear regulators are enabled, with the exception of  
VCORE. PUMSx options and startup configurations will be robust to a PCUT event, whether occurring during normal operation  
or during the 8.0 ms of pre-sequencer initialization, i.e., the system will not end up in an unexpected / undesirable consumption  
state.  
Table 9 shows the initial setup for the voltage level of the switching and linear regulators, and whether they get enabled.  
Table 9. Power Up Defaults  
53  
LPM  
53  
DDR2  
53  
DDR3  
53  
LVDDR3  
53  
LVDDR2  
i.MX  
Reserved  
50  
50  
50  
50  
50  
50  
PUMS[4:1]  
0000-0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
PUMS5=0  
VUSB2  
VGEN2  
Ext PNP Ext PNP Ext PNP  
Ext PNP  
Ext PNP  
Ext PNP Ext PNP Ext PNP Ext PNP Ext PNP Ext PNP  
Reserved  
Reserved  
PUMS5=1  
VUSB2  
VGEN2  
Internal  
Internal  
Internal  
Internal  
PMOS  
Internal  
PMOS  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
SW1A  
(VDDGP)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1.1  
1.1  
1.1  
1.1  
1.3  
1.3  
1.8  
1.8  
1.1  
1.1  
1.3  
1.2  
1.5  
1.5  
1.1  
1.1  
1.1  
1.1  
1.3  
1.2  
1.2  
1.2  
1.1  
1.1  
1.2  
1.2  
1.8  
1.8  
1.1  
1.1  
1.2  
1.2  
1.2  
1.2  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.2  
1.2  
3.15  
1.2  
1.1  
1.1  
1.2  
1.2  
3.15  
1.8  
SW1B  
(VDDGP)  
(29)  
SW2  
1.225  
1.2  
1.3  
1.2  
1.2  
(VCC)  
(29)  
SW3  
1.2  
1.2  
1.2  
(VDDA)  
(29)  
SW4A  
1.5  
1.35  
1.35  
3.15  
1.2  
3.15  
1.8  
(DDR/SYS)  
(29)  
SW4B  
1.5  
(DDR/SYS)  
(29)  
SW5  
Reserved  
Reserved  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
(I/O)  
SWBST  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
22  
Functional Block Description  
Table 9. Power Up Defaults  
53  
LPM  
53  
DDR2  
53  
DDR3  
53  
LVDDR3  
53  
LVDDR2  
i.MX  
Reserved  
50  
50  
50  
50  
50  
50  
(30)  
VUSB  
VUSB2  
VSRTC  
VPLL  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
3.3  
2.5  
3.3  
2.5  
3.3  
2.5  
3.3  
2.5  
3.3  
2.5  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
2.5  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
2.5  
1.2  
1.3  
1.3  
1.3  
1.3  
1.8  
1.8  
1.8  
1.8  
1.8  
VREFDDR  
VDAC  
On  
On  
On  
On  
On  
2.775  
1.2  
2.775  
1.3  
2.775  
1.3  
2.775  
1.3  
2.775  
1.3  
VGEN1  
VGEN2  
Notes  
2.5  
2.5  
2.5  
2.5  
2.5  
29. The SWx node are activated in APSKIP mode when enabled by the startup sequencer.  
30. VUSB regulator is only enabled if 5.0 V is present on VBUS. By default VUSB will be supplied by VBUS. SWBST = 5.0 V powers up as  
does VUSB, regardless of 5.0 V present on UVBUS. By default VUSB is supplied by SWBST.  
The power up sequence is shown in Tables 10 and 11. VCOREDIG, VSRTC, and VCORE, are brought up in the pre-sequencer  
startup.  
Table 10. Power Up Sequence i.MX53  
Tap x 2.0 ms  
PUMS [4:1] = [0101,0110,0111,1000,1001] (i.MX53)  
0
1
2
3
4
5
6
7
8
9
SW2 (VCC)  
VPLL (NVCC_CKIH = 1.8 V)  
VGEN2 (VDD_REG= 2.5 V, external PNP  
SW3 (VDDA)  
SW1A/B (VDDGP)  
SW4A/B, VREFDDR (DDR/SYS)  
SW5 (I/O), VGEN1  
VUSB (31), VUSB2  
VDAC  
Notes:  
31. The VUSB regulator is only enabled if 5.0 V is present on the VBUS pin. By  
default VUSB will be supplied by the VBUS pin.  
Table 11. Power Up Sequence i.MX50  
Tap x 2.0 ms PUMS [4:1] = [0100, 1011, 1100, 1101, 1110, 1111] (i.MX50/I.MX53)  
0
1
2
3
4
5
SW2  
SW3  
SW1A/B  
VDAC  
SW4A/B, VREFDDR  
SW5  
MC34708  
Analog Integrated Circuit Device Data  
23  
Freescale Semiconductor  
Functional Block Description  
Table 11. Power Up Sequence i.MX50  
6
7
8
9
VGEN2, VUSB2  
VPLL  
VGEN1  
VUSB (32)  
Notes:  
32. The VUSB regulator is only enabled if 5.0 V is present on the VBUS pin. By  
default VUSB will be supplied by the VBUS pin.  
7.2  
Bias and References Block Description and Application  
Information  
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at REFCORE. The  
bandgap and the rest of the core circuitry is supplied from VCORE. The performance of the regulators is directly dependent on  
the performance of VCOREDIG and the bandgap. No external DC loading is allowed on VCOREDIG or REFCORE. VCOREDIG  
is kept powered as long as there is a valid supply and/or coin cell. Table 12 shows the main characteristics of the core circuitry.  
Table 12. Core Voltages Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VCOREDIG (DIGITAL CORE SUPPLY)  
Output voltage  
VCOREDIG  
V
(33)  
• ON mode and OFF with good battery mode, and charging  
• RTC mode  
-
-
1.5  
0.0  
-
-
VCOREDIG bypass capacitor  
CCOREDIG  
-
1.0  
-
F  
VDDLP (DIGITAL CORE SUPPLY - LOWER POWER)  
Output voltage  
• ON mode with good battery  
VDDLP  
V
(34)  
-
-
-
1.5  
1.2  
1.2  
-
-
-
• OFF mode with good battery  
• RTC mode  
(35)  
VDDLP bypass capacitor  
CDDLP  
-
100  
-
pF  
VCORE (ANALOG CORE SUPPLY)  
Output voltage  
• ON mode and charging  
VCORE  
V
(33)  
-
-
2.775  
0.0  
-
-
• OFF and RTC mode  
VCORE bypass capacitor  
CCORE  
-
1.0  
-
F  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
24  
Functional Block Description  
Table 12. Core Voltages Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VREFCORE (BANDGAP / REGULATOR REFERENCE)  
(33)  
Output voltage  
VREFCORE  
-
-
-
-
1.2  
0.5  
-
-
-
-
V
Absolute Accuracy  
Temperature Drift  
%
%
0.25  
100  
VREFCORE bypass capacitor  
CREFCORE  
Notes  
nF  
33. 3.0 V < BP < 4.5 V, no external loading on VCOREDIG, VDDLP, VCORE, or REFCORE. Extended operation down to UVDET, but no  
system malfunction.  
34. Powered by VCOREDIG  
35. Maximum capacitance on VDDLP should not exceed 1000 pF, including the board capacitance.  
7.3  
Clocking and Oscillators  
Clock Generation  
7.3.1  
A system clock is generated for internal digital circuitry as well as for external applications utilizing the clock output pins. A crystal  
oscillator is used for the 32.768 kHz time base and generation of related derivative clocks. If the crystal oscillator is not running  
(for example, if the crystal is not present), an internal 32 kHz oscillator will be used instead.  
Support is also provided for an external Secure Real Time Clock (SRTC) which may be integrated on a companion system  
processor IC. For media protection in compliance with Digital Rights Management (DRM) system requirements, the  
CLK32KMCU can be provided as a reference to the SRTC module where tamper protection is implemented.  
7.3.1.1  
Clocking Scheme  
The internal 32 kHz oscillator is an integrated backup for the crystal oscillator, and provides a 32.768 kHz nominal frequency at  
60% accuracy, if running. The internal oscillator only runs if a valid supply is available at BP, and would not be used as long as  
the crystal oscillator is active. In absence of a valid supply at the BP supply node (for instance due to a dead battery), the crystal  
oscillator continues running supplied from the coin cell battery. All control functions will run off the crystal derived frequency,  
occasionally referred to as “32 kHz” for brevity’s sake.  
During the switch-over between the two clock sources (such as when the crystal oscillator is starting up), the output clock is  
maintained at a stable active low or high phase of the internal 32 kHz clock to avoid any clocking glitches. If the XLTAL clock  
source suddenly disappears during operation, the IC will revert back to the internal clock source. Given the unpredictable nature  
of the event and the startup times involved, the clock may be absent long enough for the application to shut down during this  
transition due to for instance a sag in the regulator output voltage or absence of a signal on the clock output pins.  
A status bit, CLKS, is available to indicate to the processor which clock is currently selected: CLKS=0 when the internal RC is  
used and CLKS=1 if the crystal source is used. The CLKI interrupt bit will be set whenever a change in the clock source occurs,  
and an interrupt will be generated if the corresponding CLKM mask bit is cleared.  
7.3.1.2  
Oscillator Specifications  
The crystal oscillator has been optimized for use in conjunction with the Micro Crystal CC7V-T1A32.768 kHz-9.0 pF-30 ppm or  
equivalent (such as Micro Crystal CC5V-T1A or Epson FC135) and is capable of handling its parametric variations.  
The electrical characteristics of the 32 kHz Crystal oscillator are given in the following table, taking into account the crystal  
characteristics noted above. The oscillator accuracy depends largely on the temperature characteristics of the used crystal.  
Application circuits can be optimized for required accuracy by adapting the external crystal oscillator network (via component  
accuracy and/or tuning). Additionally, a clock calibration system is provided to adjust the 32,768 cycle counter that generates the  
1.0 Hz timer and RTC registers; see SRTC Support for more detail.  
MC34708  
Analog Integrated Circuit Device Data  
25  
Freescale Semiconductor  
Functional Block Description  
Table 13. Oscillator and Clock Main Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
OSCILLATOR AND CLOCK OUTPUT  
Operating Voltage  
VINRTC  
V
• Oscillator and RTC Block from BP  
1.8  
1.8  
-
-
4.5  
3.6  
• Oscillator and RTC Block from LICELL  
Operating Current Crystal Oscillator and RTC Module  
IINRTC  
A  
• All blocks disabled, no main battery attached, coin cell is attached  
to LICELL  
-
2.0  
5.0  
RTC oscillator startup time  
• Upon application of power  
tSTART-RTC  
sec  
V
-
-
-
1.0  
0.2  
Output Low  
VRTCLO  
• CLK32K Output sink 100 A  
• CLK32KMCU Output source 50 A  
0.0  
Output High  
VRTCHI  
V
• CLK32K Output source 100 A  
• CLK32KMCU Output sink 50 A  
CLK32K  
VCC -0.2  
VSRTC-0.2  
-
CLK32K  
VCC  
VSRTC  
tCLK32KET CLK32K Rise and Fall Time, CL = 50 pF  
• CLK32KDRV [1:0] = 00  
ns  
-
-
-
-
6.0  
2.5  
3.0  
2.0  
-
-
-
-
• CLK32KDRV [1:0] = 01 (default)  
• CLK32KDRV [1:0] = 10  
• CLK32KDRV [1:0] = 11  
CLK32KMCU Rise and Fall Time  
• CL = 12 pF  
tCKL32K  
ns  
%
MCUET  
-
22  
-
-
CLK32KDC/  
CLK32K  
MCUDC  
CLK32K and CLK32KMCU Output Duty Cycle  
• Crystal on XTAL1, XTAL2 pins  
45  
55  
RMS Output Jitter  
ns  
RMS  
• 1 Sigma for Gaussian distribution  
-
-
30  
7.3.2  
SRTC Support  
When configured for DRM mode (SPI bit DRM = 1), the CLK32KMCU driver will be kept enabled through all operational states  
to ensure that the SRTC module always has its reference clock. If DRM = 0, the CLK32KMCU driver will not be maintained in the  
Off state.  
It is also necessary to provide a means for the processor to do an RTC initiated wake-up of the system if it has been programmed  
for such capability. This can be accomplished by connecting an open drain NMOS driver to the PWRON pin of the MC34708  
PMIC, so that it is in effect, a parallel path for the power key. The MC34708 PMIC will not be able to discern the turn on event  
from a normal power key initiated turn on, but the processor should have the knowledge, since the RTC initiated turn on is  
generated locally.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
26  
Functional Block Description  
Open Drain output for RTC wake-up  
34708  
32 kHz  
SPIVCC=1.8 V  
GP Domain=1.1 V  
LP Dominant=1.2 V  
Processor  
Core Supply  
SOG Supply  
I/O  
VCOREDIG  
PWRONx  
V
COREDIG  
On  
Detect  
SRTC  
HP-RC  
Best of  
Supply  
On/Off  
Button  
VSRTC=1.2 V  
V
&
SRTC  
32 kHz for  
DSM timing  
Detect  
LP-RTC  
CKIL: VSRTC  
CLK32KMCU  
+
-
Main  
Battery  
Coin Cell  
Battery  
+
-
0.1 F  
Figure 5. SRTC Block Diagram  
7.3.2.1  
VSRTC  
The VSRTC regulator provides the CLK32KMCU output level. Additionally, it is used to bias the Low Power SRTC domain of the  
SRTC module integrated on certain FSL processors. The VSRTC regulator is enabled as soon as the RTCPORB is detected.  
The VSRTC cannot be disabled.  
Depending on the configuration of the PUMS[4:0] pins, the VSRTC voltage will be set to 1.3 or 1.2 V. With PUMS[4:0] = (0110,  
0111, 1000, or 1001) VSRTC will be set to 1.3 V in on mode (on, on standby and on standby low power modes). In off and coin  
cell modes the VSRTC voltage will drop to 1.2 V with the PUMS[4:0] = (0110, 0111, 1000, or 1001). With PUMS[4:0] = (0110,  
0111, 1000, or 1001), VSRTC will be set to 1.2 V for all modes (on, on standby, on standby low power mode, off, and coincell).  
Table 14. VSRTC Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
GENERAL  
VSRTCIN  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Operating Input Voltage Range VINMIN to VINMAX  
• Valid Coin Cell range  
V
1.8  
1.8  
-
-
3.6  
4.5  
• Valid BP  
Operating Current Load Range ILMIN to ILMAX  
Bypass Capacitor Value  
ISRTC  
0.0  
-
-
50  
-
A  
F  
COSRTC  
0.1  
VSRTC - ACTIVE MODE - DC  
Output Voltage VOUT  
• VINMIN < VIN < VINMAX  
• ILMIN < IL < ILMAX  
VSRTC  
V
1.15  
1.20  
1.28  
• Off and coincell mode  
MC34708  
Analog Integrated Circuit Device Data  
27  
Freescale Semiconductor  
Functional Block Description  
Table 14. VSRTC Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Output Voltage VOUT  
• VINMIN < VIN < VINMAX  
• ILMIN < IL < ILMAX  
VSRTC  
V
1.15  
1.2  
1.25  
• PUMS[4:0] = (0110, 0111, 1000, 1001)  
• On mode (On, Standby, Standby LPM)  
Output Voltage VOUT  
• VINMIN < VIN < VINMAX  
• ILMIN < IL < ILMAX  
VSRTC  
V
1.25  
1.3  
0.8  
1.35  
• PUMS[4:0] = (0110, 0111, 1000, 1001)  
• On mode (On, Standby, Standby LPM)  
Active Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
ISRTCQ  
A  
-
-
7.3.2.2  
Real Time Clock  
A Real Time Clock (RTC) is provided with time and day counters as well as an alarm function. The RTC utilizes the 32.768 kHz  
crystal oscillator for the time base and is powered by the coin cell backup supply when BP has dropped below operational range.  
In configurations where the SRTC is used, the RTC can be disabled to conserve current drain by setting the RTCDIS bit to a 1  
(defaults on at power up).  
Time and Day Counters  
The 32.768 kHz clock is divided down to a 1.0 Hz time tick which drives a 17 bit Time Of Day (TOD) counter. The TOD counter  
counts the seconds during a 24 hour period from 0 to 86,399 and will then roll over to 0. When the roll over occurs, it increments  
the 15 bit DAY counter. The DAY counter can count up to 32767 days. The 1.0 Hz time tick can be used to generate a 1HZI  
interrupt if unmasked.  
Time Of Day Alarm  
A Time Of Day Alarm (TODA) function can be used to turn on the application and alert the processor. If the application is already  
on, the processor will be interrupted. The TODA and DAYA registers are used to set the alarm time. When the TOD counter is  
equal to the value in TODA and the DAY counter is equal to the value in DAYA, the TODAI interrupt will be generated.  
Timer Reset  
As long as the supply at BP is valid, the real time clock will be supplied from VCOREDIG. If BP is not valid, the real time clock  
can be backed up from a coin cell via the LICELL pin. When the VSRTC voltage drops to the range of 0.9 - 0.8 V, the RTCPORB  
reset signal is generated and the contents of the RTC will be reset. Additional registers backed up by coin cell will also reset with  
RTCPORB. To inform the processor that the contents of the RTC are no longer valid due to the reset, a timer reset interrupt  
function is implemented with the RTCRSTI bit.  
RTC Timer Calibration  
A clock calibration system is provided to adjust the 32,768 cycle counter that generates the 1.0 Hz timer for RTC timing registers.  
The general implementation relies on the system processor to measure the 32.768 kHz crystal oscillator against a higher  
frequency and more accurate system clock such as a TCXO. If the RTC timer needs a correction, a 5 bit 2’s complement  
calibration word can be sent via the SPI to compensate the RTC for inaccuracy in its reference oscillator.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
28  
Functional Block Description  
Table 15. RTC calibration Settings  
Code in RTCCAL[4:0]  
Correction in Counts per 32768 Relative correction in ppm  
01111  
00011  
00001  
00000  
11111  
11101  
10001  
10000  
+15  
+3  
+1  
0
+458  
+92  
+31  
0
-1  
-31  
-3  
-92  
-15  
-16  
-458  
-488  
The available correction range should be sufficient to ensure drift accuracy in compliance with standards for DRM time keeping.  
Note that the 32.768 kHz oscillator is not affected by RTCCAL settings; calibration is only applied to the RTC time base counter.  
Therefore, the frequency at the clock output CLK32K is not affected.  
The RTC system calibration is enabled by programming the RTCCALMODE[1:0] for desired behavior by operational mode.  
Table 16. RTC Calibration Enabling  
RTCCALMODE  
Function  
RTC Calibration disabled (default)  
00  
01  
10  
11  
RTC Calibration enabled in all modes except coin cell only  
Reserved for future use. Do not use.  
RTC Calibration enabled in all modes  
The RTC Calibration circuitry can be automatically disabled when main battery contact is lost or if it is so deeply discharged that  
RTC power draw is switched to the coin cell (configured with RTCCALMODE=01).  
Because of the low RTC consumption, RTC accuracy can be maintained through long periods of the application being shut down,  
even after the main battery has discharged. However, it is noted that the calibration can only be as good as the RTCCAL data  
that has been provided, so occasional refreshing is recommended to ensure that any drift influencing environmental factors have  
not skewed the clock beyond desired tolerances.  
7.3.3  
Coin Cell Battery Backup  
The LICELL pin provides a connection for a coin cell backup battery or supercap. If the main battery is deeply discharged,  
removed, or contact-bounced (i.e., during a power cut), the RTC system and coin cell maintained logic will switch over to the  
LICELL for backup power. This switch over occurs for a BP below 1.8 V threshold with LICELL greater than BP. A small capacitor  
should be placed from LICELL to ground under all circumstances.  
Upon initial insertion of the coin cell, it is not immediately connected to the on chip circuitry. The cell gets connected when the IC  
powers on, or after enabling the coin cell charger when the IC was already on.  
The coin cell charger circuit will function as a current-limited voltage source, resulting in the CC/CV taper characteristic typically  
used for rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit. The coin cell voltage is  
programmable through the VCOIN[2:0] bits. The coin cell charger voltage is programmable in the ON state where the charge  
current is fixed at ICOINHI.  
If COINCHEN=1 when the system goes into Off or User Off state, the coin cell charger will continue to charge to the predefined  
voltage setting but at a lower maximum current ICOINLO. This compensates for self discharge of the coin cell and ensures that  
if/when the main cell gets depleted, that the coin cell will be topped off for maximum RTC retention. The coin cell charging will  
be stopped for the BP below UVDET. The bit COINCHEN itself is only cleared when an RTCPORB occurs.  
MC34708  
Analog Integrated Circuit Device Data  
29  
Freescale Semiconductor  
Functional Block Description  
Table 17. Coin cell Voltage Specifications  
VCOIN[2:0]  
Output Voltage  
000  
001  
010  
011  
100  
101  
110  
111  
2.50  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
Table 18. Coincell Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
COIN CELL CHARGER  
Voltage Accuracy  
VLICELLACC  
-
-
-
100  
60  
-
-
-
mV  
A  
A  
Coin Cell Charge Current in On and Watchdog modes ICOINHI  
ILICELLON  
Coin Cell Charge Current in Off, cold start/warm start, and Low Power Off  
modes (User Off / Memory Hold) ICOINLO  
ILICELLOFF  
10  
Current Accuracy  
ILICELACC  
COLICELL  
-
-
-
30  
100  
4.7  
-
-
-
%
nF  
F  
LICELL Bypass Capacitor  
LICELL Bypass Capacitor as coin cell replacement  
7.4  
Interrupt Management  
Control  
7.4.1  
The system is informed about important events, based on interrupts. Unmasked interrupt events are signaled to the processor  
by driving the INT pin high; this is true whether the communication interface is configured for SPI or I2C.  
Each interrupt is latched so that even if the interrupt source becomes inactive, the interrupt will remain set until cleared. Each  
interrupt can be cleared by writing a 1 to the appropriate bit in the Interrupt Status register, which will also cause the interrupt line  
to go low. If a new interrupt occurs while the processor clears an existing interrupt bit, the interrupt line will remain high.  
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high,  
the interrupt line will not go high. A masked interrupt can still be read from the Interrupt Status register. This gives the processor  
the option of polling for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the  
device to determine if any interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked  
interrupt bit was already high, the interrupt line will go high after unmasking.  
The sense registers contain status and input sense bits, so the system processor can poll the current state of interrupt sources.  
They are read only, and not latched or clearable.  
Interrupts generated by external events are debounced. Therefore, the event needs to be stable throughout the debounce period  
before an interrupt is generated. Nominal debounce periods for each event are documented in the INT summary table following  
later in this section. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
30  
Functional Block Description  
7.4.2  
Interrupt Bit Summary  
Table 19 summarizes all interrupt, mask, and sense bits associated with INT control. For more detailed behavioral descriptions,  
refer to the related chapters.  
Table 19. Interrupt, Mask and Sense Bits  
Debounce  
Time  
Interrupt  
Mask  
Sense  
Purpose  
Trigger  
L2H  
ADCDONEI  
TSDONEI  
ADCDONEM  
TSDONEM  
-
-
-
ADC has finished requested conversions  
Touch screen has finished conversion  
Touch screen pen detect  
0
0
L2H  
TSPENDET  
TSPENDETM  
Dual  
1.0 ms  
VBUS over-voltage  
Programmable  
SUP_OVP_DB  
USBOVP  
AUXOVP  
USBOVPM  
AUXOVPM  
USBOVPS  
AUXOVPS  
Dual  
Dual  
Sense is 1 if above threshold  
Aux charge over-voltage  
Programmable  
SUP_OVP_DB  
Sense is 1 if above threshold  
WKVBUSDET  
WKAUXDET  
WKVBUSDETM  
WKAUXDETM  
-
-
Weak VBUS charger detected  
Weak AUX charger detected  
H2L  
H2L  
0
0
Programmable  
VBUSDB  
VBUSREGMI  
VBUSREGMIM  
VBUS input regulation mode  
H2L  
CHRTIMEEXP  
CHRCMPL  
CHRTIMEEXPM  
CHRCMPLM  
-
-
Charge timer expired  
Charge complete  
L2H  
L2H  
0
0
Programmable  
OVPDB  
Battery over-voltage  
BATTOVP  
BATTOTP  
BATTOVPM  
BATTOTPM  
BATTOVPS  
Dual  
Dual  
Sense is 1 if above threshold  
Off by default  
BATTOTPS  
Battery temp  
Programmable  
BATTDETDB  
0 = Temp OK  
1 = Out of temp  
Sense is 1 if out of temp threshold hot and cold  
Low battery detect  
Programmable  
VBATTDB  
LOWBATT  
USBDET  
AUXDET  
LOWBATTM  
USBDETM  
AUXDETM  
-
H2L  
Dual  
Dual  
Sense is 1 if below LOWBAT threshold  
USB VBUS detect  
Programmable  
VBUSDB  
USBDETS  
AUXDETS  
Sense is 1 if detected  
Aux charge detect  
Programmable  
VAUXDB  
Sense is 1 if detected  
Stuck_Key_RCV Stuck_Key_RCV_m  
-
-
Stuck key has recovered  
Stuck key detected  
L2H  
L2H  
Stuck_Key  
Stuck_Key_m  
ADC result changed  
ADC_Change  
ADC_Change_m  
ADC_STATUS  
L2H  
Sense is 1 if conversion is completed, 0 if in  
progress  
Unknown_Atta  
LKR  
Unknown_Atta_m  
LKR_m  
-
Unknown accessory detected  
Remote control long key is released  
Remote control long key is pressed  
Remote control key is pressed  
Accessory detached  
L2H  
L2H  
L2H  
L2H  
L2H  
L2H  
-
LKP  
LKP_m  
-
KP  
KP_m  
-
Detach  
Attach  
Detach_m  
Attach_m  
-
-
Accessory attached  
ID_GNDS  
ID_FLOATS  
Sense is 1 if ID pin is grounded  
Sense is 1 if ID pin is floating  
MC34708  
Analog Integrated Circuit Device Data  
31  
Freescale Semiconductor  
Functional Block Description  
Table 19. Interrupt, Mask and Sense Bits  
Debounce  
Interrupt  
Mask  
Sense  
Purpose  
Trigger  
Time  
ID_DET_ENDS  
Sense is 1 if ID resistance detection is complete  
VBUS_DET_ENDS Sense is 1 if VBUS PTSI is complete  
min. 4.0 ms  
max 8.0 ms  
SCPI  
SCPM  
-
Regulator short-circuit protection tripped  
Battery removal detect  
L2H  
BATTDETBS  
0 = battery  
Programmable  
BATTDETDB  
BATTDETBI  
BATTDETBM  
Dual  
1 = no battery  
1HZI  
1HZM  
-
-
1.0 Hz time tick  
L2H  
L2H  
H2L  
L2H  
H2L  
L2H  
L2H  
L2H  
L2H  
L2H  
L2H  
0
TODAI  
TODAM  
Time of day alarm  
0
30 ms (36)  
Power on button 1 event  
PWRON1I  
PWRON2I  
PWRON1M  
PWRON2M  
PWRON1S  
PWRON2S  
Sense is 1 if PWRON1 is high.  
30 ms  
30 ms (36)  
Power on button 2 event  
Sense is 1 if PWRON2 is high.  
30 ms  
SYSRSTI  
WDIRESETI  
PCI  
SYSRSTM  
WDIRESETM  
PCM  
-
-
-
System reset through PWRONx pins  
WDI silent system restart  
Power cut event  
0
0
0
0
0
WARMI  
WARMM  
Warm Start event  
MEMHLDI  
MEMHLDM  
Memory Hold event  
32 kHz clock source change  
Sense is 1 if source is XTAL  
CLKI  
CLKM  
CLKS  
Dual  
L2H  
Dual  
0
RTCRSTI  
THERM110  
RTCRSTM  
THERM110M  
-
RTC reset has occurred  
0
Thermal 110C threshold  
THERM110S  
30 ms  
Sense is 1 if above threshold  
Thermal 120C threshold  
THERM120  
THERM125  
THERM130  
THERM120M  
THERM125M  
THERM130M  
GPIOLVxM  
THERM120S  
THERM125S  
THERM130S  
GPIOLVxS  
Dual  
Dual  
Dual  
30 ms  
Sense is 1 if above threshold  
Thermal 125C threshold  
30 ms  
Sense is 1 if above threshold  
Thermal 130C threshold  
30 ms  
Sense is 1 if above threshold  
Programma  
ble  
GPIOLVxI  
Notes  
General Purpose input interrupt  
Programmable  
36. Debounce timing for the falling edge can be extended with PWRONxDBNC[1:0]; refer to Serial Interfaces for details.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
32  
Functional Block Description  
7.5  
Power Generation  
The MC34708 PMIC provides reference and supply voltages for the application processor as well as peripheral device.  
Five buck (step down) converters and one boost (step up) converters are included. One of the buck regulators can be configured  
in multiphase, single phase mode, or operate as separate independent outputs (in this case, there are 6 buck converters). The  
buck converters provide the supply to processor cores and to other low voltage circuits such as IO and memory. Dynamic voltage  
scaling is provided to allow controlled supply rail adjustments for the processor cores and/or other circuitry. The boost converter  
provides power for the VBUS in the OTG mode, as well as the USB PHY on the processor. The VUSB regulator is powered from  
the boost to ensure sufficient headroom for the LDO through the normal discharge range of the main battery.  
Linear regulators are directly supplied from the battery or from the switching regulator, and include supplies for IO and  
peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. Naming conventions are suggestive of typical or possible use  
case applications, but the switching and linear regulators may be utilized for other system power requirements within the  
guidelines of specified capabilities. Four general purpose I/Os are available, which can be configured as inputs/outputs. As inputs  
they can be configured as interrupts.  
7.5.1  
Power Tree  
Refer to the representative tables and text specifying each supply for information on performance metrics and operating ranges.  
Table 20 summarizes the available power supplies.  
Table 20. Power Tree Summary  
Supply  
Purpose (typical application)  
Buck regulator for processor VDDGP domain  
Buck regulator for processor VCC domain  
Buck regulator for processor VDD domain and peripherals  
Buck regulator for DDR memory and peripherals  
Buck regulator for DDR memory and peripherals  
Buck regulator for I/O domain  
Output Voltage (in V)  
Load Capability (in mA)  
SW1  
SW2  
0.650 - 1.4375  
0.650 - 1.4375  
2000  
1000  
500  
500  
500  
1000  
380  
0.05  
50  
SW3  
0.650 - 1.425  
SW4A  
SW4B  
SW5  
1.200 – 1.85: 2.5/3.15/3.3  
1.200 – 1.85: 2.5/3.15/3.3  
1.200 – 1.85  
Boost regulator for USB OTG  
SWBST  
VSRTC  
VPLL  
5.00/5.05/5.10/5.15  
1.2  
Secure Real Time Clock supply  
Quiet Analog supply  
1.2/1.25/1.5/1.8  
DDR Ref supply  
VREFDDR  
VDAC  
0.6-0.9  
10  
TV DAC supply, external PNP  
2.5/2.6/2.7/2.775  
2.5/2.6/2.75/3.0  
250  
65  
VUSB/peripherals supply, internal PMOS  
VUSB/peripherals external PNP  
VUSB2  
VGEN1  
VGEN2  
VUSB  
2.5/2.6/2.75/3.0  
350  
250  
50  
General peripherals supply #1  
1.2/1.25/1.3/1.35/1.4/1.45/1.5/1.55  
2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3  
2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3  
3.3  
General peripherals supply #2, internal PMOS  
General peripherals supply #2, external PNP  
USB Transceiver supply  
250  
100  
7.5.2  
Modes of Operation  
The MC34708 PMIC is fully programmable via the SPI interface and associated register map. Additional communication is  
provided by direct logic interfacing, including interrupt, watchdog, and reset. Default startup of the device is selectable by  
hardwiring the Power Up Mode Select (PUMS) pins.  
MC34708  
Analog Integrated Circuit Device Data  
33  
Freescale Semiconductor  
Functional Block Description  
Power cycling of the application is driven by the MC34708 PMIC. It has the interfaces for the power buttons and dedicated  
signaling interfacing with the processor. It also ensures the supply of the Real Time Clock (RTC), critical internal logic, and other  
circuits from the coin cell, in case of brief interruptions from the main battery. A charger for the coin cell is included to ensure that  
it is kept topped off until needed.  
The MC34708 PMIC provides the timekeeping, based on an integrated low power oscillator running with a standard watch crystal.  
This oscillator is used for internal clocking, the control logic, and as a reference for the switcher PLL. The timekeeping includes  
time of day, calendar, and alarm, and is backed up by coin cell. The clock is driven to the processor for reference and deep sleep  
mode clocking.  
From any mode: Loss of Power with PCEN=0  
PCT[7:0] Expired  
Thermal Protection Trip, or System Reset  
Off  
Unqual’d  
Turn On  
WDI Low,  
WDIRESET=0  
WDI Low  
Unqual’d  
Turn On  
Turn On  
Event  
WDIRESET=1  
and PCMAXCNT  
is exceeded  
Start Up Modes  
Reset Timer  
Expired  
Reset Timer  
Expired  
Cold  
Start  
Warm  
Start  
Watchdog  
WDI Low  
WDIRESET=1  
and PCMAXCNT  
is not exceeded  
Watchdog Timer  
Expired  
On  
PCUT Timeout  
PCT[7:0]  
Expired  
PCUTEXPB  
cleared to 0  
Processor Request  
for User Off:  
Turn On Event  
(Warm Start)  
Turn On Event  
(Warm Boot)  
USEROFFSPI=1  
Low Power  
Off Modes  
Warm Start  
Not  
Enabled  
Warm Start  
Enabled  
Memory  
Hold  
User  
Off  
User Off  
Wait  
WARMEN=1  
WARMEN=0  
Application of Power  
before PCUT Timer  
PCT[7:0] expiration  
(PCEN=1 and  
From any mode: Loss of Power  
with Power Cuts enabled  
(PCEN=1) and PCMAXCNT  
not exceeded  
PCMAXCNT not  
exceeded)  
Internal  
MemHold  
Power  
Cut  
Legend and Notes (refer to text for additional details)  
Blue Box = Steady State, no specific timer is running  
Green Circle = Transitional State, a specific timer is running, see text  
Dashed Boxes = Grouping of Modes for clarification  
WDI has influence only in the “On” state  
Complete loss of BP and coin cell power is not represented in the state machine  
Figure 6. Power Control State Machine Flow Diagram  
The following are text descriptions of the power states of the system for additional details of the state machine to complement  
the drawing in Figure 6. Note that the SPI control is only possible in the Watchdog, On and User Off Wait states and that the  
interrupt line INT is kept low in all states except for watchdog and on.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
34  
Functional Block Description  
7.5.2.1  
Coin Cell  
The RTC module is powered from either the battery or the coincell, due to insufficient voltage at VALWAYS, and the IC is not in  
a Power Cut. No Turn On event is accepted in the Coin Cell state. Transition out (to the Off state) requires VALWAYS restoration  
with a threshold above UVDET. RESETB and RESETBMCU are held low in this mode.  
The RTC module remains active (32 kHz oscillator + RTC timers), along with VALWAYS level detection to qualify exit to the Off  
state. VCOREDIG is off and the VDDLP regulator is on, the rest of the system is put into its lowest power configuration.  
If the coin cell is depleted (VSTRC drops to 0.9 V-0.8 V while in the Coin Cell state), a complete system reset will occur. At next  
power application / Turn On event, the system will startup reinitialized with all SPI bits including those that reset on RTCPORB  
restored to their default states.  
7.5.2.2  
Off (with good battery)  
If the supply VALWAYS is above the UVDET threshold, only the IC core circuitry at VCOREDIG and the RTC module are  
powered, all other supplies are inactive. To exit the Off mode, a valid turn on event is required. No specific timer is running in this  
mode. RESETB, RESETBMCU are held low in this mode.  
If the supply VALWAYS is below the UVDET threshold, no turn on events are accepted. If a valid coin cell is present, the core  
gets powered from LICELL. The only active circuitry is the RTC module and the detection VCORE module powering VCOREDIG  
at 1.5 V.  
If there is a USB supply or Charger inserted, the IC circuitry at VCORE, VCOREDIG, and the RTC Module will be powered up.  
To exit the OFF mode, a valid turn ON event is required.  
7.5.2.3  
Cold Start  
Cold Start is entered upon a Turn On event from Off, Warm Boot, successful PCUT, or a Silent System Restart. The first 8.0 ms  
is used for initialization which includes bias generation, PUMSx configuration latching, and qualification of the input supply level  
BP. The switching and linear regulators are then powered up sequentially to limit the inrush current; see the Power Up section  
for sequencing and default level details. The reset signals RESETB and RESETBMCU are kept low. The Reset timer starts  
running when entering Cold Start. The Cold Start state is exited for the Watchdog state and both RESETB and RESETBMCU  
become high (open drain output with external pull-ups) when the reset timer is expired. The input control pins WDI, and  
STANDBY are ignored.  
7.5.2.4  
Watchdog  
The system is fully powered and under SPI control. RESETB and RESETBMCU are high. The Watchdog timer starts running  
when entering the Watchdog state. When expired, the system transitions to the On state, where WDI will be checked and  
monitored. The input control pins WDI and STANDBY are ignored while in the Watchdog state.  
7.5.2.5  
On Mode  
The system is fully powered and under SPI control. RESETB and RESETBMCU are high. The WDI pin must be high to stay in  
this mode. The WDI IO supply voltage is referenced to SPIVCC (normally connected to SW5 = 1.8 V); SPIVCC must therefore  
remain enabled to allow for proper WDI detection. If WDI goes low, the system will transition to the Off state or Cold Start  
(depending on the configuration; refer to the section on Silent System Restart with WDI Event for details).  
7.5.2.6  
User Off Wait  
The system is fully powered and under SPI control. The WDI pin no longer has control over the part. The Wait mode is entered  
by a processor request for user off by setting the USEROFFSPI bit high. This is normally initiated by the end user via the power  
key; upon receiving the corresponding interrupt, the system will determine if the product has been configured for User Off or  
Memory Hold states (both of which first require passing through User Off Wait) or just transition to Off.  
The Wait timer starts running when entering User Off Wait mode. This leaves the processor time to suspend or terminate its tasks.  
When expired, the Wait mode is exited for User Off mode or Memory Hold mode depending on warm starts being enabled or not  
via the WARMEN bit. The USEROFFSPI bit is being reset at this point by RESETB going low.  
MC34708  
Analog Integrated Circuit Device Data  
35  
Freescale Semiconductor  
Functional Block Description  
7.5.2.7  
Memory Hold and User Off (Low Power Off states)  
As noted in the User Off Wait description, the system is directed into low power Off states based on a SPI command in response  
to an intentional turn off by the end user. The only exit then will be a turn on event. To an end user, the Memory Hold and User  
Off states look like the product has been shut down completely. However, a faster startup is facilitated by maintaining external  
memory in self-refresh mode (Memory Hold and User Off mode) as well as powering portions of the processor core for state  
retention (User Off only). The Switching regulator mode control bits allow selective powering of the buck regulators for optimizing  
the supply behavior in the low power Off modes. Linear regulators and most functional blocks are disabled (the RTC module, SPI  
bits resetting with RTCPORB, and Turn On event detection are maintained).  
By way of example, the following descriptions assume the typical use case where SW1 supplies the processor core(s), SW2 is  
applied to the processor’s VCC domain, SW3 supplies the processors internal memory/peripherals, and SW4 supplies the  
external memory, and SW5 supplies the I/O rail. The buck regulators are intended for direct connection to the aforementioned  
loads.  
7.5.2.8  
Memory Hold  
RESETB and RESETBMCU are low, and both CLK32K and CLK32KMCU are disabled (CLK32KMCU active if DRM is set). To  
ensure that SW1, SW2, SW3 and SW5 shut off in Memory Hold, appropriate mode settings should be used such as  
SW1MHMODE, = SW2MHMODE, = SW3MHMODE, = SW5MHMODE set to = 0 (refer to the mode control description later in  
this section). Since SW4 should be powered in PFM mode, SW4MHMODE could be set to 1.  
Upon a Turn On event, the Cold Start state is entered, the default power up values are loaded, and the MEMHLDI interrupt bit is  
set. A Cold Start out of the Memory Hold state will result in shorter boot times compared to starting out of the Off state, since  
software does not have to be loaded and expanded from flash. The startup out of Memory Hold is also referred to as Warm Boot.  
No specific timer is running in this mode.  
Buck regulators that are configured to stay on in MEMHOLD mode by their SWxMHMODE settings will not be turned off when  
coming out of MEMHOLD and entering a Warm Boot. The switching regulators will be reconfigured for their default settings as  
selected by the PUMSx pins in the normal time slot that would affect them.  
7.5.2.9  
User Off  
RESETB is low and RESETBMCU is kept high. The 32 kHz peripheral clock driver CLK32K is disabled; CLK32KMCU (connected  
to the processor’s CKIL input) is maintained in this mode if the CLK32KMCUEN and USEROFFCLK bits are both set, or if DRM  
is set.  
The memory domain is held up by setting SW4UOMODE = 1. Similarly, the SW1 and/or SW2 and or SW3 supply domains can  
be configured for SWxUOMODE=1 to keep them powered through the User Off event. If one of the switching regulators can be  
shut down on in User Off, its mode bits would typically be set to 0.  
Since power is maintained for the core (which is put into its lowest power state), and since MCU RESETBMCU does not trip, the  
processor’s state may be quickly recovered when exiting USEROFF upon a turn on event. The CLK32KMCU clock can be used  
for very low frequency / low power idling of the core(s), minimizing battery drain, while allowing a rapid recovery from where the  
system left off before the USEROFF command.  
Upon a turn on event, Warm Start state is entered, and the default power up values are loaded. A Warm Start out of User Off will  
result in an almost instantaneous startup of the system, since the internal states of the processor were preserved along with  
external memory. No specific timer is running in this mode.  
7.5.2.10 Warm Start  
Entered upon a Turn On event from User Off. The first 8.0 ms is used for initialization, which includes bias generation, PUMSx  
latching, and qualification of the input supply level BP. The switching and linear regulators are then powered up sequentially to  
limit the inrush current; see Startup Requirements for sequencing and default level details. If SW1, SW2, SW3, SW4, and/or  
SW5, were configured to stay on in User Off mode by their SWxUOMODE settings, they will not be turned off when coming out  
of User Off and entering a Warm Start. The buck regulators will be reconfigured for their default settings as selected by the  
PUMSx pins in the respective time slot defined in the sequencer selection.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
36  
Functional Block Description  
RESETB is kept low and RESETBMCU is kept high. CLK32KMCU is kept active if CLK32KMCU was set. The reset timer starts  
running when entering Warm Start. When expired, the Warm Start state is exited for the Watchdog state, a WARMI interrupt is  
generated, and RESETB will go high.  
7.5.2.11 Internal MemHold Power Cut  
As described in the Power Cut Description, a momentary power interruption will put the system into the Internal MemHold Power  
Cut state if PCUTs are enabled. The backup coin cell will now supply the MC34708 core along with the 32 k crystal oscillator, the  
RTC system, and coin cell backed up registers. All regulators will be shut down to preserve the coin cell and RTC as long as  
possible.  
Both RESETB and RESETBMCU are tripped, bringing the entire system down along with the supplies and external clock drivers,  
so the only recovery out of a Power Cut state is to reestablish power and initiate a Cold Start.  
If the PCT timer expires before power is re-established, the system transitions to the Off state and awaits a sufficient supply  
recovery.  
7.5.3  
Power Control Logic  
Power Cut Description  
7.5.3.1  
When the supply at VALWAYS drops below the UVDET threshold, due to battery bounce or battery removal, the Internal  
MemHold Power Cut mode is entered and a Power Cut (PCUT) timer starts running. The backup coin cell will now supply the  
RTC as well as the on chip memory registers and some other power control related bits. All other supplies will be disabled.  
The maximum duration of a power cut is determined by the PCUT timer PCT [7:0] preset via the SPI. When a PCUT occurs, the  
PCUT timer will be started. The contents of PCT [7:0] does not reflect the actual count down value, but will keep the programmed  
value, and therefore does not have to be reprogrammed after each power cut.  
If power is not re-established above the LOWBATT threshold before the PCUT timer expires, the state machine transitions to the  
Off mode at expiration of the counter, and clears the PCUTEXB bit by setting it to 0. This transition is referred to as an  
“unsuccessful” PCUT. In addition the PMIC will bring the SDWNB pin low for one 32 kHz clock cycle before powering down.  
Upon re-application of power before expiration (a “successful PCUT”, defined as VALWAYS first rising above the UVDET  
threshold and then battery above the LOWBATT threshold before the PCUT timer expires), a Cold Start is engaged after the  
UVTIMER has expired.  
In order to distinguish a non-PCUT initiated Cold Start from a Cold Start after a PCUT, the PCI interrupt should be checked by  
software. The PCI interrupt is cleared by software or when cycling through the Off state.  
Because the PCUT system quickly disables the entire power tree, the battery voltage may recover to a level with the appearance  
of a valid supply once the battery is unloaded. However, upon a restart of the IC and power sequencer, the surge of current  
through the battery and trace impedances can once again cause the BP node to droop below UVDET. This chain of cyclic power  
down / power up sequences is referred to as “ambulance mode”, and the power control system includes strategies to minimize  
the chance of a product falling into and getting stuck in ambulance mode.  
First, the successful recovery out of a PCUT requires the VABTT node to rise above LOBATT threshold, providing hysteretic  
margin from the LOBATTT (H to L) threshold. Secondly, the number of times the PCUT mode is entered is counted with the  
counter PCCOUNT [3:0], and the allowed count is limited to PCMAXCNT [3:0] set through SPI. When the contents of both  
become equal, then the next PCUT will not be supported and the system will go to Off mode, after the PCUT time expires.  
After a successful power up after a PCUT (i.e., valid power is reestablished, the system comes out of reset, and the processor  
reassumes control), software should clear the PCCOUNT [3:0] counter. Counting of PCUT events is enabled via the  
PCCOUNTEN bit. This mode is only supported if the power cut mode feature is enabled by setting the PCEN bit. When not  
enabled, then in case of a power failure, the state machine will transition to the Off state. SPI control is not possible during a  
PCUT event and the interrupt line is kept low. SPI configuration for PCUT support should also include setting the PCUTEXPB = 1  
(See Silent Restart from PCUT Event).  
MC34708  
Analog Integrated Circuit Device Data  
37  
Freescale Semiconductor  
Functional Block Description  
7.5.3.2  
Silent Restart from PCUT Event  
If a short duration power cut event occurs (such as from a battery bounce, for example), it may be desirable to perform a silent  
restart, so the system is reinitialized without alerting the user. This can be facilitated by setting the PCUTEXPB bit to “1” at booting  
or after a Cold Start. This bit resets on RTCPORB, therefore any subsequent Cold Start can first check the status of PCUTEXPB  
and the PCI bit. The PCUTEXPB is cleared to “0” when transitioning from PCUT to Off. If there was a PCUT interrupt and  
PCUTEXPB is still “1”, then the state machine has not transitioned through Off, which confirms that the PCT timer has not expired  
during the PCUT event (i.e., a successful power cut). In this case, a silent restart may be appropriate.  
If PCUTEXPB is found to be “0” after the Cold Start where PCI is found to be “1”, then it is inferred that the PCT timer has expired  
before power was reestablished, flagging an unsuccessful power cut or first power up, so the startup user greeting may be  
desirable for playback.  
7.5.3.3  
Silent System Restart with WDI Event  
A mechanism is provided for recovery if the system software somehow gets into an abnormal state which requires a system reset,  
but it is desired to make the reset a silent event so as to happen without end user awareness. The default response to WDI going  
low is for the state machine to transition to the Off state (when WDIRESET = 0). However, if WDIRESET = 1, the state machine  
will go to Cold Start without passing through Off mode (i.e., does not generate an OFFB signal).  
A WDIRESET event will generate a maskable WDIRESETI interrupt and also increment the PCCOUNT counter. This function is  
unrelated to PCUTs, but it shares the PCUT counter so that the number of silent system restarts can be limited by the  
programmable PCMAXCNT counter.  
When PCUT support is used, the software should set the PCUTEXPB bit to “1”. Since this bit resets with RTCPORB, it will not  
be reset to “0” if a WDI falls and the state machine goes straight to the Cold Start state. Therefore, upon a restart, software can  
discern a silent system restart if there is a WDIRESETI interrupt and PCUTEXPB = 1. The application may then determine that  
an inconspicuous restart without fanfare may be more appropriate than launching into the welcoming routine.  
A PCUT event does not trip the WDIRESETI bit.  
Note that the system response to WDI is gated by the Watchdog timer—once the timer has expired, then the system will respond  
as programmed by WDIRESET and described above.  
7.5.3.4  
Turn On Events  
When in Off mode, the circuit can be powered on via a Turn On event. The Turn On events are listed by the following. To indicate  
to the processor what event caused the system to power on, an interrupt bit is associated with each of the Turn On events.  
Masking the interrupts related to the turn on events will not prevent the part to turn on except for the time of day alarm. If the part  
was already on at the time of the turn on event, the interrupt is still generated.  
Power Button Press: PWRON1, or PWRON2 pulled low with corresponding interrupts and sense bits PWRON1I or  
PWRON2I, and PWRON1S or PWRON2S. A power on/off button is connected from PWRONx to ground. The PWRONx can  
be hardware debounced through a programmable debouncer PWRONxDBNC [1:0] to avoid a response upon a very short (i.e.,  
unintentional) key press. BP should be above UVDET to allow a power up. The PWRONxI interrupt is generated for both the  
falling and the rising edge of the PWRONx pin. By default, a 30 ms interrupt debounce is applied to both falling and rising  
edges. The falling edge debounce timing can be extended with PWRONxDBNC[1:0] as defined in the following table. The  
PWRONxI interrupt is cleared by software or when cycling through the Off mode.  
Table 21. PWRONx Hardware Debounce Bit Settings(37)  
Turn On  
Debounce (ms)  
Falling Edge INT Rising Edge INT  
Bits  
State  
Debounce (ms)  
Debounce (ms)  
PWRONxDBNC[1:0]  
00  
01  
10  
11  
0.0  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
750  
750  
Notes  
37. The sense bit PWRONxS is not debounced and follows the state of the PWRONx pin.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
38  
Functional Block Description  
Charger Attach: CHRGRAW pulled high with corresponding interrupt and sense bits CHGDETI and CHGDETS. This is  
equivalent to plugging in a charger; BP should be above the LOWBATT threshold. For details on the charger detection and  
turn on, see Serial Interfaces.  
Battery Attach: This occurs when BP crosses the LOWBATT threshold which is equivalent to attaching a charged battery to  
the product.  
USB Attach: VBUS pulled high with corresponding interrupt and sense bits USBDET and USBDETS. This is equivalent to  
plugging in a USB cable connected to a host powering the VBUS line. The battery voltage should be above LOWBATT. For  
details on the USB detection, see Mini/Micro USB Switch.  
RTC Alarm: TOD and DAY become equal to the alarm setting programmed. This allows powering up a product at a preset  
time. BP should be above LOWBATT. For details and related interrupts, see .  
System Restart: System restart which may occur after a system reset as described earlier in this section. This is an optional  
function, see Turn Off Events. BP should be above LOWBATT.  
Global System Reset: The global reset feature powers down the part, disables the charger, resets the SPI registers to their  
default value including all the RTCPORB registers (except the DRM bit, and the RTC registers), and then powers back on. To  
enable a global reset, the GLBRST pin needs to be pulled low for greater than GLBRSTTMR [1:0] seconds and then pulled  
back high (defaults to 12 s). BP should be above LOWBATT.  
Table 22. Global Reset Time Settings  
Bits  
State  
Time (s)  
GLBRSTTMR[1:0]  
00  
01  
0
4
10  
8
11 (default)  
12  
7.5.3.5  
Turn Off Events  
Power Button Press (via WDI): User shut down of a product is typically done by pressing the power button connected to the  
PWRONx pin. This will generate an interrupt (PWRONxI), but will not directly power off the part. The product is powered off  
by the processor’s response to this interrupt, which will be to pull WDI low. Pressing the power button is therefore under normal  
circumstances not considered as a turn off event for the state machine. However, since the button press power down is the  
most common turn off method for end products, it is described in this section as the product implementation for a WDI initiated  
Turn Off event. Note that the software can configure a user initiated power down, via a power button press for transition to a  
Low Power Off mode (Memory Hold or User Off) for a quicker restart than the default transition into the Off state.  
Power Button System Reset: A secondary application of the PWRONx pins is the option to generate a system reset. This is  
recognized as a Turn Off event. By default, the system reset function is disabled but can be enabled by setting the  
PWRONxRSTEN bits. When enabled, a 4 second long press on the power button will cause the device to go to the Off mode,  
and as a result, the entire application will power down. An interrupt SYSRSTI is generated upon the next power up.  
Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit.  
Thermal Protection: If the die gets overheated, the thermal protection will power off the part to avoid damage. A Turn On  
event will not be accepted while the thermal protection is still being tripped. The part will remain in Off mode until cooling  
sufficiently to accept a Turn On event. There are no specific interrupts related to this other than the warning interrupts.  
Under-voltage Detection: When the voltage at BP drops below the under-voltage detection threshold UVDET, the state  
machine will transition to Off mode if PCUT is not enabled, or if the PCT timer expires when PCUT is enabled. The SDWNB  
pin is used to notify that the processor that the PMIC is going to immediately shut down. The PMIC will bring the SDWNB pin  
low for one 32 kHz clock cycle before powering down. This signal will then be brought back high in the power Off state.  
7.5.3.6  
Timers  
The different timers as used by the state machine are listed by the following. This listing does not include RTC timers for  
timekeeping. A synchronization error of up to one clock period may occur with respect to the occurrence of an asynchronous  
event, the duration listed below is therefore the effective minimum time period.  
MC34708  
Analog Integrated Circuit Device Data  
39  
Freescale Semiconductor  
Functional Block Description  
Table 23. Timer Main Characteristics  
Timer  
Duration  
Clock  
Under-voltage Timer  
Reset Timer  
4.0 ms  
40 ms  
32 k/32  
32 k/32  
32 k/32  
Watchdog Timer  
Power Cut Timer  
128 ms  
Programmable 0 to 8 seconds 32 k/1024  
in 31.25 ms steps  
7.5.3.6.1  
Timing Diagrams  
A Turn On event timing diagrams shown in Figure 7.  
ow  
Turn On Event  
WDI Pulled Low  
Sequencer time slots  
System Core Active  
Turn On Verification  
Power Up Sequencer  
UV Masking  
RESETB  
INT  
WDI  
8 ms  
8 ms  
20 ms  
12 ms  
128 ms  
1- Off  
2- Cold Start  
3- Watchdog  
4- On  
3- Watchdog  
1- Off  
Power up of the system upon a Turn On Event followed by a transition to the On state if WDI is pulled high  
Turn on Event is based on PWRON being pulled low  
... or transition to Off state if WDI remains low  
= Indeterminate State  
Figure 7. Power Up Timing Diagram  
7.5.3.7  
Power Monitoring  
The voltage at BATT and BP are monitored by detectors as summarized in Table 24.  
Table 24. LOWBATT Detection Thresholds  
(39) (40)  
Threshold in V  
,
L to H transition  
(Power on)  
H to L transition  
(Low battery detect)  
(38)  
Bit setting  
LOWBATT1  
LOWBATT0  
UVDET  
LOWBATT  
LOWBATT  
0
0
1
0
1
0
2.55  
2.55  
2.55  
3.1  
3.2  
3.3  
3.0  
3.1  
3.2  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
40  
Functional Block Description  
Table 24. LOWBATT Detection Thresholds  
(39) (40)  
Threshold in V  
,
L to H transition  
(Power on)  
H to L transition  
(38)  
Bit setting  
(Low battery detect)  
LOWBATT  
3.3  
LOWBATT1  
LOWBATT0  
UVDET  
LOWBATT  
1
1
2.55  
3.4  
Notes  
38. Default setting for LOWBATT[1:0] is 11.  
39. The above specified thresholds are ±50 mV accurate for the indicated transition  
40. A hysteresis is applied to the detectors on the order of 100 mV  
The UVDET and LOWBATT thresholds are related to the power on/off events as described earlier in this chapter. The LOWBATT  
threshold when transitioned from low to a high is used to power on the MC34708. The LOWBATT threshold when transitioned  
from high to low, is used as a low battery detect warning. An interrupt LOWBAT is generated when dropping below the high to  
low threshold to indicate to the processor that the battery is weak and a shutdown is imminent.  
The LOWBATT detection threshold is debounced by the VBATTDB[2:0] SPI bits shown in Table 25.  
Table 25. VBATTDB Debounce Times  
VATTDB[1:0]  
Debounce Time  
00  
01  
10  
11  
0 (default)  
2 RTC clock cycles  
4 RTC clock cycles  
8 RTC clock cycles  
7.5.3.8  
Power Saving  
System Standby  
7.5.3.8.1  
A product may be designed to go into DSM after periods of inactivity, the STANDBY pin is provided for board level control of  
timing in and out of such deep sleep modes.  
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing  
the operating mode of the switching regulators or disabling some regulators. This can be obtained by controlling the STANDBY  
pin. The configuration of the regulators in standby is pre-programmed through the SPI.  
A lower power standby mode can be obtained by setting the ON_STBY_LP SPI bit to a one. With the ON_STBY_LP SPI bit set  
and the STANDBY pin asserted a lower power standby will be entered. In the on Standby Low Power mode, the switching  
Regulators should all be programmed into PFM mode and the LDO's should be configured to Low Power mode when the  
STANDBY pin is asserted. The PLL is disabled in this mode so the mini USB will only be able to detect if a charger is inserted.  
If an audio device, UART, or a USB OTG device is attached the PMIC will not be able to auto detect it in Low Power Standby  
mode. It will require the software to wake up occasionally to allow the mini-USB to detect if a device is attached by de-asserting  
the STANDBY pin and waking up for a period to see if a device is attached and then re-asserting Standby, if a device has not  
been detected. If a device has been detected then the software can bring up the appropriate application etc.  
Note the STANDBY pin is programmable for Active High or Active Low polarity, and that decoding of a Standby event will take  
into account the programmed input polarity associated with each pin. For simplicity, Standby will generally be referred to as active  
high throughout this document, but as defined in Table 26, active low operation can be accommodated. Finally, since STANDBY  
pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond to the pin  
level changes.  
MC34708  
Analog Integrated Circuit Device Data  
41  
Freescale Semiconductor  
Functional Block Description  
Table 26. Standby Pin and Polarity Control  
STANDBY (Pin)  
STANDBYINV (SPI bit)  
STANDBY Control(41)  
0
0
1
1
0
1
0
1
0
1
1
0
Notes  
41. STANDBY = 0: System is not in Standby STANDBY = 1: System is in Standby  
The state of the STANDBY pin only has influence in On mode, and are therefore it is ignored during start up and in the Watchdog  
phase. This allows the system to power up without concern of the required Standby polarities since software can make  
adjustments accordingly as soon as it is running.  
A command to transition to one of the low power Off states (User Off or Memory Hold, initiated with USE-ROFFSPI=1) redefines  
the power tree configuration based on SWxMODE programming, and has priority over Standby (which also influences the power  
tree configuration).  
7.5.3.8.2  
Standby Delay  
A provision to delay the Standby response is included. This allows the processor and peripherals, some time after a Standby  
instruction has been received, to terminate processes to facilitate seamless Standby exiting and re-entrance into Normal  
operating mode.  
A programmable delay is provided to hold off the system response to a Standby event. When enabled (STBYDLY = 01, 10, or  
11), STBYDLY will delay the STANDBY initiated response for the entire IC until the STBYDLY counter expires.  
Note that this delay is applied only when going into Standby, and no delay is applied when coming out of Standby. Also, an  
allowance should be accounted for synchronization of the asynchronous Standby event and the internal clocking edges (up to a  
full 32 k cycle of additional delay).  
Table 27. Delay of STANDBY- Initiated Response  
STBYDLY[1:0]  
Function  
No Delay  
00  
One 32 k period (default)  
Two 32 k periods  
01  
10  
11  
Three 32 k periods  
7.5.4  
Buck Switching Regulators  
Six buck switching regulators are provided with integrated power switches and synchronous rectification. In a typical application,  
SW1 and SW2 are used for supplying the application processor core power domains. Split power domains allow independent  
DVS control for processor power optimization, or to support technologies with a mix of device types with different voltage ratings.  
SW3 is used for powering internal processor memory as well as low voltage peripheral devices and interfaces which can run at  
the same voltage level. SW4A/B is used for powering external DDR memory as well as low voltage peripheral devices and  
interfaces, which can run at the same voltage level. SW5 is used to supply the I/O domain for the system.  
The buck regulators are supplied from the system supply BP, which is drawn from the main battery or the battery charger (when  
present).  
The switching regulators can operate in different modes depending on the load conditions. These modes can be set through SPI  
and include a PFM mode, PWM Pulse Skip, an Automatic Pulse Skipping mode, and a PWM mode. The previous selection is  
optimized to maximum battery life based on load conditions.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
42  
Functional Block Description  
Table 28. Buck Operating Modes  
Mode  
Description  
The regulator is switched off and the output voltage is discharged  
OFF  
PFM  
The regulator is switched on and set to PFM mode operation. In this  
mode, the regulator is always running in PFM mode. Useful at light  
loads for optimized efficiency.  
The regulator is switched on and set to Automatic Pulse Skipping.  
In this mode the regulator moves automatically between pulse  
skipping and full PWM mode depending on load conditions.  
APSKIP  
PWM  
The regulator is switched on and set to PWM mode. In this mode  
the regulator is always in full PWM mode operation regardless of  
load conditions.  
Buck modes of operation are programmable for explicitly defined or load-dependent control.  
When initially activated, regulators outputs will apply controlled stepping to the programmed value. The soft start feature limits  
the inrush current at startup. During soft start, the regulator will be forced to PWM mode for 3.0 ms and then default to the APSKIP  
mode A built in current limiter ensures that during normal operation the maximum current through the coil is not exceeded.  
Point of Load feedback is intended for minimizing errors due to board level IR drops.  
7.5.4.1  
General Control  
Operational modes of the Buck regulators can be controlled by direct SPI programming, altered by the state of the STANDBY  
pin, by direct state machine influence (i.e., entering Off or low power Off states, for example), or by load current magnitude when  
so configured (Auto Pulse skip mode). Available modes include PWM with No Pulse Skipping (PWM), PWM with Pulse Skipping  
(PWMPS), Pulse Frequency Mode (PFM), Automatic Pulse Skip (APS), and Off. The transition between the two modes PWMPS  
and PWM can occur automatically, based on the load current (auto pulse skip mode). For light loading, the regulators should be  
put into PFM mode to optimize efficiency.  
SW1A/B, SW2, SW3, SW4A/B, and SW5, can be configured for mode switching with STANDBY or autonomously, based on load  
current Auto pulse skip mode. Additionally, provisions are made for maintaining PFM operation in User off and Memhold modes,  
to support state retention for faster startup from the Low Power Off modes for Warm Start or Warm Boot. SWxMODE[3:0] bits  
will be reset to their default values defined by PUMSx settings by the startup sequencer.  
Table 29 summarizes the Buck regulators programmability for Normal and Standby modes.  
Table 29. Switching regulator Mode Control for Normal and Standby Operation  
SWxMODE[3:0]  
Normal Mode  
Standby Mode  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
Off  
PWM  
PWMPS  
PFM  
Off  
Off  
Off  
Off  
APS  
Off  
PWM  
PWM  
Off  
PWM  
APS  
Off  
APS  
APS  
PWMPS  
PWMPS  
APS  
PWM  
PWMPS  
PWMPS  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
43  
Functional Block Description  
Table 29. Switching regulator Mode Control for Normal and Standby Operation  
SWxMODE[3:0]  
Normal Mode  
Standby Mode  
1100  
1101  
1110  
1111  
APS  
PWM  
PFM  
PFM  
PFM  
PFM  
PWMPS  
PFM  
In addition to controlling the operating mode in Standby, the voltage setting can be changed. The transition in voltage is handled  
in a controlled slope manner, see Serial Interfaces for details. Each regulator has an associated set of SPI bits for Standby mode  
set points. By default, the Standby settings are identical to the non-standby settings which are initially defined by PUMSx  
programming.  
The actual operating mode of the Switching regulators as a function of the STANDBY pin is not reflected through the SPI. In other  
words, the SPI will read back what is programmed in SWxMODE[3:0], not the actual state that may be altered as described  
previously.  
Two tables follow for mode control in the low power Off states. Note that a low power Off activated SWx should use the Standby  
set point as programmed by SWxSTBY[4:0]. The activated regulator(s) will maintain settings for mode and voltage until the next  
startup event. When the respective time slot of the startup sequencer is reached for a given regulator, its mode and voltage  
settings will be updated the same as if starting out of the Off state (except that switching regulators active through a low power  
Off mode will not be off when the startup sequencer is started).  
Table 30. Switching regulator Control In Memory Hold  
SWxMHMODE  
Memory Hold Operational Mode (42)  
0
1
Off  
PFM  
Notes:  
42. For Memory Hold mode, an activated SWx should use the  
Standby set point as programmed by SWxSTBY[4:0].  
Table 31. Switching regulator Control In User Off  
SWxUOMODE  
User Off Operational Mode (43)  
0
1
Off  
PFM  
Notes:  
43. For User Off mode, an activated SWx should use the Standby  
set point as programmed by SWxSTBY[4:0].  
In normal steady state operating mode, the SW1xPWGD pin is high. When the buck charger set point is changed to a higher or  
lower set point, the SW1xPWGD pin will go low and will go high again when the higher/lower set point is reached.  
7.5.4.2  
Switching Frequency  
A PLL generates the Switching system clocking from the 32.768 kHz crystal oscillator reference. The switching frequency can  
be programmed to 2.0 MHz or 4.0 MHz by setting the PLLX SPI bit as shown in Table 32.  
Table 32. Buck Regulator Frequency  
PLLX  
Switching Frequency (Hz)  
0
1
2 000 000  
4 000 000  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
44  
Functional Block Description  
The clocking system provides a near instantaneous activation when the Switching regulators are enabled or when exiting PFM  
operation for PWM mode. The PLL can be configured for continuous operation with PLLEN = 1.  
7.5.4.3  
SW1  
SW1 is fully integrated synchronous Buck PWM voltage mode control DC/DC regulator. It can be operated in single phase/dual  
phase mode. The operating mode of the Switching regulators is configured by the SW1CFG pin. The SW1CFG pin is sampled  
at startup.  
Table 33. SW1 Configuration  
SW1CFG  
VCOREDIG  
SW1A/B Configuration Mode  
Single Phase Mode  
Ground  
Dual Phase Mode  
BP  
SW1IN  
SW1AMODE  
SW1FAULT  
ISENSE  
CINSW 1A  
Controller  
SW1  
SW1ALX  
Driver  
LSW 1A  
COSW1A  
DSW1  
GNDSW1A  
SW1FB  
Internal  
Compensation  
SPI  
Z2  
SPI  
Interface  
Z1  
VREF  
EA  
DAC  
BP  
SW1BIN  
SW1BMODE  
ISENSE  
CINSW 1B  
Controller  
SW1BLX  
Driver  
SW1BFAULT  
GNDSW1B  
VCOREDIG  
SW1CFG  
Figure 8. SW1 Single Phase Output Mode Block Diagram  
MC34708  
Analog Integrated Circuit Device Data  
45  
Freescale Semiconductor  
Functional Block Description  
BP  
SW1IN  
SW1AMODE  
SW1FAULT  
ISENSE  
CINSW1A  
Controller  
SW1  
SW1ALX  
Driver  
LSW1A  
COSW1A  
DSW1A  
GNDSW1A  
Internal  
Compensation  
SPI  
Z2  
SPI  
Interface  
SW1FB  
Z1  
VREF  
EA  
DAC  
BP  
SW1BIN  
SW1BLX  
SW1BMODE  
ISENSE  
CINSW1B  
Controller  
Driver  
LSW 1B  
COSW 1B  
DSW1B  
SW1BFAULT  
GNDSW1B  
SW1CFG  
Figure 9. SW1 Dual Phase Output Mode Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator  
will limit the current through cycle by cycle operation and alert the system through the SW1FAULT SPI bit and issue an SCPI  
interrupt via the INT pin.  
SW1A/B output voltage is SPI configurable in step sizes of 12.5 mV as shown in the table below. The SPI bits SW1A[5:0] set the  
output voltage for both the SW1A and SW1B.  
Table 34. SW1A/B Output Voltage Programmability  
SW1A/B  
Output (V)  
SW1A/B  
Output (V)  
Set Point SW1A[5:0]  
Set Point SW1A[5:0]  
0
1
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
0.6500  
0.6625  
0.6750  
0.6875  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
2
3
4
5
6
7
8
9
10  
11  
12  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
46  
Functional Block Description  
Table 34. SW1A/B Output Voltage Programmability  
SW1A/B  
SW1A/B  
Output (V)  
Set Point SW1A[5:0]  
Set Point SW1A[5:0]  
Output (V)  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
Table 35. SW1A/B Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW1A/B BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
VSW1IN  
V
3.0  
2.8  
-
-
4.5  
4.5  
• PFM operation, 0 < IL < ILMAX  
(44)  
Output Voltage Accuracy  
VSW1ACC  
mV  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
Nom-25  
Nom-25  
Nom  
Nom  
Nom+25  
Nom+25  
Continuous Output Load Current, VINMIN < BP < 4.5 V  
• PWM mode single/dual phase (parallel)  
• SW1 in PFM mode  
ISW1  
mA  
A
-
-
-
2000  
-
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V, Current through Inductor  
ISW1PEAK  
-
4.0  
-
-
Transient Load Change  
• 100 mA/µs  
ISW1  
A
TRANSIENT  
-
-
1.0  
25  
VSW1OS-  
mV  
Start-up Overshoot, IL = 0  
START  
MC34708  
Analog Integrated Circuit Device Data  
47  
Freescale Semiconductor  
Functional Block Description  
Table 35. SW1A/B Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Turn-on Time  
• Enable to 90% of end value IL = 0  
tON-SW1  
µs  
-
-
500  
Switching Frequency  
• PLLX = 0  
fSW1  
MHz  
µA  
-
-
2.0  
4.0  
-
-
• PLLX = 1  
Quiescent Current Consumption  
• PWMPS MODE, IL=0 mA  
• PFM MODE, IL=0 mA  
ISW1Q  
-
-
50  
15  
-
-
(45)  
Efficiency,  
%
• PFM, 0.9 V, 1.0 mA  
-
-
-
-
54  
75  
81  
76  
-
-
-
-
• PWM Pulse skipping, 1.1 V, 200 mA  
• PWM Pulse skipping, 1.1 V, 800 mA  
• PWM, 1.1 V, 1600 mA  
Notes:  
44. Transient loading for load steps of ILMAX/2.  
45. Efficiency numbers at VIN = 3.6 V, excludes the quiescent current  
7.5.4.4  
SW2  
SW2 is fully integrated synchronous Buck PWM voltage-mode control DC/DC regulator.  
BP  
SW2IN  
SW2MODE  
ISENSE  
C
INSW 3  
Controller  
SW2  
SW2LX  
Driver  
LSW2  
DSW 2  
COSW2  
SW2FAULT  
SPI  
Interface  
GNDSW2  
Internal  
Compensation  
SPI  
Z2  
SW2FB  
Z1  
VREF  
EA  
DAC  
Figure 10. SW2 Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected, the regulator  
will limit the current through cycle by cycle operation, alert the system through the SW2FAULT SPI bit, and issue an SCPI  
interrupt via the INT pin  
SW2 can be programmed in step sizes of 12.5 mV as shown in Table 36.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
48  
Functional Block Description  
Table 36. SW2 Output Voltage Programmability  
SW2x  
SW2 Output  
(V)  
Set Point SW2[5:0]  
Set Point SW2[5:0]  
Output (V)  
0
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
0.6500  
0.6625  
0.6750  
0.6875  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
49  
Functional Block Description  
Table 37. SW2 Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW2 BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
VSW2IN  
V
3.0  
2.8  
-
-
4.5  
4.5  
• PFM operation, 0 < IL < ILMAX  
(46)  
Output Voltage Accuracy  
VSW2ACC  
mV  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
Nom-25  
Nom-25  
Nom  
Nom  
Nom+25  
Nom+25  
Continuous Output Load Current, VINMIN < BP < 4.65 V  
ISW2  
mA  
• PWM mode  
• PFM mode  
-
-
-
1000  
-
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V Current through Inductor  
ISW2PEAK  
A
A
-
2.0  
-
Transient Load Change  
• 100 mA/µs  
ISW2  
TRANSIENT  
-
-
-
-
0.500  
25  
VSW2OS-  
mV  
µs  
Start-up Overshoot, IL = 0  
START  
Turn-on Time  
tON-SW2  
• Enable to 90% of end value IL = 0  
-
-
500  
Switching Frequency  
• PLLX = 0  
fSW2  
-
-
-
MHz  
µA  
-
-
2.0  
4.0  
• PLLX = 1  
Quiescent Current Consumption  
ISW2Q  
• PWM MODE, IL = 0 mA; device not switching  
• PFM MODE, IL = 0 mA; device not switching  
-
-
50  
15  
-
-
(47)  
Efficiency  
%
• PFM, 0.9 V, 1.0 mA  
-
-
-
-
54  
75  
83  
78  
-
-
-
-
• PWM Pulse skipping, 1.2 V, 120 mA  
• PWM Pulse skipping, 1.2 V, 500 mA  
• PWM, 1.2 V, 1000 mA  
Notes:  
46. Transient loading for load steps of ILMAX/2.  
47. Efficiency numbers at VIN = 3.6 V, excludes the quiescent current.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
50  
Functional Block Description  
7.5.4.5  
SW3  
SW3 is fully integrated synchronous Buck PWM voltage mode control DC/DC regulator.  
BP  
SW3IN  
SW3MODE  
ISENSE  
C
INSW 3  
Controller  
SW3  
SW3LX  
Driver  
LSW3  
DSW3  
COSW3  
SW3FAULT  
SPI  
Interface  
GNDSW3  
Internal  
Compensation  
SPI  
Z2  
SW3FB  
Z1  
VREF  
EA  
DAC  
Figure 11. SW3 Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator  
will limit the current through cycle by cycle operation and alert the system through the SW3FAULT SPI bit and issue an SCPI  
interrupt via the INT pin.  
SW3 can be programmed in step sizes of 25 mV as shown in Table 38.  
Table 38. SW3 Output Voltage Programmability  
Set Point  
SW3[4:0]  
SW3 Output (V)  
Set Point  
SW3[4:0]  
SW3 Output (V)  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
MC34708  
Analog Integrated Circuit Device Data  
51  
Freescale Semiconductor  
Functional Block Description  
Table 39. SW3 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW3 BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
VSW3IN  
V
3.0  
2.8  
-
-
4.5  
4.5  
• PFM operation, 0 < IL < ILMAX  
(48)  
Output Voltage Accuracy  
VSW3ACC  
mV  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
Nom-3%  
Nom-3%  
Nom  
Nom  
Nom+3%  
Nom+3%  
Continuous Output Load Current, VINMIN < BP < 4.65 V  
ISW3  
mA  
• PWM mode  
• PFM mode  
-
-
-
500  
-
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V Current through Inductor  
ISW3PEAK  
A
-
-
1.0  
-
-
Transient Load Change  
• 100 mA/µs  
ISW3  
250  
mA  
TRANSIENT  
VSW3OS-  
mV  
µs  
Start-up Overshoot, IL = 100 mA/µs  
-
-
-
-
25  
START  
Turn-on Time  
tON-SW3  
• Enable to 90% of end value IL = 0  
500  
Switching Frequency  
• PLLX = 0  
fSW3  
MHz  
µA  
-
-
2.0  
4.0  
-
-
• PLLX = 1  
Quiescent Current Consumption  
ISW3Q  
• PWM MODE, IL = 0 mA; device not switching  
• PFM MODE, IL = 0 mA; device not switching  
-
-
50  
15  
-
-
(49)  
Efficiency,  
%
• PFM, 1.2 V, 1.0 mA  
-
-
-
-
71  
79  
82  
81  
-
-
-
-
• PWM Pulse skipping, 1.2 V, 120 mA  
• PWM Pulse skipping, 1.2 V, 250 mA  
• PWM, 1.2V, 500mA  
Notes:  
48. Transient loading for load steps of ILMAX/2  
49. Efficiency numbers at VIN=3.6 V, Excludes the quiescent current,  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
52  
Functional Block Description  
7.5.4.6  
SW4  
SW4A/B is fully integrated synchronous Buck PWM voltage-mode control DC/DC regulator. It can be operated in (single phase/  
dual phase mode) or as separate independent outputs. The operating mode of the Switching regulator is configured by the  
SW4CFG pin. The SW4CFG pin is sampled at startup.  
Table 40. SW4A/B Configuration  
SW4CFG  
Ground  
SW4A/B Configuration Mode  
Separate Independent Output  
Single Phase  
VCOREDIG  
VCORE  
Dual Phase  
BP  
SW4IN  
SW4AMODE  
ISENSE  
CINSW 4A  
Controller  
Driver  
SW4A  
SW4ALX  
LSW4A  
COSW4A  
DSW 4A  
SW4AFAULT  
GNDSW4A  
SW4AFB  
Internal  
Compensation  
SPI  
Z2  
Z1  
VREF  
EA  
DAC  
SPI  
Interface  
BP  
SW4BIN  
SW4BLX  
SW4BMODE  
ISENSE  
CINSW 4B  
Controller  
Driver  
SW4B  
LSW4B  
COSW 4B  
DSW4B  
SW4BFAULT  
GNDSW4B  
Internal  
Compensation  
SPI  
Z2  
SW4BFB  
SW4CFG  
Z1  
VREF  
EA  
DAC  
Figure 12. SW4A/B Separate Output Mode Block Diagram  
MC34708  
Analog Integrated Circuit Device Data  
53  
Freescale Semiconductor  
Functional Block Description  
BP  
SW4IN  
SW4AMODE  
SW4AFAULT  
ISENSE  
CINSW4A  
Controller  
SW4  
SW4ALX  
Driver  
LSW4A  
COSW4a  
DSW4  
GNDSW4A  
Internal  
SPI  
Compensation  
Z2  
SW4AFB  
Z1  
VREF  
EA  
DAC  
SPI  
Interface  
BP  
SW4BIN  
SW4BMODE  
ISENSE  
CINSW4B  
Controller  
SW4BLX  
Driver  
SW4BFAULT  
GNDSW4B  
Internal  
SPI  
Compensation  
Z2  
SW4BFB  
SW4CFG  
Z1  
VREF  
EA  
DAC  
VCOREDIG  
Figure 13. SW4 Single Phase Output Mode Block Diagram  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
54  
Functional Block Description  
BP  
SW4IN  
SW4AMODE  
ISENSE  
CINSW4A  
Controller  
SW4  
SW4ALX  
Driver  
LSW4A  
COSW4A  
DSW4A  
SW4AFAULT  
GNDSW4A  
Internal  
SPI  
Compensation  
Z2  
SW4AFB  
Z1  
VREF  
EA  
DAC  
SPI  
Interface  
BP  
SW4BIN  
SW4BMODE  
ISENSE  
CINSW4B  
Controller  
SW4BLX  
DSW4B  
Driver  
LSW4B  
COSW4B  
SW4BFAULT  
GNDSW4B  
Internal  
SPI  
Compensation  
Z2  
SW4BFB  
SW4CFG  
Z1  
VREF  
EA  
DAC  
VCORE  
Figure 14. SW4 Dual Phase Output Mode Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator  
will limit the current through cycle by cycle operation and alert the system through the SW4xFAULT SPI bit and issue an SCPI  
interrupt via the INT pin.  
SW4A/B, when configured by the PUMS bits to come into the high voltage output range (2.5/3.15/3.3 V). If the firmware tries to  
change the output voltage from the high mode (3.15 V) to the low range mode, the output voltage will default to 2.5 V. If the output  
voltage comes into the lower range by default (SW4xHI[1:0] = 00), the output voltage is set by the Sw4X[4:0] bits and can be  
changed by software. The regulator should be forced into PWM mode to change the voltage.  
Table 41. SW4A/B Output Voltage Select  
SW4xHI[1:0]  
Set point selected by  
Output Voltage  
00  
01  
10  
11  
SW4x[4:0]  
SW4xHI[1:0]  
SW4xHI[1:0]  
SW4xHI[1:0]  
See Table 42  
2.5 V  
3.15 V  
3.3 V  
Table 42. SW4A/B Output Voltage Programmability  
SW4x  
SW4x  
Output (V)  
Set Point SW4x[4:0]  
Set Point SW4x[4:0]  
Output (V)  
0
1
2
00000  
00001  
00010  
1.2000  
1.2250  
1.2500  
16  
17  
18  
10000  
10001  
10010  
1.6000  
1.6250  
1.6500  
MC34708  
Analog Integrated Circuit Device Data  
55  
Freescale Semiconductor  
Functional Block Description  
Table 42. SW4A/B Output Voltage Programmability  
SW4x  
SW4x  
Output (V)  
Set Point SW4x[4:0]  
Set Point SW4x[4:0]  
Output (V)  
3
4
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
19  
20  
21  
22  
23  
24  
25  
26  
-
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
-
1.6750  
1.7000  
5
1.7250  
6
1.7500  
7
1.7750  
8
1.8000  
9
1.8250  
10  
11  
12  
13  
14  
15  
1.8500  
-
-
-
-
-
-
-
-
-
-
-
-
-
Table 43. SW4A/B Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW4A/B Buck Regulator  
(51)  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
VSW4IN  
V
3.0  
2.8  
-
-
4.5  
4.5  
• PFM operation, 0 < IL < ILMAX  
(50)  
Output Voltage Accuracy  
VSW4ACC  
mV  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
Nom-3%  
Nom-3%  
Nom  
Nom  
Nom+3%  
Nom+3%  
Continuous Output Load Current, VINMIN < BP < 4.5 V  
• PWM mode (separate)  
ISW4  
mA  
-
-
-
-
-
500  
1000  
-
• PWM mode single/dual phase  
• PFM mode  
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V Current through Inductor (separate)  
• Current through Inductor  
ISW4PEAK  
A
-
-
1.0  
2.0  
-
-
Transient Load Change  
• Single/Dual Phase  
• Separate  
iSW4  
mA  
TRANSIENT  
-
-
-
-
500  
250  
• 100 mA/µs  
VSW4OS-  
mV  
µs  
Start-up Overshoot, IL = 100 mA/µs  
-
-
-
-
25  
START  
Turn-on Time  
tON-SW4  
• Enable to 90% of end value IL = 0  
500  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
56  
Functional Block Description  
Table 43. SW4A/B Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Switching Frequency  
• PLLX = 0  
fSW4  
MHz  
-
-
2.0  
4.0  
-
-
• PLLX = 1  
Quiescent Current Consumption  
ISW4Q  
µA  
• PWM MODE, IL = 0 mA; device not switching  
• PFM MODE, IL = 0 mA; device not switching  
-
-
50  
15  
-
-
(52)  
%
Efficiency  
-
-
-
-
-
-
-
-
79  
93  
92  
82  
72  
71  
81  
78  
-
-
-
-
-
-
-
-
• PFM, 3.15 V, 10 mA (A)  
• PWM Pulse skipping, 3.15 V, 50 mA (A)  
• PWM Pulse skipping, 3.15 V, 250 mA (A)  
• PWM, 3.15 V, 500 mA (A)  
• PFM, 1.2 V, 10 mA (B)  
• PWM Pulse skipping, 1.2 V, 50 mA (B)  
• PWM Pulse skipping, 1.2 V, 250 mA (B)  
• PWM 1.2 V, 500 mA (B)  
Notes:  
50. Transient loading for load steps of ILMAX / 2.  
51. When SW4A/B is set to 3.0 V and above the regulator may drop out of regulation when BP nears the output voltage.  
52. Efficiency numbers at VIN = 3.6 V, excludes the quiescent current.  
7.5.4.7  
SW5  
SW5 is fully integrated synchronous Buck PWM voltage mode control DC/DC regulator.  
BP  
SW5IN  
SW5MODE  
ISENSE  
CINSW5  
Controller  
SW5  
SW5LX  
Driver  
LSW5  
COSW5  
DSW5  
SW5FAULT  
SPI  
Interface  
GNDSW5  
Internal  
SPI  
Compensation  
Z2  
SW5FB  
Z1  
VREF  
EA  
DAC  
Figure 15. SW5 Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator  
will limit the current through cycle by cycle operation and alert the system through the SW5FAULT SPI bit and issue an SCPI  
interrupt via the INT pin.  
MC34708  
Analog Integrated Circuit Device Data  
57  
Freescale Semiconductor  
Functional Block Description  
SW5 can be programmed in step sizes of 25 mV as shown in Table 44. If the software wants to change the output voltage, after  
power up the regulator should be forced into PWM mode to change the voltage.  
Table 44. SW5 Output Voltage Programmability  
SW5  
Output (V)  
SW5  
Output (V)  
Set Point SW5[4:0]  
Set Point SW5[4:0]  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
-
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
-
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
-
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
-
-
-
-
-
-
-
-
-
-
-
-
Table 45. SW5 Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW5 BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
VSW5IN  
V
3.0  
2.8  
-
-
4.5  
4.5  
• PFM operation, 0 < IL < ILMAX  
(53)  
Output Voltage Accuracy  
VSW5ACC  
mV  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
Nom-3%  
Nom-3%  
Nom  
Nom  
Nom+3%  
Nom+3%  
Continuous Output Load Current, VINMIN < BP < 4.5 V  
ISW5  
mA  
A
• PWM mode  
• PFM mode  
-
-
-
1000  
-
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V Current through Inductor  
ISW5PEAK  
-
1.0  
-
Transient Load Change  
• 100 mA/µs  
ISW5  
mA  
mV  
TRANSIENT  
-
-
-
-
500  
25  
VSW5  
Start-up Overshoot, IL = 0  
OS-START  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
58  
Functional Block Description  
Table 45. SW5 Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Turn-on Time  
• Enable to 90% of end value IL = 0  
tON-SW5  
µs  
-
-
500  
Switching Frequency  
• PLLX = 0  
fSW5  
MHz  
µA  
-
-
2.0  
4.0  
-
-
• PLLX = 1  
Quiescent Current Consumption  
ISW5Q  
• PWM MODE, IL = 0 mA; device not switching  
• PFM MODE, IL = 0 mA; device not switching  
-
-
50  
15  
-
-
(54)  
Efficiency  
%
• PFM, 1.8 V, 1.0 mA  
-
-
-
-
80  
79  
86  
82  
-
-
-
-
• PWM Pulse skipping, 1.8 V, 50 mA  
• PWM Pulse skipping, 1.8 V, 500 mA  
• PWM, 1.8 V, 1000 mA  
Notes  
53. Transient Loading for load Steps of ILMAX/2  
54. Efficiency numbers at VIN=3.6 V, Excludes the quiescent current.  
7.5.4.8  
Dynamic Voltage Scaling  
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the  
processor. SW1A/B and SW2 allow for two different set points with controlled transitions to avoid sudden output voltage changes,  
which could cause logic disruptions on their loads.  
Preset operating points for SW1A/B and SW2 can be set up for:  
• Normal operation: output value selected by SPI bits SWx[5:0]. Voltage transitions initiated by SPI writes to SWx[5:0] are  
governed by the DVS stepping rate shown in the following tables.  
• Standby (Deep Sleep): can be higher or lower than normal operation, but is typically selected to be the lowest state retention  
voltage of a given process. Set by SPI bits SWxSTBY[5:0] and controlled by a Standby event. Voltage transitions initiated by  
Standby are governed by the SWxDVSSPEED[1:0] SPI bits shown in Table 46.  
The following table summarizes the set point control and DVS time stepping applied to SW1A/B and SW2.  
Table 46. DVS Control Logic Table for SW1A/B and SW2  
STANDBY  
Set Point Selected by  
0
1
SWx[4:0]  
SWxSTBY[4:0]  
Table 47. DVS Speed Selection  
SWxDVSSPEED[1:0]  
Function  
00  
01 (default)  
10  
12.5 mV step each 2.0 s  
12.5 mV step each 4.0 s  
12.5 mV step each 8.0 s  
12.5 mV step each 16.0 s  
11  
MC34708  
Analog Integrated Circuit Device Data  
59  
Freescale Semiconductor  
Functional Block Description  
The Regulator have a strong sourcing and sinking capability in the PWM mode. Therefore, the rising/falling slope is determined  
by the regulator in PWM mode, however, if the regulators are programmed in PFM, PWMPS, or APSKIP mode during a DVS  
transition, the falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced,  
controlled DVS transitions in PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode  
operation.  
Voltage transitions programmed through SPI(SWx[4:0]) on SW3 and SW5 will step in increments of 25 mV per 4.0 s, SW4A/B  
will step in increments of 25 mV per 8.0 s when SW4xHI[1:0]=00, and SW4A/B will step in increments of 25 mV per 16 s when  
SW4xHI[1:0]=00. Additionally, SW3, SW4/B, and SW5 include standby mode set point programmability.  
The following diagram shows the general behavior for the switching regulators when initiated with SPI programming or standby  
control.  
SW1 and SW2 also contain Power Good (outputs from the MC34708 to the application processor). The power good signal is an  
active high signal. When SWxPWRGDB is high, it means that the regulators output has reached its programmed voltage. The  
SWxPWRGDB voltage outputs will be low during the DVS period and if the current limit is reached on the switching regulator.  
The SWxPWRGD will be low from a low to high or a high to low transition of the regulator output voltage. During the DVS period,  
the over-current condition on the switching regulator should be masked. If the current limit is reached outside of a DVS period,  
the SWxPWRGD pin will stay low until the current limit condition is removed.  
Requested  
Set Point  
Output Voltage  
with light Load  
Internally  
Controlled Steps  
Example  
Actual Output  
Voltage  
Output  
Voltage  
Init ial  
Set Point  
Actual  
Output Voltage  
Internally  
Possible  
Output Voltage  
Window  
Controlled Steps  
Request for  
Higher Voltage  
Request for  
Lower Voltage  
Voltage  
Change  
Request  
Initiated by SPI Programming, Standby Control  
SWxPWGD  
Figure 16. Voltage Stepping with DVS  
7.5.5  
Boost Switching Regulator  
SWBST is a boost switching regulator with a programmable output, which defaults to 5.0 V on power up, operating at 2.0 MHz.  
SWBST supplies the VUSB regulator for the USB PHY in OTG mode, as well as the VBUS voltage. Note that the parasitic  
leakage path for a boost regulator will cause the output voltage SWBSTOUT and SWBSTFB to sit at a Schottky drop below the  
battery voltage whenever SWBST is disabled. The switching NMOS transistor is integrated on-chip. An external fly back Schottky  
diode, inductor, and capacitor are required.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
60  
Functional Block Description  
BP  
BP  
4.7u  
SWBSTIN  
SWBST  
SPI  
Registers  
2.2uH  
SPI  
Boosted Output  
Voltage SWBST  
SWBSTIN  
SWBSTLX  
Output  
Drive  
Switcher  
Core  
32KHz  
Control  
22uF  
SWBSTFB  
GNDSWBST  
= Package Pin  
Figure 17. Boost Regulator Architecture  
SWBST output voltage programmable via the SWBST[1:0] SPI bits as shown in Table 48.  
Table 48. SWBST Voltage Programming  
Parameter  
Voltage  
SWBST Output Voltage  
SWBST[1:0]  
00  
01  
10  
11  
5.000 (default)  
5.050  
5.100  
5.150  
SWBST can be controlled by SPI programming in PFM, PWM, and Auto mode. Auto mode transitions between PFM and PWM  
mode based on the load current. By default SWBST is powered up in Auto mode.  
Table 49. SWBST Mode Control  
Parameter  
Voltage  
SWBST Mode  
SWBSTMODE[1:0]  
00  
01  
10  
11  
Off  
PFM  
SWBSTSTBYMODE[1:0]  
Auto (default)  
PWM  
Table 50. SWBST Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SWITCH MODE SUPPLY SWBST  
(55)  
Average Output Voltage  
• 3.0 V < VIN < 4.5 V, 0 < IL < ILMAX  
VSWBST  
V
Nom-4%  
-
VNOM  
Nom+3%  
120 mV  
Output Ripple  
VSWBSTACC  
Vp-p  
• 3.0 V < VIN < 4.5 V 0 < IL < ILMAX, excluding reverse recovery of  
Schottky diode  
-
Average Load Regulation  
SWBSTACC  
mV/mA  
• VIN = 3.6 V, 0 < IL < ILMAX  
-
0.5  
-
MC34708  
Analog Integrated Circuit Device Data  
61  
Freescale Semiconductor  
Functional Block Description  
Table 50. SWBST Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
BUS  
A
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
50  
Max  
Unit Notes  
Average Line Regulation  
VSWBST  
mV  
LINEAREG  
• 3.0 V < VIN < 4.5 V IL = ILMAX  
-
-
-
-
Continuous Load Current  
ISWBST  
mA  
mA  
• 3.0 V < VIN < 4.5 V, VOUT = 5.0 V  
380  
Peak Current Limit  
ISWBSTPEAK  
• At SWBSTIN, VIN = 3.6 V  
-
-
1800  
-
-
VSWBSTOS-  
mV  
ms  
Start-up Overshoot, IL = 0 mA  
500  
START  
Turn-on Time  
tON-SWBST  
• Enable to 90% of VOUT IL = 0  
-
-
-
2.0  
-
Switching Frequency  
fSWBST  
2.0  
MHz  
mV  
Transient Load Response, IL from 1.0 to 100 mA in 1.0 µs  
• Maximum transient Amplitude  
VSWBS  
TRANSIENT  
-
-
-
-
-
-
300  
300  
500  
Transient Load Response, IL from 100 to 1.0 mA in 1.0 µs  
• Maximum transient Amplitude  
VSWBS  
mV  
µs  
TRANSIENT  
Transient Load Response, IL from 1.0 to 100 mA in 1.0 µs  
• Time to settle 80% of transient  
VSWBS  
TRANSIENT  
Transient Load Response, IL from 100 to 1.0 mA in 1.0 µs  
• Time to settle 80% of transient  
VSWBS  
ms  
TRANSIENT  
-
-
20  
-
Efficiency, IL = ILMAX  
65  
80  
%
Bias Current Consumption  
• PFM or Auto mode  
ISWBSTBIAS  
ILEAK-SWBST  
Notes:  
µA  
-
-
35  
-
NMOS Off Leakage  
µA  
• SWBSTIN = 4.5 V, SWBSTMODE [1:0] = 0  
1.0  
6.0  
55. VIN is the low side of the inductor that is connected to BP.  
7.5.6  
Linear Regulators (LDOs)  
This section describes the linear regulators provided. For convenience, these regulators are named to indicate their typical or  
possible applications, but the supplies are not limited to these uses and may be applied to any loads within the specified regulator  
capabilities.  
A low power standby mode controlled by STANDBY is provided for the regulators with an external pass device in which the bias  
current is aggressively reduced. This mode is useful for deep sleep operation, where certain supplies cannot be disabled, but  
active regulation can be tolerated with lesser parametric requirements. The output drive capability and performance are limited  
in this mode.  
All regulators use the main bandgap as reference. The main bandgap is bypassed with a capacitor at REFCORE. The bandgap  
and the rest of the core circuitry are supplied from VCORE. The performance of the regulators is directly dependent on the  
performance of VCOREDIG and the bandgap. No external DC loading is allowed on VCOREDIG or REFCORE. VCOREDIG is  
kept powered as long as there is a valid supply and/or coin cell.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
62  
Functional Block Description  
7.5.6.1  
General Features  
The following applies to all linear regulators, unless otherwise specified.  
• Specifications are for an ambient temperature of –40 to 85 °C.  
• Advised bypass capacitor is the Murata GRM155R60G225ME95, which comes in a 0402 case.  
• In general, parametric performance specifications assume the use of low ESR X5R/X7R ceramic capacitors with 20%  
accuracy and 15% temperature spread, for a worst case stack up of 35% from the nominal value. Use of other types with wider  
temperature variation may require a larger room-temperature nominal capacitance value to meet performance specs over  
temperature. In addition, capacitor derating as a function of DC bias voltage requires special attention. Finally, minimum  
bypass capacitor guidelines are provided for stability and transient performance. Larger values may be applied; performance  
metrics may be altered and generally improved, but should be confirmed in system applications.  
• Regulators which require a minimum output capacitor ESR (those with external PNPs) can avoid an external resistor if ESR  
is assured with capacitor specifications or board level trace resistance.  
• The output voltage tolerance specified for each of the linear regulators include process variation, temperature range, static  
line regulation, and static load regulation.  
• The PSRR of the regulators is measured with the perturbating signal at the input of the regulator. The power management IC  
is supplied separately from the input of the regulator and does not contain the perturbated signal. During measurements, care  
must be taken not to reach the drop out of the regulator under test.  
• In the Low Power mode, the output performance is degraded. Only those parameters listed in the Low Power mode section  
are guaranteed. In this mode, the output current is limited to much lower currents than in the active mode.  
• Regulator performance is degraded in the extended input voltage range. This means that the supply still behaves as a  
regulator, and will try to hold up the output voltage by turning the pass device fully on. As a result, the bias current will increase  
and all performance parameters will be heavily degraded, such as PSRR and load regulation.  
• Note that the minimum operating range specifications in some cases may be conflicting, due to numerous set point and biasing  
options, as well as the potential to run BP into one of the software or hardware shutdown thresholds. The specifications are  
general guidelines that should be interpreted with some care in such cases.  
• When a regulator gets disabled, the output will be pulled towards ground by an internal pull-down. The pull-down is also  
activated when RESETb goes low.  
• 32 kHz spur levels are specified for fully loaded conditions.  
• Short-circuit protection (SCP) is included on certain LDOs (see the SCP section later in this section). Exceeding the SCP  
threshold will disable the regulator and generate a system interrupt. The output voltage will not sag below the specified voltage  
with the rated current being drawn. For the lower current LDOs without SCP, they are less accessible to the user environment  
and essentially self-limiting.  
• The power tree of a given application must be scrubbed for critical use cases to ensure consistency and robustness in the  
power strategy.  
7.5.6.2  
LDO Regulator Control  
The regulators with embedded pass devices (VPLL, VGEN1, and VUSB) have an adaptive biasing scheme thus, there are no  
distinct operating modes such as a Normal mode and a Low Power mode. Therefore, no specific control is required to put these  
regulators in a Low Power mode.  
The external pass regulator (VDAC) can also operate in a normal and low power mode. However, since a load current detection  
cannot be performed for this regulator, the transition between both modes is not automatic and is controlled by setting the  
corresponding mode bits for the operational behavior desired.  
The regulators VUSB2, and VGEN2 can be configured for using the internal pass device or external pass device as explained in  
Supplies. For both configurations, the transition between both modes is controlled by setting the VxMODE bit for the specific  
regulator. Therefore, depending on the configuration selected, the automatic Low Power mode determines availability.  
The regulators can be disabled and the general purpose outputs can be forced low when going into Standby (note that the  
Standby response timing can be altered with the STBYDLY function, as described in the previous section). Each regulator has  
an associated SPI bit for this. When the bit is not set, STANDBY is of no influence. The actual operating mode of the regulators  
as a function of STANDBY is not reflected through SPI. In other words, the SPI will read back what is programmed, not the actual  
state.  
MC34708  
Analog Integrated Circuit Device Data  
63  
Freescale Semiconductor  
Functional Block Description  
Table 51. LDO Regulator Control (external pass device LDOs)  
VxEN  
VxMODE  
VxSTBY STANDBY(56)  
Regulator Vx  
0
1
1
1
1
1
X
0
1
X
0
1
X
0
0
1
1
1
X
X
X
0
Off  
On  
Low Power  
On  
1
Off  
1
Low Power  
Notes  
56. STANDBY refers to a Standby event as described earlier  
For regulators with internal pass devices, the previous table can be simplified by elimination of the VxMODE column.  
Table 52. LDO Regulator Control (internal pass device LDOs)  
VxEN  
VxSTBY  
STANDBY (57)  
Regulator Vx  
0
1
1
1
X
0
1
1
X
X
0
1
Off  
On  
On  
Off  
Notes  
57. STANDBY refers to a Standby event as described earlier  
7.5.6.3  
Transient Response Waveforms  
The transient load and line response are specified with the waveforms as depicted in Figure 18. Note that where the transient  
load response refers to the overshoot only, so excluding the DC shift itself, the transient line response refers to the sum of both  
overshoot and DC shift. This is also valid for the mode transition response.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
64  
Functional Block Description  
Imax  
Iload  
0mA  
Vnom + 0.8V  
Vin  
Vnom + 0.3V  
1us  
1us  
10us  
10us  
Iload for Transient Load Response  
Vin for Transient Line Response  
IL = 0mA  
IL = Imax  
Overshoot  
Vout  
Overshoot  
Vout for Transient Load Response  
Active Mode  
Low Power Mode  
Active Mode  
Overshoot  
Vout  
Mode  
Transition  
Time  
Overshoot  
IL < ILmax  
IL < ILmaxlp  
IL < ILmax  
V
Mode Transition Response (V  
, V  
, and V  
)
OUT  
GEN2  
USB2  
DAC  
Figure 18. Transient Waveforms  
7.5.6.4  
Short-circuit Protection  
The higher current LDOs, and those most accessible in product applications, include short-circuit detection and protection  
(VDAC, VUSB, VUSB2, VGEN1, and VGEN2). The short-circuit protection (SCP) system includes debounced fault condition  
detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product  
damage. If a short-circuit condition is detected, the LDO will be disabled by resetting its VxEN bit, while at the same time, an  
interrupt SCPI will be generated to flag the fault to the system processor. The SCPI interrupt is maskable through the SCPM  
mask bit.  
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, then not only is no interrupt generated, but also  
the regulators will not automatically be disabled upon a short-circuit detection. However, the built-in current limiter will continue  
to limit the output current of the regulator. Note that by default, the REGSCPEN bit is not set, so at startup, none of the regulators  
in an overload condition are disabled.  
7.5.6.5  
VPLL  
VPLL is provided for isolated biasing of the application processors PLLs for clock generation, in support of protocol and peripheral  
needs. Depending on the application and power requirements, this supply may be considered for sharing with other loads, but  
noise injection must be avoided and filtering added, if necessary to ensure suitable PLL performance. The VPLL regulator has a  
dedicated input supply pin.  
MC34708  
Analog Integrated Circuit Device Data  
65  
Freescale Semiconductor  
Functional Block Description  
VINPLL can be connected to either BP or a 1.8 V switched mode power supply rail such as from SW5 for the two lower set points  
of each regulator VPLL[1:0] = [00], [01]. In addition, when the two upper set points (VPLL[1:0] = [10],[11]) are used, the VINPLL  
inputs can be connected to either BP or a 2.2 V nominal external switched mode power supply rail, to improve power dissipation.  
Table 53. VPLL Voltage Control  
Parameter Value  
Function  
ILoad max  
Input Supply  
VPLL[1:0]  
00  
output = 1.2 V  
50 mA  
50 mA  
50 mA  
50 mA  
BP or 1.8 V  
BP or 1.8 V  
01 output = 1.25 V  
10 output = 1.50 V  
BP or External switch  
BP or External switch  
11  
output = 1.8 V  
Table 54. VPLL Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
GENERAL  
VINPLL  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Operating Input Voltage Range  
V
• VPLL all settings, BP biased  
UVDET  
1.75  
-
4.5  
4.5  
4.5  
• VPLL [1:0] = 00, 01 (SW5 = 1.8 V)  
• VPLL, [1:0] = 10, 11, External Switch  
1.8  
2.2  
2.15  
Operating current Load range  
IPLL  
-
-
50  
mA  
V
VPLL ACTIVE MODE – DC  
VPLL  
Output Voltage VOUT  
VNOM  
– 0.05  
VNOM  
VNOM  
+ 0.05  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
Load Regulation  
VPLL-LOPP  
VPLL-LIPP  
IPLL-Q  
mV/mA  
mV  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
0.35  
5.0  
-
-
-
Line Regulation  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
Quiescent Current  
µA  
• VINMIN < VIN < VINMAX IL = 0  
8.0  
VPLL ACTIVE MODE – AC  
PSRR, IL = 75% of ILMAX, 20 Hz to 20 kHz  
VPLLPSRR  
dB  
• VIN = UVDET  
35  
50  
40  
60  
-
-
• VIN = VNOM + 1.0 V, > UVDET  
Output Noise Density, VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 1.0 kHz  
VPLLNOISE  
-
-
20  
-
-
dB/dec  
• > 1.0 kHz – 1.0 MHz  
2.5  
V/Hz  
Turn-on Time  
tON-VPLL  
µs  
ms  
%
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
-
0.05  
-
-
-
120  
10  
Turn-off Time  
tOFF-VPLL  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
Start-up Overshoot  
VPLLOS-  
START  
• VIN = VINMIN, VINMAX IL = 0  
1.0  
2.0  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
66  
Functional Block Description  
Table 54. VPLL Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
50  
Max  
70  
Unit Notes  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VPLL-LO  
mV  
TRANSIENT  
-
-
Transient Line Response  
• IL = 75% of ILMAX  
VPLL-LI  
mV  
TRANSIENT  
5.0  
8.0  
7.5.6.6  
VREFDDR  
VREFDDR is an internal PMOS half supply Voltage Follower. The output voltage is at one half the input voltage. It’s typical  
application is as the V for DDR memories. A filtered resistor divider is utilized to create a low frequency pole. This divider then  
REF  
utilizes a voltage follower to drive the load.  
Table 55. VREFDDR Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
GENERAL  
VREFFDDRIN  
IREFDDR  
Operating Input Voltage Range VINMIN to VINMAX  
Operating Current Load Range ILMIN to ILMAX  
1.2  
0.0  
-
-
1.8  
10  
V
mA  
VREFDDR ACTIVE MODE – DC  
Output Voltage VOUT  
VREFDDR  
V
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
0.6  
VIN/2  
0.9  
2.0  
-
(58)  
%
Output Voltage tolerance  
VREFDDRTOL  
• VINMIN < VIN < VINMAX IL = 1.0 mA  
-2.0  
-
Load Regulation  
VREFDDR  
mV/mA  
µA  
LOPP  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
5.0  
8.0  
Quiescent Current  
IREFDDRQ  
• VINMIN < VIN < VINMAX IL = 0  
-
VREFDDR ACTIVE MODE – AC  
Turn-on Time  
tON-VREFDDR  
µs  
ms  
%
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
-
-
100  
10  
2.0  
-
Turn-off Time  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
tOFF-  
VREFDDR  
0.05  
-
Start-up Overshoot  
VREFDDROS  
• VIN = VINMIN, VINMAX IL = 0  
-
-
1.0  
5.0  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VREFDDRL  
mV  
TRANSIENT  
Notes  
58. guaranteed at 25 °C only  
MC34708  
Analog Integrated Circuit Device Data  
67  
Freescale Semiconductor  
Functional Block Description  
7.5.6.7  
VUSB2  
VUSB2 has an internal PMOS pass FET which will support loads up to 65 mA. To support load currents an external PNP is  
provided. The external PNP configuration is offered to avoid excess on-chip power dissipation at high loads and large differentials  
between BP and output settings. For lower current requirements, an integrated PMOS pass FET is included. The input pin for  
the integrated PMOS option is shared with the base current drive pin for the PNP option. The external PNP configuration must  
be committed as a hardwired board level implementation. The recommended PNP device is the ON Semiconductor™  
NSS12100XV6T1G, which is capable of handling up to 250 mW of continuous dissipation, at minimum footprint and 75 °C of  
ambient. For use cases where up to 500 mW of dissipation is required, the recommended PNP device is ON Semiconductor  
NSS12100UW3TCG. For stability reasons, a small minimum ESR may be required.  
A short-circuit condition will shut down the VUSB2 regulator and generate an interrupt for SCPI.  
The nominal output voltage of this regulator is SPI configurable, and can be 2.5 V, 2.6 V, 2.75 V, or 3.0 V. The output current  
when working with the internal pass FET is 65 mA, and could be up to 350 mA when working with an external PNP.  
Table 56. VUSB2 Voltage Control  
ILoad max  
Output  
Voltage  
Parameter Value  
VUSB2CONFIG=0 VUSB2CONFIG=1  
Internal Pass FET  
External PNP  
VUSB2[1:0] 00  
2.5 V  
2.6 V  
65 mA  
65 mA  
65 mA  
65 mA  
350 mA  
350 mA  
350 mA  
350 mA  
01  
10  
11  
2.75 V  
3.00 V  
Table 57. VUSB2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
GENERAL  
VUSB2IN  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VNOM  
0.25  
+
-
4.5  
V
Operating Input Voltage Range VINMIN to VINMAX  
Operating Current Load Range ILMIN to ILMAX  
• Internal pass FET  
IUSB2  
mA  
0.0  
0.0  
-
-
65  
• External PNP Not exceeding PNP max power  
350  
Extended Input Voltage Range  
VUSB2IN  
V
• Performance may be out of specification  
UVDET  
-
4.5  
Minimum Bypass Capacitor Value  
• Internal pass device  
COVUSB2  
µF  
0.65  
1.1  
2.2  
2.2  
-
-
• External pass device  
Bypass Capacitor ESR  
• 10 kHz – 1.0 MHz  
ESRVUSB2  
m  
20  
-
100  
VUSB2 ACTIVE MODE - DC  
Output Voltage VOUT  
VUSB2  
V
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM - 3%  
VNOM  
0.25  
VNOM + 3%  
Load Regulation  
VUSB2LOPP  
mV/mA  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
68  
Functional Block Description  
Table 57. VUSB2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
8.0  
-
Max  
Unit Notes  
Line Regulation  
VUSB2LIPP  
mV  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
-
-
-
VUSB2SCTH  
mA  
µA  
Short-circuit Protection threshold  
ILMAX  
+20%  
• VINMIN < VIN < VINMAX Short-circuit VOUT to GND  
Active Mode Quiescent Current, VINMIN < VIN < VINMAX  
• IL = 0, Internal PMOS configuration  
IUSB2Q  
-
-
25  
30  
-
-
• VINMIN < VIN < VINMAX IL = 0, External PNP configuration  
VUSB2 LOW POWER MODE - DC  
Output Voltage VOUT  
VUSB2  
V
• VINMIN < VIN < VINMAX ILMINLP < IL < ILMAXLP  
VNOM - 3%  
0.0  
VNOM  
-
VNOM + 3%  
3.0  
Current Load Range ILMINLP to ILMAXLP  
IUSB2  
mA  
µA  
Low Power Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IUSB2Q  
-
8.0  
10.5  
VUSB2 ACTIVE MODE - AC  
PSRR, IL = 75% of ILMAX 20 Hz to 20 kHz  
VUSB2PSRR  
dB  
• VIN = VINMIN + 100 mV  
• VIN = VNOM + 1.0 V  
35  
50  
40  
60  
-
-
Output Noise Density, VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 1.0 kHz  
VUSB  
2NOISE  
-
-
20  
-
-
dB/dec  
• > 1.0 kHz – 1.0 MHz  
1.0  
V/Hz  
Turn-on Time  
tON-VUSB2  
ms  
ms  
%
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
-
0.05  
-
-
-
1.0  
10  
Turn-off Time  
tOFF-VUSB2  
• Disable to 10% of initial value VIN = VINMIN, VINMAX IL = 0  
Start-up Overshoot  
VUSB2OS-  
START  
• VIN = VINMIN, VINMAX IL = 0  
1.0  
2.0  
Transient Load Response, VIN = VINMIN, VINMAX  
• VUSB2=01, 10, 11  
x
VUSB2LO  
TRANSIENT  
-
-
1.0  
50  
2.0  
70  
%
• VUSB2=00  
mV  
Transient Line Response  
• IL = 75% of ILMAX  
VUSB2LI  
mV  
µs  
TRANSIENT  
-
-
5.0  
-
8.0  
Mode Transition Time  
tMOD-VUSB2  
• From low power to active and from active to low power  
IN = VINMIN, VINMAX IL = ILMAXLP  
100  
V
Mode Transition Response  
VUSBMODE  
%
RES  
• From low power to active and from active to low power  
-
1.0  
2.0  
VIN = VINMIN, VINMAX IL = ILMAXLP  
MC34708  
Analog Integrated Circuit Device Data  
69  
Freescale Semiconductor  
Functional Block Description  
7.5.6.8  
VDAC  
The primary applications of this power supply is the TV-DAC. However, these supplies could also be used for other peripherals  
if one of these functions is not required. Low Power modes and programmable standby options can be used to optimize power  
efficiency during deep sleep modes.  
An external PNP is utilized for VDAC to avoid excess on-chip power dissipation at high loads and large differentials between BP  
and output settings. For stability reasons, a small minimum ESR may be required. In the Low Power mode for VDAC, an internal  
bypass path is used instead of the external PNP. External PNP devices must always be connected to the BP line in the  
application. The recommended PNP device is the ON Semiconductor NSS12100XV6T1G, which is capable of handling up to  
250 mW of continuous dissipation at minimum footprint and 75 °C of ambient. For use cases where up to 500 mW of dissipation  
is required, the recommended PNP device is ON Semiconductor NSS12100UW3TCG. For stability reasons, a small minimum  
ESR may be required.  
A short-circuit condition will shut down the VDAC regulator and generate an interrupt for SCPI.  
The nominal output voltage of this regulator is SPI configurable, and can be 2.5 V, 2.6 V, 2.7 V, or 2.775 V. The maximum output  
current along with an external PNP, is 250 mA.  
Table 58. VDAC Voltage Control  
Parameter  
Value  
Output Voltage  
ILoad max  
VDAC  
00  
01  
10  
11  
2.500 V  
2.600 V  
2.700 V  
2.775 V  
250 mA  
250 mA  
250 mA  
250 mA  
Table 59. VDAC Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
BUS  
A
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
GENERAL  
VDACIN  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VNOM  
0.25  
+
V
Operating Input Voltage Range VINMIN to VINMAX  
-
4.5  
Operating Current Load Range ILMIN to ILMAX  
• Not exceeding PNP max power  
IDAC  
mA  
0.0  
-
-
250  
4.5  
Extended Input Voltage Range  
VDACIN  
V
• Performance may be out of specification  
UVDET  
VDAC ACTIVE MODE – DC  
Output Voltage VOUT  
VDAC  
V
mV/mA  
mV  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM – 3%  
VNOM  
0.20  
5.0  
VNOM + 3%  
Load Regulation  
VDACLOPP  
VDACLIPP  
VDACSCTH  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
-
-
Line Regulation  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
mA  
Short-circuit Protection threshold  
ILMAX  
+20%  
-
• VINMIN < VIN < VINMAX Short-circuit VOUT to GND  
Active Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IDACQ  
µA  
-
30  
-
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
70  
Functional Block Description  
Table 59. VDAC Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol Characteristic  
Min  
Typ  
Max  
Unit Notes  
VDAC LOW POWER MODE – DC - VDACMODE=1  
Output Voltage VOUT  
VDAC  
V
• VINMIN < VIN < VINMAX ILMINLP < IL < ILMAXLP  
VNOM – 3%  
0.0  
VNOM  
-
VNOM + 3%  
3.0  
Current Load Range ILMINLP to ILMAXLP  
IDAC  
mA  
µA  
Low Power Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IDACQ  
-
8.0  
-
VDAC ACTIVE MODE – AC  
PSRR - IL = 75% of ILMAX 20 Hz to 20 kHz  
VDACPSRR  
dB  
• VIN = VINMIN + 100 mV  
• VIN = VNOM + 1.0 V  
35  
50  
40  
60  
-
-
Output Noise Density, VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 1.0 kHz  
VDACNOISE  
V/Hz  
-
-
-
-
-
-
-115  
-126  
-132  
• > 1.0 kHz – 10 kHz  
• > 10 kHz – 1.0 MHz  
Spurs  
VDACSPURS  
dB  
ms  
• 32.768 kHz and harmonics  
-
-
-
-
-120  
1.0  
Turn-on Time  
tON-VDAC  
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
Turn-off Time  
tOFF-VDAC  
ms  
%
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
0.05  
-
10  
2.0  
2.0  
8.0  
100  
2.0  
Start-up Overshoot  
VDACOS-  
START  
• VIN = VINMIN, VINMAX IL = 0  
-
-
-
-
-
1.0  
1.0  
5.0  
-
Transient Load Response  
• VIN = VINMIN, VINMAX  
VDACLO  
%
TRANSIENT  
Transient Line Response  
• IL = 75% of ILMAX  
VDACLI  
mV  
µs  
%
TRANSIENT  
Mode Transition Time  
tMODE-VDAC  
• From low power to active VIN = VINMIN, VINMAX IL = ILMAXLP  
Mode Transition Response  
VDACMODE  
RES  
• From low power to active and from active to low power  
1.0  
VIN = VINMIN, VINMAX IL = ILMAXLP  
7.5.6.9  
VGEN1, VGEN2  
General purpose LDOs, VGEN1, and VGEN2, are provided for expansion of the power tree to support peripheral devices, which  
could include EMMC cards, WLAN, BT, GPS, or other functional modules. These regulators include programmable set points for  
system flexibility. VGEN1 has an internal PMOS pass FET, and is powered from the SW5 buck for an efficiency advantage and  
reduced power dissipation in the pass devices. VGEN2 is powered directly from the battery.  
VGEN2 has an internal PMOS pass FET, which will support loads up to 50 mA. For higher current capability, drive for an external  
PNP is provided. The external PNP is offered to avoid excess on-chip power dissipation at high loads and large differentials  
between BP and output settings. The input pin for the integrated PMOS option is shared with the base current drive pin for the  
PNP option. The external PNP device is always connected to the BP line in the application. The recommended PNP device is  
MC34708  
Analog Integrated Circuit Device Data  
71  
Freescale Semiconductor  
Functional Block Description  
the ON Semiconductor NSS12100XV6T1G which is capable of handling up to 250 mW of continuous dissipation at minimum  
footprint and 75 °C of ambient. For use cases where up to 500 mW of dissipation is required, the recommended PNP device is  
the ON Semiconductor NSS12100UW3TCG. For stability, a small minimum ESR may be required.  
A short-circuit condition will shut down the VGEN1 and VGEN2 regulators, and generate an interrupt for SCPI.  
Table 60. VGEN1 Control Register Bit Assignments  
Parameter  
Value  
Output Voltage  
ILoad max  
VGEN1[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
1.2000  
1.2500  
1.3000  
1.3500  
1.4000  
1.4500  
1.5000  
1.5500  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
The nominal output voltage of VGEN1 is SPI configurable, and can be 1.2 V, 1.25 V, 1.3 V, 1.35 V, 1.4 V, 1.45 V, 1.5 V, or  
1.55 V.  
The nominal output voltage of VGEN2 is SPI configurable, and can be 2.5 V, 2.7 V, 2.8 V, 2.9 V, 3.0 V, 3.1 V, 3.15 V, or 3.3 V.  
The output current when working with the internal pass FET is 50 mA, and could be up to 250 mA when working with an external  
PNP.  
Table 61. VGEN2 Control Register Bit Assignments  
ILoad max  
Output  
Voltage  
Parameter Value  
VGEN2CONFIG=0 VGEN2CONFIG=1  
Internal Pass FET  
External PNP  
VGEN2[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
2.50  
2.70  
2.80  
2.90  
3.00  
3.10  
3.15  
3.30  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
72  
Functional Block Description  
Table 62. VGEN1 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
GENERAL  
VGEN1IN  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Operating Input Voltage Range VINMIN to VINMAX  
• All settings  
V
1.75  
0.0  
1.8  
-
1.85  
250  
Operating Current Load Range ILMIN to ILMAX  
• Not exceeding PNP max power  
IGEN1  
mA  
VGEN1 ACTIVE MODE – DC  
Output Voltage VOUT  
VGEN1  
V
mV/mA  
mV  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM – 3%  
VNOM  
0.25  
5.0  
VNOM + 3%  
Load Regulation  
VGEN1LOPP  
VGEN1LIPP  
VGEN1SCTH  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
-
-
Line Regulation  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
mA  
Short-circuit Protection threshold  
ILMAX  
+20%  
-
• VINMIN < VIN < VINMAX Short-circuit VOUT to GND  
Active Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IGEN1Q  
µA  
V
-
12  
-
VGEN1 LOW POWER MODE - DC  
Output Voltage VOUT  
VGEN1  
• VINMIN < VIN < VINMAX ILMINLP < IL < ILMAXLP  
VNOM - 3%  
0.0  
VNOM  
-
VNOM + 3%  
3.0  
Current Load Range ILMINLP to ILMAXLP  
IGEN1  
mA  
µA  
Low Power Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IGEN1Q  
-
12  
-
VGEN1 ACTIVE MODE - AC  
PSRR  
VGEN1PSRR  
dB  
• IL = 75% of ILMAX 20 Hz to 20 kHz VGEN1[2:0] = 000-101  
50  
37  
60  
-
-
-
• IL = 75% of ILMAX 20 Hz to 20 kHz VGEN1[2:0] = 110-111  
Output Noise Density, VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 1.0 kHz  
VGEN  
1NOISE  
V/Hz  
-
-
-
-
-
-
-115  
-126  
-132  
• > 1.0 kHz – 10 kHz  
• > 10 kHz – 1.0 MHz  
Spurs  
VGEN  
1SPURS  
dB  
ms  
• 32.768 kHz and harmonics  
-
-
-
-
-100  
1.0  
Turn-on Time  
tON-VGEN1  
• Enable to 90% of end value VIN = VINMIN, VINMAX, IL = 0  
Turn-off Time  
tOFF-VGEN1  
ms  
%
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
0.01  
-
-
10  
Start-up Overshoot  
VGEN1OS-  
START  
• VIN = VINMIN, VINMAX, IL = 0  
1.0  
2.0  
MC34708  
Analog Integrated Circuit Device Data  
73  
Freescale Semiconductor  
Functional Block Description  
Table 62. VGEN1 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
BUS  
A
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
1.0  
5.0  
-
Max  
2.0  
Unit Notes  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VGEN1LO  
%
TRANSIENT  
-
-
-
Transient Line Response  
• IL = 75% of ILMAX  
VGEN1LI  
mV  
µs  
TRANSIENT  
8.0  
Mode Transition Time  
tMODE-VGEN1  
• From low power to active and from active to low power  
IN = VINMIN, VINMAX IL = ILMAXLP  
100  
V
Mode Transition Response  
VGEN  
%
1MODERES  
• From low power to active and from active to low power  
-
1.0  
2.0  
VIN = VINMIN, VINMAX IL = ILMAXLP  
Table 63. VGEN2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
VGEN2  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VGEN2IN  
V
Operating Input Voltage Range VINMIN to VINMAX  
• All settings, BP biased  
VNOM  
+0.25  
-
4.5  
Operating Current Load Range ILMI to ILMAX  
• Internal Pass FET  
IGEN2  
mA  
mA  
0.0  
0.0  
-
-
-
50  
250  
4.5  
Operating Current Load Range ILMIN to ILMAX  
• External PNP, Not exceeding PNP max power  
IGEN2  
Extended Input Voltage Range  
VGEN2IN  
mV/mA  
• BP Biased, Performance may out of specification for output levels  
VGEN2 [2:0] = 010 to 111  
UVDET  
Minimum Bypass Capacitor Value  
COVGEN2  
µs  
• Used as a condition for all other parameters  
1.1  
20  
2.2  
-
Bypass Capacitor ESR  
• 10 kHz – 1.0 MHz  
ESRVGEN2  
m  
100  
VGEN2 ACTIVE MODE - DC  
Output Voltage VOUT  
VGEN2  
V
mV/mA  
mV  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM - 3%  
VNOM  
0.20  
8.0  
VNOM + 3%  
Load Regulation  
VGEN2LOPP  
VGEN2LIPP  
VGEN2SCTH  
• 1.0 mA < IL < ILMAX, For any VINMIN < VIN < VINMAX  
-
-
-
-
-
Line Regulation  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
mA  
Short-circuit Protection threshold  
ILmax  
+20%  
-
• VINMIN < VIN < VINMAX Short-circuit VOUT to GND  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
74  
Functional Block Description  
Table 63. VGEN2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Active Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
Min  
Typ  
Max  
Unit Notes  
IGEN2Q  
µA  
-
30  
-
VGEN2 LOW POWER MODE - DC - VGEN2MODE=1  
Output Voltage VOUT  
VGEN2  
V
• VINMIN < VIN < VINMAX ILMINLP < IL < ILMAXLP  
VNOM - 3%  
0.0  
VNOM  
-
VNOM + 3%  
3.0  
Current Load Range ILMINLP to ILMAXLP  
IGEN2  
mA  
µA  
Low Power Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IGEN2Q  
-
8.0  
-
VGEN2 ACTIVE MODE - AC  
PSRR - IL = 75% of ILmax, 20 Hz to 20 kHz  
VGEN2PSRR  
dB  
• VIN = VINMIN + 100 mV  
• VIN = VNOM + 1.0 V  
35  
55  
40  
60  
-
-
Output Noise Density - VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 1.0 kHz  
VGEN  
2NOISE  
V/Hz  
-
-
-
-
-
-
-115  
-126  
-132  
• > 1.0 kHz – 10 kHz  
• > 10 kHz – 1.0 MHz  
Turn-on Time  
tON-VGEN22  
ms  
ms  
%
• Enable to 90% of end value VIN = VINMIN, VINMAX, IL = 0  
-
-
1.0  
10  
Turn-off Time  
tOFF-VGEN2  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
0.05  
-
Start-up Overshoot  
VGEN2OS-  
START  
• VIN = VINMIN, VINMAX IL = 0  
-
-
-
-
-
1.0  
1.0  
5.0  
-
2.0  
2.0  
8.0  
100  
2.0  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VGEN2LO  
%
TRANSIENT  
Transient Line Response  
• IL = 75% of ILMAX  
VGEN2LI  
mV  
µs  
%
TRANSIENT  
Mode Transition Time  
tMODE-VGEN2  
• From low power to active VIN = VINMIN, VINMAX, IL = ILMAXLP  
Mode Transition Response  
VGEN  
2MODERES  
• From low power to active and from active to low power  
1.0  
VIN = VINMIN, VINMAX, IL = ILMAXLP  
MC34708  
Analog Integrated Circuit Device Data  
75  
Freescale Semiconductor  
Functional Block Description  
7.6  
Battery Management  
The MC34708 supports power path management, which allows power to the system even in the absence of the battery, or in the  
case of a deeply discharged battery. The charger supports charging from a USB host or a wall charger.  
The charger interface provides switching operations via an integrated DAC at programmable current levels. It incorporates a  
standalone trickle charge mode, in case of a dead battery, with a dual LED indicator driver. Over-voltage, short-circuit, and under-  
voltage detectors are included, as well as charger detection and removal. The charger includes the necessary circuitry to allow  
for USB charging. The battery management system also provides a battery presence detector and an A to D converter that serves  
for measuring the charge current, battery, and other supply voltages, as well as for measuring the battery thermistor and die  
temperature. The charger has two charge paths, a main and an aux charge path. Finally, a system is included for monitoring the  
current drawn from, or charged into the main battery, for support of a Coulomb Counter function.  
The battery management interface contains two charge paths. This gives flexibility in the application and allows the USB charge  
path to be separate or combined with a standard wall charger. The MC34708 supports power path management, which permits  
the system to be supplied without a battery present (in factory mode only), or a deeply discharged battery with the M  
present.  
FET  
BATT  
7.6.1  
Functional Block Diagram  
The charger line up is depicted in Figure 19.  
Figure 19. Charger Line Up  
The charger is a buck switching charger, operating at 2.0 MHz. Transistors M  
and M  
are used to isolate the charger from  
AUX  
VBUS  
over-voltage conditions. GOTG is used to disable the V  
path for over-voltage conditions and in OTG mode, or when a audio  
BUS  
accessory is attached. The USB charge path will take precedence over the aux charge path. G  
will enable M  
, in the cases  
AUX  
AUX  
where a USB charger is not present and the V  
is within the valid threshold window. To support power path management and  
AUX  
allow the system to be powered without a battery or in a dead battery case, M  
needs to be populated. In case of a dead  
BATT  
battery, the transistor M  
is made non-conducting and the internal trickle charge current charges the battery. If the battery is  
BATT  
sufficiently charged, the transistor M  
is made conducting, which connects the battery to the application just as in during  
BATT  
normal operation without a charger. In cases applications where M  
is replaced by a short, the GBAT pin must be grounded.  
BATT  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
76  
Functional Block Description  
System power up with a Dead battery operation is not supported in this case, and the PMIC will trickle to the LOWBATT threshold  
and then the system will power up. V  
and V  
are used to sense when the V  
and AUX charge path are within range to  
BUS  
AUX  
BUS  
charge, and as an internal supply to power up internal detectors and circuitry in a dead battery case.  
7.6.2  
Buck Charger Operation  
The charger buck takes its feedback from two sources, depending on the state of the battery:  
• M present and V is less than the LOWBATT threshold. M will be opened and BP will be set to the VCHRCV[5:0]  
BATT  
BATT  
BATT  
settings (set to 3.6 by default) to supply the system loads. The feedback for the buck charger is taken from a conventional  
internal resistor divider connected at the BP pin. This supports dead battery operation and allows the system to operate if the  
battery does not exist or is being trickle charged through a separate path.  
• For batteries above LOWBATT[1:0] threshold, BP tracks the battery voltage level V  
. If M  
is present, M will be  
BATT  
BATT  
BATT  
closed when the MC34708 detects when the BP voltage is at the same potential as the V  
node. When the V  
node is  
BATT  
BATT  
below this threshold and M  
is present, the feedback is taken from the BP node. When the M  
is closed, the feedback  
BATT  
BATT  
is taken from the BATT node. If M  
is not populated, then the feedback node will always be taken from the BATT node.  
BATT  
The buck regulator core implements PWM in normal operation and auto-PFM modes PWM-PS mode during soft start. The  
charger buck needs to be able to support 100% duty operation for cases when the input falls close to the output voltage. In this  
mode, the high side PMOS is switched fully on, and the low side NMOS switch is disabled. The regulator will stay in 100% (or  
close to it) duty-cycle mode until either BP rises above the CHRCV[5:0], under which case BP is clamped to a maximum of  
CHRCV[5:0], or when the loop feedback demands a lower duty cycle. While in 100% duty cycle mode, the output current limit is  
still operational. The CHRRCV is the point at which the battery charger enters the constant voltage mode from the constant  
current mode. This is set to 3.6 V by default.  
The buck charger can be disabled by software by setting the CHREN=0. It defaults to 1 on power up and is reset by RESETB,  
so every time the PMIC goes into an off mode, the charger is re enabled. The CHRGEN signal disables linear and buck charging.  
Table 64. Buck Charger Constant Voltage Settings  
Buck Charge  
Output Voltage (V)  
Buck Charge  
Output Voltage (V)  
CHRCV[5:0]  
CHRCV[5:0]  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
3.50  
3.52  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
4.00  
4.02  
4.04  
4.06  
4.08  
4.10  
4.12  
4.14  
4.16  
4.18  
4.20  
4.22  
4.24  
4.26  
4.28  
4.30  
4.32  
4.34  
4.36  
3.54  
3.56  
3.58  
3.60 (default)  
3.62  
3.64  
3.66  
3.68  
3.70  
3.72  
3.74  
3.76  
3.78  
3.80  
3.82  
3.84  
3.86  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
77  
Functional Block Description  
Table 64. Buck Charger Constant Voltage Settings  
Buck Charge  
Output Voltage (V)  
Buck Charge  
Output Voltage (V)  
CHRCV[5:0]  
CHRCV[5:0]  
010011  
010100  
010101  
010110  
3.88  
3.90  
3.92  
3.94  
101100  
101101  
101110  
101111  
4.38  
4.40  
4.42  
4.44  
The control loop will monitor the voltage drop across the M  
and the M  
to limit the input current. This current input  
AUXSW  
VBUSSW  
current limit is set automatically/manually by the input current limit, as detailed in Mini/Micro USB Switch. When the VBUS  
connection is not in input current regulation mode, and the MANUAL S/W is 1, the USB current limit USBCHR[1:0] is set  
automatically by detecting the charger connected connection and can select between 100 mA, 500 mA, and 950 mA current  
limits (set by the USBCHR[1:0]). The AUX current limit can be set manually by setting the AUXILIM[2:0] bits and setting the  
AUXWEAKEN =0. Changing the AUXWEAKEN=0 also disables the WKAUXDET interrupt. If AUXWEAKEN=1, then  
WKAUXDET interrupt will be enabled, and the AUX input current will be configured in auto input current regulation mode. The  
input current limit can be set to 1.5 A on both the USB, and AUX charge path by setting the ILIM_1P5 SPI bit = 1. When it is set  
to a one, the USBCHR[1:0] and AUXILIM[1:0] settings are ignored. The ILIM_1P5 bit defaults to 0 on reset. The buck input current  
limit does not apply to the trickle current. The VBUS input current can be overridden by setting the MANUAL S/W =0 and setting  
the MUSBCHR[1:0] bits appropriately refer to Mini/Micro USB Switch for more details.  
Table 65. Buck Input Current Limit Settings  
Input Current Limit  
ILIM_1P5 USBCHR[1:0] AUXILIM[2:0]  
(mA)  
1
0
0
0
0
0
0
0
0
0
XX  
11  
10  
XXX  
111  
110  
101  
100  
011  
010  
001  
000  
NA  
1500  
950  
500  
400  
300  
250  
200  
150  
01  
00  
100  
0 (off)  
The charge constant current is programmable by SPI through CHRCC[3:0] bits in steps of 50 mA, from 250 mA to 1550 mA. The  
constant charge current is set to 550 mA by default.  
Table 66. Buck Charger Constant Current Limit Settings  
Buck Charger Constant  
Current Limit (mA)  
Buck Charger Constant  
Current Limit (mA)  
CHRCC[3:0]  
CHRCC[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
250  
350  
1000  
1001  
1010  
1011  
1100  
1101  
1050  
1150  
1250  
1350  
1450  
1550  
450  
550 (default)  
650  
750  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
78  
Functional Block Description  
Table 66. Buck Charger Constant Current Limit Settings  
Buck Charger Constant  
Current Limit (mA)  
Buck Charger Constant  
CHRCC[3:0]  
CHRCC[3:0]  
Current Limit (mA)  
0110  
0111  
850  
950  
1110  
1111  
1550  
1550  
Table 67. Buck Charger Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes  
Buck Charger  
fCHRG  
Operating Frequency  
Quiescent Current  
-
-
2.0  
-
-
MHz  
mA  
ICHRGQ  
• PWM mode not switching  
Charger Input  
5.0  
VBUSIN  
/
V
VAUXIN  
• VBUSVIN/AUXVIN  
4.05  
-
5.25  
6.8  
20  
• Protection threshold VBUSVIN/AUXVIN  
• Absolute max input VBUS/VIN (not operating)  
-
-
6.5  
16  
Charger Restart Threshold  
CHRGRE  
%
-
95.6  
-
START-TH  
• BATT relative to CHRGCV[5:0]  
(59)  
(59)  
CHRCV Output Accuracy  
CHRCVACC  
CHROVPTH  
ICHRINLIM  
-1.0  
-
-
1.0  
-
%
%
Charger Over-voltage Protection Threshold  
15  
Charger Input Current Limit (using the USB input)  
mA  
• 100 mA  
• 500 mA  
• 950 mA  
-
-
-
93  
100  
500  
-
475  
925  
(59)  
IOUTACC  
Output Current Accuracy  
• CHRCC 250 – 600 mA  
• CHRCC 600 – 1000 mA  
• CHRCC 1000 –1550 mA  
• Resuscitation  
-15  
-
-
15  
%
-10  
10  
-5.0  
-
5.0  
-
-
-
-
-
12  
70  
-
-
-
-
-
-
mA  
• TRICKLE1  
• TRICKLE2  
•TRICKLSEL = VCOREDIG  
•TRICKLSEL = Floating  
325  
550  
Notes  
59. Battery charger works from BATTEMPL[1:0] (default 0 °C) to BATTTEMPH[1:0] (default 46 °C). Max range is from 0 to 60 °C.  
7.6.3  
Over-voltage Protection  
In order to protect the application, the voltage at the VBUSVIN, and VAUX pins are monitored. When the above is 6.5 V typical,  
the external pass FETs will be disabled.  
For the VBUS charge path, it means opening M  
. In the AUX path, it means opening M  
while M  
is closed. In the  
BATT  
VBUS  
VBUS  
AUX path, it means opening M  
. The corresponding interrupt VBUSOVP or AUXOVP is generated. When a V  
over-voltage  
AUX  
BUS  
is detected, the internal circuitry of the USB block is disconnected. The battery is also monitored for over-voltage conditions, and  
the battery is protected by disabling the charger and setting the interrupt BATTOVP. In order to ensure immediate protection, the  
control of M  
, M  
, and M  
occurs real-time, asynchronously to the charger state machine.  
VBUS  
AUX  
BATT  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
79  
Functional Block Description  
The interrupt for the over-voltage conditions on the battery is debounced by a programmable debounce period. VBUS and AUX  
interrupts are debounced by SUP_OVP_DB[1:0]. When the over-voltage condition disappears for longer than the programmed  
debounce time, charging will resume and previously programmed SPI settings will be reloaded. When a BATTOVP, AUXOVP,  
or VBUSOVP interrupt is set, charging will not resume until the processor clears the interrupt.  
Table 68. Over-voltage Debounce Time SUP_OVP_DB[1:0]  
SUP_OVP_DB[1:0]  
Debounce Time  
00  
01  
10  
11  
0 (default 1.0)  
2 RTC clock cycles  
4 RTC clock cycles  
8 RTC clock cycles (default 2.0)  
Table 69. Over-voltage Debounce Time OVDB[1:0]  
OVPDB[1:0]  
Debounce Time  
00  
01  
10  
11  
0 (default 2.0  
2 RTC clock cycles  
4 RTC clock cycles  
8 RTC clock cycles (default 1.0)  
7.6.4  
Thermal Fold back  
In order to protect the PMIC from overheating while charging, hardware based automatic thermal fold back is implemented. The  
thermal fold back option is enabled by default (THFB_EN=1), but can be disabled by setting the SPI bit THFB_EN=0. The thermal  
fold back is operational only when the buck input current limit is set to 1.5 Amps (ILIM_1P5 =1). With THFB_EN = 0 or  
ILIM_1P5 = 0, firmware will still receive the interrupts when crossing the thresholds but it will be up to the software to fold back  
the input current limit manually. The thermal fold back will monitor the die temperature to determine when to decrease the buck  
current limit. There are four thresholds which the PMIC will fold back the input current limit as seen in Table 70. These are 110 C  
(THERM110), 120 °C (THERM 120), 125 °C (THERM125), and 130 °C (THERM130C). The THERM1xx thresholds are  
debounced by the SPI bits DIE_TEMP_DB[1:0], which are programmable from 100 s to 4.0 ms (1.0 ms by default). When the  
die temperature crosses these thresholds the corresponding sense bit will change and an interrupt will be generated to notify the  
software that the hardware is reaching its thermal limit. THFB_DLY[1:0] (defaults to 10 ms) sets the delay between the interrupt  
being sent to the processor and the time that the PMIC takes action by folding back the buck input current limit to prevent the die  
from heating up. For example with THFB_EN=1, ILIM_1P5 =1 and THFB_MODE = 0, if the die heats up to 115 °C, the  
THERM110S bit will change state from a zero to a one, the THERM110C interrupt will be set, and the buck input current limit will  
be set to 950 mA. Should the die continue to heat up to 123 °C then the THERM120S bit will be set and the THERM120 interrupt  
will be generated and the buck current limit will be set to 500 mA. When the die temperature is greater than 130 °C the charger  
will be disabled. The THFB_MODE bit allows the firmware to select two preset thermal fold back options when the die  
temperature reaches the specified range.  
Table 70. Thermal Fold Back Settings  
Buck Input Current Limit (mA)  
Condition (°C)  
THERM110S  
THERM120S  
THERM125S  
THERM130S  
THFB_MODE = 0 THFB_MODE = 1  
1500  
950  
500  
300  
Off  
1500  
950  
950  
500  
Off  
Die Temp< 110  
110 < Die Temp < 120  
120 < Die Temp < 125  
125 < Die Temp < 130  
130 < Die Temp  
140  
0
1
1
1
1
1
0
0
1
1
1
1
0
0
0
1
1
1
0
0
0
0
1
1
Thermal Shutdown  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
80  
Functional Block Description  
Table 71. Die Temp Debounce Settings  
DIE_TEMP_DB [1:0]  
Time  
Units  
00  
01  
0.100  
1.0  
ms  
ms  
ms  
ms  
10  
2.5  
11 (default)  
4.0  
Table 72. Thermal Fold Back Delay Settings  
THFB_DLY [1:0]  
Time  
Units  
00  
01  
0
5
ms  
ms  
ms  
ms  
10 (default)  
11  
10  
15  
7.6.5  
Charge Source Input Thresholds  
The VBUS and VAUX pins are monitored to detect when a valid charger is inserted. The PMIC will detect that a valid charger is  
attached, when the VBUS voltage transitions above the setpoint, which is defaulted to 4.35 V. When above this threshold for  
longer than the debounce period (VBUSDB[1:0]), the USBDET interrupt is generated and USBDETS is set to a one. When the  
VBUS input falls below the VBUSTL[2:0] threshold, the USBDET interrupt is generated immediately without any debounce and  
the USBDETS bit is low.  
The MC34708 will detect a valid aux charger is attached when the VAUX voltage transitions above the VAUXTH[2:0] setpoint,  
(default is 4.35 V). When above this threshold for longer than the debounce period by VAUXDB[1:0], the AUXDET interrupt is  
generated and AUXDETS is set to a one. When the input falls below the AUXTL[2:0], the AUXDET interrupt is generated  
immediately without any debounce and the AUXDETS bit is low.  
Table 73. VBUS, VAUX High/low Threshold  
VBUSTH[2:0]  
VAUXTH[2:0]  
VBUSWEAK[2:0]  
VAUXWEAK[2:0]  
VBUSTL[2:0]  
VAUXTL[2:0]  
Voltage  
Voltage  
Voltage  
000  
001  
010  
011  
100  
101  
110  
111  
4.05  
4.15  
000 (default)  
001  
4.200  
4.275  
4.350  
4.450  
4.525  
4.600  
4.675  
4.750  
000  
001  
010  
011  
100  
101  
110  
111  
3.55  
3.65  
4.25  
010  
3.75  
4.35 (default)  
4.45  
011  
3.85 (default)  
3.95  
100  
4.55  
101  
4.05  
4.65  
110  
4.15  
4.75  
111  
4.25  
If input current regulation is enabled, when the VBUS voltage drops below the weak VBUSWEAK[2:0] threshold, the charger state  
machine will enter input current regulation (due to a weak USB supply), and will decrease the input current limit one step below  
its present value. If the USB voltage does not recover (rise back above VBUSWEAK[2:0]), the current limit will be reduced again.  
Once the input current limit is at the minimum value (100 mA), if the supply still does not recover, the charger will be shut off and  
the WKVBUSDET interrupt will be asserted. If this happens in less than 2.0 ms, the pending VINREGMINT interrupt will be  
cancelled, and only the WKVBUSDET interrupt will be asserted. This functionality is enabled by default on power up by the  
VBUSWEAKEN SPI bit high (default). The weak VBUS functionality can be disabled by setting the VBUSWEAKEN = 0. When  
the following conditions exist: MBATT is present, the charger is capable of supplying 500 mA, the system is ON, the battery is  
MC34708  
Analog Integrated Circuit Device Data  
81  
Freescale Semiconductor  
Functional Block Description  
bellow 3.4 V, and the input current limit drops to less than 250 mA then, the PMIC will power down the rails. The PMIC will trickle  
charge the battery and prohibit the system to power on until the battery reaches the 3.4 V threshold.  
The AUX charge input regulation algorithm is different than the USB charge path. The AUX input regulation is enabled by setting  
the AUXWEAKEN bit high. It can be disabled by setting the AUXWEAKEN bit low. If the AUXWEAKEN bit is set high, the AUX  
charge path will continuously try to regulate the VAUX input to keep it between the VAUXWEAK[2:0] and the VAUXH[2:0]  
thresholds. After the trickle charge has completed, the charger will turn on the buck at its lowest input current setting (100 mA),  
and then slowly ramp up the current limit every 100 ms. If the VAUX voltage stays above the VAUXTH[2:0] threshold, the charger  
will continue to ramp the buck input current limit up to the next setpoint. If the VAUX voltage crosses below the VAUXTH[2:0] and  
stays above the VAUXWEAK[2:0] threshold, then the state machine will hold the current setpoint. If the VAUX threshold rises  
above the VAUXH[2:0] threshold, the charger will continue increasing the input current limit. Should the VAUX cross below the  
VAUXTWEAK[2:0] setpoint, the state machine will rapidly decrease the input current in 120 s steps. Once the input current limit  
is at the minimum value (100 mA), if the supply still does not recover, the charger will be shut off and the WKAUXDET interrupt  
will be asserted. When the following conditions exist: MBATT is present, the charger is capable of supplying >=500 mA, the  
system is ON, the battery is bellow 3.4 V and the input current limit drops to less than 250 mA then, the PMIC will power down  
the rails. The PMIC will trickle charge the battery and prohibit the system to power on, until the battery reaches the 3.4 V  
threshold.  
The VBUS and VAUX detectors are debounced by the VBUSDB[1:0] and VAUXDB[1:0] SPI bits defined in Table 74. These  
debounce periods do not apply to input regulation modes.  
Table 74. VBUS, VAUX Debounce Times  
VBUSDB[1:0]  
Debounce Time (ms)  
VAUXDB[1:0]  
00  
01  
10  
11  
0
10  
20  
30  
7.6.6  
Trickle Charge Settings  
In cases of a deeply discharged battery, the battery will be charged via an internal trickle charge. An internal current source  
between VBUSBIN/VAUXVIN and ITRIC provides small currents to the battery, when trickle charging a dead battery for the  
resuscitation and I  
modes. The I  
mode will depend on how the TRICKLESEL pin is configured, as shown in  
TRICKLE1  
TRICKLE2  
Table 75 and Table 76. If TRICKLESEL is grounded, the I  
current will use the internal trickle charge path. If the  
TRICKLE2  
TRICKLESEL is tied to VCOREDIG or floating, then the buck charger will be enabled in constant current mode for I  
.
TRICKLE2  
I
is only valid for configurations where the M  
FET is not present.  
TRICKLE2  
BATT  
Trickle must auto recover from fault states when the fault no longer exists. The only exception is when the precharge timer has  
expired (CHRTIMEEXP), then the trickle charge should stop and the CHRGLEDR should flash.  
Table 75. Trickle Charger Settings  
Parameter  
BATT  
Internal Trickle Charger  
IRESUSITATION  
ITRICKLE1  
BATT<1.5 V  
12 mA (linear)  
70 mA (linear)  
1.5 V<BATT <VBAT_TRKL  
VBAT_TRKL <BATT<LOWBATT  
ITRICKLE2  
Programmable via TRICKLESEL  
When charging from a USB source, the mini-USB will automatically detect which charger is attached and will set the buck current  
limit. If the mini-USB detects that a standard USB host is attached, it will set the USB buck input current limit USBCHRG[1:0] to  
100 mA. The charger will transition from trickle1 to trickle 2 at the VBAT_TRKL[1:0] setpoint, as long as the M  
FET is not  
BATT  
detected. If the M  
FET is detected, then the trickle2 mode is not allowed, and the charger will charge at the trickle1 current  
BATT  
up to 3.4 V. If a standard USB host is detected and the TRICKLESEL pin is not grounded, the buck will turn on, but the USBCHRG  
will limit the input current to 100 mA, to stay within the USB specification. Once the system boots up, it can negotiate for the  
500 mA increased current, See Auto Detection of Charger.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
82  
Functional Block Description  
With the AUXWEAKEN bit set high, the charger will always go into current regulation mode. When trickle charging from an aux  
path, the charger will always go into input current regulation mode. When transitioned from I  
to I  
, the state  
TRICKLE1  
TRICKE2  
machine will ensure that the VAUX voltage is between the VAUXTH and VAUXWEAK thresholds. If it is, I  
will be  
TRICKLE2  
maintained. If V  
drops below the V  
threshold, the trickle charger will decrease to the trickle1 setpoint. If an M  
AUX  
AUXWEAK BATT  
FET is detected, trickle2 is not allowed and the state machine will continue trickle charging at the trickle1 setting.  
With AUXWEAKEN set low, the input current regulation mode is disabled. The input current limit can be set manually as  
described in Charger Input Current Limit Setting.  
Table 76. Tricke2 Charger Current  
TRICKLESEL pin  
Trickle Charger Current (mA)  
Mode  
Ground  
VCOREDIG  
Floating  
70 (linear)  
Trickle1  
Trickle2  
Trickle2  
325 (buck mode)  
550 (buck mode)  
The SPI bits VBAT_TRKL[1:0] set the trickle 1 to trickle 2 transition threshold, where the trickle current changes from trickle 1 to  
the trickle 2 current set by the TRICKLESEL pin. This is only valid in configurations where the M FET is not detected. In  
BATT  
applications where the M  
FET is present, the battery will continue to charge at the 70 mA rate until the battery reaches 3.4 V.  
BATT  
Table 77. VBAT_TRKL Voltage Setpoint (Dedicated charger)  
VBAT_TRKL  
Trickle1 to Trickle2 Voltage Threshold (V)  
00  
01  
10  
11  
2.8  
2.9  
3.0 (default)  
3.1  
In the case of a dedicated charger, the trickle2 to constant current charge mode is based on the LOWBATT setpoint. When the  
battery transitions from L to H (3.1 V, 3.2 V, 3.3 V, or 3.4 V), the buck charger will turn on and go into constant current mode.  
Should the battery transition below the H to L threshold (3.0 V, 3.1 V, 3.2 V, or 3.3 V), the charger will revert to the trickle 2 charge  
setpoint.  
Table 78. LOWBATT Threshold  
L to H transition (Power on)  
LOWBATT  
H to L transition (Low battery detect)  
LOWBATT  
LOWBATT[1:0]  
00  
01  
3.1  
3.2  
3.3  
3.4  
3.0  
3.1  
3.2  
3.3  
10  
11 (default)  
7.6.7  
Battery Thermistor Check Circuitry  
A battery pack may be equipped with a thermistor, whose resistance decreases over temperature (NTC). In order to read the  
thermistor value, it is biased from the NTCREF pin through a pull-up resistor (R ). The thermistor check circuit compares the  
PU  
voltage at BPTHERM with two programmed thresholds, BATTTEMPL[1:0] and BATTTEMPH[1:0]. In addition, the BPTHERM is  
sent to the ADC on channel 7 to allow the software to readout the exact temperature of the battery. Charging is allowed when  
the thermistor is within the range.  
MC34708  
Analog Integrated Circuit Device Data  
83  
Freescale Semiconductor  
Functional Block Description  
Table 79. Battery Thermistor Temp ranges  
BATTTEMPH[1:0]  
Temp (°C)  
BATTTEMPL[1:0]  
Temp (°C)  
00  
01  
10  
11  
45 (default)  
00  
01  
10  
11  
0 (default)  
50  
55  
60  
5
10  
15  
By default, the battery thermistor value is taken into account for charging the battery. Upon detection of a supply at VBUS/VAUX,  
the core circuitry powers up. As soon as VCOREDIG is ready, the NTCREF is biased up to VCOREDIG, independent of the state  
of the THERM SPI bit. The NTCREF is biased up whenever a battery is detected, the SPI THERM is set, or the charger is  
detected (USB or AUX). The resulting voltage at BPTHERM is compared to the corresponding temperature thresholds,  
BATTTEMPH and BATTTEMPL. If the voltage at BPTHERM is within range, the charging will behave as previously described.  
However, if out of range, the charger state machine will go to a wait state, pause the pre-charge timers, and no current will be  
sourced to the battery. When the temperature comes back in range, charging is continued again. The actual behavior depends  
on the configuration the charger circuitry at the moment the temperature range is exceeded. The BPTHERM is optimize for a  
24 kohm pull-up resistor to NTCREF, and the recommended NTC thermistor from Murata NCP15WB473F03RC or equivalent.  
In applications where battery packs without a thermistor may be used, BATTTEMPH[1:0] and BATTTEMPL[1:0] should be left  
as the default value and bias the BPTHERM to 0.991 V, in order to get within the temperature window.  
7.6.8  
Charge LEDs Indicators  
Since normal LED control via the SPI bus is not always possible in the standalone operation (when the processor is off), two  
current sinks are provided at the CHRGLEDR, and CHRGLEDG pins for LEDs connected to the LEDVDD and BP nodes,  
respectively.  
The CHRGLEDR will be activated when standalone charging is started and will remain under control of the state machine. When  
charging is complete, the CHRGLEDR is disabled and the CHRGLEDG is activated. Software can take control over the charging  
LEDs, even in standalone mode, by setting the CHRGLEDOVRD=1. When CHRGLEDOVRD=1, the CHRGLEDs are totally  
controlled by software, so the state machine no longer has control. With CHRGLEDOVRD=0 (disabled), software cannot force  
the LEDs on, but can still set the current.  
Table 80. Charge LED Driver Control  
CHRGLEDxEN  
CHRGLEDx  
CHRGLEDOVRD  
0 (default)  
Auto  
On  
0
1
1
1
0
Off  
“x” represents for R, and G  
The charging LED drivers CHRGLEDR, and CHRLEDG are independent current sink channels. Each driver channel features  
programmable current levels via CHRGLEDx[1:0], as well as programmable PWM duty cycle settings with CHRGLEDxDC[5:0].  
By a combination of level and PWM settings, each channel provides flexible LED intensity control. By driving LEDs of different  
colors, color mixing can be achieved.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
84  
Functional Block Description  
Table 81. Charge LED Drivers Current Programming  
CHRGLEDx[1:0]  
CHRGLEDx Current Level (mA)  
00  
3.4  
6.6 (default)  
9.8  
01  
10  
11  
12.5  
“x” represents for R, and G  
Table 82. Charge LED Drivers Duty Cycle Programming  
CHRGLEDxDC[5:0]  
Duty Cycle  
000000  
0/32, Off  
000001  
1/32  
010000  
16/32  
011111  
31/32  
1xxxxx  
32/32, Continuously On  
“x” represents R, and G  
The charging LED drivers include ramp up and ramp down patterns implemented in hardware. Ramping is enabled for each of  
the drivers using the corresponding CHRGLEDxRAMP bits, only when the repetition rate is 256 Hz.  
The ramp itself is generated by increasing or decreasing the PWM duty cycle with a 1/32 step every 1/64 seconds. The ramp  
time is therefore a function of the initial set PWM cycle and the final PWM cycle. As an example, starting from 0/32 and going to  
32/32 will take 500 ms, while going to from 8/32 to 16/32 takes 125 ms.  
Note that the ramp function is executed upon every change in PWM cycle setting. If a PWM change is programmed via the SPI  
when CHRGLEDxRAMP=0, the change is immediate rather than spread out over a PWM sweep.  
For color mixing and to guarantee a constant color, the color mixing should be obtained by the current level setting, so the  
intensity is set through the PWM duty cycle.  
In addition, programmable blink rates are provided. Blinking is obtained by lowering the PWM repetition rate of each of the drivers  
through CHRGLEDxPER[1:0], while the on period is determined by the duty cycle setting. To avoid high frequency spur coupling  
in the application, the switching edges of the output drivers are softened.  
Table 83. Charge LED Drivers Period Control  
CHRGLEDxPER[1:0]  
Repetition Rate  
Units  
00  
01  
10  
11  
256  
8
Hz  
Hz  
Hz  
Hz  
1
1/2  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
85  
Functional Block Description  
Table 84. Charge LED Modes in Standalone Mode  
Repetition  
Rate (Hz)  
Duty  
cycle  
Current  
(mA)  
LED Mode  
Color  
Ramp  
Charger off  
Charging  
Both off  
1.0  
1.0  
Off  
6.0  
6.0  
Off  
Off  
Red on  
32/32  
steady state  
Charging  
fault  
1.0  
1.0  
16/32  
32/32  
6.0  
6.0  
Off  
Off  
Red flashing  
Charge  
Green on  
complete steady state  
Table 85. Charge LED Driver Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Charge LED Driver  
Absolute Accuracy  
Matching - At 1.0 V, 12 nA  
-
-
-
-
-
-
30  
4.0  
1.0  
%
%
Leakage - CHRGLAEDxDC [5:0]=000000  
A  
7.6.9  
Coulomb Counter  
As indicated previously, the current in and out of the battery can be read out through the general purpose ADC as a voltage drop  
over the R1 sense resistor. Together with battery voltage reading, the battery capacity can be estimated. A more accurate battery  
capacity estimation can be obtained by using the integrated Coulomb Counter.  
The Coulomb Counter (or CC) monitors the current flowing in/out of the battery by integrating the voltage drop across the battery  
current sense resistor R1, followed by an A to D conversion. The result of the A to D conversion is used to increase/decrease  
the contents of a counter that can be read out by software. This function will require a 10F output capacitor to perform a first  
order filtering of the signal across R1. Due to the sampling of the A to D converter and the filtering applied, the longer the software  
waits before retrieving the information from the CC, the higher the accuracy. The capacitor will be connected between the CFP  
and CFM pins. See Figure 20.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
86  
Functional Block Description  
From  
Charger  
Path  
ITRIC  
SPI BITS  
RESETB  
BATTISNSP  
BATTISNSCCP  
CFP  
CF  
Coulomb  
Counter  
R1  
CCOUT  
20mOhm 10uF  
CFN  
BATTISNSCCN  
BATTISNSN  
BATT  
CHRGFB  
RTC  
References  
Figure 20. Coulomb Counter Block Diagram (Recommended)  
To improve the CC reading/offset error a second 20 mOhm resistor can be used as shown in Figure 21.  
From  
Charger  
Path  
BATTISNSP  
ITRIC  
SPI BITS  
RESETB  
R1  
20mOhm  
BATTISNSN  
BATTISNSCCP  
CFP  
CF  
Coulomb  
Counter  
R2  
CCOUT  
20mOhm 10uF  
CFN  
BATTISNSCCN  
BATT  
CHRGFB  
References  
RTC  
Figure 21. Coulomb Counter Block diagram (For improved CC readings)  
The CC results are available in the 2’s complement CCOUT [15:0] counter. This counter is preferably reflecting 0.1 Coulomb per  
LSB. As a reminder, 1 Coulomb is the equivalent of 1 Ampere during 1 second, so a current of 20 mA during 1 hour is equivalent  
to 72 C. The 1-bit A to D output must first be decimated and converted to 16-bit resolution. The decimation filter is implemented  
with an up/down counter and its bandwidth and gain are controlled by setting the ONEC[14:0] bits. The CCOUT[15:0] counter is  
then increased or decreased by 1 with every ONEC[14:0] counts up or down of the decimation filter A to D converter. For  
example, ONEC[14:0]= 0x0111 HEX = 273 DEC yields 0.1 C count per LSB of CCOUT[15:0] with R1=20 mOhm.  
The coulomb counter resolution can be programmed to 100, 200, 500, or 1000 mC/LSB. By setting the CCRES[1:0] SPI bits, as  
shown in Table 86. The CCRES[1:0] is set to 00 by default, so the CC resolution is 100 mC/LSB.  
MC34708  
Analog Integrated Circuit Device Data  
87  
Freescale Semiconductor  
Functional Block Description  
Table 86. Coulomb Counter Resolution  
CCOUT  
CCOUT  
Resolution  
mC/LSB  
CCRES[1:0]  
Dynamic Range Dynamic Range  
(Coulombs)  
(mA-Hrs)  
00 (default)  
100  
200  
+/- 3276.8  
+/- 6553.6  
+/- 16348.0  
+/- 32768.0  
+/- 910.2  
+/- 1820.4  
+/- 4551.1  
+/- 9102.2  
01  
10  
11  
500  
1000  
The CC can be reset by setting the RSTCC bit. This will reset the digital blocks of the CC and will clear the CCOUT[15:0] counter.  
The RSTCC bit is automatically cleared at the end of the reset period, which may take up to 40s. The CC is started by setting  
the STARTCC bit. The CC is disabled by setting this bit low again. This will not reset the CC settings nor its counters, so when  
restarting the CC with STARTCC, the count will continue.  
While the CC is running it can be calibrated. An analog and a digital offset calibration is available.  
The digital portion of the CC is by default permanently corrected for offset and gain errors. This function can be disabled by setting  
the CCCALDB bit. However this is not recomended.  
The CCCALA bit is set to calibrate the analog portion of the CC. This will disconnect the inputs of the CC from the sense resistor  
and will internally short them together. The CCOUT[15:0] counter will accumulate the analog error over time. The calibration  
period can be freely chosen by the implementer and depends on the accuracy required. By reading out the contents of the  
CCOUT[15:0] and taking into account the calibration period, software can now calculate the error and account for it. Once the  
calibration period has finished, the CCCALA bit should be cleared again.  
One optional feature is to apply a dithering to the A to D converter, to avoid any error in the measurement due to repetitive events.  
To enable dithering, the CCDITHER bit should be set. To make this feature operational, the digital calibration should remain  
enabled, so the CCCALDB bit should not be set.  
The CC is also used to measure battery charging current when the charger is in Constant Voltage mode, near the end of the  
charging cycle. The measured charging current is compared to a programmable threshold to determine when an End of Charge  
is reached. A charge complete signal is sent to the charger to indicate completion of the charging cycle.  
When the CC is being used to determine the End of Charge, the SPI control bits STARTCC and RSTCC are overridden by  
internal logic, to ensure CC is enabled and operating normally. This eliminates any possibility of missing the End of Charge event,  
or of falsely declaring an End of Charge prematurely. Note that the ONEC value, CCRES value, and other SPI register values,  
can still be actively changed during an End of Charge detection mode. This allows the application software to use a high  
resolution setting, such as 100 mC/LSB and a short integration period for rapid End of Charge detection, even though a lower  
resolution setting might have been used for Coulomb counting during normal system operation. If the user chooses different  
ONEC and CCRES settings for an End of Charge detection vs. normal operation, the system fuel gauge software simply needs  
to properly account for the different scale (resolution) of the CCOUT values in each mode, to maintain an accurate count of the  
battery state of charge.  
To be sure the contents of the CCOUT[15:0] are valid, a CCFAULT bit is available. CCFAULT will be set ‘1’ if the CCOUT counter  
has a hardware overflow or underflow. Content is no longer valid, means the bit gets set when a fault condition occurs and stays  
latched until cleared in software by writing a ‘1’ to the CCFAULT register. There is no interrupt associated to this bit. The following  
fault conditions are covered.  
Counter roll over: CCOUT[15:0]=0x8000 HEX  
This occurs when the contents of CCOUT[15:0] go from a negative to a positive value or vice versa. Software may incorrectly  
interpret the battery charge by this change in polarity. When CCOUT[15:0] becomes equal to 0x8000 HEX, the CCFAULT is set.  
The counter stays counting so its contents can still be exploited.  
In addition to the CCOUT[15:0] value and CCFAULT status bit discussed earlier, another output for the Coulomb counter digital  
control logic is BATTCURRENT[11:0].  
The BATTCURRENT value is a read-only value proportional to the current flowing through the sense resistor, which is the  
average battery current during the INTEGTIME[1:0] measurement period. The INTEGTIME[1:0] bits select one of four different  
integration periods for measuring battery current with the Coulomb counter: 4, 8, 16, or 32 seconds. The longer the integration  
time period, the more accurate the battery current measurement, but longer integration times give less frequent updates.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
88  
Functional Block Description  
BATTCURRENT can be read through the SPI interface from the ACC2 register, and its value is converted to mA using the scale  
factors in Table 87.  
Table 87. BATTCURRENT Resolution  
BATTCURRENT  
CCRES[1:0]  
INTEGTIME[1 :0]  
Resolution in mA/LSB  
00 (100 mC/LSB)  
(default)  
00 (4.0 sec)  
25  
01 (8.0 sec)  
(default)  
12.5  
10 (16 sec)  
11 (32 sec)  
00 (4.0 sec)  
01 (8.0 sec)  
10 (16 sec)  
11 (32 sec)  
00 (4.0 sec)  
01 (8.0 sec)  
10 (16 sec)  
11 (32 sec)  
00 (4.0 sec)  
01 (8.0 sec)  
10 (16 sec)  
11 (32 sec)  
6.25  
3.125  
50  
01 (200 mC/LSB)  
10 (500 mC/LSB)  
11 (1000 mC/LSB)  
25  
12.5  
6.25  
100  
50  
25  
12.5  
200  
100  
50  
25  
Table 88. Coulomb Counter Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, V  
= -5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
BUS  
A
noted reflect the approximate parameter means at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
COULOMB COUNTER  
Sense resistor R1  
CCrsense  
ICC-RANGE  
ICC-ON  
m  
mA  
A  
• Placed in Battery path of Charger system  
-
20  
-
-
Sensed current  
• Through R1  
1.0  
3000  
On consumption  
• CC active  
-
-
10  
-
-
Resolution  
CC  
C  
RESOLUTION  
• 1LSB Increment in CCOUT [15:0] with ONEC [14:0] = 1  
366.2  
7.6.10 Charger Operation  
MC34708  
Analog Integrated Circuit Device Data  
89  
Freescale Semiconductor  
Functional Block Description  
7.6.10.1 Auto Detection of Charger  
The MC34708 will auto detect the type of the external power source and select one of two battery charge current levels, according  
to the type. The MC34708 is capable of detecting the following types of accessories: USB host, dedicated charger, USB charger,   
A/V charger, and 5-wire type 1 or 2 chargers.  
When a USB host is detected, the buck input current limit will be set to 100 mA. When the application turns on and negotiates  
for the increased current, the input current limit can be increased by setting MUSBCHRG[1:0]= 10, along with setting the Manual  
SW_B low.  
When a 5-wire type (1 or 2), or an A/V charger is selected, the buck input current limit will be set to 500 mA.  
When a USB charger or a dedicated charger is attached, the buck input current limit will be set to 950 mA by default. Software  
can program the ILIM_1P5 SPI bit to increase the buck input limit to 1500 mA, if a USB charger is attached.  
7.6.10.2 Standalone Charging  
A standalone charge mode of operation is provided to minimize software interaction. It also allows for a completely discharged  
battery to be revived without processor control. This is especially important when charging from a USB host, or when in single  
path configuration (M  
replaced by short, GBAT grounded).  
BATT  
Since the default voltage and charge current setting of the buck regulator may not be the optimum choice for a given application,  
these values can be reprogrammed through the SPI by setting the CHRCC [3:0] and CHRCV[5:0] bits. The buck input current  
limit can also be manually set by the MUSBCHRG[1:0] SPI bits and setting the Manual SW_B SPI bit low. See the Serial  
Interfaces section for more information.  
A USB host is only capable of supplying a 100 mA load current until the host has negotiated for the increased current. A system  
is not capable of operating on 100 mA of current. Upon connecting a USB host with a dead battery, the input current limit is set  
to 100 mA, the resuscitation trickle cycle is started, and the trickle current set to 12 mA, until the battery voltage reaches 1.5 V.  
When the battery is between 1.5 V and VBAT_TRKL, the trickle current is set to 70 mA. With M  
not present, the charger will  
BATT  
charge at the I  
set point, from VBAT_TRKL to the LOWBATT threshold charger will charge at the I  
setpoint.  
TRICKLE2  
TRICKLE2  
When the battery voltage rises above the LOWBATT threshold, a power up sequence is automatically initiated. If the M  
FET  
BATT  
is present the I  
setpoint will be maintained up to the 3.4 V, at which point a power up sequence is initiated. When the  
TRIKLE1  
application turns on and successfully negotiates for the increased current, the input current limit can be increased by setting the  
MUSBCHRG[1:0]= 10, along with setting the Manual SW_B low.  
Upon connecting a dedicated charger, USB charger, a 5-wire type (1 or 2), or an A/V charger, to the USB charge path with a  
dead battery, the behavior will be different for applications with an M  
FET present and for those without an M  
FET.  
BATT  
BATT  
With M  
present, the application will be powered with the buck charger input current limit set to either 500 mA (a 5-wire type  
BATT  
(1 or 2), or an A/V charger) or 950 mA (dedicated charger or USB charger), as determined by the mini-USB interface. The buck  
will regulate the BP voltage to 3.6 V. MBATT will be open and the internal trickle charge current source will be enabled, set to  
12 mA (resuscitation), up to 1.5 V. After it reaches 1.5 V, it will be set to the trickle1 setting of 70 mA, up to 3.4 V. Once the battery  
is greater 3.4V, the MBATT FET will be closed and the battery will be connected to BP. The buck charger will take control of the  
charging the battery in constant current mode via the CHRCC[3:0] bits, which will default to 550 mA.  
With M  
replaced with a short (GBAT grounded), the battery, and therefore BP, is below the LOW  
[1:0] threshold. This  
BATT  
BATT  
will be detected and the internal trickle path will be used to precharge the battery. The internal trickle will be set to 12 mA  
(resuscitation), up to the 1.5 V level. Once the battery reaches 1.5 V level, the trickle current will transition to the trickle1 setting  
of 70 mA, up to the VBAT_TRKL[1:0] setpoint. When the battery reaches the VBAT_TRKL threshold, the internal trickle charge  
will transition to the trickle2 current set by TRICKLESEL. After the battery is charged to the LOWBATT[1:0] threshold, a turn on  
event is generated and the buck charger will take control of the charging the battery in constant current mode, via the CHRCC[3:0]  
bits, which default to 550 mA.  
Upon connecting an aux charger to the aux charge path the application with a dead the behavior will be different for applications  
with a M  
FET present and for those without a M  
FET.  
BATT  
BATT  
With M  
present, the charger will hold off enabling the system until the aux input current threshold has reached 500 mA  
BATT  
AUXILIM[2:0]. Once it reaches this limit the buck will regulate the BP voltage to 3.6 V. M  
will be open and the internal trickle  
BATT  
charge current source will be enabled, set to 12 mA (resuscitation) up to 1.5 V, after it reaches 1.5 V, it will be set to the trickle1  
setting of 70 mA up to the VBAT_TRKL[1:0] setpoint. Once the battery exceeds 3.4 V, the M FET will be closed and the  
BATT  
battery will be connected to BP. The buck charger will take control of the charging the battery in constant current mode via the  
CHRCC[3:0] bits, which will default to 550 mA. If the aux input current limit does obtain the 500 mA limit, then the system will stay  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
90  
Functional Block Description  
off and the battery will continue to trickle charge until the battery has recovered to the 3.4 V threshold, and then the PMIC will  
power on.  
With M  
replaced by a short (GBAT grounded), the battery, and therefore BP, is below the LOWBATT[1:0] threshold, this will  
BATT  
be detected and the internal trickle path will be used to precharge the battery. The input current limit is set to 100 mA, when the  
VAUX voltage transitions above the VAUXTH threshold and the trickle cycle is started, the trickle current resuscitation current is  
set to 12 mA (resuscitation), until the battery voltage reaches 1.5 V. When the battery is between 1.5 V and VBAT_TRKL, the  
trickle1 current is set to 70 mA. When the battery voltage reaches the VBAT_TRKL threshold, the trickle current will be increased  
to the I  
current. If VAUX drops below the VAUXWEAK threshold, the trickle charger will decrease to the trickle1 setpoint.  
TRICKLE2  
The battery will charge to the LOWBATT threshold and the application will turn on.  
The Precharge timer is set by the PRETMR pin, as shown in Table 89. The precharge will timeout and stop charging. If it did not  
succeed in raising the battery to the LOWBATT[1:0] threshold, the interrupt CHRTIMEEXP will be generated. The precharge  
timer applies to the total time it takes the battery to recover from the dead battery condition (caused by a resuscitation to trickle1  
to trickle2).  
Table 89. Precharge Timer Settings  
PRETMR pin  
Trickle Precharge Timer (Hrs)  
Ground  
VCOREDIG  
Floating  
4.5  
5.5  
6.5  
The charging circuit will stop charging and generate an interrupt once the battery is fully charged. Clearing the CHRCMPLT  
interrupt will immediately start a new charge cycle. To prevent this from immediately starting a new charge cycle, the charger  
should be disabled by setting the CHREN = 0. If the CHRCMPLT interrupt is left asserted and the battery discharges below the  
95.4% of the CHRGCV threshold, the charger will restart. To turn the charger buck off, the CHREN bit must be cleared. The  
charge complete is detected by the charge current dropping below the charge current termination threshold CHRITERM[2:0].  
The MC34708 uses the coulomb counter to determine the end of charge.  
The hardware end of charge termination is enabled by the CHRITERMEN set to a 1. The hardware end of charge termination  
can be disabled by setting the CHRITERMEN to a 0. With CHRITERMEN set to 0, it is up to the software to determine the end  
of charge. The buck charger can be enabled or disabled at the end of charge by setting the SPI bit EOC_BUCK_EN. With  
EOC_BUCK_EN =1, when the battery reaches end of charge, the buck will be enabled. With EOC_BUCK_EN =0, the buck will  
be disabled when the battery reaches end of charge. Additional flexibility allows the battery to be connected or disconnected  
where the M  
FET is present. This allows the charger to be disconnected from the battery, to prevent the battery from float  
BATT  
charging (overcharging). When BATT_ISO_EN is set to a one, it takes priority over the EOC_BUCK_EN bit. With  
BATT_IOS_EN =1, the M FET is opened when the charger detects an end of charge completion. The system will be powered  
BATT  
via the buck charger, regardless the state of EOC_BUCK_EN. To close the M  
BATT_ISO_EN should be set to a 0.  
FET during an end of charge, the  
BATT  
Table 90. End of Charge Operating Mode  
BAT_ISO_EN EOC_BUCK_EN  
Operating Mode  
Buck off in charge complete. If  
MBATT detected, it will be closed  
0 (default)  
0 (default)  
Buck on in charge complete. If  
0
1
1
1
0
1
MBATT detected, it will be closed  
Buck on in charge complete. If  
MBATT detected, it will be opened  
Buck on in charge complete. If  
MBATT detected, it will be opened  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
91  
Functional Block Description  
Table 91. Charge Termination Current Settings  
CHRITERM[2:0]  
Charger Termination Current (mA)  
000  
001  
010  
011  
100  
101  
110  
111  
50  
100  
150  
200  
250  
300  
350  
400  
The charger will turn off the CHRGLEDR LED and illuminate the CHRGLEDG LED when the battery charging is complete. The  
red charge LED CHRGLEDR will be on as long as the charger is charging. During a battery over-temperature, the CHRGLEDR  
LED will continue to stay on. In the following fault conditions, USBOVP, AUXOVP, BATTOVP, CHRTIMEXP, WKVBUSDET, and  
WKAUXDET, the CHRGLEDR LED will blink at the 1.0 Hz rate. Software can take control over the CHRGLEDs by setting the  
CHRGOVRD bit.  
During the constant current/constant voltage charge mode, the charge timer is running (CHRTMR). If the CHRTMR expires  
before the CHRITERM limit is reached, the charging will be stopped and the CHRTIMEEXP interrupt generated. The charge timer  
is programmable by the CHRTMR[3:0] SPI bits. It defaults to 12 hours on power up.  
Table 92. Charger Timer Settings  
Charge Time  
(Hrs)  
Charge Time  
(Hrs)  
CHRGTMR [3:0]  
CHRGTMR [3:0]  
0000 (default)  
0001  
1
2
3
4
5
6
7
8
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
9
10  
11  
12  
13  
14  
15  
16  
0010  
0011  
0100  
0101  
0110  
0111  
The detection of the transistor M  
placed versus M  
not placed is reflected through the CHRGSSS MBATTSNS bit. A logic  
BATT  
BATT  
1 indicates M  
is detected. If M  
not placed, the GBAT pin must be left grounded.  
BATT  
BATT  
The charging circuit will stop charging if the die temperature of the IC exceeds the thermal protection shutdown threshold. To re-  
enable the charger, a turn on event is required.  
7.6.10.3 Factory Mode  
In factory mode, power is provided to the application with no battery present. This is only available on the USB charge path. It is  
not a situation which should occur in the field. The factory mode is differentiated from a USB Host by and in addition to USBDET,  
a UID being pulled to ground via a 64.9 k resistor, see Mini/Micro USB Switch.  
With M  
present, the application will be powered with the buck charger input current limit set to a typical 950 mA, and the  
BATT  
constant current charge setting to 950 mA. If the ILIM_1P5 SPI bit is set, the constant current charger current setting will be set  
to 1500 mA, as will the input current limit. The transistor M is opened (non conducting) to separate BP from BATT, and the  
BATT  
internal trickle charge current source is not enabled. All the charger timers are disabled.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
92  
Functional Block Description  
With M  
replaced by short, GBAT is grounded. The application powers up and the buck input current limit is set to 950 mA,  
BATT  
the constant current setting. All the charger timers are disabled. If the ILIM_1P5 SPI bit is set, the constant current charger current  
setting will be set to 1500 mA, as will the input current limit.  
In factory mode, input current regulation and thermal fold back regulation will be disabled. The input mode regulation interrupts  
and the thermal fold back will assert, when the condition exists (if enabled and unmasked). With these interrupts, the processor  
can take action to reduce the system current.  
7.7  
Analog to Digital Converter  
The ADC core is a 10 bit converter. The ADC core and logic run at an internally generated frequency of approximately 1.33 MHz.  
The ADC is supplied from VCORE. The ADC core has an integrated auto calibration circuit which reduces the offset and gain  
errors.  
7.7.1  
Input Selector  
The ADC has 16 input channels. Table 93 gives an overview of the characteristics of each of these channels.  
Table 93. ADC Inputs  
Channel  
Signal read  
Battery Voltage (BATTISNSN)  
Battery Current (BATTISNSN-BATTISNSP)  
Application Supply (BPSNS)  
Die temperature  
Input Level  
Scaling  
Scaled Version  
0
1
0 – 4.8 V  
-80 mV – +80 mV (60)  
0 to 4.8 V  
-40 – 150 °C  
0 – 10 V  
/2  
x15  
/2  
0 – 2.4 V  
-1.2 to +1.2 V  
0 – 2.4 V  
1.2 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
Reserved  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
2
3
Aux Charger Voltage (VAUX)  
USB Voltage (VBUS)  
Reserved  
4
x0.24  
x0.4  
5
0 – 6.0 V  
6
Reserved  
0 – 2.4 V  
Reserved  
x1  
Battery Thermistor (BPTHERM)  
Coincell Voltage  
7
8
0 – 3.6 V  
X2/3  
x1  
ADIN9  
9
0 – 2.4 V  
ADIN10  
10  
11  
12  
13  
14  
15  
0 – 2.4 V  
x1  
ADIN11  
0 – 2.4 V  
x1  
ADIN12/TSX1  
0 – 2.4 V  
x1/x2  
x1/x2  
x1/x2  
x1/x2  
ADIN13/TSX2  
0 – 2.4 V  
ADIN14/TSY1  
0 – 2.4 V  
ADIN15/TSY2  
0 – 2.4 V  
Notes  
60. Equivalent to -4.0 A to +4.0 A of current with a 20 mOhm sense resistor  
Some of the internal signals are first scaled to adapt the signal range to the input range of the ADC. The battery current is  
indirectly read out by the voltage drop over the resistor in the charge path and battery path respectively. For details on scaling,  
see Dedicated Readings.  
Table 94. ADC Input Specification  
Parameter  
Condition  
Min Typ Max Units  
Source Impedance  
No bypass capacitor at input  
-
-
-
-
5.0  
30  
kOhm  
kOhm  
Bypass capacitor at input 10 nF  
MC34708  
Analog Integrated Circuit Device Data  
93  
Freescale Semiconductor  
Functional Block Description  
When considerately exceeding the maximum input of the ADC at the scaled or unscaled inputs, the reading result will return a  
full scale. It has to be noted however, that this full scale does not necessarily yield a 1022 DEC reading due to the offsets and  
calibration applied. The same applies for when going below the minimum input where the corresponding 0000 DEC reading may  
not be returned.  
7.7.2  
Control  
The ADC parameters are programmed by the processor via the SPI. When a reading sequence is finished, an interrupt  
ADCDONEI is generated. The interrupt can be masked with the ADCDONEM bit.  
The ADC is automatically calibrated every time the PMIC is powered on.  
The ADC is enabled by setting ADEN bit high. The ADC can start a series of conversions through SPI programming by setting  
the ADSTART bit. If the ADEN bit is low, the ADC will be disabled and in low power mode. The ADC is automatically calibrated  
every time PMIC is powered.  
The conversions will begin after a small analog synchronization of up to 30 microseconds, plus a programmable delay from 0  
(default) up to 600 S, by programming the bits ADDLY1[3:0]. The ADDLY2[3:0] controls the delay between each of the  
conversions from 0 to 600 S. ADDLY3[3:0] controls the delay after the final conversion, and is only valid when ADCONT is high.  
ADDLY1, 2, and 3 are set to 0 by default.  
Table 95. ADDLYx[3:0]  
ADDLYx[3:0]  
Delay in s  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
40  
80  
120  
160  
200  
240  
280  
320  
360  
400  
440  
480  
520  
560  
600  
There is a max of 8 conversions that will take place when the ADC is started. The register ADSELx[3:0] selects the channel which  
the ADC will read and store in the ADRESULTx register. The ADC will always start at the channel indicated in ADSEL0, and read  
up to and including the channel set by the ADSTOP[2:0] bits. For example, when ADSTOP[2:0] = 010, it will request the ADC to  
read channels indicated in ADSEL0, ADSEL1, and ADSEL2. When ADSTOP[2:0] = 111, all eight channels programmed by the  
value in ADSEL0-7 will be read. When the ADCONT bit is set high, it allows the ADC to continuously loop and read the channels  
from address 0 to the stop address programmed in ADSTOP. By default, the ADCONT is set low (disabled). In the continuous  
mode, the ADHOLD bit will allow the software to hold the ADC sequencer from updating the results register while the ADC results  
are read. Once the sequence of A/D conversions is complete, the ADRESULTx results are stored in 4 SPI registers (ADC 4 -  
ADC 7).  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
94  
Functional Block Description  
7.7.3  
Dedicated Readings  
7.7.3.1  
Channel 0 Battery Voltage  
The battery voltage is read at the BATTISNSN pin on channel 0. The battery voltage is first scaled as V(BATT)/2 to fit the input  
range of the ADC.  
Table 96. Battery Voltage Reading Coding  
Conversion Code  
Voltage at Input ADC in V Voltage at BATTISNSN in V  
ADRESULTx[9:0]  
1 111 111 111  
1 000 010 100  
0 000 000 000  
2.400  
1.250  
0.000  
4.800  
2.500  
0.000  
7.7.3.2  
Channel 1 Battery Current  
Battery current is only valid after a battery voltage reading. The current flowing into and out of the battery can be read via the  
ADC by monitoring the voltage drop over the sense resistor between BATTISNSN and BATTISNSP.  
The voltage difference between BATTISNSN and BATTISNSP is amplified to fit the ADC input range as V(BATTISNSP -  
BATTISNSN)*15. Since battery current can flow in both directions, the conversion is read out in 2’s complement. Positive  
readings correspond to the current flowing into the battery, and negative readings to the current flowing out of the battery.  
Table 97. Battery Current Reading Coding  
Conversion  
Code ADRESULTx [9:0]  
Voltage at input  
ADC in mV  
Current through  
20 mOhm in mA  
BATTISNSN–BATTISNSP in mV  
Current Flow  
0 111 111 111  
0 000 000 001  
0 000 000 000  
1 111 111 111  
1 000 000 000  
1200.00  
2.346  
0
80  
0.156  
0
4000  
7.813  
0
To battery  
To battery  
-
-2.346  
-1200.00  
-0.156  
-80  
7.813  
4000  
From battery  
From battery  
The value of the sense resistor used determines the accuracy of the result, as well as the available conversion range. Note that  
excessively high values can impact the operating life of the device due to extra voltage drop across the sense resistor.  
7.7.3.3  
Channel 2 Application Supply  
The application supply voltage is read at the BP pin on channel 2. The battery voltage is first scaled as V(BP)/2 to fit the input  
range of the ADC.  
Table 98. Application Supply Voltage Reading Coding  
Conversion Code  
Voltage at Input ADC in V  
Voltage at BP in V  
ADRESULTx[9:0]  
1 111 111 111  
1 000 010 101  
0 000 000 000  
2.400  
1.250  
0.000  
4.800  
2.500  
0.000  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
95  
Functional Block Description  
7.7.3.4  
Channel 3 Die Temperature  
The relation between the read out code and temperature is given in Table 99.  
Table 99. Die Temperature Voltage Reading  
Parameter  
Min  
Typ  
Max  
Unit  
Die Temperature Read Out Code at 25 °C  
Slope temperature change per LSB  
Slope error  
-
-
-
680  
+0.426  
-
-
-
Decimal  
°C/LSB  
%
5.0  
The Actual Die Temperature is obtained as follows: Die Temp = 25 + 0.426 * (ADC Code - 680)  
7.7.3.5  
Channel 4 AUX Charger Voltage  
The aux charger voltage is measured at the VAUX pin on channel 4. The aux charger voltage is first scaled in order to fit the input  
range of the ADC by multiplying by 0.24.  
7.7.3.6  
Channel 5 VBUS Voltage  
The VBUS voltage is measured at the VBUS pin on channel 5. The VBUS voltage is first scaled in order to fit the input range of  
the ADC by multiplying by 0.4.  
7.7.3.7  
Channel 6 Reserved  
Channel 6 is reserved.  
7.7.3.8  
Channel 7 Battery Thermistor  
Channel 7 is used to read out the battery pack thermistor. The thermistor is biased to NTCREF (1.5 V) with an external pull-up.  
The THERM SPI bit must be set high to enable the NTCREF voltage. To save current when the thermistor reading is not required,  
the bias can be disabled by setting the THERM SPI bit low. A resistor divider network should assure the resulting voltage falls  
within the ADC input range, especially when the thermistor check function is used. See Serial Interfaces.  
When an application is on and supplied by the charger, a battery removal can be detected by a battery thermistor presence check.  
When the thermistor terminal becomes high-impedance, the battery is considered removed. This detection function is available  
at the BPTHERM input and can be enabled by setting the BATTDETEN bit. The voltage at BPTHERM is compared to the  
NTCREF voltage, and when the voltage exceeds the battery removal detect threshold, the sense bit BATTDETBS is set high,  
and after a debounce period the BATTDETBI interrupt is generated.  
Table 100. Battery Removal Detect Specification  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Battery Removal  
Detect Threshold  
31/32 *  
NTCREF  
V
-
-
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
96  
Functional Block Description  
7.7.3.9  
Channel 8 Coin Cell Voltage  
The voltage of the coin cell connected to the LICELL pin can be read on channel 8. Since the voltage range of the coin cell  
exceeds the input voltage range of the ADC, the LICELL voltage is scaled as V(LICELL)*2/3. See .  
Table 101. Coin Cell Voltage Reading Coding  
Conversion Code  
Voltage at ADC input (V) Voltage at LICELL (V)  
ADRESULTx[9:0]  
1 111 111 110  
1 000 000 000  
0 000 000 000  
2.400  
1.200  
0.000  
3.6  
1.8  
0
7.7.3.10 Channel 9-11 ADIN9-ADIN11  
There are 3 general purpose analog input channels that can be measured through the ADIN9-ADIN11 pins.  
7.7.3.11 Channel 12-15 ADIN12-ADIN15  
If the touch screen is not used, the inputs TSX1, TSX2, TSY1, and TSY2 can be used as general purpose inputs. They are  
respectively mapped on ADC channels 12, 13, 14, and 15.  
7.7.4  
Touch Screen Interface  
The touch screen interface provides all circuitry required for the readout of a 4-wire resistive touch screen. The touch screen X  
plate is connected to TSX1 and TSX2, while the Y plate is connected to TSY1 and TSY2. A local supply TSREF will serve as a  
reference. Several readout possibilities are offered.  
If the touchscreen is not used, the inputs TSX1, TSX2, TSY1, and TSY2 can be used as general purpose inputs. They are  
respectively mapped on ADC channels 12, 13, 14, and 15.  
Touch Screen Pen detection bias can be enabled via the TSPENDETEN bit in the AD0 register. When this bit is enabled and a  
pen touch is detected, the TSPENDET bit in the Interrupt Status 0 register is set and the INT pin is asserted - unless the interrupt  
is masked. Pen detection is only active when TSEN is low.  
The reference for the touch screen (Touch Bias) is TSREF and is powered from VCORE. During touch screen operation, TSREF  
is a dedicated regulator. No loads other than the touch screen should be connected here. When the ADC performs non touch  
screen conversions, the ADC does not rely on TSREF and the reference is disabled.  
The readouts are designed such that the on chip switch resistances are of no influence on the overall readout. The readout  
scheme does not account for contact resistances, as present in the touch screen connectors. The touch screen readings will  
have to be calibrated by the user or the factory, where one has to point with a stylus to the opposite corners of the screen. When  
reading the X-coordinate, the 10-bit ADC reading represents a 10-bit coordinate, with ‘0’ for a coordinate equal to X-, and full  
scale ‘1023’ when equal to X+. When reading the Y-coordinate, the 10-bit ADC reading represents a 10-bit coordinate, with ‘0’  
for a coordinate equal to Y-, and full scale ‘1023’ when equal to Y+. When reading contact resistance, the 10-bit ADC reading  
represents the voltage drop over the contact resistance created by the known current source, multiplied by 2.  
The X-coordinate is determined by applying TSREF over the TSX1 and TSX2 pins, while performing a high-impedance reading  
on the Y-plate through TSY1. The Y-coordinate is determined by applying TSREF between TSY1 and TSY2, while reading the  
TSX1 pin. The contact resistance is measured by applying a known current into the TSY1 pin of the touch screen and through  
the TSX2 pin, which is grounded. The voltage difference between the two remaining terminals TSY2 and TSX1 is measured by  
the ADC, and equals the voltage across the contact resistance. Measuring the contact resistance helps determine if the touch  
screen is touched with a finger or a stylus.  
The TSSELx[1:0] allows the application processor to select its own reading sequence. The TSSELx[1:0] determines what is read  
during the touch screen reading sequence, as shown in Table 102. The Touchscreen will always start at TSSEL0 and read up  
to and including the channel set by TSSEL at the TSSTOP[2:0] bits. For example when TSSTOP[2:0] = 010, it will request the  
ADC to read channels indicated in TSSEL0, TSSEL1, and TSSEL2. When TSSTOP[2:0] = 111, all eight addresses will be read.  
MC34708  
Analog Integrated Circuit Device Data  
97  
Freescale Semiconductor  
Functional Block Description  
Table 102. Touch Screen Action Select  
TSSELx[1:0]  
Signals Sampled  
00  
01  
10  
11  
Dummy to discharge TSREF cap  
X plate  
Y –plate  
Contact  
The touch screen readings can be repeated, as in the following example readout sequence, to reduce the interrupt rate and to  
allow for easier noise rejection. The dummy conversion inserted between the different readings allows the references in the  
system to be pre-biased for the change in touch screen plate polarity. It will read out as ‘0’.  
A touchscreen reading will take precedence over an ADC sequence. If an ADC reading is triggered during a touchscreen event,  
the ADC sequence will be overwritten by the Touchscreen data.  
The first Touch screen conversion can be delayed from 0 (default) to 600 s by programming the TSDLY1[3:0] bits. The  
TSDLY2[3:0] controls the delay between each of the touch screen conversions from 0 to 600 s. TSDLY[2:0] sets the delay after  
the last address is converted. TSDLY1, 2, and 3 are set to 0 by default.  
Table 103. TSDLYx[3:0]  
TSDLYx[3:0]  
Delay in uS  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
40  
80  
120  
160  
200  
240  
280  
320  
360  
400  
440  
480  
520  
560  
600  
To perform a touch screen reading, the processor must do the following:  
• Enable the touch screen with TSEN  
• Select the touch screen sequence by programming the TSSEL0-TSSEL7 SPI bits.  
• Program the TSSTOP[2:0]  
• Program the delay between the conversion via the TSDLY1 and TSDLY2 settings.  
• Trigger the ADC via the TSSTART SPI bit  
• Wait for an interrupt indicating the conversion is done TSDONEI  
• And then read out the data in the ADRESULTx registers  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
98  
Functional Block Description  
7.7.5  
ADC Specifications  
Table 104. ADC Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol Characteristic  
Min  
Typ  
Max  
Unit Notes  
ADC  
Conversion Current  
-
1.0  
-
mA  
V
Converter Core Input Range  
VADCIN  
• Single ended voltage readings  
• Differential readings  
0.0  
-
-
2.4  
1.2  
-1.2  
Conversion Time per channel  
Integral Non-linearity  
Differential Non-linearity  
Zero Scale Error (Offset)  
Full Scale Error (Gain)  
Drift over temperature  
Turn on/off time  
tCONVERT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
3.0  
1.0  
5.0  
10  
1.0  
31  
s  
LSB  
LSB  
LSB  
LSB  
LSB  
s  
tON-OFF-ADC  
Source Impedance  
ZSOURCE  
k  
• No bypass capacitor at input  
• Bypass capacitor at input 10 nF  
-
-
-
-
5.0  
30  
BATTERY CURRENT READING(61)  
Amplifier Gain  
19  
-2.0  
-
20  
-
21  
2.0  
-
Amplifier Offset  
mV  
Sense Resistor  
20  
m  
DIE TEMPERATURE VOLTAGE READING  
Die Temperature Read Out Code at 25 °C  
-
-
-
-
680  
0.426  
-
-
-
Decimal  
°C/LSB  
%
Slope temperature change per LSB  
Slope error  
5.0  
-
VBATTREMTH  
31/32 *  
NTCREF  
V
Battery Removal Detect Threshold  
Notes  
61. Amplifier Bias Current accounted for in overall ADC current drain  
MC34708  
Analog Integrated Circuit Device Data  
99  
Freescale Semiconductor  
Functional Block Description  
7.8  
Auxiliary Circuits  
7.8.1  
General Purpose I/Os  
The MC34708 contains 4 configurable GPIO input/outputs for general purpose use. When configured as outputs, they can be  
configured as open-drain (OD) or CMOS (push-pull outputs). These GPIOs are low voltage capable (1.2 or 1.8 V). In open drain  
configuration these outputs can only be pulled up to 2.5 V maximum.  
Each individual GPIO has a dedicated 16-bit control register. Table 105 provides detailed bit descriptions.  
Table 105. GPIOLVx Control  
SPI Bit  
Description  
DIR  
GPIOLVx direction  
0: Input (default)  
1: Output  
DIN  
DOUT  
Input state of the GPIOLVx pin  
0: Input low  
1: Input High  
Output state of GPIOLVx pin  
0: Output Low  
1: Output High  
HYS  
Hysteresis  
0: CMOS in  
1: Hysteresis (default)  
DBNC[1:0]  
GPIOLVx input debounce time  
00: no debounce (default)  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
INT[1:0]  
GPIOLVx interrupt control  
00: None (default)  
01: Falling edge  
10: Rising edge  
11: Both edges  
PKE  
ODE  
DSE  
PUE  
Pad keep enable  
0: Off (default)  
1: On  
Open drain enable  
0: CMOS (default)  
1: OD  
Drive strength enable  
0: 4.0 mA (default)  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
1: pull-up/down on (default)  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
100  
Functional Block Description  
Table 105. GPIOLVx Control  
SPI Bit  
Description  
PUS[1:0]  
Pull-up/Pull-down enable  
00: 10 K active pull-down  
01: 10 K active pull-up  
10: 100 K active pull-down  
11: 100 K active pull-up (default)  
SRE[1:0]  
Slew rate enable  
00: slow (default)  
01: normal  
10: fast  
11: very fast  
x= 0, 1, 2, or 3  
7.8.2  
PWM Outputs  
There are two PWM outputs on the MC34708 PWM1 and PWM2 and which are controlled by the PWMxDUTY and  
PWMxCLKDIV registers shown in Table 106.The base clock will be the 2.0 MHz divided by 32.  
Table 106. PWMx Duty Cycle Programming  
PWMxDC[5:0]((62)  
)
Duty Cycle  
000000  
000001  
0/32, Off (default)  
1/32  
010000  
16/32  
31/32  
011111  
1xxxxx  
32/32, Continuously On  
Notes  
62. “x” represent 1 and 2  
32.768 kHz Crystal Oscillator RTC Block Description and Application Information  
Table 107. PWMx Clock Divider Programming  
PWMxCLKDIV[5:0]((63)  
)
Duty Cycle  
000000  
000001  
Base Clock  
Base Clock / 2  
001111  
Base Clock / 16  
111111  
Base Clock / 64  
Notes  
63. “x” represent 1 and 2  
MC34708  
Analog Integrated Circuit Device Data  
101  
Freescale Semiconductor  
Functional Block Description  
7.8.3  
Mini/Micro USB Switch  
The MC34708 is able to multiplex the 5 pins to support UART and high-speed USB2.0 data communications, a mono/stereo-  
audio/microphone headset, or other accessories. To identify what accessory is plugged into the Mini or Micro-USB connector,  
the MC34708 supports various detection mechanisms, including the VBUS detection and ID detection. A highly accurate 5-bit  
ADC is offered to distinguish the 32 levels of ID resistance, and to identify the button pressed in a cord remote control, while an  
Audio Type 1 cable is attached. After identifying the accessory attached, the MC34708 configures itself to support the accessory  
2
and interrupts a host via the INT pin. The processor can evaluate what caused the interrupt via the SPI/I C bus. The MC34708  
is also able to identify some non-supported accessories, such as video cables, phone-powered devices, etc.  
GND  
To/From  
Mini-USB  
Connector  
ID  
Detect  
ID  
VBUS  
GOTG  
MVBUS  
MPD  
VBUSVIN  
VBUS  
Detect  
M0  
M1  
VUSB  
Regulator  
MOTG  
VINUSB  
VUSB  
SWBST (5.0 V boosted supply)  
3.3 V USB Analog supply  
VINUSB2  
VUSB2  
BP  
VUSB2  
Regulator  
2.5V USB Analog supply  
TXD  
RXD  
DP  
To/from  
Mini-USB  
Connector  
UART  
Switches  
DM  
To/From  
Application  
Processor  
D+  
D-  
USB  
Switches  
SPKR  
To/From  
Audio IC  
SPKRL  
Audio  
Switches  
MIC  
VBUS  
Figure 22. USB Interface  
7.8.3.1  
Supplies  
The MC34708 provides the regulators required to power the PHY in the i.MX50, i.MX51, and i.MX53 processors, which are  
VUSB2 (detailed Serial Interfaces), and VUSB. The IC also provides the 5.0 V supply for USB OTG operation. The MC34708 is  
capable of identifying the type of the external power source, and selecting one of two battery charge current levels, according to  
the type. Refer to Serial Interfaces.  
The VUSB regulator is used to supply 3.3 V to the external USB PHY. The input to the VUSB regulator can be supplied from the  
VBUS wire of the cable when supplied by a host (PC or Hub), or by the SWBST voltage via the VINUSB pin. The VUSB regulator  
is powered from the SWBST boost supply to ensure OTG current sourcing compliance through the normal discharge range of  
the main battery. The VUSBSEL SPI bit is used to make the selection between a host or OTG mode operation.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
102  
Functional Block Description  
Table 108. VUSB Input Source Control (64)  
Parameter  
Value  
Function  
Powered by Host: VBUS powers VUSB regulator (switch M0 closed and M1 open)  
0
1
VUSBSEL  
OTG mode: SWBST internally switched to supply the VUSB regulator (switch M1 closed, M0 open), and  
SWBST will drive VBUS from the VINUSB pin as long as SPI bit OTGEN is set = 1.  
Notes  
64. VUSBSEL = 1 and OTGEN = 1 only close the switch between the VINUSB and VBUS pins, but do not enable the SWBST boost  
regulator (which should be enabled with SWBSTEN = 1)  
The VUSB regulator defaults to ON when PUMS4:1 = [0100], and is supplied by the SWBST output. As shown in Figure 22 above  
this means that the M0 and MOTG switches are open, while the M1 switch is closed.  
When PUMS4:1 is not equal to [0100], the VUSB regulator can not be enabled unless 5.0 V is present on the VBUS pin. If VBUS  
is detected during a cold start, then the VUSB regulator will be enabled and powered ON in the sequence shown in Serial  
Interfaces, and it will default to be supplied by the VBUS pin. This means that switch M0 is closed and switch M1 and MOTG in  
Figure 22 are open. If VBUS is not detected at cold start, then the VUSB regulator cannot be enabled. If VBUS is detected later,  
the VUSB regulator will be enabled automatically be enabled and supplied from the VBUS pin. The VUSBEN SPI bit is initialized  
at startup, based on the PUMS4:1 configuration. With PUMS4:1 not equal to [0100], the VUSBEN SPI bit will default to a one on  
power up and will reset to a 1, when either RESETB is valid or VBUS is invalid. This allows the VUSBEN regulator to be enabled  
automatically if the VUSB regulator was disabled by software. With PUMS4:1 equal to [0100], the VUSBEN bit will be enabled in  
the power up sequence.  
The MC34708 also supports USB OTG mode by supplying 5.0 V to the VBUS pin. The OTGEN SPI bit along with the VUSBSEL  
SPI bit, control switching the SWBST to drive VBUS in OTG mode. When OTGEN = 1 and VUSBSEL = 1, SWBST will be driving  
the VBUS (switch M1 and MOTG are closed, and the M0 switch is open). In OTG mode, the MVBUS switch should be opened  
and the MPD switch closed to isolate the charge input from VBUS. When OTG mode is disabled, the switch (MOTG) from  
VINUSB to VBUS will be open.  
In OTG mode, the VUSB regulator is enabled by setting the VUSBEN SPI bit to a one. When SWBST is supplying the VBUS pin  
(OTG Mode), it will generate a USBDET interrupt. The USBDET interrupt while in OTG mode should not be interpreted as being  
powered by the host by software.  
Table 109. VUSB/OTG Switch Configuration  
Mode  
VUSB powered from VBUS pin  
VUSB powered from VINUSB pin  
Invalid option  
OTGEN VUSBSEL Switches Enabled (Closed) Switches Disabled (Open)  
0
0
1
1
0
1
0
1
M0  
M1  
M1, MOTG  
M0, MOTG  
OTG Mode (VUSB powered from VINUSB pin and SWBST  
M1, MOTG  
M0, MVBUS, MPD  
Since VBUS is shared with the charger input at the board level (see Serial Interfaces), the VBUS node must be able to withstand  
the same high voltages as the charger. The VUSB regulator is disabled and switches M0 and MOTG are opened in over-voltage  
conditions.  
MC34708  
Analog Integrated Circuit Device Data  
103  
Freescale Semiconductor  
Functional Block Description  
Table 110. VUSB Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
BUS  
A
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VUSB REGULATOR  
Operating Input Voltage Range VINMIN to VINMAX  
• Supplied by VBUS  
VUSBIN  
V
4.4  
-
5.0  
-
5.25  
5.75  
• Supplied by SWBST  
Operating Current Load Range ILMIN to ILMAX  
Bypass Capacitor Value Range  
IUSB  
0.0  
-
100  
-
mA  
F  
COVUSB  
ESRVUSB  
0.65  
2.2  
Bypass Capacitor ESR  
• 10 kHz - 1.0 MHz  
0.0  
-
0.1  
VUSB ACTIVE MODE - DC  
Output Voltage VOUT  
VUSB  
V
mV/mA  
mV  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMA  
VNOM - 4%  
3.3  
VNOM + 4%  
Load Regulation  
VUSBLOPP  
VUSBLIPP  
VUSBSCTH  
tOFF-VUSB  
• 0 < IL < ILMAX from DM / DP, For any VINMIN < VIN < VINMAX  
-
1.0  
-
20  
-
Line Regulation  
• VINMIN < VIN < VINMAX, For any ILMIN < IL < ILMAX  
-
-
-
-
Short-circuit Protection threshold  
mA  
• VINMIN < VIN < VINMAX, Short-circuit VOUT to ground  
IMAX+20%  
Turn-off Time  
sec  
• Disable to 0.8 V, per USB OTG specification parameter  
VA_SESS_VLD VIN = VINMIN, VINMAX IL = 0  
-
1.3  
VUSB ACTIVE MODE - AC  
PSRR - IL = 75% of ILMAX 20 Hz to 20 kHz  
VUSBPSRR  
dB  
• VIN = VINMIN + 100 mV  
35  
40  
-
Output Noise - VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 50 kHz  
VUSBNOISE  
V/Hz  
-
-
-
-
1.0  
0.2  
• > 50 kHz – 1.0 MHz  
7.8.3.2  
Accessory Identification  
The PC34708 monitors both the ID pin and the VBUS pin. When an accessory attachment is detected, the accessory  
identification state machine will enter Active mode to start the identification flow. The ID detection state machine will determine  
what ID resistor is attached and the Power Supply Type Identification or PSTI circuit will determine what type of power supply is  
connected.  
An identification conclusion is made when the identification flow is finished. The corresponding bit in the USB Device Type/Status  
register is set to indicate the device type, and the ATTACH bit in the USB Interrupt Status register is set to inform the baseband.  
If the attached accessory can't be identified, the Unknown_Atta bit in the USB Interrupt Status register is set.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
104  
Functional Block Description  
There are three types of accessories that the MC34708 will automatically detect.  
1. Recognized and supported. The following accessories are identified and configured automatically: USB port, dedicated  
charger, USB charger, A/V charger, 5-wire type 1 and type 2 chargers, UART, Audio Type 1 cable, TTY accessory, USB  
jig cables, and UART jig cables.  
2. Recognized but not supported. The following accessories can be identified but are not supported by the MC34708 PMIC:  
A/V cables, Phone-Powered Devices, and Audio Type 2 cables.  
3. Not recognized accessories. All accessories that are not recognized are identified as unknown accessories.  
Reset  
Yes  
VBUS_DET?  
No  
Active  
Detection  
Delay  
(Identification  
Flow)  
Yes  
Yes  
ID_FLOAT?  
ID_FLOAT?  
No  
No  
Standby  
DP 0.6V  
No  
ID_DET_EN  
D?  
Yes  
RID < 100?  
Yes  
Yes  
Yes  
DM > 0.8V  
ADC = 00000  
No  
Yes  
No  
Start ADC to  
measure RID  
No  
No  
Video cable?  
RID = 75?  
DM < 0.4V?  
Yes  
Yes  
USB-OTG  
No  
A/V_CHG = 1  
RID = Video  
cable?  
Yes  
Yes  
No  
ID_FLOAT?  
USB host  
ID_FLOAT  
DM 0.6V  
No  
Video  
cable  
No  
UART jig  
cable w/  
boot option  
Yes RID = UART  
jig w/ boot?  
ID_DET_EN  
D?  
Dedicated  
Charger  
No  
DP < 0.4V?  
Yes  
No  
No  
ID_DET_EN  
D?  
Audio  
Type 1  
Yes RID = Audio  
No  
Yes  
Type 1 ?  
UART jig  
cable w/o  
boot option  
RID = UART  
jig w/o boot?  
Yes  
Yes  
Yes  
No  
USB  
Charger  
RID  
=
Yes  
Yes  
TTY  
Converter  
Yes  
RID = TTY  
Converter?  
440k?  
USB jig  
cable w/  
No  
RID = USB  
jig w/ Boot?  
Yes  
No  
boot option  
Phone  
Powered  
Device  
No  
RID  
=
No  
102k?  
RID  
=
5-Wire  
Charger  
UART  
Cable  
Yes RID = UART  
USB jig  
cable w/o  
boot option  
200k?  
No  
Cable?  
RID = USB  
Yes  
jig w/o Boot?  
No  
No  
Audio  
Type2  
Cable  
RID = Audio  
Type2  
Cable?  
No  
Yes  
No  
Unknown  
No  
Stuck Key  
Process  
Yes  
RID = remote  
key?  
Figure 23. Identification Flow State Diagram  
7.8.3.3  
Id Identification  
A comparator monitors the ID pin impedance to ground. When a resistor less than 1.0 Mis connected between the ID line and  
the ground, the ID_FLOATS bit in the Interrupt Sense 0 register will be set to 0. When the resistor is removed, the ID_FLOATS  
bit will be set to 1. A falling edge of this bit starts the identification flow, and a rising edge starts the detachment detection flow.  
The ID_DET_END signal is used to indicate the end of the identification.  
After the ID_FLOATS bit is set to 0, the identification flow is started, and an ADC_EN signal is set to enable an ADC conversion.  
A 5-bit ID ADC is used to measure the ID resistance. The ADC is also used to identify what button is pressed in a cord remote  
control when the attached accessory is an Audio Type 1 cable.  
When the conversion completes, an ADC_STATUS bit is set and the ADC result value is sent to the ADC Manual SW/Result  
register. The ADC_EN signal is cleared automatically after the conversion finishes.  
If the ID resistance is below 2.0 k, the ADC Result is set to 00000. If the ID line is floating, the ADC Result is set to 11111.  
MC34708  
Analog Integrated Circuit Device Data  
105  
Freescale Semiconductor  
Functional Block Description  
7.8.3.4  
Stuck Key Identification  
When the ADC conversion is finished and the ADC result is found to be a value corresponding to a remote control key of Audio  
Type 1 cable, a stuck key process flow will be initiated to determine whether a remote control key is stuck and to inform the  
baseband of the stuck key status.  
Figure 24 shows the stuck key process flow. If the stuck key is detected to be released within 1.5 s, the flow will return to re-start  
the ID identification flow. Otherwise, a Stuck_Key Interrupt is set. When the key is released, a Stuck_Key_RCV Interrupt is  
generated, and the identification flow is re-started to determine the ID resistance of the attached cable.  
Figure 24. Stuck Key Process Flow Diagram  
7.8.3.5  
Power Supply Type Identification  
The PSTI (Power Supply Type Identification) circuit is used in Active mode to identify the type of the connected power supply.  
The PSTI circuit first detects whether the DP and DM pins are shorted. If the DP and DM pins are found to be shorted, the PSTI  
circuit will continue to determine whether DP and DM pins are a forward short or reverse short. The detection result, together  
with the ID detection result, is used to determine what powered accessory is connected.  
The PSTI circuit is shown in Figure 25. Its operation is described as follows.  
When the MC34708 detects that the VBUS_DET bit is set, the PSTI identification flow starts.  
1. Wait for a Detection Delay t (programmable in the USB Time Delay register).  
D
2. During t , check to see whether ID_FLOAT = 0. If yes, then wait for the ID_DET_END to be set and check whether the  
D
attached accessory is an A/V cable.  
3. If the result is an A/V cable, set the A/V_CHG and ATTACH interrupt bits, as well as the A/V bit in USB Device Type/Status  
register, to inform the baseband and finish the identification flow. If not, go to step 4.  
4. Enable the PSTI (PSTI_EN set to '1') at t1. When PSTI_EN rises, the SW1 switch is turned on to drive the VDAT_SRC  
data source voltage to DP line. In the meantime, the SW2 switch is turned on so the IDAT_SINK current source sinks a  
current from the DM line. At t2, the PSTI starts to compare the DM line voltage with references VDAT_REF and VCR_REF.  
If the DM line voltage stays above VDAT_REF, but below VCR_REF for 20 ms continuously before t4, which means that  
the DP and DM pins are shorted, the DP/DM_short signal is set to '1' at t3. Go to step 5. If the DP and DM are not shorted,  
the VBUS detection completes at t4 and the VBUS_DET_END is set to '1'. The state machine will go to step 6 to  
determine the type of accessory, based on the DM voltage.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
106  
Functional Block Description  
5. The state machine checks if the ID pin is floating. If the ID pin is not floating at t3, the PSTI circuit turns off SW1 and SW2,  
and the VBUS detection completes. The VBUS_DET_END is set to '1' and the state machine goes to step 6. If the ID pin  
is floating at t3, the PSTI circuit turns off SW1 and SW2, and then turns on SW3 and SW4 to force VDAT_SRC to the DM  
pin. If the DP pin is between the two thresholds VDAT_REF and VCR_REF for 20 ms continuously before t6, it means that  
the DP and DM pins are a reverse short.The DP/DM_reverse_short is set to '1' at t5, the SW3 and SW4 are turned off,  
VBUS_DET_END is set to '1', and the state machine goes to step 6. If DP and DM are not a reverse short, the VBUS  
detection completes at t6, SW3 and SW4 are turned off, the VBUS_DET_END is set to '1', and the state machine goes to  
step 6.  
6. The state machine decides on the attached accessory, based on the ID identification, and the VBUS identification results.  
Figure 25. Power Supply Type Identification Circuit Block Diagram  
Figure 26. Operating Waveforms for the PSTI Circuit  
MC34708  
Analog Integrated Circuit Device Data  
107  
Freescale Semiconductor  
Functional Block Description  
Table 111. Timing Delays for PSTI Circuit  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
BUS  
A
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Switching Delay  
ms  
tD  
t1 - t0 (tD in Default Value is TD = 0100)  
-
-
100  
200  
300  
400  
500  
...  
-
-
• TD = 0000  
• TD = 0001  
• TD = 0010  
• TD = 0011  
• TD = 0100  
• ...  
-
-
-
-
-
-
...  
-
...  
-
• TD = 1111  
1600  
t2 - t1  
tSW  
tSW  
tSW  
tSW  
20  
20  
-
-
-
-
-
-
-
-
ms  
ms  
ms  
ms  
t3 - t2  
t4 - t1  
t6 - t3  
100  
100  
The MC34708 contains registers which hold control and status information. The register map and the description of each register  
can be found in the SPI/I2C Register Map section. The details of some important control bits are described as follows.  
7.8.3.6  
Control Functions  
7.8.3.6.1  
Timing of the Switching Action (WAIT BIT)  
If the WAIT bit is '1' when the Attach interrupt bit is set, the MC34708 waits for a WAIT time before turning on the switches. The  
WAIT time is programmed by the Switching Wait bits in the Timing Set 2 register. If the WAIT bit is '0' when the Attach interrupt  
is generated, then the MC34708 will not turn on the switches until the WAIT bit is set to '1' by the SPI. Both cases are shown in  
Figure 27.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
108  
Functional Block Description  
Figure 27. Operating Waveforms of the Wait Bit  
7.8.3.6.2  
Automatic Switching OR Manual Switching (Switch_open & Manual S/W Bits)  
When a supported accessory is identified, the default behavior of the MC34708 automatically turns on the corresponding signal  
switches. The user can also choose to turn on optional signal switches manually. Switch turn on is controlled by the Manual   
S/W bit and the Switch_Open bits in the USB Manual SW/Result and USB Control/Device mode registers respectively.  
If the Switch_Open bit is '0', the audio, UART, and USB switches are off.  
If Manual S/W = 1, which is its reset value, the switches to be turned on and the outputs of the JIG and BOOT pins are determined  
automatically by the Device Mode register, which is the identification result. If Manual S/W = 0, the switches to be turned on are  
determined by the values of the USB Manual SW/Result register. The relationship between the values of the USB Manual SW/  
Result register and the switches to be turned on is found in SPI/I2C Register Map section.  
The values of the Switch_Open and Manual S/W bits will not affect the identification flow and the timing of the signal switching  
action of the MC34708. The difference between Manual S/W = 1 and Manual S/W = 0 is what switches are turned on. In both  
cases, no switches are turned on in Standby mode. If the Manual S/W bit is changed from '1' to '0' while an accessory is attached,  
the already automatically turned on switches will be turned off, and the switches selected manually will be turned on. However,  
writing the Manual S/W bit back to '1' in Active mode will not change the switches and outputs status. Setting the  
Switch_Open = 1, sets the switches according to the Manual S/W bit.  
Raw Data (Raw Data Bit)  
The RAW DATA bit functions only when the accessory is Audio Type 1, which supports the remote control key. The RAW DATA  
bit determines whether to report the ID pin resistance change to the baseband when any key is pressed. When RAW DATA = 1,  
the ADC is enabled only when an ID line event is detected, such as when a key is pressed. In this case, the interrupt bits KP,  
LKP, or LKR, and the corresponding button bits in Button 1 and Button 2 registers, will be set accordingly. Detailed behavior  
information when RAW DATA = 1 can be found in Audio Type 1 Operation Mode.  
Audio Device Type 1 - Audio with or without the Remote Control. When RAW DATA = 0, the ADC is enabled periodically to  
calculate the ID line resistance. Any change of ADC Result will set the ADC_Change interrupt bit to inform the baseband. The  
baseband can read the ADC result via the SPI. The KP, LKP, or LKR, and the button bits, will not set when RAW DATA = 0. The  
period of ADC conversion is determined by the Device Wake-up bits in the USB Timing register. All other behaviors of Audio  
MC34708  
Analog Integrated Circuit Device Data  
109  
Freescale Semiconductor  
Functional Block Description  
Type 1 and other accessories will not be affected by the RAW DATA bit. LKR and the button bits will not set when RAW DATA = 0.  
The period of ADC conversion is determined by the Device Wake-up bits in the Timing Set 1 register. All other behaviors of Audio  
Type 1 and other accessories will not be affected by the RAW DATA bit.  
7.8.3.7  
Analog and Digital Switches  
The signal switches in the MC34708 are shown in Figure 28. These switches are controlled by the identification result when the  
Manual S/W = 1, and by the Manual SW/Result register, when the Manual S/W = 0 is in Active mode. The Switch_Open bit  
overrides the switch configuration. When the Switch_Open bit is 0, all switches are turned off. The switches for the SPK_L and  
SPK_R are capable of passing signals of 1.5 V, referencing to the GND pin voltage. The SPK_L and SPK_R pins are pulled  
down to GND via a 100 kresistor respectively, as shown in Figure 28. When the switches are configured automatically by the  
identification result, the configuration of the switches vs. the device type is shown in Table 112.  
When detachment of an accessory is detected, the MC34708 will return to Standby mode. In Standby mode, regardless of the  
Manual S/W = 1 or Manual S/W = 0 state, all signal switches and are off in the Standby mode. The OUT-to-ground FET is turned  
on whenever the FET_ON bit is '0'.  
DP  
DM  
RxD  
TxD  
SW1  
SW2  
SW3  
D+  
D-  
SW6  
SW7  
SW4  
SPK_R  
SPK_L  
SW5  
VBUS  
MIC  
GOTG  
MVBUS  
M0  
M1  
VUSB  
LDO  
MOTG  
VBUSVIN  
MPD  
VINUSB  
Figure 28. Analog and Digital Switches  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
110  
Functional Block Description  
Table 112. Switch Configuration When Controlled by the Device Type Register  
Device Type  
Audio  
USB  
UART  
USB CHG  
Dedicated CHG  
On SW#  
Off SW  
4, 5, 7, MPD  
MOTG, MVBUS, M0  
5WT1 CHG  
3, 6, MVBUS  
MPD (65)  
1, 2  
3, 6, MVBUS  
MPD (65)  
MVBUS  
MPD (65)  
TTY  
(65)  
Device Type  
5WT2 CHG  
JIG_USB_ON  
JIG_USB_OFF  
JIG_UART_ON  
JIG_UART  
On SW#  
Off SW  
MVBUS  
MVBUS  
3, 6, MVBUS  
MPD (65)  
3, 6  
4, 5, 7, MPD  
MPD (65)  
MPD (65)  
MOTG, MVBUS, M0  
(65)  
Notes  
65. Switches M0, M1, and MOTG are controlled by software by the OTGEN and VUSBSEL bits.  
7.8.3.8  
Audio Type 1 Operation Mode  
Audio Type 1 accessories have the same interface shown in Figure 29, either stereo or mono, with or without a remote control,  
or with or without a microphone. When a device, such as a microphone is not connected to the accessory, the corresponding pin  
in the mini-USB connector will be left floating. With the normal operation setting of the control bits, the accessory is identified as  
an Audio Type 1 device, the analog switches SW4 and SW7 for SPK_R to DP, SPK_L to DM, and SW5 for VBUS to MIC are  
turned on, the MPD switch is turned on, and the MOTG, MVBUS, and M0 switches are turned off, to isolate the VBUS pin.  
The MC34708 supports the remote control key for an Audio Type 1 device. If the RAW DATA = 0, the ADC is turned on  
periodically to monitor the ID line change caused by the key press. The period is programmed by the Device Wake-up bits. If the  
ADC Result changes, the ADC_Change bit in the USB Interrupt Sense register is set to inform the baseband. If the RAW  
DATA = 1, a comparator is enabled to monitor the key press. The timing of the key press when RAW DATA= 1 is shown in  
Figure 30. If a key is pressed for a time less than 20 ms, the MC34708 ignores it. If the key is still pressed after 20 ms, the  
MC34708 starts a timer to count the time during which the key is kept pressed. There are three conditions according to the press  
time: Error key press, short key press, and long key press.  
1. Error key press: if the key press time is less than TKP, the Error bit in the USB Button register and the short key press bit  
KP in USB Interrupt Sense register are set to indicate that an error happens. The Error bit is reset to '0' when the USB  
Button register is read or the next key press happens. The KP bit is cleared when the Interrupt 1 register is read.  
2. Short key press: if the key press time is between TKP and TLKP, the KP bit and the corresponding button bit in USB  
Button are set to inform the baseband. If the ADC result is not one of the ADC values of the 13 buttons, the Unknown bit in  
the Button 2 register is set. The INT pin is driven high when the key is released and returns to low when the interrupt  
register is read. The KP bit is cleared when the USB Interrupt Sense register is read.  
3. Long key press: if the key press time is longer than TLKP, the long key press bit LKP in the USB Interrupt Sense register,  
and the corresponding button bit, are set to inform the baseband. If the ADC Result is not one of the ADC values of the 13  
buttons, the Unknown bit in the USB Button register is set. When the key is released, the long key release bit LKR in the  
Interrupt 2 register is set to interrupt the baseband again.  
MC34708  
Analog Integrated Circuit Device Data  
111  
Freescale Semiconductor  
Functional Block Description  
Figure 29. Audio Accessory with Remote Control and Microphone  
Figure 30. Operation of the Headset with Remote Control and Microphone  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
112  
Functional Block Description  
TKP  
TLKP  
20ms  
20ms  
Key  
Press  
Error  
KP  
Button Register read  
INT  
Interrupt Status 0 Register KP bit written to a one  
KP  
Interrupt Status 0 Register KP bit written to a one  
INT  
LKP  
LKR  
INT  
ADC  
Time  
Interrupt Status 0 Register  
LKR bit written to a one  
Interrupt Status0 Register  
LKP bit written to a one  
Figure 31. Remote Control Key Press Timing  
The ID detection circuit continues to be ON for detaching detection in the Active mode, and samples the ID line every interval  
programmed by the device wake-up bits in the USB Timing register. When the ID_FLOAT rising edge is detected, the Detach bit  
in the USB Interrupt Sense register is set to inform the host the accessory is detached. The MC34708 then enters Standby mode.  
7.8.3.9  
JiG Cable USB and UART  
The JIG cable is used for test and development and has an ID resistance to differentiate it from a regular USB cable. The Jig  
cable has 2 ID resistance values to resemble a USB JIG type1/2, and 2 ID resistance values to resemble a UART JIG type1/2  
cable.  
7.8.3.9.1  
USB JIG Cable 1 or 2  
Under normal operation, setting the control bits when the identified accessory is a USB JIG 1 or 2 cable, both the DPLUS to DP,  
the DMINUS to DM switches are switched on, the MVBUS switch is ON, and the MPD switch is off.  
When SW_HOLD = 0, the switching action of DPLUS to DP, and the DMINUS to DM switches are controlled by the WAIT bit. If  
WAIT = 1, the signal switches will be turned ON after a WAIT. If WAIT = 0, the signal switches won't be turned on until the WAIT  
2
bit is set to '1' by the SPI/I C. When SW_HOLD = 1, regardless of what the WAIT is set to, '0' or '1', the signal switches are turned  
on, once the USB JIG cable is identified.  
The ID detector and the VBUS detector both monitor the detachment of the USB JIG cable. The ID detection circuit continues to  
be ON for detachment detection in the Active mode. When the ID_FLOAT is set, the Detach bit in the Interrupt Status 0 register  
is set to inform the host. When the USBDETS is set to '0', which means either the VBUS power is removed or the cable is  
detached, the Detach bit is also set to inform the host. The mini USB interface moves to the Standby mode. If the Detach bit is  
set, due to the removing only the VBUS or the ID resistance, and the cable is not detached completely, the identification flow will  
MC34708  
Analog Integrated Circuit Device Data  
113  
Freescale Semiconductor  
Functional Block Description  
be triggered again. The ID_FLOAT bit or USBDETS bit still indicate that an accessory is connected when the mini USB interface  
moves to the Standby mode. All the signal switches are turned off  
7.8.3.9.2  
UART JIG Cable 1 or 2  
Under normal operation, setting the control bits when the identified accessory is a UART JIG cable 1 or 2, both the RxD to DP  
and the TxD to DM switches are switched on.  
When SW_HOLD = 0, the switching action of RxD to DP, and the TxD to DM switches, are controlled by the WAIT bit. If WAIT = 1,  
the signal switches will be turned on after a WAIT time. If WAIT = 0, the signal switches won't be turned on until the WAIT bit is  
2
set to '1' by the SPI/I C. When SW_HOLD = 1, regardless of what the WAIT is set to, '0' or '1', the signal switches are turned on,  
once the UART JIG cable is identified.  
The ID detection comparator continues to be ON for detachment detection in the Active mode. When the ID_FLOAT is set, the  
Detach bit in the Interrupt Status 0 register is set to inform the host that the accessory is detached. The mini USB interface then  
enters the Standby mode.  
7.8.3.10 TTY Operation Mode  
A TTY converter is a type of audio accessory. It has its own ID resistance. When a TTY converter is attached, this sets the TTY  
bit in the USB Device Type register and the Attach interrupt bit in the Interrupt Status 0 register. During normal operation, when  
setting the control bits, the automatic switch configuration of the TTY converter, is similar to that of an Audio Type 1 accessory.  
The SPK_R to DP switch, and MIC to VBUS switch are turned on, but the SPK_L to DM switch can only be turned on when  
TTY_SKPL bit in USB Control register is manually set to 1. In addition, the MPD switch is also turned on, the MOTG, MVBUS,  
and M0 switches are turned off to isolate the VBUS pin.The TTY accessory doesn’t support the remote control key. The Power  
Save mode operation and the detachment detection are the same as those of the Audio Type 1 device.  
7.8.3.11 UART Operation Mode  
During normal operation, when setting the control bits, when the identified accessory is a UART cable, both the RxD and the TxD  
switches are switched on (see Figure 32).  
The ID detection comparator continues to be ON for detachment detection in the Active mode. When the ID_FLOAT is set, the  
Detach bit in the USB interrupt Sense register, is set to inform the host that the accessory is detached. The MC34708 USB  
detection then enters Standby mode.  
Baseband  
VBUSVIN  
MP D  
GOTG  
MVBUS  
UART  
Cable  
UART  
Interface  
VBUS  
Det  
VBUS  
VBUS  
RxD  
TxD  
DP  
D+  
D-  
UART  
DM  
ID  
ID  
ADC  
ID Det  
`
GND  
GND  
SHLD  
Figure 32. UART Operation  
7.8.3.12 USB Host (PC or HUB) Operation Mode  
When the attached accessory is a USB host or hub, the ID pin floats. During normal operation, when setting the control bits, both  
the D PLUS to DP and the D MINUS to DM switches are switched on (see Figure 33), and the MVBUS is turned on to allow the  
charger to start. The mini USB interface sets the charger input current limit and sets the bit USB in the USB Device type register.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
114  
Functional Block Description  
When SW_HOLD = 0, the switching action of D+ to DP and the D- to DM switches, are controlled by the WAIT bit. If WAIT = 1,  
the signal switches will be turned on after a WAIT time. If WAIT = 0, the signal switches won't be turned on until the WAIT bit is  
set to '1' by the SPI. When SW_HOLD = 1, regardless of what the WAIT is set to, '0' or '1', the signal switches are turned on once  
the USB host is identified.  
After the DPLUS to DP and the DMINUS to DM switches are turned on, the baseband can pull the DPLUS signal high to start  
the USB attaching sequence.  
The detachment is detected by the falling edge of the USBDETS signal. When the USBDETS falls, the Detach bit is set to inform  
the baseband. The MC34708 USB detection then enters the Standby mode.  
Baseband  
VBUSIN  
MP D  
GOTG  
MVBUS  
USB  
Cable  
USB  
Host  
VBUS  
Det  
VBUS  
VBUS  
5V  
DPLUS  
DP  
D+  
D-  
USB Xcvr  
DMINUS  
DM  
ID  
ID  
ADC  
ID Det  
GND  
GND  
SHLD  
Figure 33. USB Operation  
7.8.3.13 USB charger or Dedicated Charger Operation Mode  
When the attached accessory is a USB Charger or Dedicated Charger, the MC34708 turns on the MVBUS to allow the charger  
to start, sets the charger input current limit by setting the USBCHRG [1:0] = 11 (950 mA), and sets the bit USB Charge or the  
Dedicated CHG in the USB Device type register. During normal operation when setting of the control bits, the D PLUS and D  
MINUS switches are turned on for the USB Charger, but not for the Dedicated Charger.  
The VBUS detector is used to monitor the detachment of the charger. The falling edge of USBDETS is an indication of charger  
detachment. Unplugging the mini-USB connector and unplugging the ac side, both lead to the same detachment conclusion. The  
Detach bit is set to inform the host. The MC34708 USB detection then enters the Standby mode.  
7.8.3.14 5-Wire Charger or A/V Charger Mode  
When the attached accessory is a 5-Wire Charger or A/V Charger, the MC34708 turns on the MVBUS switch, to allow the charger  
to start, configures the input current limit to the charger (500 mA), and sets the appropriate device type 5.0 W CHG or A/V in the  
USB device type register.  
The VBUS detector is used to monitor the detachment of the charger. The falling edge of USBDETS is an indication of the charger  
detachment. Both unplugging the mini-USB connector and unplugging the ac side lead to the same detachment conclusion. The  
Detach bit is set to inform the host. Then the MC34708 USB detection enters the Standby mode.  
7.8.3.15 Charger Input Current Limit Setting  
When the Manual SW_B bit is set to 1, the MC34708 automatically detects what device is attached, and configures the charger  
input current by setting the USBCHGRG[1:0] signals (these are internal signals and not SPI bits). There is an option of overriding  
the automatic detection thresholds, by setting the SPI bit Manual SW_B low, and then the charger input current limit can be  
programmed via the MUSBCHRG[1:0] SPI bits in the USB Control register.  
MC34708  
Analog Integrated Circuit Device Data  
115  
Freescale Semiconductor  
Functional Block Description  
Table 113. Charger Input Current Limit Settings  
USBCHRG[1:0] (Internal Signal)  
MUSBCHRG[1:0]  
Charger input  
Current Limit (mA)  
Device type detected in  
Auto mode  
00  
01  
10  
11  
Disable Charger  
100  
500  
950  
USB Host  
5-Wire, AV charger, USB JIG  
USB Charger, Dedicated  
charger, Factory mode  
7.8.3.16 Unknown Accessory Operation Mode  
When an unknown accessory is attached, the ID_FLOAT bit is cleared or the USBDETS bit is set to '1'. Only the Unknown_Atta  
bit is set to interrupt the baseband. The Attach bit is not set to distinguish the unknown accessory from the known accessory. No  
other actions are taken. If an unknown powered accessory is attached, the switch MVBUS is turned on during the identification  
process, and the switch MVBUS will be turned off immediately when the accessory is identified as an unknown accessory.  
The falling edge of the USBDETS or the rising edge of the ID_FLOAT signals can trigger the detachment detection. The Detach  
bit is set to inform the detachment of the unknown accessory. The USB detection then enters the Standby mode.  
7.8.3.17 Software Reset  
The USB detection supports a software reset, which is realized by writing the Reset bit in the USB Control register to 1. The  
consequence of the software reset is the same as the hardware reset. All register bits reset by the Mini-USB will be reset.  
Table 114. ID Detection Thresholds  
UID Pin External  
UID Pin Voltage (66)  
0.18 * VCORE < UID < 0.77 * VCORE  
0 < UID < 0.12 * VCORE  
IDFLOATS IDGNDS IDFACTORYS  
Accessory  
Connection  
Non-USB accessory is attached (per  
CEA-936-A spec)  
0
0
1
1
1
0
1
1
0
0
0
1
Resistor to Ground  
A type plug (USB default slave) is  
attached (per CEA-936-A spec)  
Grounded  
Floating  
B type plug (USB Host, OTG default  
master or no device) is attached.  
0.89 * VCORE < UID < VCORE  
3.6 V < UID (1)  
Voltage Applied  
Notes  
Factory mode  
66. UID maximum voltage is 5.25 V  
7.8.3.18 ID Resistance Value Assignment  
The ID resistors used are standard 1% resistors. Table 115 lists the complete 32 ID resistor assignment. Those with the Assigned  
Functions filled are ones that are already used with special functions. The ones reserved can be assigned to other functions.  
Table 115. ID Resistance Assignment  
Item#  
ADC Result  
ID Resistance K  
Assignment  
0
1
2
3
4
00000  
00001  
00010  
00011  
00100  
<1.9  
2.0  
Reserved  
S0  
S1  
S2  
S3  
2.604  
3.208  
4.014  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
116  
Functional Block Description  
Table 115. ID Resistance Assignment  
Item#  
ADC Result  
ID Resistance K  
Assignment  
5
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
4.820  
6.03  
8.03  
10.03  
12.03  
14.46  
17.26  
20.5  
24.07  
28.7  
34.0  
40.2  
49.9  
64.9  
80.6  
102  
S4  
S5  
6
7
S6  
8
S7  
9
S8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
S9  
S10  
S11  
S12  
UART JIG Cable 2  
UART JIG Cable 1  
USB JIG Cable 2  
USB JIG Cable 1  
Factory Mode  
Audio Type 2  
PPD  
121  
Reserved  
UART  
150  
200  
5W Type 1  
Reserved  
Reserved  
A/V  
255  
301  
365  
442  
5W Type 2  
Reserved  
TTY  
523  
619  
1000  
-
Audio Type 1  
ID float  
The remote control architecture is illustrated in Figure 34. The recommended resistors for the remote control resistor network are  
given in Table 116.  
ID  
R1  
R2  
R13  
R3  
…...  
R14  
SEND/END  
HOLD  
/
GND  
Figure 34. Remote Control Architecture  
MC34708  
Analog Integrated Circuit Device Data  
117  
Freescale Semiconductor  
Functional Block Description  
Table 116. ID Remote Control Values  
Resistor  
Standard Value K  
ID Resistance  
R1  
R2  
2.0  
0.604  
0.604  
0.806  
0.806  
1.21  
2.0  
2.0  
2.604  
3.208  
4.014  
4.82  
R3  
R4  
R5  
R6  
6.03  
R7  
8.03  
R8  
2.0  
10.03  
12.03  
14.46  
17.26  
20.5  
R9  
2.0  
R10  
R11  
R12  
R13  
R14  
2.43  
2.8  
3.24  
3.57  
590/976  
24.07  
614/1000  
7.8.3.19 USB Interface Electrical Specifications  
Table 117. USB Interface Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Power Input  
IDM  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Detection Module Quiescent Current  
A  
• In Standby mode  
-
-
-
-
2
3
• When accessory is attached & INT_MASK = ‘1’  
125  
550  
850  
160  
650  
1000  
• In Active mode (VDD < VBUS  
• In Active mode (VDD < VBUS  
)
)
VBUS Supply Quiescent Current  
• In VBUS Power mode  
IVBUS  
mA  
-
-
-
-
-
-
1.5  
1.2  
0.5  
• In Active mode - Dedicated Charger  
• In Active mode - Audio or TTY  
Accessory Detect Switch  
SPK_L and SPK_R Switches  
• On resistance (20 Hz to 470 kHz)  
• Matching between channels  
RSPK_ON  
RSPK_ONMCT  
RSPK_ONFLT  
-
-
-
30  
3.0  
0.3  
• On resistance flatness (from -1.2 to 1.2 V)  
D+ and D- Switches  
RUSB_ON  
RUSB_ONMCT  
-
-
-
5.0  
0.1  
8.0  
1.0  
0.4  
• On resistance (0.0 Hz to 240 MHz)  
• Matching between channels  
• On resistance flatness (from 0.0 to 3.3 V)  
RUSB_ONFLT  
0.02  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
118  
Functional Block Description  
Table 117. USB Interface Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
RxD and TxD Switches  
• On resistance  
RUART_ON  
RUART_ONFLT  
-
-
-
-
60  
• On resistance flatness (from 0.0 to 3.3 V)  
6.0  
MIC Switches  
• On resistance (at 1.5 V MIC bias voltage)  
RMIC_ON  
-
-
75  
150  
-
Pull-Down Resistors between SPK_L or SPK_R Pins to GND  
RPD_AUDIO  
100  
k  
Signal Voltage Range  
• MIC  
V
-
-
-
-
1.5  
1.5  
3.6  
• SPK_L, SPK_R  
• D+, D-, RxD, TxD  
-1.5  
-0.3  
PSRR - From BP (100 mVrms) to DP/DM Pins  
VA_PSRR  
dB  
%
• 20 Hz to 20 kHz with 32/16 load.  
-
-
-
-
-
-
-
-
-60  
0.05  
-50  
Total Harmonic Distortions  
THD  
• 20 Hz to 20 kHz with 32/16 load.  
Crosstalk between Two Channels  
VA_CT  
dB  
dB  
• 20 Hz to 20 kHz with 32/16 load.  
Off Channel Isolation  
• Less than 1.0 MHz  
VA_ISO  
-100  
Power Supply Type Identification  
Data Source Voltage  
VDAT_SRC  
V
• Loaded by 0~200 μA  
0.5  
0.0  
0.3  
0.8  
0.6  
-
0.7  
200  
0.4  
1.0  
Data Source Current  
Data Detect Voltage  
Car Kit Detect Voltage  
IDAT_SRC  
VDAT_REF  
VCR_REF  
IDAT_SINK  
μA  
V
0.35  
0.9  
V
Data Sink Current  
μA  
• DM pin is biased between 0.15 to 3.0 V  
65  
-
100  
8.0  
135  
-
DP, DM Pin Capacitance  
CDP/DM  
RDP/DM  
pF  
DP, DM Pin Impedance  
M  
• All switches are off (Switch_Open = 0)  
-
50  
-
ID Detection  
ID FLOAT Threshold  
• Detection threshold  
VFLOAT  
V
-
-
2.3  
20  
-
-
tID_FLOAT ID FLOAT Detection Deglitch Time  
ms  
IID  
Pull-up Current Source  
μA  
• When ADC Result is 1xxxx  
• When ADC Result is 0xxxx  
1.9  
2.0  
32  
2.1  
30.4  
33.6  
Video Cable Detection  
• Detection current  
IVCBL  
1.0  
1.2  
50  
1.4  
mA  
mV  
mV  
• Detection voltage low threshold  
• Detection voltage high threshold  
VVCBL_L  
VVCBL_H  
-
-
-
-
118  
MC34708  
Analog Integrated Circuit Device Data  
119  
Freescale Semiconductor  
Functional Block Description  
Table 117. USB Interface Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
BUS  
A
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
tVCBL  
Video Cable Detection Time (Video Cable Detection Current Source On  
Time)  
ms  
-
20  
-
tRMTCON_DG Key Press Comparator Debounce Time  
ms  
-
20  
-
7.9  
Serial Interfaces  
The IC contains a number of programmable registers for control and communication. The majority of registers are accessed  
2
through a SPI interface in a typical application. The same register set may alternatively be accessed with an I C interface that is  
2
muxed on SPI pins. Table 118 describes the muxed pin options for the SPI and I C interfaces; further details for each interface  
mode follow.  
Table 118. SPI / I2C Bus Configuration  
Pin Name  
SPI Mode Functionality  
Configuration (67), Chip Select  
I2C Mode Functionality  
Configuration (68)  
CS  
CLK  
SPI Clock  
SCL: I2C bus clock  
MISO  
MOSI  
Notes  
Master In, Slave Out (data output)  
Master Out, Slave In (data input)  
SDA: Bi-directional serial data line  
A0 Address Selection (69)  
67. CS held low at Cold Start, configures the interface for SPI mode; once activated, CS functions as the SPI Chip Select.  
68. CS tied to VCOREDIG at Cold Start, configures the interface for I2C mode; the pin is not used in I2C mode, other than for configuration.  
69. In I2C mode, the MOSI pin is hardwired to ground, or VCOREDIG is used to select between two possible addresses.  
7.9.1  
SPI Interface  
The IC contains a SPI interface port which allows access by a processor to the register set. Via these registers the resources of  
the IC can be controlled. The registers also provide status information about how the IC is operating, as well as information on  
external signals.  
2
Because the SPI interface pins can be reconfigured for reuse as an I C interface, a configuration protocol mandates that the CS  
pin is held low during a turn on event for the IC (a weak pull-down is integrated on the CS pin). The state of CS is latched in during  
2
the initialization phase of a Cold Start sequence, ensuring that the I C bus is configured before the interface is activated. With  
the CS pin held low during startup (as would be the case if connected to the CS driver of an unpowered processor due to the  
integrated pull down), then the bus configuration will be latched for SPI mode.  
The SPI port utilizes 32-bit serial data words comprised of 1 write/read_b bit, 6 address bits, 1 null bit, and 24 data bits. The  
addressable register map spans 64 registers of 24 data bits each. The map is not fully populated, but it follows the legacy  
conventions for bit positions corresponding to common functionality with previous generation FSL products.  
7.9.1.1  
SPI Interface Description  
For a SPI read, the first bit sent to the IC must be a zero indicating a SPI read cycle. Next, the six bit address is sent MSB first.  
This is followed by one dead bit to allow for more address decode time. The MC34708 will clock the above bits in on the rising  
edge of the SPI clock. Then the 24 data bits are driven out on the MISO pin on the falling edge of the SPI clock so the master  
can clock them in on the rising edge of the SPI clock.  
For each MOSI SPI transfer, first a one is written to the write/read_b bit if this SPI transfer is to be a write. A zero is written to the  
write/read_b bit if this is to be a read command. If a zero is written, then any data sent after the address bits are ignored and the  
internal contents of the field addressed do not change when the 32nd CLK is sent.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
120  
Functional Block Description  
For a SPI write the first bit sent to the MC34708 must be a one indicating a SPI write cycle. Next the six bit address is sent MSB  
first. This is followed by one dead bit to allow for more address decode time. Then the data is sent MSB first. The SPI data is  
written to the SPI register whose address was sent at the start of the SPI cycle on the falling edge of the 32nd SPI clock.  
Additionally, whenever a SPI write cycle is taking place the SPI read data is shifted out for the same address as for the write  
cycle. Next the 6-bit address is written, MSB first. Finally, data bits are written, MSB first. Once all the data bits are written then  
the data is transferred into the actual registers on the falling edge of the 32nd CLK.  
The CS polarity is active high. The CS line must remain high during the entire SPI transfer. For a write sequence it is possible for  
the written data to be corrupted, if after the falling edge of the 32nd clock the CS goes low before it's required time. CS can go  
low before this point and the SPI transaction will be ignored, but after that point the write process is started and cannot be stopped  
because the write strobe pulse is already being generated and CS going low may cause a runt pulse that may or may not be wide  
enough to clock all 24 data bits properly. To start a new SPI transfer, the CS line must be toggled low and then pulled high again.  
The MISO line will be tri-stated while CS is low.  
The register map includes bits that are read/write, read only, read/write “1” to clear (i.e., Interrupts), and clear on read, reserved,  
and unused. Refer to the SPI/I2C Register Map and the individual subcircuit descriptions to determine the read/write capability  
of each bit. All unused SPI bits in each register must be written to as zeroes. A SPI read back of the address field and unused  
bits are returned as zeroes. To read a field of data, the MISO pin will output the data field pointed to by the 6 address bits loaded  
at the beginning of the SPI sequence.  
CS  
CLK  
MOSI  
MISO  
Write_En  
Address5  
Addr ess 4  
Address3  
Address2  
Address 1  
Address 0  
Dead Bit”  
Data 23  
Data 23  
Data 22  
Data 22  
Data 1  
Data 1  
Data 0  
Data 0  
Figure 35. SPI Transfer Protocol Single Read/Write Access  
CS  
Preamble  
First Address  
Preamble Another Address  
24 Bits Data  
24 Bits Data  
MOSI  
MISO  
24 Bits Data  
24 Bits Data  
Figure 36. SPI Transfer Protocol Multiple Read/Write Access  
MC34708  
Analog Integrated Circuit Device Data  
121  
Freescale Semiconductor  
Functional Block Description  
7.9.1.2  
SPI Timing Requirements  
The following diagram and table summarize the SPI timing requirements. The SPI input and output levels are set via the SPIVCC  
pin, by connecting it to the desired supply. This would typically be tied to SW5 and programmed for 1.80 V. The strength of the  
MISO driver is programmable through the SPIDRV [1:0] bits. See Thermal Protection Thresholds for detailed SPI electrical  
characteristics.  
T
clkper  
CS  
T
T
cl khigh  
sellow  
T
T
T
se lhl d  
selsu  
clklow  
CLK  
T
wrtsu  
T
wrthld  
MOSI  
MISO  
T
T
rddis  
rdsu  
T
T
rdhld  
rden  
Figure 37. SPI Interface Timing Diagram  
Table 119. SPI Interface Timing Specifications(70)  
Parameter  
Description  
T min (ns)  
Time CS has to be high before the first rising edge of CLK  
Time CS has to remain high after the last falling edge of CLK  
Time CS has to remain low between two transfers  
tSELSU  
tSELHLD  
tSELLOW  
tCLKPER  
tCLKHIGH  
tCLKLOW  
tWRTSU  
tWRTHLD  
tRDSU  
15  
15  
15  
Clock period of CLK  
38  
Part of the clock period where CLK has to remain high  
Part of the clock period where CLK has to remain low  
Time MOSI has to be stable before the next rising edge of CLK  
Time MOSI has to remain stable after the rising edge of CLK  
Time MISO will be stable before the next rising edge of CLK  
Time MISO will remain stable after the falling edge of CLK  
Time MISO needs to become active after the rising edge of CS  
Time MISO needs to become inactive after the falling edge of CS  
15  
15  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
tRDHLD  
tRDEN  
tRDDIS  
Notes  
70. This table reflects a maximum SPI clock frequency of 26 MHz.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
122  
Functional Block Description  
7.9.2  
I2C Interface  
2
7.9.2.1  
I C Configuration  
2
When configured for I C mode, the interface may be used to access the complete register map previously described for SPI  
access. Since SPI configuration is more typical, references within this document will generally refer to the common register set  
2
as a “SPI map” and bits as “SPI bits”; however, it should be understood that access reverts to I C mode when configured as such.  
2
The SPI pins CLK and MISO are reused for the SCL and SDA lines respectively. Selection of I C mode for the interface is  
configured by hard-wiring the CS pin to VCOREDIG on the application board. The state of CS is latched in during the initialization  
2
phase of a Cold Start sequence, so the I CS bit is defined for bus configuration before the interface is activated. The pull-down  
2
on CS will be deactivated if the high state is detected (indicating I C mode).  
2
In I C mode, the MISO pin is connected to the bus as an open drain driver, and the logic level is set by an external pull-up. The  
2
part can function only as an I C slave device, not as a host.  
2
7.9.2.2  
I C Device ID  
2
I C interface protocol requires a device ID for addressing the target IC on a multi-device bus. To allow flexibility in addressing for  
bus conflict avoidance, pin programmable selection is provided to allow configuration for the address LSB(s). This product  
supports 7-bit addressing only; support is not provided for 10-bit or general Call addressing.  
2
Because the MOSI pin is not utilized for I C communication, it is reassigned for pin programmable address selection by  
2
hardwiring to VCOREDIG or GND at the board level when configured for I C mode. MOSI will act as Bit 0 of the address. The  
2
I C address assigned to FSL PM ICs (shared amongst our portfolio) is given as follows:  
00010-A1-A0, the A1 and A0 bits are allowed to be configured for either 1 or 0. The A1 address bit is internally hardwired as a  
“0”, leaving the LSB A0 for board level configuration. The designated address then is defined as: 000100-A0.  
2
7.9.2.3  
I C Operation  
2
The I C mode of the interface is implemented generally following the Fast Mode definition which supports up to 400 kbits/s  
operation. (Exceptions to the standard are noted to be 7-bit only addressing, and no support for general Call addressing) Timing  
diagrams, electrical specifications, and further details on this bus standard, is available on the internet, by typing   
2
“I C specification” in the web search string field.  
2
Standard I C protocol utilizes bytes of 8 bits, with an acknowledge bit (ACK) required between each byte. However, the number  
of bytes per transfer is unrestricted. The register map is organized in 24 bit registers which corresponds to the 24 bit words  
2
supported by the SPI protocol of this product. To ensure that I C operation mimics SPI transactions in behavior of a complete 24  
bit word being written in one transaction, software is expected to perform write transactions to the device in 3-byte sequences,  
beginning with the MSB. Internally, data latching will be gated by the acknowledge at the completion of writing the third  
consecutive byte.  
2
Failure to complete a 3-byte write sequence will abort the I C transaction and the register will retain its previous value. This could  
be due to a premature STOP command from the master, for example.  
2
I C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and  
3-bytes will be sent out unless a STOP command or NACK is received prior to completion.  
The following examples show how to write and read data to the IC. The host initiates and terminates all communication. The host  
sends a master command packet after driving the start condition. The device will respond to the host if the master command  
packet contains the corresponding slave address. In the following examples, the device is shown always responding with an ACK  
to transmissions from the host. If at any time a NAK is received, the host should terminate the current transaction and retry the  
transaction.  
MC34708  
Analog Integrated Circuit Device Data  
123  
Freescale Semiconductor  
Functional Block Description  
Packet  
Type  
Device  
Address  
Register Address  
7
0
0
7
0
0
Host SDA  
(to MISO)  
Continuation  
START  
0
R / W  
A
C
K
A
C
K
Slave SDA  
(from MISO)  
Host can  
also drive  
another  
Start instead  
of Stop  
Packet  
Type  
Master Driven Data  
( byte 2 )  
Master Driven Data  
( byte 1)  
Master Driven Data  
( byte 0 )  
23  
16  
15  
8
7
0
Host SDA  
(to MISO)  
STOP  
A
C
K
A
C
K
A
C
K
Slave SDA  
(from MISO)  
Figure 38. I2C 3-byte Write Example  
Packet  
Type  
Device  
Address  
Register Address  
Device Address  
23  
16  
0
15  
0
8
7
0
Host SDA  
(to MISO)  
Continuation  
START  
0
START  
1
R /W  
R /W  
A
C
K
A
C
K
A
Slave SDA  
(from MISO)  
C
K
Host can also  
drive another  
Start instead of  
Stop  
AP Lite Driven Data  
( byte 2)  
AP Lite Driven Data  
( byte 1 )  
APLite Driven Data  
( byte 0)  
Packet  
Type  
A
C
K
A
C
K
Host SDA  
(to MISO)  
NA  
CK  
STOP  
23  
16  
15  
8
7
0
Slave SDA  
(from MISO)  
Figure 39. I2C 3-byte Read Example  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
124  
Functional Block Description  
7.9.3  
SPI/I2C Specification  
Table 120. SPI/I2C Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SPI Interface Logic IO  
Input Low CS  
VINCSLO  
VINCSHI  
VINMOSILO  
0.0  
1.1  
0.0  
-
-
-
0.4  
V
V
V
Input High CS  
SPIVCC+0.3  
0.3*SPIVCC  
/
Input Low, MOSI, CLK  
VINCLKLO  
VINMOSIHI  
/
V
V
Input High, MOSI, CLK  
0.7*SPIVCC  
-
SPIVCC+0.3  
VINCLKHI  
VMISOLO  
Output Low MISO, INT  
/
VINTLO  
• Output sink 100 A  
0.0  
SPIVCC-0.2  
1.75  
-
-
-
0.2  
SPIVCC  
3.6  
Output High MISO, INT  
VMISOHI  
VINTHI  
/
V
• Output source 100 A  
SPIVCC Operating Range  
VCC-SPI  
tMISOET  
V
MISO Rise and Fall Time, CL = 50 pF, SPIVCC = 1.8 V  
• SPIDRV [1:0] = 00  
ns  
-
-
-
-
6.0  
2.5  
3.0  
2.0  
-
-
-
-
• SPIDRV [1:0] = 01 (default)  
• SPIDRV [1:0] = 10  
• SPIDRV [1:0] = 11  
7.10 Configuration Registers  
7.10.1 Register Set structure  
The general structure of the register set is given in the following table. Expanded bit descriptions are included in the following  
functional sections for application guidance. For brevity’s sake, references are occasionally made herein to the register set as  
2
the “SPI map” or “SPI bits”, but note that bit access is also possible through the I C interface option so such references are  
implied as generically applicable to the register set accessible by either interface.  
Table 121. Register Set  
Register  
Register  
Register  
Register  
0
1
2
3
4
5
6
7
8
Interrupt Status 0  
Interrupt Mask 0  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Memory A  
Memory B  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Regulator Mode 0  
GPIOLV0 Control  
GPIOLV1 Control  
GPIOLV2 Control  
GPIOLV3 Control  
USB Timing  
48  
49  
50  
51  
52  
53  
ADC5  
ADC6  
Interrupt Sense 0  
Interrupt Status 1  
Interrupt Mask 1  
Memory C  
ADC7  
Memory C  
Battery Profile  
Charger Debounce  
Charger Source  
RTC Time  
Interrupt Sense 1  
Power Up Mode Sense  
Identification  
RTC Alarm  
RTC Day  
USB Button  
54 Charger LED Control  
RTC Day Alarm  
Regulator 1 A/B Voltage  
USB Control  
55  
56  
PWM Control  
Unused  
Regulator Fault Sense  
USB Device Type  
MC34708  
Analog Integrated Circuit Device Data  
125  
Freescale Semiconductor  
Functional Block Description  
Table 121. Register Set  
Register  
Register  
Register  
Register  
9
ACC 0  
ACC 1  
25  
26  
27  
28  
29  
30  
31  
Regulator 2 & 3 Voltage  
Regulator 4 A/B Voltage  
Regulator 5 Voltage  
Regulator 1 & 2 Mode  
Regulator 3, 4 and 5 Mode  
Regulator Setting 0  
41  
42  
43  
44  
45  
46  
47  
Unused  
Unused  
ADC 0  
ADC 1  
ADC 2  
ADC 3  
ADC4  
57  
58  
59  
60  
61  
62  
63  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
10  
11  
12  
13  
14  
15  
ACC 2  
Unused  
Power Control 0  
Power Control 1  
Power Control 2  
SWBST Control  
7.10.2 Specific Registers  
7.10.2.1 IC and Version Identification  
The IC and other version details can be read via the identification bits. These are hardwired on the chip and described in  
Table 122.  
Table 122. IC Revision Bit Assignment  
Identifier  
Value  
Purpose  
Represents the full mask revision  
XXX  
Pass 1.0 = 001  
Pass 1.1 = 001  
Pass 2.0 = 010  
Pass 2.1 = 010  
Pass 2.3 = 010  
FULL_LAYER_REV[2:0]  
Represents the full mask revision  
Pass 1.0 = 001  
XXX  
000  
000  
Pass 1.1 = 001  
METAL_LAYER_REV[2:0]  
Pass 2.0 = 010  
Pass 2.1 = 001  
Pass 2.3 = 011  
Represents the full mask revision  
Pass 1.0 = 001  
Pass 1.1 = 001  
FIN[2:0]  
Pass 2.0 = 010  
Pass 2.1 = 010  
Pass 2.3 = 000  
Represents the full mask revision  
Pass 1.0 = 001  
Pass 1.1 = 001  
FAB[2:0]  
Pass 2.0 = 010  
Pass 2.1 = 000  
Pass 2.3 = 000  
7.10.2.2 Embedded Memory  
There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[23:0],  
MEMB[23:0], MEMC[23:0], and MEMD[23:0] is maintained by the coin cell when the main battery is deeply discharged, removed,  
or contact-bounced (i.e., during a power cut). The contents of the embedded memory are reset by RTCPORB. A known pattern  
can be maintained in these registers to validate confidence in the RTC contents when power is restored after a power cut event.  
Alternatively, the banks can be used for any system need for bit retention with coin cell backup.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
126  
Functional Block Description  
7.10.3 SPI/I2C Register Map  
The complete SPI bitmap is given in Figures 40 to 43, with one register per row for a general overview.  
Figure 40. SPI Bitmap Overview (Part 1A)  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
127  
Functional Block Description  
Figure 41. SPI Bitmap Overview (Part 1B)  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
128  
Functional Block Description  
Figure 42. SPI Bitmap Overview (Part 1C)  
MC34708  
Analog Integrated Circuit Device Data  
129  
Freescale Semiconductor  
Functional Block Description  
Figure 43. SPI Bitmap Overview (Part 1D)  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
130  
Functional Block Description  
7.10.4 SPI Register’s Bit Description  
Table 123. Register 0, Interrupt Status 0  
Name  
Bit # R/W  
Reset  
Default  
Description  
ADCDONEI  
TSDONEI  
TSPENDET  
USBDET  
AUXDET  
USBOVP  
AUXOVP  
CHRTIMEEXP  
BATTOTP  
BATTOVP  
CHRCMPL  
WKVBUSDET  
WKAUXDET  
LOWBATT  
VBUSREGMI  
ATTACH  
0
1
2
3
4
5
6
7
8
9
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RESETB  
RESETB  
RESETB  
OFFB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ADC has finished requested conversions  
Touchscreen has finished requested conversions  
Touch screen pen detection  
USB detect  
OFFB  
Auxiliary charger detect  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
USB over-voltage detection  
Aux charger over-voltage detection  
Charge timer expired  
Battery over-temperature  
Battery over-voltage  
10 RW1C  
11 RW1C  
12 RW1C  
13 RW1C  
14 RW1C  
Charge complete detection  
Weak VBUS detection  
Weak Aux detection  
Low battery threshold warning  
VBUS regulation mode  
15 RW1C MUSBRSTB  
16 RW1C MUSBRSTB  
17 RW1C MUSBRSTB  
18 RW1C MUSBRSTB  
19 RW1C MUSBRSTB  
1: accessory attached  
DETACH  
KP  
1: accessory detached  
1: remote controller key is pressed  
1: remote controller long key is pressed  
1: remote controller long key is released  
1: an unknown accessory is attached  
1: ADC Result has changed when the RAW DATA = 0  
1: Stuck key is detected  
LKP  
LKR  
UNKNOWN_ATTA 20 RW1C MUSBRSTB  
ADC_CHANGE  
STUCK_KEY  
21 RW1C MUSBRSTB  
22 RW1C MUSBRSTB  
STUCK_KEY_RCV 23 RW1C MUSBRSTB  
1: Stuck key is recovered  
Table 124. Interrupt Mask 0  
Name  
Bit # R/W Reset Default  
Description  
ADCDONEM  
TSDONEM  
0
1
2
3
4
5
6
7
8
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W OFFB  
R/W OFFB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
1
1
1
1
1
1
1
1
1
ADCDONEI mask bit  
TSDONEI mask bit  
TSPENDETM  
USBDETM  
Touch screen pen detect mask bit  
USBDET mask bit  
AUXDETM  
Aux charger detect mask bit  
USBOVP mask bit  
USBOVPM  
AUXOVPM  
AUXOVP mask bit  
CHRTIMEEXPM  
BATTOTPM  
CHRTIMEEXP mask bit  
BATTOTP mask bit  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
131  
Functional Block Description  
Table 124. Interrupt Mask 0  
Name  
Bit # R/W Reset Default  
R/W RESETB  
Description  
BATTOVPM  
CHRCMPLM  
WKVBUSDETM  
WKAUXDETM  
LOWBATTM  
VBUSREGMIM  
ATTACH_M  
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BATTOVP mask bit  
CHRCMPL mask bit  
CHGCURRI mask bit  
BPONI mask bit  
10 R/W RESETB  
11 R/W RESETB  
12 R/W RESETB  
13 R/W RESETB  
14 R/W RESETB  
15 R/W RESETB  
16 R/W RESETB  
17 R/W RESETB  
18 R/W RESETB  
19 R/W RESETB  
20 R/W RESETB  
21 R/W RESETB  
22 R/W RESETB  
LOBATLI mask bit  
LOBATHI mask bit  
DETACH mask bit  
KP mask bit  
DETACH_M  
KP_M  
LKP mask bit  
LKP_M  
LKR mask bit  
LKR_M  
DETACH mask bit  
UNKNOWN_ATTA mask bit  
UKNOWN_ATTA_M  
ADC_CHANGE_M  
STUCK_KEY_M  
VBUS power supply type identification completed mask  
ID resistance detection finished mask  
For future use  
STUCK_KEY_RCV_M 23 R/W RESETB  
Table 125. Register 2, Interrupt Sense 0  
Name  
Bit # R/W  
Reset  
Default  
Description  
Unused  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
S
S
S
S
0
S
S
0
0
0
0
0
0
0
0
0
S
Not available  
Not available  
Unused  
2
Not available  
USBDETS  
AUXDETS  
USBOVPS  
AUXOVPS  
Unused  
3
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
USBDET sense bit  
AUXDET sense bit  
USBOVP sense bit  
AUXOVP sense bit  
Not available  
4
5
6
7
BATTOTPS  
BATTOVPS  
Unused  
8
BATTOTP sense bit  
BATTOVP sense bit  
Not available  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Unused  
Not available  
Unused  
Not available  
Unused  
Not available  
Unused  
Not available  
Unused  
Not available  
Unused  
Not available  
VBUS_DET_ENDS  
ID_DET_ENDS  
ID_FLOATS  
MUSBRSTB  
MUSBRSTB  
NONE  
VBUS power supply type identification completed sense bit  
ID resistance detection finished sense bit  
ID float sense bit  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
132  
Functional Block Description  
Table 125. Register 2, Interrupt Sense 0  
Name  
Bit # R/W  
Reset  
Default  
Description  
ID_GNDS  
20  
R
MUSBRSTB  
0
ID ground sense bit  
0: no  
1: yes  
MUSB_ADC_STATUS 21  
R
NONE  
X
Mini USB ADC conversion status  
1: ADC conversion completed  
0: ADC conversion in progress  
Unused  
Unused  
22  
23  
R
R
0
0
Not available  
Not available  
Table 126. Register 3, Interrupt Status 1  
Name  
Bit # R/W  
Reset  
Default  
Description  
1HZI  
TODAI  
0
1
2
3
4
5
6
7
8
9
RW1C RTCPORB  
RW1C RTCPORB  
R
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.0 Hz time tick  
Time of day alarm  
Unused  
PWRON1I  
PWRON2I  
WDIRESETI  
SYSRSTI  
RTCRSTI  
PCI  
RW1C  
RW1C  
OFFB  
OFFB  
PWRON1 event  
PWRON2 event  
RW1C RTCPORB  
RW1C RTCPORB  
RW1C RTCPORB  
WDI system reset event  
PWRON system reset event  
RTC reset event  
RW1C  
OFFB  
Power cut event  
WARMI  
RW1C RTCPORB  
Warm start event  
MEMHLDI  
THERM110  
10 RW1C RTCPORB  
11 RW1C RESETB  
Memory hold event  
110 °C thermal threshold  
120 °C thermal threshold  
125 °C thermal threshold  
130 °C thermal threshold  
Clock source change  
Short-circuit protection trip detection  
GPIOLV1 interrupt  
THERM120 12 RW1C RESETB  
THERM125 13 RW1C RESETB  
THERM130 14 RW1C RESETB  
CLKI  
15 RW1C RESETB  
16 RW1C RESETB  
17 RW1C RESETB  
18 RW1C RESETB  
19 RW1C RESETB  
20 RW1C RESETB  
SCPI  
GPIOLV1I  
GPIOLV2I  
GPIOLV3I  
GPIOLV4I  
Unused  
GPIOLV2 interrupt  
GPIOLV3 interrupt  
GPIOLV4 interrupt  
21  
R
Not available  
BATTDETBI 22 RW1C  
OFFB  
Battery removal detect  
Not available  
Unused  
23  
R
RESETB  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
133  
Functional Block Description  
Table 127. Register 4, Interrupt Mask 1  
Name  
Bit # R/W  
Reset  
Default  
Description  
1HZM  
TODAM  
0
1
2
3
4
5
6
7
8
9
R/W RTCPORB  
R/W RTCPORB  
R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1HZI mask bit  
TODAI mask bit  
Unused  
PWRON1M  
PWRON2M  
WDIRESETM  
SYSRSTM  
RTCRSTM  
PCM  
R/W  
R/W  
OFFB  
OFFB  
PWRON1 mask bit  
PWRON2 mask bit  
WDIRESETI mask bit  
SYSRSTI mask bit  
RTCRSTI mask bit  
PCI mask bit  
R/W RTCPORB  
R/W RTCPORB  
R/W RTCPORB  
R/W  
OFFB  
WARMM  
R/W RTCPORB  
WARMI mask bit  
MEMHLDM  
10 R/W RTCPORB  
MEMHLDI mask bit  
THERM110 mask bit  
THERM120 mask bit  
THERM125 mask bit  
THERM130 mask bit  
CLKI mask bit  
THERM110M 11 R/W  
THERM120M 12 R/W  
THERM125M 13 R/W  
THERM130M 14 R/W  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
CLKM  
15 R/W  
16 R/W  
17 R/W  
18 R/W  
19 R/W  
20 R/W  
SCPM  
Short-circuit protection trip mask bit  
GPIOLV1 interrupt mask bit  
GPIOLV2 interrupt mask bit  
GPIOLV3 interrupt mask bit  
GPIOLV4 interrupt mask bit  
Not available  
GPIOLV1M  
GPIOLV2M  
GPIOLV3M  
GPIOLV4M  
Unused  
21  
R
BATTDETBM 22 R/W  
Unused 23  
OFFB  
Battery detect removal mask bit  
Not available  
R
Table 128. Register 5, Interrupt Sense 1  
Name  
Bit # R/W Reset Default  
Description  
Unused  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
0
0
0
S
S
0
0
0
0
0
0
Not available  
Not available  
Unused  
2
Not available  
PWRON1S  
PWRON2S  
Unused  
3
NONE  
NONE  
PWRON1I sense bit  
PWRON2I sense bit  
Not available  
4
5
Unused  
6
Not available  
Unused  
7
Not available  
Unused  
8
Not available  
Unused  
9
Not available  
Unused  
10  
Not available  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
134  
Functional Block Description  
Table 128. Register 5, Interrupt Sense 1  
Name  
Bit # R/W Reset Default  
Description  
THERM110S  
THERM120S  
THERM125S  
THERM130S  
CLKS  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R
R
R
R
R
R
R
R
R
R
R
R
R
NONE  
NONE  
NONE  
NONE  
NONE  
S
S
S
S
0
0
0
0
0
0
0
S
0
THERM110 sense bit  
THERM120 sense bit  
THERM125 sense bit  
THERM130 sense bit  
CLKI sense bit  
Unused  
Not available  
Unused  
Not available  
Unused  
Not available  
Unused  
Not available  
Unused  
Not available  
Unused  
Not available  
BATTDETBS  
Unused  
NONE  
NONE  
Battery removal detect sense bit  
Not available  
Table 129. Register 6, Power Up Mode Sense  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ICTESTS  
PUMS1S  
PUMS2S  
PUMS3S  
PUMS4S  
PUMS5S  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
S
L
L
L
L
L
0
0
0
L
0
0
0
0
0
0
0
0
0
0
0
0
ICTEST sense state  
PUMS1 state  
PUMS2 state  
PUMS3 state  
PUMS4 state  
PUMS5 state  
Not available  
Not available  
Not available  
Mbatt detect sense  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
2
3
4
5
6
Unused  
7
Unused  
8
MBATDETS(71)  
Unused  
9
NONE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
135  
Functional Block Description  
Table 129. Register 6, Power Up Mode Sense  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Unused  
Unused  
22  
23  
0
0
Not available  
Not available  
Notes  
71. MBATDETS will latch an updated sense value when the charger is enabled.  
Table 130. Register 7, Identification  
Name  
Bit # R/W  
Reset  
Default  
Description  
METAL_LAYER_REV0  
METAL_LAYER_REV1  
METAL_LAYER_REV2  
0
1
2
R
R
R
NONE  
NONE  
NONE  
X
X
X
Metal Layer version  
Pass 1.0 = 000  
Pass 1.1 = 001  
Pass 2.0 = 000  
Pass 2.1 = 001  
Pass 2.3 = 011  
FULL_LAYER_REV0  
FULL_LAYER REV1  
FULL_LAYER REV2  
3
4
5
R
R
R
NONE  
NONE  
NONE  
X
X
X
Full Layer version  
Pass 1.0 = 001  
Pass 1.1 = 001  
Pass 2.0 = 010  
Pass 2.1 = 010  
Pass 2.3 = 010  
FIN0  
FIN1  
FIN2  
6
7
8
R
R
R
NONE  
NONE  
NONE  
X
X
X
FIN version  
Pass 1.0 = 000  
Pass 1.1 = 001, 010, 011  
Pass 2.0 = 000  
Pass 2.1 = 010  
Pass 2.3 = 000  
FAB0  
FAB1  
FAB2  
9
R
R
R
NONE  
NONE  
NONE  
X
X
X
FAB version  
Pass 1.0 = 000  
Pass 1.1 = 000  
Pass 2.0 = 000  
Pass 2.1 = 000  
Pass 2.3 = 000  
10  
11  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
12  
13  
14  
15  
16  
17  
18  
R
R
R
R
R
R
R
0
0
0
0
0
0
0
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
136  
Functional Block Description  
Table 130. Register 7, Identification  
Name  
Bit # R/W  
Reset  
Default  
Description  
PAGE0  
PAGE1  
PAGE2  
PAGE3  
PAGE4  
19  
20  
21  
22  
23  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
0
0
0
0
0
SPI Page  
Table 131. Register 8, Regulator Fault Sense  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW1FAULT  
Reserved  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
S
0
SW1 fault detection  
Reserved  
SW2FAULT  
SW3FAULT  
SW4AFAULT  
SW4BFAULT  
SW5FAULT  
SWBSTFAULT  
VUSBFAULT  
VUSB2FAULT  
VDACFAULT  
VGEN1FAULT  
VGEN2FAULT  
Unused  
2
S
S
S
S
S
S
S
S
S
S
S
0
SW2 fault detection  
SW3 fault detection  
SW4A fault detection  
SW4B fault detection  
SW5 fault detection  
SWBST fault detection  
VUSB fault detection  
VUSB2 fault detection  
VDAC fault detection  
VGEN1 fault detection  
VGEN2 fault detection  
Not available  
3
4
5
6
7
8
9
10  
11  
12  
13-22  
23  
RESCGPEN  
R/W RESETB  
0
Regulator short-circuit protect enable  
Table 132. Register 9, ACC 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
STARTCC  
RSTCC  
0
1
2
3
4
5
6
7
R/W  
RWC  
R/W  
R/W  
R/W  
R/W  
R/W  
R
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
0
0
1
0
0
1=Run, 0=Stop  
1=Reset, self clearing  
CCDITHER  
CCCALDB  
CCCALA  
1=ACC Dithering enabled, 0=ACC Dithering disabled  
1=Disable Digital Offset Cancellation  
1=Enable Analog Offset Calibration Mode  
EOC integration period  
INTEGTIME0  
INTEGTIME1  
CCFAULT  
1=CCOUT contents no longer valid  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
137  
Functional Block Description  
Table 132. Register 9, ACC 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
CCOUT0  
CCOUT1  
CCOUT2  
CCOUT3  
CCOUT4  
CCOUT5  
CCOUT6  
CCOUT7  
CCOUT8  
CCOUT9  
CCOUT10  
CCOUT11  
CCOUT12  
CCOUT13  
CCOUT14  
CCOUT15  
8
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Accumulated Coulomb Counter Output  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Table 133. Register 10, ACC 1  
Name  
Bit # R/W  
Reset  
Default  
Description  
ONEC0  
ONEC1  
ONEC2  
ONEC3  
ONEC4  
ONEC5  
ONEC6  
ONEC7  
ONEC8  
ONEC9  
ONEC10  
ONEC11  
ONEC12  
ONEC13  
ONEC14  
Spare  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
1
0
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
Coulomb Counter One C Setting  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Not available  
Not available  
Not available  
Not available  
Spare  
R
Spare  
R
Spare  
R
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
138  
Functional Block Description  
Table 133. Register 10, ACC 1  
Name  
Bit # R/W  
Reset  
Default  
Description  
Spare  
Spare  
19  
20  
21  
22  
23  
R
R
0
0
0
0
0
Not available  
Not available  
Not available  
Spare  
R
CCRES0  
CCRES1  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
Coulomb Counter Resolution (mC/LSB)00 = 100  
01 = 200  
10 = 500  
11 = 1000  
Table 134. Register 11, ACC 2  
Name  
Bit # R/W  
Reset  
Default  
Description  
BATTCURRENT1  
BATTCURRENT1  
BATTCURRENT2  
BATTCURRENT3  
BATTCURRENT4  
BATTCURRENT5  
BATTCURRENT6  
BATTCURRENT7  
BATTCURRENT8  
BATTCURRENT9  
BATTCURRENT10  
BATTCURRENT11  
Spare  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EOC IBATT current  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Spare  
Spare  
Spare  
Spare  
Spare  
Spare  
Spare  
Spare  
Spare  
Spare  
Spare  
Table 135. Register 12, Unused  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Unused  
23-0  
R
0
Not available  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
139  
Functional Block Description  
Table 136. Register 13, Power Control 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
PCEN  
PCCOUNTEN  
WARMEN  
0
1
2
3
4
5
6
7
8
9
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB  
RTCPORB  
RTCPORB  
RESETB  
0
0
0
0
0
0
1
0
0
0
Power cut enable  
Power cut counter enable  
Warm start enable  
USEROFFSPI  
DRM  
SPI command for entering user off modes  
Keeps VSRTC and CLK32KMCU on for all states  
Keeps the CLK32KMCU active during user off  
Enables the CLK32KMCU  
RTCPORB (72)  
RTCPORB  
RTCPORB  
USEROFFCLK  
CLK32KMCUEN  
Unused  
Not available  
Unused  
R
Not available  
PCUTEXPB  
R/W  
RTCPORB  
PCUTEXPB=1 at a startup event indicates that PCUT timer did not  
expire (assuming it was set to 1 after booting)  
Unused  
Unused  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Not available  
Not available  
Unused  
R
Not available  
Unused  
R
Not available  
Unused  
R
Not available  
Unused  
R
Not available  
Unused  
R
Not available  
Unused  
R
Not available  
Unused  
R
Not available  
BATTDETEN  
VCOIN0  
VCOIN1  
VCOIN2  
COINCHEN  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
Enables battery detect function  
Coin cell charger voltage setting  
Coin cell charger enable  
Notes:  
72. Reset by RTCPORB but not during a GLBRST (global reset)  
Table 137. Register 14, Power Control 1  
Name  
Bit # R/W  
Reset  
Default  
Description  
PCT0  
PCT1  
PCT2  
PCT3  
PCT4  
PCT5  
PCT6  
PCT7  
0
1
2
3
4
5
6
7
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
Power cut timer  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
140  
Functional Block Description  
Table 137. Register 14, Power Control 1  
Name  
Bit # R/W  
Reset  
Default  
Description  
PCCOUNT0  
PCCOUNT1  
PCCOUNT2  
PCCOUNT3  
PCMAXCNT0  
PCMAXCNT1  
PCMAXCNT2  
PCMAXCNT3  
Unused  
8
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Power cut counter  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Maximum allowed number of power cuts  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Table 138. Register 15, Power Control 2  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
RESTARTEN  
PWRON1RSTEN  
PWRON2RSTEN  
Unused  
0
1
R/W  
R/W  
R/W  
R
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
1
0
Enables automatic restart after a system reset  
Enables system reset on PWRON1 pin  
Enables system reset on PWRON2 pin  
Not available  
2
3
PWRON1DBNC0  
PWRON1DBNC1  
PWRON2DBNC0  
PWRON2DBNC1  
GLBRSTTMR0  
GLBRSTTMR1  
STANDBYINV  
Unused  
4
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
Sets debounce time on PWRON1 pin  
5
6
Sets debounce time on PWRON2 pin  
Sets Global reset time  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
If set then STANDBY is interpreted as active low  
Not available  
WDIRESET  
R/W  
R/W  
R/W  
R
RESETB  
RTCPORB  
RTCPORB  
Enables system reset through WDI  
SPI drive strength  
SPIDRV0  
SPIDRV1  
Unused  
Not available  
Not available  
Unused  
R
CLK32KDRV0  
CLK32KDRV1  
R/W  
R/W  
RTCPORB  
RTCPORB  
CLK32K and CLK32KMCU drive strength (master control bits)  
MC34708  
Analog Integrated Circuit Device Data  
141  
Freescale Semiconductor  
Functional Block Description  
Table 138. Register 15, Power Control 2  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Unused  
Unused  
19  
20  
21  
R
R
0
0
0
Not available  
Not available  
ON_STBY_LP  
R/W  
RESETB  
On Standby Low Power Mode  
0 = Low power mode disabled  
1 =Low power mode enabled  
STBYDLY0  
STBYDLY1  
22  
23  
R/W  
R/W  
RESETB  
RESETB  
1
0
Standby delay control  
Table 139. Register 16, Memory A  
Name  
Bit # R/W  
Reset  
Default  
Description  
MEMA0  
MEMA1  
MEMA2  
MEMA3  
MEMA4  
MEMA5  
MEMA6  
MEMA7  
MEMA8  
MEMA9  
MEMA10  
MEMA11  
MEMA12  
MEMA13  
MEMA14  
MEMA15  
MEMA16  
MEMA17  
MEMA18  
MEMA19  
MEMA20  
MEMA21  
MEMA22  
MEMA23  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Backup memory A  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
142  
Functional Block Description  
Table 140. Register 17, Memory B  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
MEMB0  
MEMB1  
MEMB2  
MEMB3  
MEMB4  
MEMB5  
MEMB6  
MEMB7  
MEMB8  
MEMB9  
MEMB10  
MEMB11  
MEMB12  
MEMB13  
MEMB14  
MEMB15  
MEMB16  
MEMB17  
MEMB18  
MEMB19  
MEMB20  
MEMB21  
MEMB22  
MEMB23  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Backup memory B  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
MC34708  
Analog Integrated Circuit Device Data  
143  
Freescale Semiconductor  
Functional Block Description  
Table 141. Register 18, Memory C  
Name  
Bit # R/W  
Reset  
Default  
Description  
MEMC0  
MEMC1  
MEMC2  
MEMC3  
MEMC4  
MEMC5  
MEMC6  
MEMC7  
MEMC8  
MEMC9  
MEMC10  
MEMC11  
MEMC12  
MEMC13  
MEMC14  
MEMC15  
MEMC16  
MEMC17  
MEMC18  
MEMC19  
MEMC20  
MEMC21  
MEMC22  
MEMC23  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Backup memory C  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
144  
Functional Block Description  
Table 142. Register 19, Memory D  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
MEMD0  
MEMD1  
MEMD2  
MEMD3  
MEMD4  
MEMD5  
MEMD6  
MEMD7  
MEMD8  
MEMD9  
MEMD10  
MEMD11  
MEMD12  
MEMD13  
MEMD14  
MEMD15  
MEMD16  
MEMD17  
MEMD18  
MEMD19  
MEMD20  
MEMD21  
MEMD22  
MEMD23  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Backup memory D  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
145  
Functional Block Description  
Table 143. Register 20, RTC Time  
Name  
Bit # R/W  
Reset  
Default  
Description  
TOD0  
TOD1  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
RTCPORB (73)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Time of day counter  
TOD2  
2
TOD3  
3
TOD4  
4
TOD5  
5
TOD6  
6
TOD7  
7
TOD8  
8
TOD9  
9
TOD10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
TOD11  
TOD12  
TOD13  
TOD14  
TOD15  
TOD16  
RTCCAL0  
RTCCAL1  
RTCCAL2  
RTCCAL3  
RTCCAL4  
RTCCALMODE0  
RTCCALMODE1  
RTC calibration count  
RTC calibration mode  
Notes  
73. Reset by RTCPORB but not during a GLBRST (global reset)  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
146  
Functional Block Description  
Table 144. Register 21, RTC Alarm  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
TODA0  
TODA1  
TODA2  
TODA3  
TODA4  
TODA5  
TODA6  
TODA7  
TODA8  
TODA9  
TODA10  
TODA11  
TODA12  
TODA13  
TODA14  
TODA15  
TODA16  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
RTCDIS  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
RTCPORB (74)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
Time of day alarm  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Disable RTC  
R
R
R
R
R
R/W  
RTCPORB (74)  
Notes  
74. Reset by RTCPORB but not during a GLBRST (global reset)  
MC34708  
Analog Integrated Circuit Device Data  
147  
Freescale Semiconductor  
Functional Block Description  
Table 145. Register 22, RTC Day  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
DAY0  
DAY1  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
RTCPORB (75)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Day counter  
DAY2  
2
DAY3  
3
DAY4  
4
DAY5  
5
DAY6  
6
DAY7  
7
DAY8  
8
DAY9  
9
DAY10  
DAY11  
DAY12  
DAY13  
DAY14  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
R
R
R
R
R
R
R
R
Notes  
75. Reset by RTCPORB but not during a GLBRST (global reset)  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
148  
Functional Block Description  
Table 146. Register 23, RTC Day Alarm  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
DAYA0  
DAYA1  
DAYA2  
DAYA3  
DAYA4  
DAYA5  
DAYA6  
DAYA7  
DAYA8  
DAYA9  
DAYA10  
DAYA11  
DAYA12  
DAYA13  
DAYA14  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
RTCPORB (76)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
Day alarm  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
R
R
R
R
R
R
R
R
Notes  
76. Reset by RTCPORB but not during a GLBRST (global reset)  
Table 147. Register 24, Regulator 1A/B Voltage  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW1 setting in normal mode  
SW1A0  
SW1A1  
SW1A2  
SW1A3  
SW1A4  
SW1A5  
0
1
2
3
4
5
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
*
*
*
*
*
*
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
149  
Functional Block Description  
Table 147. Register 24, Regulator 1A/B Voltage  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW1ASTBY0  
SW1ASTBY1  
SW1ASTBY2  
SW1ASTBY3  
SW1ASTBY4  
SW1ASTBY5  
Reserved  
6
R/WM NONE  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
SW1 setting in Standby mode  
7
R/WM NONE  
8
R/WM NONE  
9
R/WM NONE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R/WM NONE  
R/WM NONE  
R
R
R
R
R
R
R
R
R
R
R
R
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Table 148. Register 25, Regulator 2 & 3 Voltage  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW20  
SW21  
0
1
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
SW2 setting in normal mode  
SW22  
2
SW23  
3
SW24  
4
SW25  
5
SW2STBY0  
SW2STBY1  
SW2STBY2  
SW2STBY3  
SW2STBY4  
SW2STBY5  
SW30  
6
SW2 setting in Standby mode  
7
8
9
10  
11  
12  
13  
14  
15  
16  
SW3 setting in normal mode  
SW31  
SW32  
SW33  
SW34  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
150  
Functional Block Description  
Table 148. Register 25, Regulator 2 & 3 Voltage  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Unused  
17  
18  
19  
20  
21  
22  
23  
R
0
*
Not available  
SW3STBY0  
SW3STBY1  
SW3STBY2  
SW3STBY3  
SW3STBY4  
Unused  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R
SW3 setting in standby mode  
*
*
*
*
0
Not available  
Table 149. Register 26, REgulator 4A/B  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW4A0  
SW4A1  
0
1
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
SW4A setting in normal mode  
SW4A2  
2
SW4A3  
3
SW4A4  
4
SW4ASTBY0  
SW4ASTBY1  
SW4ASTBY2  
SW4ASTBY3  
SW4ASTBY4  
SW4AHI0  
SW4AHI1  
SW4B0  
5
SW4A setting in Standby mode  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
SW4A high setting  
SW4B setting in normal mode  
SW4B1  
SW4B2  
SW4B3  
SW4B4  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
SW4BSTBY0  
SW4BSTBY1  
SW4BSTBY2  
SW4BSTBY3  
SW4BSTBY4  
SW4BHI0  
SW4BHI1  
SW4B setting in Standby mode  
SW4B high setting  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
151  
Functional Block Description  
Table 150. Register 27, REgulator 5 Voltage  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW50  
SW51  
0
1
R/WM NONE  
*
*
SW4 setting in normal mode  
R/WM NONE  
SW52  
2
R/WM NONE  
*
SW53  
3
R/WM NONE  
*
SW54  
4
R/WM NONE  
*
Unused  
Unused  
Unused  
Unused  
Unused  
SW5STBY0  
SW5STBY1  
SW5STBY2  
SW5STBY3  
SW5STBY4  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
5
R
*
Not available  
Not available  
6
R
*
7
R
*
Not available  
8
R
*
Not available  
9
R
*
Not available  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R/WM NONE  
*
SW5 setting in Standby mode  
R/WM NONE  
*
R/WM NONE  
*
R/WM NONE  
*
R/WM NONE  
*
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Table 151. Register 28, Regulators 1 & 2 Operating Mode  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW1AMODE0  
SW1AMODE1  
SW1AMODE2  
SW1AMODE3  
SW1AMHMODE  
SW1AUOMODE  
SW1DVSSPEED0  
SW1DVSSPEED1  
Unused  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RESETB  
RESETB  
RESETB  
RESETB  
OFFB  
0
1
0
1
0
0
1
0
0
0
0
SW1A operating mode  
2
3
4
SW1A Memory Hold mode  
SW1A User Off mode  
SW1 DVS1 speed  
5
OFFB  
6
RESETB  
RESETB  
7
8
Not available  
Not available  
Not available  
Unused  
9
R
Unused  
10  
R
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
152  
Functional Block Description  
Table 151. Register 28, Regulators 1 & 2 Operating Mode  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Unused  
Unused  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R
0
0
0
0
1
0
1
0
0
1
0
1
0
Not available  
Not available  
R
Unused  
R
SW2MODE0(77)  
SW2MODE1(77)  
SW2MODE2(77)  
SW2MODE3(77)  
SW2MHMODE  
SW2UOMODE  
SW2DVSSPEED0  
SW2DVSSPEED1  
PLLEN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
OFFB  
SW2 operating mode  
SW2 Memory Hold mode  
SW2 User Off mode  
SW2 DVS1 speed  
OFFB  
RESETB  
RESETB  
RESETB  
RESETB  
PLL enable  
PLLX  
PLL multiplication factor  
Notes  
77. SWxMODE[3:0] bits will be reset to their default values by the startup sequencer, based on PUMS settings. An enabled switch will  
default to APSKIP mode for both Normal and Standby operation.  
Table 152. Register 29, Regulators 3, 4, and 5 Operating Mode  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW3MODE0  
SW3MODE1  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
OFFB  
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
0
0
SW3 operating mode  
SW3MODE2  
2
SW3MODE3  
3
SW3MHMODE  
SW3UOMODE  
SW4AMODE0  
SW4AMODE1  
SW4AMODE2  
SW4AMODE3  
SW4AMHMODE  
SW4AUOMODE  
SW4BMODE0  
SW4BMODE1  
SW4BMODE2  
SW4BMODE3  
SW4BMHMODE  
SW4BUOMODE  
4
SW3 Memory Hold mode  
SW3 User Off mode  
5
OFFB  
6
RESETB  
RESETB  
RESETB  
RESETB  
OFFB  
SW4A operating mode  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
SW4A Memory Hold mode  
SW4A User Off mode  
SW4B operating mode  
OFFB  
RESETB  
RESETB  
RESETB  
RESETB  
OFFB  
SW4B Memory Hold mode  
SW4B User Off mode  
OFFB  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
153  
Functional Block Description  
Table 152. Register 29, Regulators 3, 4, and 5 Operating Mode  
SW5MODE0(78)  
SW5MODE1(78)  
SW5MODE2(78)  
SW5MODE3(78)  
SW5MHMODE  
SW5UOMODE  
18  
19  
20  
21  
22  
23  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
OFFB  
0
1
0
1
0
0
SW5 operating mode  
SW5 Memory Hold mode  
SW5 User Off mode  
OFFB  
Notes  
78. SWxMODE[3:0] bits will be reset to their default values by the startup sequencer, based on PUMS settings. An enabled regulator will  
default to APSKIP mode for both Normal and Standby operation.  
Table 153. Register 30, Regulator Setting 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
VGEN10  
VGEN11  
VGEN12  
Unused  
VDAC0  
VDAC1  
VGEN20  
VGEN21  
VGEN22  
VPLL0  
0
1
R/WM  
R/WM  
R/WM  
R
RESETB  
RESETB  
RESETB  
*
*
VGEN1 setting  
2
*
3
0
*
Not available  
VDAC setting  
4
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
5
*
6
*
VGEN2 setting  
7
*
8
*
9
*
VPLL setting  
VPLL1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
*
VUSB20  
VUSB21  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
*
VUSB2 setting  
*
0
0
0
0
0
0
0
0
0
0
0
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
R
R
R
R
R
R
R
R
R
R
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
154  
Functional Block Description  
Table 154. Register 31, SWBST Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SWBST0  
SWBST1  
SWBSTMODE0  
SWBSTMODE1  
Spare  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
NONE  
*
SWBST setting  
NONE  
*
2
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SWBST mode  
3
4
Not available  
SWBSTSTBYMODE0  
SWBSTSTBYMODE1  
Spare  
5
SWBST standby mode  
6
7
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Unused  
8
Unused  
9
R
Unused  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Table 155. Register 32, Regulator Mode 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
VGEN1EN  
VGEN1STBY  
VUSBSEL  
VUSBEN  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
NONE  
RESETB  
NONE  
*
0
*
VGEN1 enable  
VGEN1 controlled by standby  
Slave or Host configuration for VBUS  
VUSB enable (PUMS4:1=[0100]). Also reset to 1 by invalid VBUS  
VDAC enable  
2
3
RESETB  
NONE  
1
*
VDACEN  
4
VDACSTBY  
VDACMODE  
Unused  
5
RESETB  
RESETB  
0
0
0
0
0
*
VDAC controlled by standby  
VDAC operating mode  
6
7
Not available  
Unused  
8
R
Not available  
Unused  
9
R
Not available  
VREFDDREN  
10  
R/W  
NONE  
VREFDDR enable  
MC34708  
Analog Integrated Circuit Device Data  
155  
Freescale Semiconductor  
Functional Block Description  
Table 155. Register 32, Regulator Mode 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
VGEN2CONFIG  
11  
R/W  
NONE  
*
PUMS5 Tied to ground = 0: VGEN2 with external PNP  
PUMS5 Tied to VCROREDIG =1:VGEN2 internal PMOS  
VGEN2EN  
VGEN2STBY  
VGEN2MODE  
VPLLEN  
12  
13  
14  
15  
16  
17  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NONE  
RESETB  
RESETB  
NONE  
*
0
0
*
VGEN2 enable  
VGEN2 controlled by standby  
VGEN2 operating mode  
VPLL enable  
VPLLSTBY  
RESETB  
NONE  
0
*
VPLL controlled by standby  
VUSB2CONFIG  
PUMS5 Tied to ground = 0: VUSB2 with external PNP  
PUMS5 Tied to VCROREDIG =1:VUSB2 internal PMOS  
VUSB2EN  
VUSB2STBY  
VUSB2MODE  
Unused  
18  
19  
20  
21  
22  
23  
R/W  
R/W  
R/W  
R
NONE  
*
VUSB2 enable  
VUSB2 controlled by standby  
VUSB2 operating mode  
Not available  
RESETB  
RESETB  
0
0
0
0
0
Unused  
R
Not available  
Unused  
R
Not available  
Table 156. Register 33, GPIOLV0 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
DIR  
0
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
0
GPIOLV0 direction  
0: Input  
1: Output  
DIN  
DOUT  
HYS  
1
2
3
0
0
1
Input state of GPIOLV0 pin  
0: Input low  
1: Input High  
Output state of GPIOLV0 pin  
0: Output Low  
1: Output High  
Hysteresis  
0: CMOS in  
1: Hysteresis  
DBNC0  
DBNC1  
4
5
R/W RESETB  
R/W RESETB  
0
0
GPIOLV0 input debounce time  
00: no debounce  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
INT0  
INT1  
6
7
R/W RESETB  
R/W RESETB  
0
0
GPIOLV0 interrupt control  
00: None  
01: Falling edge  
10: Rising edge  
11: Both edges  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
156  
Functional Block Description  
Table 156. Register 33, GPIOLV0 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
PKE  
8
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
0
Pad keep enable  
0: Off  
1: On  
ODE  
DSE  
9
0
0
1
1
Open drain enable  
0: CMOS  
1: OD  
10  
11  
12  
Drive strength enable  
0: 4.0 mA  
1: 8.0 mA  
PUE  
Pull-up/down enable  
0: pull-up/down off  
1: pull-up/down on (default)  
PUS0  
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
11: 100 K pull-up  
PUS1  
SRE0  
SRE1  
13  
14  
15  
R/W RESETB  
R/W RESETB  
R/W RESETB  
1
0
0
(1.0 default 10)  
Slew rate enable  
00: slow (default)  
01: normal  
10: fast  
11: very fast  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
16  
17  
18  
19  
20  
21  
22  
23  
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Table 157. Register 34, GPIOLV1 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
DIR  
0
R/W  
RESETB  
0
GPIOLV1directon  
0: Input  
1: Output  
DIN  
1
R/W  
RESETB  
0
Input state of GPIOLV1 pin  
0: Input low  
1: Input High  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
157  
Functional Block Description  
Table 157. Register 34, GPIOLV1 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
DOUT  
2
R/W  
RESETB  
0
Output state of GPIOLV1 pin  
0: Output Low  
1: Output High  
HYS  
3
R/W  
RESETB  
1
Hysteresis  
0: CMOS in  
1: Hysteresis  
DBNC0  
DBNC1  
4
5
R/W  
R/W  
RESETB  
RESETB  
0
0
GPIOLV1 input debounce time  
00: no debounce  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
INT0  
INT1  
6
7
R/W  
R/W  
RESETB  
RESETB  
0
0
GPIOLV1 interrupt control  
00: None  
01: Falling edge  
10: Rising edge  
11: Both edges  
PKE  
ODE  
DSE  
PUE  
PUS0  
8
R/W  
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
0
0
0
1
1
Pad keep enable  
0: Off  
1: On  
9
Open drain enable  
0: CMOS  
1: OD  
10  
11  
12  
Drive strength enable  
0: 4.0 mA  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
1: pull-up/down on (default)  
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
11: 100 K pull-up  
PUS1  
SRE0  
SRE1  
13  
14  
15  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
1
0
0
(1.0 default 10)  
Slew rate enable  
00: slow (default)  
01: normal  
10: fast  
11: very fast  
Unused  
Unused  
Unused  
Unused  
16  
17  
18  
19  
R
R
R
R
0
0
0
0
Not available  
Not available  
Not available  
Not available  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
158  
Functional Block Description  
Table 157. Register 34, GPIOLV1 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Unused  
Unused  
Unused  
Unused  
20  
21  
22  
23  
R
R
R
R
0
0
0
0
Not available  
Not available  
Not available  
Not available  
Table 158. Register 35, GPIOLV2 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
DIR  
0
R/W  
RESETB  
0
GPIOLV2 direction  
0: Input  
1: Output  
DIN  
DOUT  
HYS  
1
2
3
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
0
0
1
Input state of GPIOLV2 pin  
0: Input low  
1: Input High  
Output state of GPIOLV2 pin  
0: Output Low  
1: Output High  
Hysteresis  
0: CMOS in  
1: Hysteresis  
DBNC0  
DBNC1  
4
5
R/W  
R/W  
RESETB  
RESETB  
0
0
GPIOLV2 input debounce time  
00: no debounce  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
INT0  
INT1  
6
7
R/W  
R/W  
RESETB  
RESETB  
0
0
GPIOLV2 interrupt control  
00: None  
01: Falling edge  
10: Rising edge  
11: Both edges  
PKE  
ODE  
DSE  
PUE  
8
9
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
0
0
0
1
Pad keep enable  
0: Off  
1: On  
Open drain enable  
0: CMOS  
1: OD  
10  
11  
Drive strength enable  
0: 4.0 mA  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
1: pull-up/down on (default)  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
159  
Functional Block Description  
Table 158. Register 35, GPIOLV2 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
PUS0  
12  
R/W  
RESETB  
1
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
11: 100 K pull-up  
PUS1  
SRE0  
SRE1  
13  
14  
15  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
1
0
0
(1.0 default = 10)  
Slew rate enable  
00: slow (default)  
01: normal  
10: fast  
11: very fast  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
16  
17  
18  
19  
20  
21  
22  
23  
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Table 159. Register 36, GPIOLV3 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
DIR  
0
R/W  
RESETB  
0
GPIOLV3 direction  
0: Input  
1: Output  
DIN  
DOUT  
HYS  
1
2
3
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
0
0
1
Input state of GPIOLV3 pin  
0: Input low  
1: Input High  
Output state of GPIOLV3 pin  
0: Output Low  
1: Output High  
Hysteresis  
0: CMOS in  
1: Hysteresis  
DBNC0  
DBNC1  
4
5
R/W  
R/W  
RESETB  
RESETB  
0
0
GPIOLV3 input debounce time  
00: no debounce  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
160  
Functional Block Description  
Table 159. Register 36, GPIOLV3 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
INT0  
INT1  
6
7
R/W  
R/W  
RESETB  
RESETB  
0
0
GPIOLV3 interrupt control  
00: None  
01: Falling edge  
10: Rising edge  
11: Both edges  
PKE  
ODE  
DSE  
PUE  
8
9
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
0
0
0
1
Pad keep enable  
0: Off  
1: On  
Open drain enable  
0: CMOS  
1: OD  
10  
11  
Drive strength enable  
0: 4.0 mA  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
1: pull-up/down on (default)  
PUS0  
PUS1  
12  
13  
R/W  
R/W  
RESETB  
RESETB  
1
1
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
11: 100 K pull-up  
(1.0 default = 10)  
SRE0  
SRE1  
14  
15  
R/W  
R/W  
RESETB  
RESETB  
0
0
Slew rate enable  
00: slow (default)  
01: normal  
10: fast  
11: very fast  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
16  
17  
18  
19  
20  
21  
22  
23  
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
161  
Functional Block Description  
Table 160. Register 37, USB timing  
Name  
Bit # R/W  
Reset  
Default  
Description  
DEVICE_WAKE_UP[3:0]  
0
1
2
3
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
0
0
0
0
The periodical sampling time of the ID line in the Power-Save mode and  
Standby mode; the periodical time of ADC conversion of the resistance  
at ID pin when RAW DATA = 0.  
0000: 50 ms  
0001: 100 ms  
0010: 150 ms  
0011: 200 ms  
0100: 300 ms  
KEYPRESS[3:0]  
LONG_KEYPRESS[3:0]  
SWITCHING_WAIT  
TD  
4
5
6
7
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
0
0
0
0
Normal key press duration  
0000: 100 ms  
0001: 200 ms  
0010: 300 ms  
...  
8
9
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
0
0
0
0
Long key press duration  
0000: 300 ms  
0001: 400 ms  
0010: 500 ms  
...  
10  
11  
12  
13  
14  
15  
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
0
0
0
0
Waiting time before switching the analog or digital switches:  
0000: 10 ms  
0001: 30 ms  
0010: 50 ms  
...  
16  
17  
18  
19  
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
0
0
1
0
Time delay to start the powered accessory identification flow after  
detecting the bus voltage  
0000: 100 ms  
0001: 200 ms  
0010: 300 ms  
0011: 400 ms  
0100: 500 ms  
...  
1111:1600 ms  
The time for no activity in the switches before entering the Power Save  
mode automatically for Audio Type 1 or TTY device  
0000: 1 s  
0001: 2 s  
...  
1001:10s  
...  
1111:16 s  
Unused  
Unused  
20  
21  
R
R
0
0
Not available  
Not available  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
162  
Functional Block Description  
Table 160. Register 37, USB timing  
Name  
Bit # R/W  
Reset  
Default  
Description  
Unused  
22  
23  
R
R
0
0
Not available  
READVALID  
MUSBRSTB  
Read data valid  
0: Data not valid  
1: Data valid  
Table 161. Register 38, USB Button  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Send_End  
S1  
0
1
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1: the Send_End button is pressed  
1: button 1 is pressed  
1: button 2 is pressed  
1: button 3 is pressed  
1: button 4 is pressed  
1: button 5 is pressed  
1: button 6 is pressed  
1: button 7 is pressed  
1: button 8 is pressed  
1: button 9 is pressed  
1: button 10 is pressed  
1: button 11 is pressed  
1: button 12 is pressed  
1: button error occurred  
1: an unknown button is pressed  
Not available  
S2  
2
S3  
3
S4  
4
S5  
5
S6  
6
S7  
7
S8  
8
S9  
9
S10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
S11  
S12  
ERROR  
UNKNOWN  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
R
Not available  
R
Not available  
R
Not available  
R
Not available  
R
Not available  
R
Not available  
R
Not available  
R
Not available  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
163  
Functional Block Description  
Table 162. Register 39, USB Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Wait  
0
R/W MUSBRSTB  
1
Wait or not to wait for the command from the baseband before turning on the  
analog or digital switches for attached accessory  
0: Wait until this bit is changed to 1. Turn on the switches immediately when  
this bit is changed to 1.  
1: Wait for only the time programmed by the Switching Wait bits in Timing Set  
2 register before turning on the switches.  
Manual S/W  
RAWDATA  
1
2
R/W MUSBRSTB  
R/W MUSBRSTB  
1
1
Manual or automatic switching of the switches  
0: manual: the switches are controlled by the Manual S/W registers.  
1: auto: the switches are controlled by the Device Type registers  
Interrupt behavior selection  
0: Enable the ADC conversion periodically and report the ADC Result changes  
on ID pin to the host.  
1: Enable the key press monitor circuit to detect the ID pin status changes and  
report the key press events to the host.  
SWITCH_OPEN  
3
R/W MUSBRSTB  
1
Switch connection selection  
0: Open all switches  
1: Switch selection according to the Manual S/W bit.  
RESET  
4
5
RWM MUSBRSTB  
R/W MUSBRSTB  
0
0
Soft reset. When written to 1, the IC is reset. Once the reset is complete, the  
RST bit is set and the RESET bit is cleared automatically.  
1: to soft-reset the IC  
TTY_SPKL  
SPK_L to DM switch control  
0: Turn off the SPK_L to DM switch  
1: Turn on the SPK_L to DM switch for TTY  
RST  
6
7
R/C  
MUSBRSTB  
This bit indicates if a chip reset has occurred. This bit will be cleared once  
being read.  
0: no.  
1: Yes.  
ACTIVE  
R/W MUSBRSTB  
Indicate either the device is in Active mode  
0: Standby  
1: Active  
CLK_RST  
VOTGEN  
8
9
R/C  
R/W  
R
MUSBRST  
RESETB  
1
0
0
0
Not available  
Enables the OTG switch and the GOTG switch  
Not available  
Unused  
10  
11  
MUSBCHARG  
R/W MUSBRSTB  
R/W MUSBRSTB  
Manual override for USB buck charger input current limit. With  
MUSBCHARG=1. the MUSBCHRG[1:0] SPI bits have control over the buck  
charger input current limit.  
SWHOLD  
12  
1
Switch Hold  
0: Run state machine and allow detection of accessory  
1: Holds off state machine until baseband comes up  
MUSBCHRG0  
MUSBCHRG1  
13  
14  
R/W MUSBRSTB  
R/W MUSBRSTB  
0
0
Controls the buck charger input current limit when Manual S/W = 0  
[00] = Buck disabled  
[01] = 100 mA  
[10] = 500 mA  
[11] = 950 mA  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
164  
Functional Block Description  
Table 162. Register 39, USB Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
VBUS  
SWITCHING0  
15  
R/W MUSBRSTB  
R/W MUSBRSTB  
0
VBUS line switching configuration when Manual S/W = 0  
00: open all switches MVBUS, MPD, MOTG, M0  
01: MVBUS switch closed, MPD switch open  
VBUS  
16  
0
SWITCHING1  
10: VBUS connects to MIC. M0, MOTG, MVBUS switches open, MPD switch  
closed  
Others: open all switches connected to the VBUS line  
DP  
17  
18  
19  
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
0
0
0
DP line switching configuration when Manual S/W = 0  
000: open all switches  
SWITCHING0  
001: DP connected to D+, DM connected to D-  
010: DP connected to SPK_R, DM connected to SPK_L  
011: DP connected to RxD, DM connected to TxD  
Others: open all switches connected to the DP pin and DM pin  
DP  
SWITCHING1  
DP  
SWITCHING2  
DM  
20  
21  
22  
R/W MUSBRSTB  
R/W MUSBRSTB  
R/W MUSBRSTB  
0
0
0
DM line switching configuration when Manual S/W = 0  
000: open all switches  
SWITCHING0  
001: DP connected to D+, DM connected to D-  
010: DP connected to SPK_R, DM connected to SPK_L  
011: DP connected to RxD, DM connected to TxD  
Others: open all switches connected to the DP pin and DM pin  
DM  
SWITCHING1  
DM  
SWITCHING2  
READVALID  
23  
R
MUSBRSTB  
0
Read data valid  
0: Data not valid  
1: Data valid  
Table 163. Register 40, USB Device Type  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Audio Type 1  
Audio Type 2  
USB  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1: An audio type 1 accessory is attached  
1: An audio type 2 accessory is attached  
1: A USB host is attached  
2
UART  
3
1: A UART cable is attached  
5W CHG  
4
1: A 5-wire charger (type 1 or 2) is attached  
1: A USB charger is attached  
USB CHG  
DEDICATED CHG  
USB OTG  
PPD  
5
6
1: A dedicated charger is attached  
1: A USB OTG accessory is attached  
1: A phone powered device is attached  
1: A TTY converter is attached  
7
8
TTY  
9
A/V  
10  
11  
12  
13  
14  
15  
16  
17  
1: An audio/video cable is attached  
1: An audio/video charger is attached  
1: A USB jig cable 1 is attached  
1: A USB jig cable 2is attached  
AVCHRG  
USBJIG1  
USBJIG2  
UARTJIG1  
UARTJIG2  
ID_FACTORY  
UNK_DEVICE  
1: A UART jig cable 1is attached  
1: A UART jig cable 2 is attached  
1: A factory cable is attached  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
165  
Functional Block Description  
Table 163. Register 40, USB Device Type  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Unused  
18  
19  
20  
21  
22  
23  
R
R
R
R
R
R
0
0
0
0
0
0
Not available  
ADCIDRESULT0  
ADCIDRESULT1  
ADCIDRESULT2  
ADCIDRESULT3  
ADCIDRESULT4  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
ADC result value of the resistance at ID pin  
Table 164. Register 41, Unused  
Name  
Bit #  
R/W  
Reset  
Reset  
Default  
Description  
Unused  
0-23  
R
0
Not available  
Table 165. Register 42, Unused  
Name  
Bit #  
R/W  
Default  
Description  
Unused  
0-23  
R
0
Not available  
Table 166. Register 43, ADC 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ADEN  
0
1
2
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
Enables ADC from the low power mode  
ADSTART  
ADCONT  
Request a start of the ADC Reading Sequencer  
Run ADC reads continuously when high or one time when low. Note that the  
TSSTART request will have higher priority  
ADHOLD  
ADSTOP0  
ADSTOP1  
ADSTOP2  
Spare  
3
4
5
6
7
8
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
0
0
0
Hold the ADC reading Sequencer while saved ADC results are read from SPI  
Channel Selection to stop when complete. Always start at 000 and read up to and  
including this channel value.  
Not available  
THERM  
0: NTCREF not forced on  
1: Force NTCREF on  
Spare  
Spare  
9
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
0
0
0
0
Not available  
Not available  
10  
11  
12  
13  
14  
15  
Spare  
Not available  
TSEN  
Enable the Touch screen from low power mode.  
Request a start of the ADC Reading Sequencer for Touch screen readings.  
Run ADC reads of Touch screen continuously when high or one time when low.  
TSSTART  
TSCONT  
TSHOLD  
Hold the ADC reading Sequencer while saved Touch screen results are read from  
SPI  
TSSTOP0  
TSSTOP1  
TSSTOP2  
16  
17  
18  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
Just like the ADSTOP above, but for the Touchscreen read programming. This will  
allow independent code for ADC Sequence readings and touchscreen ADC  
Sequence readings.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
166  
Functional Block Description  
Table 166. Register 43, ADC 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Spare  
19  
20  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
0
0
Not available  
TSPENDET  
EN  
Enable the Touchscreen Pen Detection. Note that TSEN must be off for Pen  
Detection.  
Spare  
Spare  
Spare  
21  
22  
23  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
Not available  
Not available  
Not available  
Table 167. Register 44, ADC 1  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ADDLY10  
ADDLY11  
ADDLY12  
ADDLY13  
ADDLY20  
ADDLY21  
ADDLY22  
ADDLY23  
ADDLY30  
ADDLY31  
ADDLY32  
ADDLY33  
TSDLY10  
TSDLY11  
TSDLY12  
TSDLY13  
TSDLY20  
TSDLY21  
TSDLY21  
TSDLY23  
TSDLY30  
TSDLY31  
TSDLY31  
TSDLY33  
0
1
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
This will allow delay before the ADC readings.  
2
3
4
This will allow delay between each of ADC readings in a set.  
5
6
7
8
This will allow delay after the set of ADC readings. This delay is only valid between  
subsequent wrap around reading sequences with ADCONT  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
This will allow delay before the ADC Touch screen readings. This is like the ADDLY1,  
but allows independent programming of touchscreen readings from general purpose  
ADC readings to prevent code replacement in the system.  
This will allow delay between each of ADC Touch screen readings in a set. This is  
like the ADDLY2, but allows independent programming of touchscreen readings  
from general purpose ADC readings to prevent code replacement in the system.  
This will allow delay after the set of ADC Touch screen readings. This delay is only  
valid between subsequent wrap around reading sequences with TSCONT mode.  
This is like the ADDLY3, but allows independent programming of touchscreen  
readings from general purpose ADC readings to prevent code replacement in the  
system.  
MC34708  
Analog Integrated Circuit Device Data  
167  
Freescale Semiconductor  
Functional Block Description  
Table 168. Register 45, ADC 2  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ADSEL00  
ADSEL01  
ADSEL02  
ADSEL03  
ADSEL10  
ADSEL11  
ADSEL12  
ADSEL13  
ADSEL20  
ADSEL21  
ADSEL22  
ADSEL23  
ADSEL30  
ADSEL31  
ADSEL32  
ADSEL33  
ADSEL40  
ADSEL41  
ADSEL42  
ADSEL43  
ADSEL50  
ADSEL51  
ADSEL52  
ADSEL53  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Channel Selection to place in ADRESULT0  
Channel Selection to place in ADRESULT1  
Channel Selection to place in ADRESULT2  
Channel Selection to place in ADRESULT3  
Channel Selection to place in ADRESULT4  
Channel Selection to place in ADRESULT5  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Table 169. Register 46, ADC 3  
Name  
Bit # R/W  
Reset  
Default  
Description  
ADSEL60  
ADSEL61  
ADSEL62  
ADSEL63  
ADSEL70  
ADSEL71  
ADSEL72  
ADSEL73  
TSSEL00  
TSSEL01  
0
1
2
3
4
5
6
7
8
9
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
0
0
0
0
0
0
0
0
0
0
Channel Selection to place in ADRESULT6  
Channel Selection to place in ADRESULT7  
Touchscreen Selection to place in ADRESULT0.  
Select the action for the Touchscreen; 00 = dummy to discharge TSREF capacitance,  
01 = to read X-plate, 10 = to read Y-plate, and 11 = to read Contact.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
168  
Functional Block Description  
Table 169. Register 46, ADC 3  
Name  
Bit # R/W  
Reset  
Default  
Description  
TSSEL10  
TSSEL11  
TSSEL20  
TSSEL21  
TSSEL30  
TSSEL31  
TSSEL40  
TSSEL41  
TSSEL50  
TSSEL51  
TSSEL60  
TSSEL61  
TSSEL70  
TSSEL71  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Touchscreen Selection to place in ADRESULT1.  
See TSSEL0 for modes.  
Touchscreen Selection to place in ADRESULT2.  
See TSSEL0 for modes.  
Touchscreen Selection to place in ADRESULT3.  
See TSSEL0 for modes.  
Touchscreen Selection to place in ADRESULT4.  
See TSSEL0 for modes.  
Touchscreen Selection to place in ADRESULT5.  
See TSSEL0 for modes.  
Touchscreen Selection to place in ADRESULT6.  
See TSSEL0 for modes.  
Touchscreen Selection to place in ADRESULT7.  
See TSSEL0 for modes.  
Table 170. Register 47, ADC 4  
Name  
Bit # R/W  
Reset  
Default  
Description  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Not available  
Unused  
ADRESULT00  
ADRESULT01  
ADRESULT02  
ADRESULT03  
ADRESULT04  
ADRESULT05  
ADRESULT06  
ADRESULT07  
ADRESULT08  
ADRESULT09  
Unused  
2
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
ADC Result for ADSEL0  
3
4
5
6
7
8
9
10  
11  
12  
13  
Not available  
Unused  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
169  
Functional Block Description  
Table 170. Register 47, ADC 4  
Name  
Bit # R/W  
Reset  
Default  
Description  
ADRESULT10  
ADRESULT11  
ADRESULT12  
ADRESULT13  
ADRESULT14  
ADRESULT15  
ADRESULT16  
ADRESULT17  
ADRESULT18  
ADRESULT19  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R
R
R
R
R
R
R
R
R
R
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
0
0
0
0
0
0
0
ADC Result for ADSEL1  
Table 171. Register 48, ADC5  
Name  
Bit # R/W  
Reset  
Default  
Description  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Not available  
Unused  
ADRESULT20  
ADRESULT21  
ADRESULT22  
ADRESULT23  
ADRESULT24  
ADRESULT25  
ADRESULT26  
ADRESULT27  
ADRESULT28  
ADRESULT29  
Unused  
2
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
ADC Result for ADSEL2  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
Unused  
ADRESULT30  
ADRESULT31  
ADRESULT32  
ADRESULT33  
ADRESULT34  
ADRESULT35  
ADRESULT36  
ADRESULT37  
ADRESULT38  
ADRESULT39  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
ADC Result for ADSEL3  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
170  
Functional Block Description  
Table 172. Register 49, ADC6  
Name  
Bit # R/W  
Reset  
Default  
Description  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Not available  
Unused  
ADRESULT40  
ADRESULT41  
ADRESULT42  
ADRESULT43  
ADRESULT44  
ADRESULT45  
ADRESULT46  
ADRESULT47  
ADRESULT48  
ADRESULT49  
Unused  
2
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
ADC Result for ADSEL4  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
Unused  
ADRESULT50  
ADRESULT51  
ADRESULT52  
ADRESULT53  
ADRESULT54  
ADRESULT55  
ADRESULT56  
ADRESULT57  
ADRESULT58  
ADRESULT59  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
ADC Result for ADSEL5  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
171  
Functional Block Description  
Table 173. Register 50, ADC7  
Name  
Bit # R/W  
Reset  
Default  
Description  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Not available  
Unused  
ADRESULT60  
ADRESULT61  
ADRESULT62  
ADRESULT63  
ADRESULT64  
ADRESULT65  
ADRESULT66  
ADRESULT67  
ADRESULT68  
ADRESULT69  
Unused  
2
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
ADC Result for ADSEL6  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
Unused  
ADRESULT70  
ADRESULT71  
ADRESULT72  
ADRESULT73  
ADRESULT74  
ADRESULT75  
ADRESULT76  
ADRESULT77  
ADRESULT78  
ADRESULT79  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
ADC Result for ADSEL7  
Table 174. Register 51, Battery Profile  
Name  
Bit # R/W  
Reset  
Default  
Description  
VBAT_TRKL0  
VBAT_TRKL1  
0
1
R/W RTCPORB  
R/W RTCPORB  
0
1
Trickle1 to Trickle2 change over threshold  
00: 2.8 V  
01: 2.9 V  
10: 3.0 V  
11: 3.1 V  
CHRITERMEN  
CHREN  
2
3
4
5
R/W RTCPORB  
R/W RTCPORB  
R/W RTCPORB  
R/W RTCPORB  
1
1
1
1
Charger Current termination enable  
Charger enable  
LOWBATT0  
LOWBATT1  
Turn on detection threshold and low battery warning threshold  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
172  
Functional Block Description  
Table 174. Register 51, Battery Profile  
Name  
Bit # R/W  
Reset  
Default  
Description  
CHRCV0  
CHRCV1  
6
7
8
9
R/W RTCPORB  
R/W RTCPORB  
R/M RTCPORB  
R/W RTCPORB  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Constant Voltage Setting  
CHRCV2  
CHRCV3  
CHRCV4  
10 R/W RTCPORB  
11 R/W RTCPORB  
12 R/W RTCPORB  
13 R/W RTCPORB  
14 R/W RTCPORB  
15 R/W RTCPORB  
16 R/W RTCPORB  
17 R/W RTCPORB  
18 R/W RTCPORB  
19 R/W RTCPORB  
20 R/W RTCPORB  
21 R/W RTCPORB  
22 R/W RTCPORB  
23 R/W RTCPORB  
CHRCV5  
CHRCC0  
CHRCC1  
Charge Current  
CHRCC2  
CHRCC3  
CHRITERM0  
CHRITERM1  
CHRITERM2  
BATTEMPL0  
BATTEMPL1  
BATTEMPH0  
BATTEMPH1  
FLOAT_CHARGE  
Charger Current termination threshold  
Battery charging temp low  
Battery charging temp high  
Buck enabled at EOC end of charge  
1=Buck Enabled 0=Buck disabled  
Table 175. Register 52, Charger Debounce  
Name  
Bit # R/W  
Reset  
Default  
Description  
BATTDETDB0  
BATTDETDB1  
VBATTDB0  
VBATTDB0  
VBUSDB0  
0
1
2
3
4
5
6
7
8
9
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/M RESETB  
R/W RESETB  
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
Battery detect debounce  
Battery voltage debounce  
VBUS debounce  
VBUSDB1  
VAUXDB0  
VAUX debounce  
VUSXDB1  
OVPDB0  
Battery voltage over-voltage debounce  
OVPDB1  
CHRGLEDOVRD  
AUXILIM0  
10 R/W RESETB  
11 R/W RESETB  
12 R/W RESETB  
13 R/W RESETB  
14 R/W RESETB  
15 R/W RESETB  
Charger LED override  
AUX input current limit  
AUXILIM1  
AUXILIM2  
SUP_OVP_DB0  
SUP_OVP_DB0  
VBUS or Aux supply over-voltage debounce  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
173  
Functional Block Description  
Table 175. Register 52, Charger Debounce  
Name  
Bit # R/W  
Reset  
Default  
Description  
DIE_TEMP_DB0  
DIE_TEMP_DB1  
THFB_DLY0  
THFB_DLY1  
ILIM_1P5  
16 R/W RESETB  
17 R/W RESETB  
18 R/W RESETB  
19 R/W RESETB  
20 R/W RESETB  
1
1
0
1
0
Die Temp Comparator Debounce  
Interrupt/Regulation Delay  
1.5 A USB/AUX Charger  
0=OFF 1=ON  
THFB_EN  
THFB_MODE  
BATT_ISO_EN  
21 R/W RESETB  
22 R/W RESETB  
23 R/W RESETB  
1
0
0
Thermal Foldback Enable  
0=OFF 1=ON  
Thermal Feedback LOW/High Temp Range Select  
0=LOW 1=HIGH  
Mbatt Open/Closed during EOC  
1=OPEN 0=CLOSED  
Table 176. Register 53, Charger Source  
Name  
Bit # R/W  
Reset  
Default  
Description  
VBUSTL0  
VBUSTL1  
0
1
2
3
4
5
6
7
8
9
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/M RESETB  
R/W RESETB  
1
1
0
1
1
0
0
0
0
1
1
0
1
1
0
0
0
0
0
0
0
0
1
1
VBUS threshold low  
VBUSTL2  
VBUSTH0  
VBUS threshold high  
Weak VBUS threshold  
AUX threshold low  
VBUSTH1  
VBUSTH2  
VBUSWEAK0  
VBUSWEAK1  
VBUSWEAK2  
AUXTL0  
AUXTL1  
10 R/W RESETB  
11 R/W RESETB  
12 R/W RESETB  
13 R/W RESETB  
14 R/W RESETB  
15 R/W RESETB  
16 R/W RESETB  
17 R/W RESETB  
18 R/W RESETB  
19 R/W RESETB  
20 R/W RESETB  
21 R/W RESETB  
22 R/W RESETB  
23 R/W RESETB  
AUXTL2  
AUXTH0  
AUX threshold high  
Weak Aux threshold  
AUXTH1  
AUXTH2  
AUXWEAK0  
AUXWEAK1  
AUXWEAK2  
CHRTIMER0  
CHRTIMER1  
CHRTIMER2  
CHRTIMER3  
AUXWEAKEN  
VBUSWEAKEN  
Enable weak AUX  
Enable weak VBUS  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
174  
Functional Block Description  
Table 177. Register 54, Charger LED Control  
Name  
Bit # R/W  
Reset  
Default  
Description  
CHRGLEDRPER0  
CHRGLEDRPER1  
CHRGLEDRRAMP  
CHRGLEDRDC0  
CHRGLEDRDC1  
CHRGLEDRDC2  
CHRGLEDRDC3  
CHRGLEDRDC4  
CHRGLEDRDC5  
CHRGLEDR0  
0
1
2
3
4
5
6
7
8
9
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
Charger LED red repetition period  
Charger LED red channel driver ramp enable  
Charger LED red channel driver duty cycle  
Charger LED red driver current setting  
CHRGLEDR1  
10 R/W RESETB  
11 R/W RESETB  
12 R/W RESETB  
13 R/W RESETB  
14 R/W RESETB  
15 R/W RESETB  
16 R/W RESETB  
17 R/W RESETB  
18 R/W RESETB  
19 R/W RESETB  
20 R/W RESETB  
21 R/W RESETB  
22 R/W RESETB  
23 R/W RESETB  
CHRGLEDREN  
CHRGLEDGPER0  
CHRGLEDGPER1  
CHRGLEDGRAMP  
CHRGLEDGDC0  
CHRGLEDGDC1  
CHRGLEDGDC2  
CHRGLEDGDC3  
CHRGLEDGDC4  
CHRGLEDGDC5  
CHRGLEDG0  
Charger LED red enable  
Charger LED green repetition period  
Charger LED green channel driver ramp enable  
Charger LED green channel driver duty cycle  
Charger LED green driver current setting  
Charger LED green enable  
CHRGLEDG1  
CHRGLEDGEN  
Table 178. Register 55, PWM Control  
Name  
Bit # R/W  
Reset  
Default  
Description  
PWM1DUTY0  
PWM1DUTY1  
PWM1DUTY2  
PWM1DUTY3  
PWM1DUTY4  
PWM1DUTY5  
0
1
2
3
4
5
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
0
0
0
0
0
0
PWM1 Duty Cycle  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
175  
Functional Block Description  
Table 178. Register 55, PWM Control  
Name  
Bit # R/W  
Reset  
Default  
Description  
PWMCLKDIV0  
PWM1CLKDIV1  
PWM1CLKDIV2  
PWM1CLKDIV3  
PWM1CLKDIV4  
PWM1CLKDIV5  
PWM2DUTY0  
PWM2DUTY1  
PWM2DUTY2  
PWM2DUTY3  
PWM2DUTY4  
PWM2DUTY5  
PWM2CLKDIV0  
PWM2CLKDIV1  
PWM2CLKDIV2  
PWM2CLKDIV3  
PWM2CLKDIV4  
PWM2CLKDIV5  
6
7
8
9
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PWM1 Clock Divide Setting  
10 R/W RESETB  
11 R/W RESETB  
12 R/W RESETB  
13 R/W RESETB  
14 R/W RESETB  
15 R/W RESETB  
16 R/W RESETB  
17 R/W RESETB  
18 R/W RESETB  
19 R/W RESETB  
20 R/W RESETB  
21 R/W RESETB  
22 R/W RESETB  
23 R/W RESETB  
PWM2 Duty Cycle  
PWM2 Clock Divide Setting  
Table 179. Register 56, Unused  
Name  
Bit #  
R/W  
Reset  
Reset  
Reset  
Reset  
Reset  
Default  
Description  
Unused  
0-23  
R
0
Not available  
Table 180. Register 57, Unused  
Name  
Bit #  
R/W  
Default  
Description  
Unused  
0-23  
R
0
Not available  
Table 181. Register 58, Unused  
Name  
Bit #  
R/W  
Default  
Description  
Unused  
0-23  
R
0
Not available  
Table 182. Register 59, Unused  
Name  
Bit #  
R/W  
Default  
Description  
Unused  
0-23  
R
0
Not available  
Table 183. Register 60, Unused  
Name  
Bit #  
R/W  
Default  
Description  
Unused  
0-23  
R
0
Not available  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
176  
Functional Block Description  
Table 184. Register 61, Unused  
Name  
Bit #  
R/W  
Reset  
Reset  
Reset  
Default  
Description  
Unused  
0-23  
R
0
Not available  
Table 185. Register 62, Unused  
Name  
Bit #  
R/W  
Default  
Description  
Unused  
0-23  
R
0
Not available  
Table 186. Register 63, Unused  
Name  
Bit #  
R/W  
Default  
Description  
Unused  
0-23  
R
0
Not available  
MC34708  
Analog Integrated Circuit Device Data  
177  
Freescale Semiconductor  
Typical Applications  
8
Typical Applications  
The following diagram gives a typical application diagram of the MC34708 PMIC together with its functional components. For  
details on component references and additional components such as filters, refer to the individual sections.  
8.1  
Application Diagram  
Tied to  
BATTISNSCC  
VBUS  
(Charger input)  
Aux charge input  
M1  
L1  
2.2u  
BP  
R1  
20m  
M3  
M2  
C1  
C69  
C4  
10u  
C67  
10n  
10n  
1
10u  
C2  
C68  
10n  
10u  
BP  
D1  
D9  
D2  
R73  
To GND,  
VCOREDIG,  
Float  
SW1 Output  
2 x22u  
C5  
4.7u  
L2  
1.0u  
BP  
SW1IN  
SW1ALX  
GNDSW1A  
SW1FB  
O/P  
Drive  
Switching Charger  
Interface and Control, Protection,  
Trickle Generation  
Battery Interface &  
Protection  
C6/C7  
SW1  
Dual Phase  
GP  
2000 mA  
Buck  
SW1CFG  
SW1VSSSNS  
VCOREDIG  
To AP  
LICELL, UID, Die Temp, GPO4  
D8  
Voltage  
Current  
/
GNDADC  
SW1BLX  
GNDSW1B  
O/P  
Drive  
Sensing &  
Translation  
R18  
100K  
10 Bit GP  
A/D Result  
ADC  
ADIN9  
DVS  
CONTROL  
SW1PWGD  
General Purpose ADC Inputs:  
i.e., PA thermistor, Light Sensor, Etc.  
ADIN10  
ADIN11  
SW2 Output  
C11  
C10  
4.7u  
BP  
L4  
A/D  
Control  
1.0u  
SW2IN  
SW2LX  
GNDSW2  
SW2FB  
SW2PWGD  
22u  
MUX  
O/P  
Drive  
SW2  
ADIN12/TSX1  
ADIN13/TSX2  
ADIN14/TSY1  
ADIN15/TSY2  
TSREF  
D10  
R19  
100K  
LP  
Touch  
Screen  
Interface  
`
1000 mA  
To AP  
BP  
Buck  
Touch  
Screen  
Interface  
SW3 Output  
10u  
C13  
4.7u  
L5  
1.0u  
Die Temp &  
Thermal Warning  
Detection  
SW3IN  
C54  
C14  
To Interrupt  
Section  
SW3  
INT MEM  
500 mA  
Buck  
O/P  
Drive  
SW3LX  
GNDSW3  
SW3FB  
To battery  
Thermistor  
D11  
2.2u  
BPTHERM  
NTCREF  
C16  
4.7u  
SW4A Output  
C17 10u  
L6  
1.0u  
BP  
R11 24K  
SW4AIN  
SW4ALX  
GNDSW4A  
SW4FBA  
O/P  
Drive  
BATTISNSCCP  
D12  
(needs to be separate routes from  
BATTISNSP and BATTISNN)  
SW4  
Dual Phase  
DDR  
1000 mA  
Buck  
BATTISNSCCN  
CFP  
Coulomb  
Counter  
CCOUT  
SW4CFG  
C53  
To SPI  
SW4B Output  
C20 10u  
C19  
4.7u  
L7  
1.0u  
Package Pin Legend  
10uF  
BP  
BP  
SW4BIN  
CFN  
SW4BLX  
GNDSW4B  
SW4BFB  
O/P  
Drive  
Output Pin  
Input Pin  
D13  
SPIVCC  
Shift Register  
Bi-directional Pin  
SW5  
SW5 Output  
C23 22u  
C22  
4.7u  
L8  
1.0u  
CS  
SPI  
Interface  
+
Muxed  
I2C  
Optional  
Interface  
SW5IN  
CLK  
SW5  
I/O  
1000 mA  
Buck  
O/P  
Drive  
SW5LX  
GNDSW5  
SW5FB  
SPI  
SPI  
D14  
MOSI  
MISO  
To Enables & Control  
Registers  
BP  
C25  
4.7u  
L9  
2.2u  
GNDSPI  
Shift Register  
SWBSTIN  
SWBSTLX  
SWBSTFB  
SWBST  
Output  
(Boost)  
BP  
D3  
O/P  
Drive  
SWBST  
380 mA  
Boost  
C56  
VALWAYS  
VCORE  
1u  
GNDSWBST  
C26  
10u  
C50  
MC34708  
1u  
C51  
VCOREDIG  
VDDLP  
Reference  
Generation  
1u  
SW4B  
C57  
100n  
C52  
SPI Control  
VINREFDDR  
VHALF  
C55  
100n  
100pF  
C49  
VCOREREF  
GNDCORE  
GNDREF  
VREFDDR  
10mA  
100n  
VREFDDR  
1u  
C28  
SPKR  
SPKL  
MIC  
C30  
2.2u  
VINPLL  
VPLL  
BP  
VPLL  
50 mA  
Pass  
FET  
To/From  
Audio IC  
BP  
VUSB2DRV  
VUSB2  
TXD  
RXD  
Q1  
Pass  
FET  
VUSB2  
350mA  
VBUS/ID  
Detectors, Host  
Auto detection  
C29  
2.2u  
BP  
To/From  
AP  
DPLUS  
DMINUS  
VDACDRV  
VDAC  
VDAC  
250mA  
Q3  
UART Switches  
Audio Switches  
C36  
2.2u  
DP  
DM  
To  
Trimmed  
Circuits  
SPI  
Trim-In-Package  
Control  
Logic  
To/From  
USB Cable  
C38  
SW5  
VINGEN1  
VGEN1  
VGEN1  
250mA  
Pass  
FET  
GNDUSB  
UID  
2.2u  
VBUS  
BP  
Startup  
Sequencer  
Decode  
Trim?  
OVP  
Control  
Logic  
VGEN2DRV  
VGEN2  
PUMSx  
Q5  
PLL  
Switchers  
Pass  
FET  
VGEN2  
250mA  
VINUSB  
VUSB  
Monitor  
Timer  
SWBST  
C47  
C41  
2.2u  
VUSB  
Regulator  
RTC  
Calibration  
+
32 KHz  
Internal  
Osc  
LDOVDD  
BP  
2.2u  
SPI Result  
Registers  
Interrupt  
Inputs  
Enables &  
Control  
32 KHz  
Buffers  
Best  
of  
Supply  
GNDREG1  
GNDREG2  
GNDREF1  
GNDREF2  
BP  
LCELL  
Switch  
LICELL  
C46  
Coin Cell  
Battery  
PWM  
Outputs  
32 KHz  
Crystal  
Osc  
GPIO Control  
Li Cell  
Charger  
100n  
VSRTC  
R4  
R20 R3  
C43  
0.1u  
To/From  
AP  
To AP  
To Peripherals  
To GND, or  
VCOREDIG  
18p  
15p  
C45  
C44  
Y1  
32.768 KHz  
Crystal  
On/Off  
Button  
Reset  
button  
Figure 44. MC34708 Typical Application Schematic  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
178  
Typical Applications  
8.2  
Bill of Material  
The following table provides a complete list of the recommended components on a full featured system using the MC34708  
Device. Critical components such as inductors, transistors, and diodes are provided with a recommended part number, but  
equivalent components may be used.  
Table 187. MC34708 Bill of Material (79)  
Item  
Quantity Component  
Description  
MC34708  
Vendor  
Comments  
Freescale  
PMIC  
1
1
Charger/Battery Interface  
10 F  
TDK  
Battery Filter  
2
3
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C1  
R1, R2  
M3  
20 mOhm  
Battery Sense  
PMOS NTHS2101P  
10 F  
On Semi  
GBAT  
4
BP/ buck charging cap  
Charger Buck inductor  
5
C2  
2.2 H LPS3015-222ML  
FDMA510PZ  
10 nF  
Coilcraft  
Fairchild  
6
L1  
VBUS Over-voltage protection  
VBUS 10 nF input cap  
7
M2  
8
C67  
M1  
FDMA510PZ  
2.2 F 20 V  
Fairchild  
Infineon  
VAUX Over-voltage protection  
VAUX charge input cap  
9
11  
12  
13  
14  
15  
16  
17  
18  
C4  
10 nF  
VAUX 10 nF input cap  
C68  
D9  
Diode BAS3010-03LRH  
1.0 nF  
Schottky for charger snubber  
1.0 nF For charger snubber (DNP)  
10 Ohm for snubber (DNP)  
C69  
R73  
D2  
10 Ohm  
Green Charge LED  
Red Charge LED  
24 k Batt thermistor PU  
D1  
NTC Thermistor PU  
-
Miscellaneous  
1.0 F  
VALWAYS  
VSRTC  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
1
1
1
1
1
1
1
1
1
1
1
C56  
C43  
C50  
C51  
C52  
C49  
C53  
C46  
Y1  
100 nF  
1.0 F  
VCORE  
1.0 F  
VCOREDIG  
VDDLP  
100 pF  
100 nF  
VREFCORE  
Coulomb Counter  
Coin cell  
10 F  
100 nF  
Crystal 32.768 kHz CC7  
18 pF  
Oscillator  
Oscillator  
Oscillator  
C44  
C45  
18 pF  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
179  
Typical Applications  
Table 187. MC34708 Bill of Material (79)  
Description Vendor  
Item  
30  
Quantity Component  
Comments  
100 k  
100 k  
RESETB, RESETBMCU Pull-ups  
2
1
R3, R4  
R20  
SDWNB Pull-up  
31  
Boost  
2.2 H LPS3015-222ML  
Diode BAS52  
4.7 F 16 V  
Coilcraft  
Infineon  
Boost Inductor  
32  
33  
1
1
1
1
L9  
D3  
Boost diode  
Boost Output Capacitor  
Boost Input Capacitor  
34  
C26  
C25  
4.7 F  
35  
SW1  
36  
1.0 H VLS201612ET-1R0N TDK  
1.0 H VLS252010ET-1R0N TDK  
Buck 1 Inductor (IMAX < 1.6 Amps)  
2
0
0
0
2
1
1
Optional dual phase Inductor (IMAX 2.0 Amps)  
Taiyo Yuden Optional single Phase inductor (IMAX < 1.6 Amps)  
37  
L2, L3  
1.0 H BRL3225T1ROM  
1.0 uH LPS4012-102NL  
22 F  
38  
Coilcraft  
Optional single phase inductor (IMAX 2.0 Amps)  
Buck 1 Output Capacitor  
39  
40  
C6, C7  
C5  
4.7 F  
Buck 1 Input Capacitor  
41  
Diode BAS3010-03LRH  
Infineon  
SW1LX diode  
42  
D8  
SW2  
43  
1.0 H VLS252010ET-1R0N TDK  
Buck 2 Inductor  
1
1
1
1
L4  
22 F  
Buck 2 Output Capacitor  
Buck 2 Input Capacitor  
SW2LX diode  
44  
C11  
C10  
D10  
4.7 F  
45  
Diode BAS3010-03LRH  
Infineon  
46  
SW3  
47  
1.0 H VLS201612ET-1R0N TDK  
Buck 3 Inductor  
1
1
1
1
L5  
10 F  
Buck 3 Output Capacitor  
Buck 3 Input Capacitor  
SW3LX diode  
48  
C14  
C13  
D11  
4.7 F  
49  
Diode BAS3010-03LRH  
Infineon  
50  
SW4A  
51  
1.0 H VLS201612ET-1R0N TDK  
Buck 4A Inductor  
1
0
1
1
1
L6  
1.0 H VLS252010ET-1R0N TDK  
Optional Inductor  
52  
10 F  
Buck 4A Output Capacitor  
Buck 4A Input Capacitor  
SW4ALX diode  
53  
C17  
C16  
D12  
4.7 F  
54  
Diode BAS3010-03LRH  
Infineon  
55  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
180  
Typical Applications  
Table 187. MC34708 Bill of Material (79)  
Description Vendor  
Item  
Quantity Component  
Comments  
SW4B  
1.0 H VLS201612ET-1R0N TDK  
Buck 4B Inductor  
Optional Inductor  
56  
57  
1
0
1
1
1
L7  
-
1.0 H VLS25010ET-1R0N TDK  
10 F  
Buck 4B Output Capacitor  
Buck 4B Input Capacitor  
SW4BLX diode  
58  
C20  
C19  
D13  
4.0 F  
59  
Diode BAS3010-03LRH  
Infineon  
60  
SW5  
61  
1.0 H VLS252010ET-1R0N TDK  
Buck 5 Inductor  
1
1
1
1
L8  
22 F  
Buck 5 Output Capacitor  
Buck 5 Input Capacitor  
SW5LX diode  
62  
C23  
C22  
D14  
4.7 F  
63  
Diode BAS3010-03LRH  
Infineon  
64  
VPLL  
65  
2.2 F  
VPLL  
1
C30  
VREFDDR  
66  
100 nF  
VHALF 0.1 uF caps  
VREFDDR  
1
1
C57  
C28  
1.0 F  
67  
VDAC  
68  
PNP NSS12100UW3  
On Semi  
On Semi  
VDAC PNP  
VVDAC  
1
1
Q3  
2.2 F  
69  
C36  
VUSB2  
70  
PNP NSS12100UW3  
VUSB2 PNP  
VUSB2  
1
1
Q1  
2.2 F  
71  
C29  
VUSB  
72  
2.2 F  
4.7 F  
VUSB  
1
1
C47  
C38  
VGEN1  
73  
VGEN1  
VGEN2  
74  
PNP NSS12100UW3  
On Semi  
VGEN2 PNP  
VGEN2  
1
1
Q5  
2.2 F  
75  
C41  
Notes  
79. Freescale does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings  
or tables. While Freescale offers component recommendations in this configuration, it is the customer’s responsibility to validate their  
application.  
MC34708  
Analog Integrated Circuit Device Data  
181  
Freescale Semiconductor  
Typical Applications  
8.3  
MC34708 Layout Guidelines  
8.3.1  
General board recommendations  
1. It is recommended to use an 8 layer board stack-up arranged as follows:  
• High current signal  
• GND  
• Signal  
• Power  
• Power  
• Signal  
• GND  
• High current signal  
2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high current signals), copper-pour the unused area.  
3. Use internal layers sandwiched between two GND planes for the SIGNAL routing.  
8.3.2  
Component Placement  
Sense resistors should be placed as Close to the IC as possible. Route the high current path flowing from VBATT to BATTISNSN  
as thick and as short as possible to reduce power losses.  
8.3.3  
General Routing Requirements  
1. Some recommended things to keep in mind for manufacturability:  
• Via in pads require a 4.5 mil Minimum annular ring. Pad must be 9.0 mils larger than the hole  
• Max copper thickness for lines less than 5.0 mils wide is 0.6 oz copper  
• Minimum allowed spacing between line and hole pad is 3.5 mils  
• Minimum allowed spacing between line and line is 3.0 mils  
2. Care must be taken with SWxFB pins traces. These signals are susceptible to noise and must be routed far away from  
power, clock, or high power signals, like the ones on the SWxIN, SWx, SWxLX, SWBSTIN, SWBST, and SWBSTLX pins.  
3. Shield feedback traces of the switching regulators and keep them as short as possible (trace them on the bottom so the  
ground and power planes shield these traces).  
4. Sense pins must be directly connected to the 0.02 Ohm sense resistor R1 (BATTISNSN and BATTISNSP).  
5. Avoid coupling trace between important signal/low noise supplies (like VREFCORE, VCORE, VCOREDIG) from any  
switching node (i.e. SW1ALXx, SW2LXx, SW3LXx, SW4ALX, SW4BLX, SW5LXx, SWBSTLXx, and CHRGLXx).  
6. Make sure that all components related to an specific block are referenced to the corresponding ground, e.g. all  
components related to the SW1 converter must referenced to GNDSW1A1 and GNDSW1A2.  
7. The LEDVDD trace must be orthogonal from the CHRGLXx traces.  
8.3.4  
Parallel Routing Requirements  
2
1. SPI/I C signal routing:  
• CLK is the fastest signal of the system, so it must be given special care. Here are some tips for routing the communication  
signals:  
• To avoid contamination of these delicate signals by nearby high power or high frequency signals, it is a good practice to  
shield them with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the whole  
signal trace length.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
182  
Typical Applications  
Figure 45. Recommended Shielding for Critical Signals.  
• These signals can be placed on an outer layer of the board to reduce their capacitance in respect to the ground plane.  
• The crystal connected to the XTAL1 and XTAL2 pins must not have a ground plane directly below.  
• The following are clock signals: CLK, CLK32K, CLK32KMCU, XTAL1, and XTAL2. These signals must not run parallel to  
each other, or in the same routing layer. If it is necessary to run clock signals parallel to each other, or parallel to any other  
signal, then follow a MAX PARALLEL rule as follows:  
• Up to 1 inch parallel length – 25 mil minimum separation  
• Up to 2 inch parallel length – 50 mil minimum separation  
• Up to 3 inch parallel length – 100 mil minimum separation  
• Up to 4 inch parallel length – 250 mil minimum separation  
• Care must be taken with these signals not to contaminate analog signals, as they are high frequency signals. Another good  
practice is to trace them perpendicularly on different layers, so there is a minimum area of proximity between signals.  
2. The traces BATTISNSN and BATTISNSP that go to the R1 resistor must run in parallel.  
8.3.5  
Differential Routing  
1. DP and DM traces should be routed as 90 ohm differential signals.  
2. DPLUS and DMINUS traces should be routed as 90 ohm differential signals.  
8.3.6  
Switching Regulator Layout Recommendations  
1. Per design, the MC34708 is designed to operate with only 1 input bulk capacitor. However, it is recommended to add a  
high frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor should be in the  
range of 100 nF and should be placed right next to or under the IC, closest to the IC pins.  
2. Make high-current ripple traces low inductance (short, high W/L ratio).  
3. Make high-current traces wide or copper islands.  
4. Make high-current traces SYMETRICAL for dual–phase regulators (SW1, SW4).  
BP  
SWxIN  
Cin  
SWx Output  
Cin_hf  
L
SWx LX  
Co ut  
GNDSWx  
SWxFB  
Figure 46. Generic Buck Regulator Architecture  
MC34708  
Analog Integrated Circuit Device Data  
183  
Freescale Semiconductor  
Typical Applications  
Figure 47. Recommended Layout for Switching Regulators.  
8.4  
Thermal Considerations  
8.4.1  
Rating Data  
The thermal rating data of the packages has been simulated with the results listed in Table 5.  
Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification reserves the symbol R  
or θJA (Theta-JA)  
θJA  
strictly for junction-to-ambient thermal resistance on a 1s test board in natural convection environment. R  
or θJMA (Theta-  
θJMA  
JMA) will be used for both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced  
convection on both 1s and 2s2p test boards. It is anticipated that the generic name, Theta-JA, will continue to be commonly used.  
The JEDEC standards can be consulted at http://www.jedec.org/  
8.4.2  
Estimation of Junction Temperature  
An estimation of the chip junction temperature TJ can be obtained from the equation  
T = T + (R  
x P )  
D
J
A
θJA  
with  
T = Ambient temperature for the package in °C  
A
R= Junction to ambient thermal resistance in °C/W  
JA  
P = Power dissipation in the package in W  
D
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal  
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board R  
and the  
θJA  
value obtained on a four layer board R  
. Actual application PCBs show a performance close to the simulated four layer board  
θJMA  
value although this may be somewhat degraded in case of significant power dissipated by other components placed close to the  
device.  
At a known board temperature, the junction temperature TJ is estimated using the following equation  
T = T + (R  
x P ) with  
D
J
B
θJB  
T = Board temperature at the package perimeter in °C  
B
R
= Junction to board thermal resistance in °C/W  
θJB  
P = Power dissipation in the package in W  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.  
See Functional Block Description for more details on thermal management.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
184  
Packaging  
9
Packaging  
The MC34708 is offered in two pin compatible 206 pin MAPBGA packages, an 8.0x8.0 mm, 0.5 mm pitch package, and a  
13x13 mm, 0.8 mm pitch package.  
9.1  
Package Mechanical Dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to  
www.freescale.com and perform a keyword search for the drawing’s document number.  
Table 188. Package Drawing Information  
Package  
Suffix  
Package Outline Drawing Number  
98ASB42344B  
98ASA00299D  
206-pin MAPBGA (8 x 8), 0.5 mm  
206-pin MAPBGA (13 x 13), 0.8 mm  
VK  
VM  
Dimensions shown are provided for reference ONLY (For Layout and Design, refer to the Package Outline Drawing listed in the  
following figures).  
MC34708  
Analog Integrated Circuit Device Data  
185  
Freescale Semiconductor  
Packaging  
Figure 48. 8 x 8 Package Mechanical Dimension  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
186  
Packaging  
Figure 49. 13 x 13 Package Mechanical Dimension  
MC34708  
Analog Integrated Circuit Device Data  
187  
Freescale Semiconductor  
Reference Section  
10 Reference Section  
Table 189. MC34708 Reference Documents  
Reference  
Description  
MC34708FS  
MC34708ER  
Fact Sheet  
Errata  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
188  
Revision History  
11 Revision History  
REVISION  
6.0  
DATE  
DESCRIPTION OF CHANGES  
Initial release  
7/2011  
10/2011  
Corrected the two pins SW2PWGD and SDWNB, and associated drawings.  
Changed Charge LED Driver Electrical Specifications, VPLL Matching from 3.0 to 4.0%  
Changed VPLL Electrical Specification, tON-VPLL from 100 to 120 s  
Changed SWBST Electrical Specifications, ILEAK_SWBST from 5.0 to 6.0 A  
Added Max limit to Charger Input Current Limit (using the USB input)  
Added note (58) to VREFDDR  
Changed RUSB ON value to 5.0 typ, 8.0 max  
Set MIC bias to 1.5 V, and changed ON resistance values to 75 typ and 150 max.  
Added Efficiency values for all Buck Converter  
7.0  
Added diodes to the LX pin on SW1, SW2, SW3, SW4A, SW4B, and SW5.  
Updated schematics to reflect the LX pin diodes on SW1, SW2, SW3, SW4A, SW4B, and SW5, and  
removed the 10 F VBUSVIN input capacitor.  
MC34708  
Analog Integrated Circuit Device Data  
189  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale Semiconductor reserves the right to make changes without further  
to products herein. Freescale Semiconductor makes no warranty,  
representation or regarding the suitability of its products for any particular  
purpose, nor does Freescale Semiconductor assume any liability arising out  
of the or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation consequential or incidental damages.  
“Typical” parameters that may be provided in Freescale Semiconductor data  
sheets and/or specifications can and do vary in different applications and  
actual performance may vary over time. All operating parameters, including  
“Typicals”, be validated for each customer application by technical experts.  
Freescale Semiconductor does not convey any license under its patent rights  
nor the rights of others. Freescale Semiconductor products are designed,  
intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale  
Semiconductor product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use Freescale Semiconductor  
products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees,  
subsidiaries, affiliates, and harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that Freescale Semiconductor  
was negligent regarding the design or manufacture of the part.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022   
China   
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Qorivva, S12 MagniV,  
SMARTMOS and Xtrinsic are trademarks of Freescale  
Semiconductor, Inc. ARM is the registered trademark of ARM  
Limited. The Power Architecture and Power.org word marks and the  
Power and Power.org logos and related marks are trademarks and  
service marks licensed by Power.org. All other product or service  
names are the property of their respective owners. ©2011 Freescale  
Semiconductor, Inc.  
MC34708  
Rev. 7.0  
10/2011  

相关型号:

PC34708VKR2

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PBGA206, 8 X 8 MM, 0.50 MM PITCH, LEAD FREE, MO-275CCCE-1, MAPBGA-206
NXP

PC34708VM

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PBGA206, 13 X 13 MM, 0.80 MM PITCH, LEAD FREE, MO-275HHAC-1, MAPBGA-206
NXP

PC34708VMR2

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PBGA206, 13 X 13 MM, 0.80 MM PITCH, LEAD FREE, MO-275HHAC-1, MAPBGA-206
NXP

PC34709VK

Power Management Integrated Circuit (PMIC) for i.MX50/53 Families
FREESCALE

PC34709VKR2

Power Management Integrated Circuit (PMIC) for i.MX50/53 Families
FREESCALE

PC34710EW

Adjustable Dual Output Switching Power Supply
MOTOROLA

PC34710EWR2

Adjustable Dual Output Switching Power Supply
MOTOROLA

PC34830EP

HD to SD Adjustable Bandwidth Video Buffer with DC Restore
FREESCALE

PC34830EPR2

HD to SD Adjustable Bandwidth Video Buffer with DC Restore
FREESCALE

PC34844EP

10 Channel LED Backlight Driver with Integrated Power Supply
FREESCALE

PC34844EPR2

10 Channel LED Backlight Driver with Integrated Power Supply
FREESCALE

PC34848EP

LED DISPLAY DRIVER, QCC48, 7 X 7 MM, 1 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, MO-220VKKD-2, QFN-48
NXP