PCA9306GM,125 [NXP]

PCA9306 - Dual bidirectional I2C-bus and SMBus voltage-level translator QFN 8-Pin;
PCA9306GM,125
型号: PCA9306GM,125
厂家: NXP    NXP
描述:

PCA9306 - Dual bidirectional I2C-bus and SMBus voltage-level translator QFN 8-Pin

PC 接口集成电路
文件: 总35页 (文件大小:455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCA9306  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
Rev. 8 — 22 January 2014  
Product data sheet  
1. General description  
The PCA9306 is a dual bidirectional I2C-bus and SMBus voltage-level translator with an  
enable (EN) input, and is operational from 1.0 V to 3.6 V (Vref(1)) and 1.8 V to 5.5 V  
(Vbias(ref)(2)).  
The PCA9306 allows bidirectional voltage translations between 1.0 V and 5 V without the  
use of a direction pin. The low ON-state resistance (Ron) of the switch allows connections  
to be made with minimal propagation delay. When EN is HIGH, the translator switch is on,  
and the SCL1 and SDA1 I/O are connected to the SCL2 and SDA2 I/O, respectively,  
allowing bidirectional data flow between ports. When EN is LOW, the translator switch is  
off, and a high-impedance state exists between ports.  
The PCA9306 is not a bus buffer like the PCA9509 or PCA9517A that provide both level  
translation and physically isolates the capacitance to either side of the bus when both  
sides are connected. The PCA9306 only isolates both sides when the device is disabled  
and provides voltage level translation when active.  
The PCA9306 can also be used to run two buses, one at 400 kHz operating frequency  
and the other at 100 kHz operating frequency. If the two buses are operating at different  
frequencies, the 100 kHz bus must be isolated when the 400 kHz operation of the other  
bus is required. If the master is running at 400 kHz, the maximum system operating  
frequency may be less than 400 kHz because of the delays added by the translator.  
As with the standard I2C-bus system, pull-up resistors are required to provide the logic  
HIGH levels on the translator’s bus. The PCA9306 has a standard open-collector  
configuration of the I2C-bus. The size of these pull-up resistors depends on the system,  
but each side of the translator must have a pull-up resistor. The device is designed to work  
with Standard-mode, Fast-mode and Fast-mode Plus I2C-bus devices in addition to  
SMBus devices. The maximum frequency is dependent on the RC time constant, but  
generally supports > 2 MHz.  
When the SDA1 or SDA2 port is LOW, the clamp is in the ON-state and a low resistance  
connection exists between the SDA1 and SDA2 ports. Assuming the higher voltage is on  
the SDA2 port when the SDA2 port is HIGH, the voltage on the SDA1 port is limited to the  
voltage set by VREF1. When the SDA1 port is HIGH, the SDA2 port is pulled to the drain  
pull-up supply voltage (Vpu(D)) by the pull-up resistors. This functionality allows a  
seamless translation between higher and lower voltages selected by the user without the  
need for directional control. The SCL1/SCL2 channel also functions as the SDA1/SDA2  
channel.  
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
All channels have the same electrical characteristics and there is minimal deviation from  
one output to another in voltage or propagation delay. This is a benefit over discrete  
transistor voltage translation solutions, since the fabrication of the switch is symmetrical.  
The translator provides excellent ESD protection to lower voltage devices, and at the  
same time protects less ESD-resistant devices.  
2. Features and benefits  
2-bit bidirectional translator for SDA and SCL lines in mixed-mode I2C-bus applications  
Standard-mode, Fast-mode, and Fast-mode Plus I2C-bus and SMBus compatible  
Less than 1.5 ns maximum propagation delay to accommodate Standard-mode and  
Fast-mode I2C-bus devices and multiple masters  
Allows voltage level translation between:  
1.0 V Vref(1) and 1.8 V, 2.5 V, 3.3 V or 5 V Vbias(ref)(2)  
1.2 V Vref(1) and 1.8 V, 2.5 V, 3.3 V or 5 V Vbias(ref)(2)  
1.8 V Vref(1) and 3.3 V or 5 V Vbias(ref)(2)  
2.5 V Vref(1) and 5 V Vbias(ref)(2)  
3.3 V Vref(1) and 5 V Vbias(ref)(2)  
Provides bidirectional voltage translation with no direction pin  
Low 3.5 ON-state connection between input and output ports provides less signal  
distortion  
Open-drain I2C-bus I/O ports (SCL1, SDA1, SCL2 and SDA2)  
5 V tolerant I2C-bus I/O ports to support mixed-mode signal operation  
High-impedance SCL1, SDA1, SCL2 and SDA2 pins for EN = LOW  
Lock-up free operation  
Flow through pinout for ease of printed-circuit board trace routing  
ESD protection exceeds 2000 V HBM per JESD22-A114 and 1000 V CDM per  
JESD22-C101  
Packages offered: SO8, TSSOP8, VSSOP8, XQFN8, XSON8, XSON8U  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
2 of 35  
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
3. Ordering information  
Table 1.  
Ordering information  
Tamb = 40 C to +85 C.  
Type number  
Topside  
mark  
Package  
Name  
Description  
Version  
PCA9306D  
PCA9306  
306C  
SO8  
plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
SOT765-1  
PCA9306DC  
VSSOP8  
plastic very thin shrink small outline package; 8 leads;  
body width 2.3 mm  
PCA9306DC1[1]  
P06  
VSSOP8  
VSSOP8  
plastic very thin shrink small outline package; 8 leads;  
body width 2.3 mm  
SOT765-1  
SOT765-1  
SOT505-1  
SOT505-2  
SOT996-2  
PCA9306DC1/DG[2] P06  
plastic very thin shrink small outline package; 8 leads;  
body width 2.3 mm  
PCA9306DP  
306P  
306T  
P06  
TSSOP8[3] plastic thin shrink small outline package; 8 leads;  
body width 3 mm  
PCA9306DP1[4]  
PCA9306GD1[5]  
PCA9306GF  
TSSOP8  
XSON8U  
XSON8  
XQFN8  
plastic thin shrink small outline package; 8 leads;  
body width 3 mm; lead length 0.5 mm  
plastic extremely thin small outline package; no leads;  
8 terminals; UTLP based; body 3 2 0.5 mm  
06  
extremely thin small outline package; no leads; 8 terminals; SOT1089  
body 1.35 1 0.5 mm  
PCA9306GM  
P6X[6]  
plastic extremely thin quad flat package; no leads;  
SOT902-2  
8 terminals; body 1.6 1.6 0.5 mm  
[1] Same footprint and pinout as the Texas Instruments PCA9306DCU.  
[2] PCA9306DC1/DG is functionally the same (electrically and mechanically) as the PCA9306DC1 and the Texas Instruments  
PCA9306DCT. It is produced in Dark Green (lead-free and halogen/antimony-free) package material, with a unique orderable part  
number for customers who desire to order and only receive Dark Green package material.  
[3] Also known as MSOP8.  
[4] Same footprint and pinout as the Texas Instruments PCA9306DCT.  
[5] Low cost, thinner, drop-in replacement for VSSOP8 (SOT765-1) package.  
[6] ‘X’ will change based on date code.  
3.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Orderable  
Package Packing method  
Minimum Temperature  
part number  
order  
quantity  
PCA9306D  
PCA9306D,112  
PCA9306D,118  
PCA9306DC,125  
PCA9306DC1,125  
SO8  
SO8  
Standard marking *  
IC’s tube - DSC bulk pack  
2000  
2500  
3000  
3000  
3000  
T
amb = 40 C to +85 C  
Tamb = 40 C to +85 C  
Tamb = 40 C to +85 C  
Reel 13” Q1/T1  
*standard mark SMD  
PCA9306DC  
PCA9306DC1  
VSSOP8 Reel 7” Q3/T4  
*standard mark  
VSSOP8 Reel 7” Q3/T4  
*standard mark  
Tamb = 40 C to +85 C  
Tamb = 40 C to +85 C  
PCA9306DC1/DG PCA9306DC1/DG,125 VSSOP8 Reel 7” Q3/T4  
*standard mark  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
3 of 35  
 
 
 
 
 
 
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
Table 2.  
Ordering options …continued  
Type number  
Orderable  
Package Packing method  
Minimum Temperature  
part number  
order  
quantity  
PCA9306DP  
PCA9306DP1  
PCA9306GD1  
PCA9306GF  
PCA9306GM  
PCA9306DP,118  
PCA9306DP1,125  
PCA9306GD1,125  
PCA9306GF,115  
PCA9306GM,125  
TSSOP8 Reel 13” Q1/T1  
*standard mark SMD  
2500  
3000  
3000  
5000  
4000  
Tamb = 40 C to +85 C  
Tamb = 40 C to +85 C  
Tamb = 40 C to +85 C  
TSSOP8 Reel 7” Q3/T4  
*standard mark  
XSON8U Reel 7” Q3/T4  
*standard mark  
XSON8  
Reel 7” Q1/T1  
Tamb = 40 C to +85 C  
Tamb = 40 C to +85 C  
*standard mark SMD  
XQFN8  
Reel 7” Q3/T4  
*standard mark  
4. Functional diagram  
VREF1  
2
VREF2  
7
PCA9306  
8
6
EN  
3
4
SCL1  
SDA1  
SCL2  
SW  
5
SDA2  
SW  
1
GND  
002aab844  
Fig 1. Logic diagram of PCA9306 (positive logic)  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
4 of 35  
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
5. Pinning information  
5.1 Pinning  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
GND  
VREF1  
SCL1  
EN  
GND  
VREF1  
SCL1  
EN  
VREF2  
SCL2  
SDA2  
VREF2  
SCL2  
SDA2  
PCA9306DP1  
PCA9306DP  
SDA1  
SDA1  
002aab842  
002aac373  
Fig 2. Pin configuration for TSSOP8  
(DP1)  
Fig 3. Pin configuration for TSSOP8 (DP)  
(MSOP8)  
PCA9306DC1  
PCA9306DC1/DG  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
VREF1  
SCL1  
SDA1  
GND  
EN  
GND  
VREF1  
SCL1  
EN  
VREF2  
SCL2  
SDA2  
VREF2  
SCL2  
SDA2  
PCA9306DC  
SDA1  
002aac374  
002aab843  
Fig 4. Pin configuration for VSSOP8 (DC) Fig 5. Pin configuration for VSSOP8  
(DC1; DC1/DG)  
terminal 1  
index area  
GND  
1
7
6
5
VREF2  
SCL2  
PCA9306GM  
VREF1  
SCL1  
2
3
1
2
3
4
8
7
6
5
GND  
VREF1  
SCL1  
EN  
SDA2  
VREF2  
SCL2  
SDA2  
PCA9306D  
002aac375  
SDA1  
Transparent top view  
002aac372  
Fig 6. Pin configuration for SO8  
Fig 7. Pin configuration for XQFN8  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
5 of 35  
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
GND  
VREF1  
SCL1  
1
2
8
7
EN  
GND  
1
2
3
4
8
7
6
5
EN  
VREF2  
SCL2  
SDA2  
VREF1  
SCL1  
VREF2  
SCL2  
SDA2  
PCA9306GF  
PCA9306GD1  
3
4
6
5
SDA1  
SDA1  
002aae014  
002aaf393  
Transparent top view  
Transparent top view  
Fig 8. Pin configuration for XSON8U  
(GD1)  
Fig 9. Pin configuration for XSON8  
5.2 Pin description  
Table 3.  
Symbol Pin  
SO8,  
Pin description  
Description  
VSSOP8 (DC)  
TSSOP8 (MSOP8),  
TSSOP8,  
VSSOP8 (DC1),  
XQFN8, XSON8,  
XSON8U (GD1)  
GND  
1
2
4
1
ground (0 V)  
VREF1  
low-voltage side reference supply voltage for  
SCL1 and SDA1  
SCL1  
SDA1  
SDA2  
SCL2  
VREF2  
EN  
3
4
5
6
7
8
2
3
5
6
7
8
serial clock, low-voltage side; connect to  
VREF1 through a pull-up resistor  
serial data, low-voltage side; connect to VREF1  
through a pull-up resistor  
serial data, high-voltage side; connect to  
VREF2 through a pull-up resistor  
serial clock, high-voltage side; connect to  
VREF2 through a pull-up resistor  
high-voltage side reference supply voltage for  
SCL2 and SDA2  
switch enable input; connect to VREF2 and  
pull-up through a high resistor  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
6 of 35  
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
6. Functional description  
Refer to Figure 1 “Logic diagram of PCA9306 (positive logic)”.  
6.1 Function table  
Table 4.  
Function selection (example)  
H = HIGH level; L = LOW level.  
Input EN[1]  
Function  
H
L
SCL1 = SCL2; SDA1 = SDA2  
disconnect  
[1] EN is controlled by the Vbias(ref)(2) logic levels and should be at least 1 V higher than Vref(1) for best  
translator operation.  
7. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Over operating free-air temperature range.  
Symbol  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5[1]  
0.5[1]  
-
Max  
+6  
Unit  
V
Vref(1)  
reference voltage (1)  
Vbias(ref)(2) reference bias voltage (2)  
+6  
V
VI  
input voltage  
+6  
V
VI/O  
Ich  
voltage on an input/output pin  
channel current (DC)  
input clamping current  
storage temperature  
+6  
V
128  
50  
+150  
mA  
mA  
C  
IIK  
VI < 0 V  
-
Tstg  
65  
[1] The input and input/output negative voltage ratings may be exceeded if the input and input/output clamp  
current ratings are observed.  
8. Recommended operating conditions  
Table 6.  
Symbol  
Operating conditions  
Parameter  
Conditions  
Min  
Max  
Unit  
VI/O  
voltage on an input/output pin SCL1, SDA1,  
SCL2, SDA2  
0
5
V
[1]  
Vref(1)  
reference voltage (1)  
reference bias voltage (2)  
input voltage on pin EN  
pass switch current  
VREF1  
VREF2  
0
5
V
[1]  
Vbias(ref)(2)  
VI(EN)  
Isw(pass)  
Tamb  
0
5
V
0
5
V
-
64  
+85  
mA  
C  
ambient temperature  
operating in free-air  
40  
[1] Vref(1) Vbias(ref)(2) 1 V for best results in level shifting applications.  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
7 of 35  
 
 
 
 
 
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
9. Static characteristics  
Table 7.  
Static characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
V
VIK  
input clamping voltage  
II = 18 mA; VI(EN) = 0 V  
VI = 5 V; VI(EN) = 0 V  
VI = 3 V or 0 V  
-
-
-
-
-
1.2  
IIH  
HIGH-level input current  
-
5
-
A  
pF  
pF  
Ci(EN)  
Cio(off)  
input capacitance on pin EN  
off-state input/output capacitance  
7.1  
4
SCLn, SDAn;  
6
VO = 3 V or 0 V; VI(EN) = 0 V  
Cio(on)  
Ron  
on-state input/output capacitance  
ON-state resistance[2]  
SCLn, SDAn;  
-
9.3  
12.5  
pF  
VO = 3 V or 0 V; VI(EN) = 3 V  
[3]  
SCLn, SDAn;  
VI = 0 V; IO = 64 mA  
VI(EN) = 4.5 V  
VI(EN) = 3 V  
-
-
-
-
-
2.4  
3.0  
3.8  
15  
5.0  
6.0  
8.0  
32  
VI(EN) = 2.3 V  
VI(EN) = 1.5 V  
VI(EN) = 1.5 V  
VI = 2.4 V; IO = 15 mA  
VI(EN) = 4.5 V  
[4]  
32  
80  
-
-
4.8  
46  
7.5  
80  
V
I(EN) = 3 V  
VI = 1.7 V; IO = 15 mA  
VI(EN) = 2.3 V  
-
40  
80  
[1] All typical values are at Tamb = 25 C.  
[2] Measured by the voltage drop between the SCL1 and SCL2, or SDA1 and SDA2 terminals at the indicated current through the switch.  
ON-state resistance is determined by the lowest voltage of the two terminals.  
[3] Guaranteed by design.  
[4] For DC, DC1 (VSSOP8) and GD1 (XSON8U) packages only.  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
8 of 35  
 
 
 
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
10. Dynamic characteristics  
Table 8.  
Dynamic characteristics (translating down)  
Tamb = 40 C to +85 C, unless otherwise specified. Values guaranteed by design.  
Symbol Parameter Conditions CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
VI(EN) = 3.3 V; VIH = 3.3 V; VIL = 0 V; VM = 1.15 V (see Figure 10)  
tPLH  
LOW to HIGH  
propagation delay  
from (input) SCL2 or SDA2  
to (output) SCL1 or SDA1  
0
0
2.0  
2.0  
0
0
1.2  
1.5  
0
0
0.6 ns  
0.75 ns  
tPHL  
HIGH to LOW  
propagation delay  
from (input) SCL2 or SDA2  
to (output) SCL1 or SDA1  
VI(EN) = 2.5 V; VIH = 2.5 V; VIL = 0 V; VM = 0.75 V (see Figure 10)  
tPLH  
LOW to HIGH  
propagation delay  
from (input) SCL2 or SDA2  
to (output) SCL1 or SDA1  
0
0
2.0  
2.5  
0
0
1.2  
1.5  
0
0
0.6 ns  
0.75 ns  
tPHL  
HIGH to LOW  
propagation delay  
from (input) SCL2 or SDA2  
to (output) SCL1 or SDA1  
Table 9.  
Dynamic characteristics (translating up)  
Tamb = 40 C to +85 C, unless otherwise specified. Values guaranteed by design.  
Symbol Parameter Conditions CL = 50 pF  
Min Max  
VI(EN) = 3.3 V; VIH = 2.3 V; VIL = 0 V; VTT = 3.3 V; VM = 1.15 V; RL = 300 (see Figure 10)  
CL = 30 pF  
CL = 15 pF  
Unit  
Min  
Max  
Min  
Max  
tPLH  
LOW to HIGH  
propagation delay  
from (input) SCL1 or SDA1  
to (output) SCL2 or SDA2  
0
1.75  
0
1.0  
0
0
0.5 ns  
0.8 ns  
tPHL  
HIGH to LOW  
propagation delay  
from (input) SCL1 or SDA1  
to (output) SCL2 or SDA2  
0
2.75  
0
1.65  
VI(EN) = 2.5 V; VIH = 1.5 V; VIL = 0 V; VTT = 2.5 V; VM = 0.75 V; RL = 300 (see Figure 10)  
tPLH  
LOW to HIGH  
propagation delay  
from (input) SCL1 or SDA1  
to (output) SCL2 or SDA2  
0
1.75  
0
1.0  
2.0  
0
0
0.5 ns  
1.0 ns  
tPHL  
HIGH to LOW  
propagation delay  
from (input) SCL1 or SDA1  
to (output) SCL2 or SDA2  
0
3.3  
0
V
V
V
V
IH  
V
TT  
input  
V
V
V
V
M
M
M
IL  
R
L
S1  
S2 (open)  
OH  
OL  
from output under test  
output  
M
C
L
002aab846  
002aab845  
a. Load circuit  
b. Timing diagram  
S1 = translating up; S2 = translating down.  
CL includes probe and jig capacitance.  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz; Zo = 50 ; tr 2 ns; tf 2 ns.  
The outputs are measured one at a time, with one transition per measurement.  
Fig 10. Load circuit for outputs  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
9 of 35  
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
11. Application information  
(1)  
V
= 3.3 V  
pu(D)  
200 kΩ  
PCA9306  
(1)  
V
= 1.8 V  
8
7
EN  
ref(1)  
R
PU  
R
PU  
VREF1  
VREF2  
2
R
PU  
R
PU  
V
V
CC  
CC  
SCL1  
SDA1  
3
4
6
5
SCL2  
SDA2  
SCL  
SW  
SW  
SCL  
2
2
I C-BUS  
MASTER  
I C-BUS  
DEVICE  
SDA  
SDA  
GND  
1
GND  
GND  
002aab847  
(1) The applied voltages at Vref(1) and Vpu(D) should be such that Vbias(ref)(2) is at least 1 V higher than  
Vref(1) for best translator operation.  
Fig 11. Typical application circuit (switch always enabled)  
(1)  
V
= 3.3 V  
pu(D)  
3.3 V enable signal  
on  
off  
200 kΩ  
PCA9306  
(1)  
V
= 1.8 V  
8
7
EN  
ref(1)  
R
PU  
R
PU  
VREF1  
VREF2  
2
R
PU  
R
PU  
V
V
CC  
CC  
SCL1  
SDA1  
3
4
6
5
SCL2  
SDA2  
SCL  
SW  
SW  
SCL  
2
2
I C-BUS  
MASTER  
I C-BUS  
DEVICE  
SDA  
SDA  
GND  
1
GND  
GND  
002aab848  
(1) In the Enabled mode, the applied enable voltage and the applied voltage at Vref(1) should be such  
that Vbias(ref)(2) is at least 1 V higher than Vref(1) for best translator operation.  
Fig 12. Typical application circuit (switch enable control)  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
10 of 35  
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
11.1 Bidirectional translation  
For the bidirectional clamping configuration (higher voltage to lower voltage or lower  
voltage to higher voltage), the EN input must be connected to VREF2 and both pins pulled  
to HIGH side Vpu(D) through a pull-up resistor (typically 200 k). This allows VREF2 to  
regulate the EN input. A filter capacitor on VREF2 is recommended. The I2C-bus master  
output can be totem pole or open-drain (pull-up resistors may be required) and the  
I2C-bus device output can be totem pole or open-drain (pull-up resistors are required to  
pull the SCL2 and SDA2 outputs to Vpu(D)). However, if either output is totem pole, data  
must be unidirectional or the outputs must be 3-stateable and be controlled by some  
direction-control mechanism to prevent HIGH-to-LOW contentions in either direction. If  
both outputs are open-drain, no direction control is needed.  
The reference supply voltage (Vref(1)) is connected to the processor core power supply  
voltage. When VREF2 is connected through a 200 kresistor to a 3.3 V to 5.5 V Vpu(D)  
power supply, and Vref(1) is set between 1.0 V and (Vpu(D) 1 V), the output of each SCL1  
and SDA1 has a maximum output voltage equal to VREF1, and the output of each SCL2  
and SDA2 has a maximum output voltage equal to Vpu(D)  
.
Table 10. Application operating conditions  
Refer to Figure 11.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
V
Vbias(ref)(2) reference bias voltage (2)  
Vref(1) + 0.6 2.1  
Vref(1) + 0.6 2.1  
5
VI(EN)  
Vref(1)  
Isw(pass)  
Iref  
input voltage on pin EN  
reference voltage (1)  
pass switch current  
reference current  
5
V
0
1.5  
14  
5
4.4  
V
-
-
mA  
A  
C  
transistor  
-
-
Tamb  
ambient temperature  
operating in  
free-air  
40  
-
+85  
[1] All typical values are at Tamb = 25 C.  
11.2 How to size pull-up resistor value  
Sizing the pull-up resistor on an open-drain bus is specific to the individual application and  
is dependent on the following driver characteristics:  
The driver sink current  
The VOL of driver  
The VIL of the driver  
Frequency of operation  
The following tables can be used to estimate the pull-up resistor value in different use  
cases so that the minimum resistance for the pull-up resistor can be found.  
Table 11, Table 12 and Table 13 contain suggested minimum values of pull-up resistors for  
the PCA9306 and NVT20xx devices with typical voltage translation levels and drive  
currents. The calculated values assume that both drive currents are the same.  
V
OL = VIL = 0.1 VCC and accounts for a 5 % VCC tolerance of the supplies, 1 %  
resistor values. It should be noted that the resistor chosen in the final application should  
be equal to or larger than the values shown in Table 11, Table 12 and Table 13 to ensure  
that the pass voltage is less than 10 % of the VCC voltage, and the external driver should  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
11 of 35  
 
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
be able to sink the total current from both pull-up resistors. When selecting the minimum  
resistor value in Table 11, Table 12 or Table 13, the drive current strength that should be  
chosen should be the lowest drive current seen in the application and account for any  
drive strength current scaling with output voltage. For the GTL devices, the resistance  
table should be recalculated to account for the difference in ON resistance and bias  
voltage limitations between VCC(B) and VCC(A)  
.
Table 11. Pull-up resistor minimum values, 3 mA driver sink current for PCA9306 and NVT20xx  
A-side  
1.0 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
B-side  
1.2 V  
1.5 V  
1.8 V  
pu(A) = 976   
2.5 V  
3.3 V  
5.0 V  
Rpu(A) = 750   
Rpu(B) = 750   
R
pu(A) = 845   
R
R
pu(A) = none  
R
pu(A) = none  
R
pu(A) = none  
Rpu(B) = 845   
Rpu(A) = 931   
Rpu(B) = 976   
Rpu(B) = 887   
Rpu(B) = 1.18 kRpu(B) = 1.82 k  
Rpu(A) = none Rpu(A) = none  
Rpu(A) = 1.02 k  
Rpu(A) = none  
R
pu(B) = 931   
R
pu(B) = 1.02 k  
Rpu(A) = 1.1 k  
pu(B) = 1.1 k  
R
pu(B) = 887   
R
pu(B) = 1.18 k  
R
pu(B) = 1.82 k  
Rpu(A) = none  
Rpu(A) = none  
Rpu(A) = none  
R
Rpu(B) = 866   
R
pu(B) = 1.18 k  
R
pu(B) = 1.78 k  
Rpu(A) = 1.47 k  
Rpu(A) = none  
Rpu(A) = none  
Rpu(B) = 1.47 kRpu(B) = 1.15 kRpu(B) = 1.78 k  
Rpu(A) = 1.96 kRpu(A) = none  
pu(B) = 1.96 k  
R
R
pu(B) = 1.78 k  
Rpu(A) = none  
Rpu(B) = 1.74 k  
Table 12. Pull-up resistor minimum values, 10 mA driver sink current for PCA9306 and NVT20xx  
A-side  
1.0 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
B-side  
1.2 V  
1.5 V  
1.8 V  
Rpu(A) = 287   
pu(B) = 287   
Rpu(A) = 309   
pu(B) = 309   
Rpu(A) = 332   
pu(B) = 332   
2.5 V  
3.3 V  
5.0 V  
Rpu(A) = 221   
Rpu(A) = 255   
Rpu(A) = none  
Rpu(A) = none  
Rpu(A) = none  
R
pu(B) = 221   
R
pu(B) = 255   
Rpu(A) = 274   
pu(B) = 274   
R
Rpu(B) = 267   
R
pu(B) = 357   
R
pu(B) = 549   
Rpu(A) = none  
Rpu(A) = none  
Rpu(A) = none  
R
R
Rpu(B) = 267   
R
pu(B) = 357   
R
pu(B) = 549   
Rpu(A) = none  
Rpu(A) = none  
Rpu(A) = none  
R
Rpu(B) = 261   
R
pu(B) = 348   
R
pu(B) = 536   
Rpu(A) = 442   
Rpu(A) = none  
Rpu(A) = none  
Rpu(B) = 442   
R
pu(B) = 348   
R
pu(B) = 536   
Rpu(A) = 590   
Rpu(A) = none  
R
pu(B) = 590   
R
pu(B) = 523   
Rpu(A) = none  
Rpu(B) = 523   
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
12 of 35  
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
Table 13. Pull-up resistor minimum values, 15 mA driver sink current for PCA9306 and NVT20xx  
A-side  
1.0 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
B-side  
1.2 V  
1.5 V  
1.8 V  
Rpu(A) = 191   
pu(B) = 191   
Rpu(A) = 205   
pu(B) = 205   
2.5 V  
3.3 V  
5.0 V  
Rpu(A) = 147   
Rpu(A) = 169   
Rpu(A) = none  
Rpu(A) = none  
Rpu(A) = none  
R
pu(B) = 147   
R
pu(B) = 169   
Rpu(A) = 182   
pu(B) = 182   
R
Rpu(B) = 178   
R
pu(B) = 237   
R
pu(B) = 365   
Rpu(A) = none  
Rpu(A) = none  
Rpu(A) = none  
R
R
R
pu(B) = 178   
Rpu(A) = none  
Rpu(B) = 174   
Rpu(A) = 294   
R
pu(B) = 237   
Rpu(A) = none  
Rpu(B) = 232   
Rpu(A) = none  
R
pu(B) = 365   
Rpu(A) = none  
Rpu(B) = 357   
Rpu(A) = none  
Rpu(A) = 221   
Rpu(B) = 221   
Rpu(B) = 294   
R
pu(B) = 232   
Rpu(A) = 392   
pu(B) = 392   
R
pu(B) = 357   
Rpu(A) = none  
R
R
pu(B) = 357   
Rpu(A) = none  
Rpu(B) = 348   
11.3 How to design for maximum frequency operation  
The maximum frequency is limited by the minimum pulse width LOW and HIGH as well as  
rise time and fall time. See Equation 1 as an example of the maximum frequency. The rise  
and fall times are shown in Figure 13.  
1
------------------------------------------------------------------------------------------------------------  
fmax  
=
(1)  
t
LOWmin+ tHIGHmin+ tractual+ tfactual  
t
t
f(actual)  
r(actual)  
t
HIGH(min)  
V
CC  
V
0.9 × V  
0.1 × V  
IH  
CC  
t
LOW(min)  
V
IL  
CC  
V
OL  
1 / f  
max  
GND  
002aag912  
Fig 13. An example waveform for maximum frequency  
The rise and fall times are dependent upon translation voltages, the drive strength, the  
total node capacitance (CL(tot)) and the pull-up resistors (RPU) that are present on the bus.  
The node capacitance is the addition of the PCB trace capacitance and the device  
capacitance that exists on the bus. Because of the dependency of the external  
components, PCB layout and the different device operating states the calculation of rise  
and fall times is complex and has several inflection points along the curve.  
The main component of the rise and fall times is the RC time constant of the bus line when  
the device is in its two primary operating states: when device is in the ON state and it is  
low-impedance, the other is when the device is OFF isolating the A-side from the B-side.  
A description of the fall time applied to either An or Bn output going from HIGH to LOW is  
as follows. Whichever side is asserted first, the B-side down must discharge to the VCC(A)  
voltage. The time is determined by the pull-up resistor, pull-down driver strength and the  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
13 of 35  
 
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
capacitance. As the level moves below the VCC(A) voltage, the channel resistance drops  
so that both A and B sides equal. The capacitance on both sides is connected to form the  
total capacitance and the pull-up resistors on both sides combine to the parallel equivalent  
resistance. The Ron of the device is small compared to the pull-up resistor values, so its  
effect on the pull-up resistance can be neglected and the fall is determined by the driver  
pulling the combined capacitance and pull-up resistor currents. An estimation of the actual  
fall time seen by the device is equal to the time it takes for the B-side to fall to the VCC(A)  
voltage and the time it takes for both sides to fall from the VCC(A) voltage to the VIL level.  
A description of the rise time applied to either An or Bn output going from LOW to HIGH is  
as follows. When the signal level is LOW, the Ron is at its minimum, so the A and B sides  
are essentially one node. They will rise together with an RC time constant that is the sum  
of all the capacitance from both sides and the parallel of the resistance from both sides.  
As the signal approaches the VCC(A) voltage, the channel resistance goes up and the  
waveforms separate, with the B side finishing its rise with the RC time constant of the  
B side. The rise to VCC(A) is essentially the same for both sides.  
There are some basic guidelines to follow that will help maximize the performance of the  
device:  
Keep trace length to a minimum by placing the NVT device close to the processor.  
The signal round trip time on trace should be shorter than the rise or fall time of signal  
to reduce reflections.  
The faster the edge of the signal, the higher the chance for ringing.  
The higher drive strength controlled by the pull-up resistor (up to 15 mA), the higher  
the frequency the device can use.  
The system designer must design the pull-up resistor value based on external current  
drive strength and limit the node capacitance (minimize the wire, stub, connector and  
trace length) to get the desired operation frequency result.  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
14 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
12. Package outline  
62ꢇꢈꢀSODVWLFꢀVPDOOꢀRXWOLQHꢀSDFNDJHꢉꢀꢇꢀOHDGVꢉꢀERG\ꢀZLGWKꢀꢄꢁꢊꢀPPꢀ  
627ꢊꢋꢌꢂꢀ  
'ꢀ  
(ꢀ  
$ꢀ  
;ꢀ  
Fꢀ  
\ꢀ  
+ꢀ  
(ꢀ  
Yꢀ 0ꢀ  
$ꢀ  
=ꢀ  
ꢄꢀ  
ꢋꢀ  
4ꢀ  
$ꢀ  
ꢆꢀ  
$ꢀ  
ꢌ$ꢀꢀꢍꢀ  
ꢉꢀ  
$ꢀ  
ꢁꢀ  
SLQꢀꢁꢀLQGH[ꢀ  
șꢀ  
/ꢀ  
Sꢀ  
/ꢀ  
ꢁꢀ  
ꢇꢀ  
ꢅꢀ  
Hꢀ  
GHWDLOꢀ;ꢀ  
Zꢀ 0ꢀ  
Eꢀ  
Sꢀ  
ꢆꢂꢄꢀ  
ꢄꢀPPꢀ  
VFDOHꢀ  
',0(16,216ꢀꢅLQFKꢀGLPHQVLRQVꢀDUHꢀGHULYHGꢀIURPꢀWKHꢀRULJLQDOꢀPPꢀGLPHQVLRQVꢆꢀ  
$ꢀ  
ꢅꢂꢆꢀ  
ꢅꢂꢆꢀ  
ꢅꢃꢆꢀ  
81,7ꢀ  
$ꢀ  
ꢂꢀ  
$ꢀ  
ꢃꢀ  
$ꢀ  
ꢄꢀ  
Eꢀ  
Sꢀ  
Fꢀ  
'ꢀ  
(ꢀ  
Hꢀ  
+ꢀ  
(ꢀ  
/ꢀ  
/ꢀ  
Sꢀ  
4ꢀ  
Yꢀ  
Zꢀ  
\ꢀ  
ꢅꢂꢁꢀ  
=ꢀ  
șꢀ  
PD[ꢁꢀ  
ꢅꢂꢆꢄꢀ ꢁꢂꢇꢄꢀ  
ꢅꢂꢁꢅꢀ ꢁꢂꢆꢄꢀ  
ꢅꢂꢇꢈꢀ ꢅꢂꢆꢄꢀ  
ꢅꢂꢉꢊꢀ ꢅꢂꢁꢈꢀ  
ꢄꢂꢅꢀ  
ꢇꢂꢋꢀ  
ꢇꢂꢅꢀ  
ꢉꢂꢋꢀ  
ꢊꢂꢆꢀ  
ꢄꢂꢋꢀ  
ꢁꢂꢅꢀ  
ꢅꢂꢇꢀ  
ꢅꢂꢃꢀ  
ꢅꢂꢊꢀ  
ꢅꢂꢃꢀ  
ꢅꢂꢉꢀ  
PPꢀ  
ꢁꢂꢆꢃꢀ  
ꢅꢂꢅꢄꢀ  
ꢁꢂꢅꢄꢀ  
ꢅꢂꢅꢇꢁꢀ  
ꢅꢂꢆꢄꢀ ꢅꢂꢆꢄꢀ  
ꢁꢂꢃꢄꢀ  
ꢅꢂꢆꢄꢀ  
ꢅꢂꢅꢁꢀ  
Rꢀ  
ꢋꢀ  
Rꢀ  
ꢅꢀ  
ꢅꢂꢅꢁꢅꢀ ꢅꢂꢅꢄꢃꢀ  
ꢅꢂꢅꢅꢇꢀ ꢅꢂꢅꢇꢈꢀ  
ꢅꢂꢅꢁꢈꢀ ꢅꢂꢅꢁꢅꢅꢀ ꢅꢂꢆꢅꢀ ꢅꢂꢁꢊꢀ  
ꢅꢂꢅꢁꢇꢀ ꢅꢂꢅꢅꢃꢄꢀ ꢅꢂꢁꢈꢀ ꢅꢂꢁꢄꢀ  
ꢅꢂꢆꢇꢇꢀ  
ꢅꢂꢆꢆꢋꢀ  
ꢅꢂꢅꢉꢈꢀ ꢅꢂꢅꢆꢋꢀ  
ꢅꢂꢅꢁꢊꢀ ꢅꢂꢅꢆꢇꢀ  
ꢅꢂꢅꢆꢋꢀ  
ꢅꢂꢅꢁꢆꢀ  
LQFKHVꢀ ꢅꢂꢅꢊꢈꢀ  
ꢅꢂꢅꢁꢀ ꢅꢂꢅꢁꢀ ꢅꢂꢅꢅꢇꢀ  
1RWHVꢀ  
ꢁꢂꢀ3ODVWLFꢀRUꢀPHWDOꢀSURWUXVLRQVꢀRIꢀꢅꢂꢁꢄꢀPPꢀꢌꢅꢂꢅꢅꢊꢀLQFKꢍꢀPD[LPXPꢀSHUꢀVLGHꢀDUHꢀQRWꢀLQFOXGHGꢂꢀ  
ꢆꢂꢀ3ODVWLFꢀRUꢀPHWDOꢀSURWUXVLRQVꢀRIꢀꢅꢂꢆꢄꢀPPꢀꢌꢅꢂꢅꢁꢀLQFKꢍꢀPD[LPXPꢀSHUꢀVLGHꢀDUHꢀQRWꢀLQFOXGHGꢂꢀꢀ  
ꢀ5()(5(1&(6ꢀ  
ꢀ-('(&ꢀ ꢀ-(,7$ꢀ  
ꢀ06ꢎꢅꢁꢆꢀ  
287/,1(ꢀ  
9(56,21ꢀ  
(8523($1ꢀ  
352-(&7,21ꢀ  
,668(ꢀ'$7(ꢀ  
ꢀ,(&ꢀ  
ꢈꢈꢎꢁꢆꢎꢆꢃꢀ  
ꢅꢉꢎꢅꢆꢎꢁꢋꢀ  
ꢀ627ꢈꢊꢎꢁꢀ  
ꢅꢃꢊ(ꢅꢉꢀ  
Fig 14. Package outline SOT96-1 (SO8)  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
15 of 35  
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
76623ꢇꢈꢀSODVWLFꢀWKLQꢀVKULQNꢀVPDOOꢀRXWOLQHꢀSDFNDJHꢉꢀꢇꢀOHDGVꢉꢀERG\ꢀZLGWKꢀꢄꢀPPꢀ  
627ꢍꢎꢍꢌꢂꢀ  
'ꢀ  
(ꢀ  
$ꢀ  
;ꢀ  
Fꢀ  
\ꢀ  
+
Yꢀ 0ꢀ  
$ꢀ  
(ꢀ  
=ꢀ  
ꢄꢀ  
ꢋꢀ  
$
ꢌ$ ꢍꢀ  
ꢆꢀ  
$ꢀ  
$
ꢁꢀ  
SLQꢀꢁꢀLQGH[ꢀ  
șꢀ  
/
Sꢀ  
/ꢀ  
GHWDLOꢀ;ꢀ  
ꢁꢀ  
ꢇꢀ  
Hꢀ  
Zꢀ 0ꢀ  
E
Sꢀ  
ꢅꢀ  
ꢆꢂꢄꢀ  
ꢄꢀPPꢀ  
VFDOHꢀ  
',0(16,216ꢀꢅPPꢀDUHꢀWKHꢀRULJLQDOꢀGLPHQVLRQVꢆꢀ  
$ꢀ  
ꢅꢂꢆꢀ  
ꢅꢃꢆꢀ  
ꢅꢂꢆꢀ  
$
$
$
E
Fꢀ  
'
(
Hꢀ  
+
/ꢀ  
/
81,7ꢀ  
PPꢀ  
Yꢀ  
Zꢀ  
\ꢀ  
=
șꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
Sꢀ  
(ꢀ  
Sꢀ  
PD[ꢁꢀ  
ꢅꢂꢁꢄꢀ ꢅꢂꢈꢄꢀ  
ꢅꢂꢅꢄꢀ ꢅꢂꢋꢅꢀ  
ꢅꢂꢇꢄꢀ ꢅꢂꢆꢋꢀ  
ꢅꢂꢆꢄꢀ ꢅꢂꢁꢄꢀ  
ꢉꢂꢁꢀ  
ꢆꢂꢈꢀ  
ꢉꢂꢁꢀ  
ꢆꢂꢈꢀ  
ꢄꢂꢁꢀ  
ꢇꢂꢃꢀ  
ꢅꢂꢃꢀ  
ꢅꢂꢇꢀ  
ꢅꢂꢃꢅꢀ  
ꢅꢂꢉꢄꢀ  
ꢊƒꢀ  
ꢅƒꢀ  
ꢁꢂꢁꢀ  
ꢅꢂꢊꢄꢀ  
ꢅꢂꢈꢇꢀ  
ꢅꢂꢁꢀ  
ꢅꢂꢁꢀ  
ꢅꢂꢁꢀ  
ꢅꢂꢆꢄꢀ  
1RWHVꢀ  
ꢁꢂꢀ3ODVWLFꢀRUꢀPHWDOꢀSURWUXVLRQVꢀRIꢀꢅꢂꢁꢄꢀPPꢀPD[LPXPꢀSHUꢀVLGHꢀDUHꢀQRWꢀLQFOXGHGꢂꢀ  
ꢆꢂꢀ3ODVWLFꢀRUꢀPHWDOꢀSURWUXVLRQVꢀRIꢀꢅꢂꢆꢄꢀPPꢀPD[LPXPꢀSHUꢀVLGHꢀDUHꢀQRWꢀLQFOXGHGꢂꢀ  
ꢀ5()(5(1&(6ꢀ  
ꢀ-('(&ꢀ ꢀ-(,7$ꢀ  
287/,1(ꢀ  
9(56,21ꢀ  
(8523($1ꢀ  
352-(&7,21ꢀ  
,668(ꢀ'$7(ꢀ  
ꢀ,(&ꢀ  
ꢈꢈꢎꢅꢇꢎꢅꢈꢀ  
ꢅꢉꢎꢅꢆꢎꢁꢋꢀ  
ꢀ627ꢄꢅꢄꢎꢁꢀ  
Fig 15. Package outline SOT505-1 (TSSOP8)  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
16 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
76623ꢇꢈꢀSODVWLFꢀWKLQꢀVKULQNꢀVPDOOꢀRXWOLQHꢀSDFNDJHꢉꢀꢇꢀOHDGVꢉꢀERG\ꢀZLGWKꢀꢄꢀPPꢉꢀOHDGꢀOHQJWKꢀꢎꢁꢍꢀPPꢀ  
627ꢍꢎꢍꢌꢃꢀ  
'ꢀ  
(ꢀ  
$ꢀ  
;ꢀ  
Fꢀ  
+
Yꢀ 0ꢀ  
\ꢀ  
$ꢀ  
(ꢀ  
=ꢀ  
ꢄꢀ  
ꢋꢀ  
$
ꢆꢀ  
$ꢀ  
ꢌ$ ꢍꢀ  
$
ꢁꢀ  
SLQꢀꢁꢀLQGH[ꢀ  
șꢀ  
/
Sꢀ  
/ꢀ  
GHWDLOꢀ;ꢀ  
ꢁꢀ  
ꢇꢀ  
Hꢀ  
Zꢀ 0ꢀ  
E
Sꢀ  
ꢅꢀ  
ꢆꢂꢄꢀ  
ꢄꢀPPꢀ  
VFDOHꢀ  
',0(16,216ꢀꢅPPꢀDUHꢀWKHꢀRULJLQDOꢀGLPHQVLRQVꢆꢀ  
$ꢀ  
ꢅꢂꢆꢀ  
ꢅꢂꢆꢀ  
ꢅꢂꢆꢀ  
$
$
$
E
Fꢀ  
'
(
Hꢀ  
+
/ꢀ  
ꢅꢂꢄꢀ  
/
81,7ꢀ  
Yꢀ  
Zꢀ  
\ꢀ  
ꢅꢂꢁꢀ  
=
șꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
Sꢀ  
(ꢀ  
Sꢀ  
PD[ꢁꢀ  
ꢅꢂꢁꢄꢀ ꢅꢂꢈꢄꢀ  
ꢅꢂꢅꢅꢀ ꢅꢂꢃꢄꢀ  
ꢅꢂꢉꢋꢀ ꢅꢂꢁꢋꢀ  
ꢅꢂꢆꢆꢀ ꢅꢂꢅꢋꢀ  
ꢉꢂꢁꢀ  
ꢆꢂꢈꢀ  
ꢉꢂꢁꢀ  
ꢆꢂꢈꢀ  
ꢇꢂꢁꢀ  
ꢉꢂꢈꢀ  
ꢅꢂꢇꢃꢀ  
ꢅꢂꢉꢉꢀ  
ꢅꢂꢃꢅꢀ  
ꢅꢂꢉꢄꢀ  
ꢋƒꢀ  
ꢅƒꢀ  
PPꢀ  
ꢁꢂꢁꢀ  
ꢅꢂꢊꢄꢀ  
ꢅꢂꢆꢀ ꢅꢂꢁꢉꢀ  
ꢅꢂꢆꢄꢀ  
1RWHꢀ  
ꢁꢂꢀ3ODVWLFꢀRUꢀPHWDOꢀSURWUXVLRQVꢀRIꢀꢅꢂꢁꢄꢀPPꢀPD[LPXPꢀSHUꢀVLGHꢀDUHꢀQRWꢀLQFOXGHGꢂꢀ  
ꢀ5()(5(1&(6ꢀ  
ꢀ-('(&ꢀ ꢀ-(,7$ꢀ  
ꢎꢀꢀꢎꢀ  
287/,1(ꢀ  
9(56,21ꢀ  
(8523($1ꢀ  
352-(&7,21ꢀ  
,668(ꢀ'$7(ꢀ  
ꢀ,(&ꢀ  
ꢅꢆꢎꢅꢁꢎꢁꢊꢀ  
ꢀ627ꢄꢅꢄꢎꢆꢀ  
Fig 16. Package outline SOT505-2 (TSSOP8)  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
17 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
96623ꢇꢈꢀSODVWLFꢀYHU\ꢀWKLQꢀVKULQNꢀVPDOOꢀRXWOLQHꢀSDFNDJHꢉꢀꢇꢀOHDGVꢉꢀERG\ꢀZLGWKꢀꢃꢁꢄꢀPP  
627ꢏꢋꢍꢌꢂ  
'
(
$
;
F
\
+
Y
0
$
(
=
4
$
$
$
ꢌ$   
SLQꢀꢁꢀLQGH[  
ș
/
S
/
GHWDLOꢀ;  
H
Z
0
E
S
ꢆꢂꢄ  
ꢄꢀPP  
VFDOH  
',0(16,216ꢀꢅPPꢀDUHꢀWKHꢀRULJLQDOꢀGLPHQVLRQVꢆ  
$ꢀ  
ꢅꢂꢆ  
ꢅꢃꢆ  
ꢅꢂꢆ  
$
$
$
E
F
'
(
H
+
/
/
S
4
81,7  
PP  
Y
Z
\
=
ș
S
(
PD[ꢁ  
ꢅꢂꢁꢄꢀ ꢅꢂꢋꢄꢀ  
ꢅꢂꢅꢅ ꢅꢂꢊꢅ  
ꢅꢂꢆꢃꢀ ꢅꢂꢆꢉꢀ  
ꢅꢂꢁꢃ ꢅꢂꢅꢋ  
ꢆꢂꢁꢀ  
ꢁꢂꢈ  
ꢆꢂꢇꢀ  
ꢆꢂꢆ  
ꢉꢂꢆꢀ  
ꢉꢂꢅ  
ꢅꢂꢇꢅꢀ ꢅꢂꢆꢁꢀ  
ꢅꢂꢁꢄ ꢅꢂꢁꢈ  
ꢅꢂꢇꢀ  
ꢅꢂꢁ  
ꢋƒꢀ  
ꢅƒꢀ  
ꢅꢂꢁꢆ  
ꢅꢂꢄ  
ꢅꢂꢇ  
ꢅꢂꢆ  
ꢅꢂꢁꢉ  
ꢅꢂꢁ  
1RWHVꢀ  
ꢁꢂꢀ3ODVWLFꢀRUꢀPHWDOꢀSURWUXVLRQVꢀRIꢀꢅꢂꢁꢄꢀPPꢀPD[LPXPꢀSHUꢀVLGHꢀDUHꢀQRWꢀLQFOXGHGꢂꢀ  
ꢆꢂꢀ3ODVWLFꢀRUꢀPHWDOꢀSURWUXVLRQVꢀRIꢀꢅꢂꢆꢄꢀPPꢀPD[LPXPꢀSHUꢀVLGHꢀDUHꢀQRWꢀLQFOXGHGꢂ  
ꢀ5()(5(1&(6  
ꢀ-('(& ꢀ-(,7$  
02ꢁꢋꢃ  
287/,1(ꢀ  
9(56,21  
(8523($1ꢀ  
352-(&7,21  
,668(ꢀ'$7(  
ꢀ,(&  
ꢅꢆꢎꢅꢊꢎꢅꢃ  
ꢀ627ꢃꢊꢄꢎꢁ  
Fig 17. Package outline SOT765-1 (VSSOP8)  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
18 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
;4)1ꢇꢈꢀSODVWLFꢐꢀH[WUHPHO\ꢀWKLQꢀTXDGꢀIODWꢀSDFNDJHꢉꢀQRꢀOHDGVꢉ  
ꢇꢀWHUPLQDOVꢉꢀERG\ꢀꢂꢁꢋꢀ[ꢀꢂꢁꢋꢀ[ꢀꢎꢁꢍꢀPP  
627ꢊꢎꢃꢌꢃ  
;
'
%
$
(
WHUPLQDOꢀꢁ  
LQGH[ꢀDUHD  
$
$
GHWDLOꢀ;  
H
&
Y
Z
&
&
$ %  
E
\
\
&
H
WHUPLQDOꢀꢁ  
LQGH[ꢀDUHD  
/
PHWDOꢀDUHD  
QRWꢀIRUꢀVROGHULQJ  
/
ꢆꢀPP  
VFDOH  
'LPHQVLRQV  
ꢌꢁꢍ  
8QLW  
$
$
E
'
(
H
H
/
/
Y
Z
\
\
PD[ ꢅꢂꢄ ꢅꢂꢅꢄ ꢅꢂꢆꢄ ꢁꢂꢊꢄ ꢁꢂꢊꢄ  
ꢅꢂꢉꢄ ꢅꢂꢁꢄ  
ꢅꢂꢉꢅ ꢅꢂꢁꢅ  
ꢅꢂꢆꢄ ꢅꢂꢅꢄ  
QRP  
PLQ  
ꢅꢂꢆꢅ ꢁꢂꢊꢅ ꢁꢂꢊꢅ  
PP  
ꢅꢂꢄꢄ ꢅꢂꢄ  
ꢅꢂꢁ ꢅꢂꢅꢄ ꢅꢂꢅꢄ ꢅꢂꢅꢄ  
ꢅꢂꢅꢅ ꢅꢂꢁꢄ ꢁꢂꢄꢄ ꢁꢂꢄꢄ  
1RWH  
ꢁꢂꢀ3ODVWLFꢀRUꢀPHWDOꢀSURWUXVLRQVꢀRIꢀꢅꢂꢅꢃꢄꢀPPꢀPD[LPXPꢀSHUꢀVLGHꢀDUHꢀQRWꢀLQFOXGHGꢂ  
VRWꢀꢁꢂꢃꢂBSR  
5HIHUHQFHV  
2XWOLQH  
YHUVLRQ  
(XURSHDQ  
SURMHFWLRQ  
,VVXHꢀGDWH  
,(&  
ꢎꢀꢎꢀꢎ  
-('(&  
-(,7$  
ꢎꢀꢎꢀꢎ  
ꢁꢅꢎꢎꢅꢆ  
ꢎꢅꢉꢎꢉꢁ  
627ꢈꢅꢆꢎꢆ  
02ꢎꢆꢄꢄ  
Fig 18. Package outline SOT902-2 (XQFN8)  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
19 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
;621ꢇꢈꢀH[WUHPHO\ꢀWKLQꢀVPDOOꢀRXWOLQHꢀSDFNDJHꢉꢀQRꢀOHDGVꢉꢀ  
ꢇꢀWHUPLQDOVꢉꢀERG\ꢀꢂꢁꢄꢍꢀ[ꢀꢂꢀ[ꢀꢎꢁꢍꢀPP  
627ꢂꢎꢇꢊ  
(
WHUPLQDOꢀꢁꢀ  
LQGH[ꢀDUHD  
'
$
$
GHWDLOꢀ;  
ꢌꢆꢍ  
ꢌꢇîꢍ  
H
/
ꢌꢆꢍ  
ꢌꢋîꢍ  
E
H
WHUPLQDOꢀꢁꢀ  
LQGH[ꢀDUHD  
/
;
ꢅꢂꢄ  
ꢁꢀPP  
VFDOH  
'LPHQVLRQV  
8QLW  
ꢌꢁꢍ  
$
$
E
'
(
H
H
/
/
PD[ꢀ ꢅꢂꢄ ꢅꢂꢅꢇ ꢅꢂꢆꢅꢀ ꢁꢂꢇꢅꢀ ꢁꢂꢅꢄꢀ  
ꢅꢂꢉꢄꢀ ꢅꢂꢇꢅꢀ  
ꢅꢂꢁꢄꢀ ꢁꢂꢉꢄꢀ ꢁꢂꢅꢅꢀ ꢅꢂꢄꢄ ꢅꢂꢉꢄ ꢅꢂꢉꢅꢀ ꢅꢂꢉꢄꢀ  
ꢅꢂꢁꢆ ꢁꢂꢉꢅ ꢅꢂꢈꢄ ꢅꢂꢆꢃ ꢅꢂꢉꢆ  
PP QRPꢀ  
PLQ  
1RWHꢀ  
ꢁꢂꢀ,QFOXGLQJꢀSODWLQJꢀWKLFNQHVVꢂꢀ  
ꢆꢂꢀ9LVLEOHꢀGHSHQGLQJꢀXSRQꢀXVHGꢀPDQXIDFWXULQJꢀWHFKQRORJ\ꢂ  
VRWꢄꢁꢅꢀBSR  
5HIHUHQFHV  
2XWOLQHꢀ  
YHUVLRQ  
(XURSHDQꢀ  
SURMHFWLRQ  
,VVXHꢀGDWH  
,(&  
-('(&  
02ꢎꢆꢄꢆ  
-(,7$  
ꢁꢅꢎꢅꢇꢎꢅꢈꢀ  
ꢁꢅꢎꢅꢇꢎꢁꢆ  
627ꢁꢅꢋꢈ  
Fig 19. Package outline SOT1089 (XSON8)  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
20 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
;621ꢇꢈꢀSODVWLFꢀH[WUHPHO\ꢀWKLQꢀVPDOOꢀRXWOLQHꢀSDFNDJHꢉꢀQRꢀOHDGVꢉ  
ꢇꢀWHUPLQDOVꢉꢀERG\ꢀꢄꢀ[ꢀꢃꢀ[ꢀꢎꢁꢍꢀPP  
627ꢊꢊꢋꢌꢃ  
'
%
$
(
$
$
GHWDLOꢀ;  
WHUPLQDOꢀꢁ  
LQGH[ꢀDUHD  
H
&
%
$
Y
Z
&
&
E
H
/
\
\
&
/
/
;
ꢆꢀPP  
VFDOH  
'LPHQVLRQVꢀꢌPPꢀDUHꢀWKHꢀRULJLQDOꢀGLPHQVLRQVꢍ  
ꢌꢁꢍ  
8QLW  
$
$
E
'
(
H
H
/
/
/
Y
Z
\
\
PD[  
QRP ꢅꢂꢄ  
PLQ  
ꢅꢂꢅꢄ ꢅꢂꢉꢄ ꢆꢂꢁ ꢉꢂꢁ  
ꢅꢂꢅꢅ ꢅꢂꢁꢄ ꢁꢂꢈ ꢆꢂꢈ  
ꢅꢂꢄ ꢅꢂꢁꢄ ꢅꢂꢊ  
ꢅꢂꢉ ꢅꢂꢅꢄ ꢅꢂꢇ  
ꢅꢂꢄ  
ꢁꢂꢄ  
ꢅꢂꢁ  
PP  
ꢅꢂꢁ ꢅꢂꢅꢄ ꢅꢂꢅꢄ  
VRWꢀꢀꢆꢃꢂBSR  
5HIHUHQFHV  
2XWOLQH  
YHUVLRQ  
(XURSHDQ  
SURMHFWLRQ  
,VVXHꢀGDWH  
,(&  
-('(&  
-(,7$  
ꢅꢃꢎꢁꢆꢎꢆꢁ  
ꢁꢆꢎꢁꢁꢎꢆꢅ  
627ꢈꢈꢊꢎꢆ  
Fig 20. Package outline SOT996-2 (XSON8U)  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
21 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
13. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
13.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
13.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
13.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
22 of 35  
 
 
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
13.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 21) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 14 and 15  
Table 14. SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 15. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 21.  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
23 of 35  
 
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 21. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
24 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
14. Soldering: PCB footprints  
ꢄꢂꢄꢅ  
ꢅꢂꢊꢅꢀꢌꢋîꢍ  
ꢁꢂꢉꢅ  
ꢇꢂꢅꢅ  
ꢊꢂꢊꢅ ꢃꢂꢅꢅ  
ꢁꢂꢆꢃꢀꢌꢊîꢍ  
VROGHUꢀODQGV  
VRWꢁꢀꢆꢃꢄBIU  
'LPHQVLRQVꢀLQꢀPP  
RFFXSLHGꢀDUHD  
SODFHPHQWꢀDFFXUDF\ꢀ“ꢀꢅꢂꢆꢄ  
Fig 22. PCB footprint for SOT96-1 (SO8); reflow soldering  
ꢁꢂꢆꢅꢀꢌꢆîꢍ  
HQODUJHGꢀVROGHUꢀODQG  
ꢅꢂꢊꢅꢀꢌꢊîꢍ  
ꢅꢂꢉꢀꢌꢆîꢍ  
ꢁꢂꢉꢅ  
ꢇꢂꢅꢅ ꢊꢂꢊꢅ  
ꢃꢂꢅꢅ  
ꢁꢂꢆꢃꢀꢌꢊîꢍ  
ꢄꢂꢄꢅ  
ERDUGꢀGLUHFWLRQ  
VROGHUꢀODQGV  
VROGHUꢀUHVLVW  
SODFHPHQWꢀDFFXUUDF\ꢀ“ꢀꢅꢂꢆꢄ  
VRWꢁꢀꢆꢃꢄBIZ  
RFFXSLHGꢀDUHD  
'LPHQVLRQVꢀLQꢀPP  
Fig 23. PCB footprint for SOT96-1 (SO8); wave soldering  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
25 of 35  
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
ꢉꢂꢊꢅꢅ  
ꢆꢂꢈꢄꢅ  
ꢅꢂꢃꢆꢄ  
ꢅꢂꢁꢆꢄ  
ꢅꢂꢁꢆꢄ  
ꢄꢂꢃꢄꢅ ꢉꢂꢊꢅꢅ  
ꢉꢂꢆꢅꢅ ꢄꢂꢄꢅꢅ  
ꢁꢂꢁꢄꢅ  
ꢅꢂꢊꢅꢅ  
ꢅꢂꢇꢄꢅ  
ꢅꢂꢊꢄꢅ  
VRWꢇꢁꢇꢃꢄBIU  
VROGHUꢀODQGV  
RFFXSLHGꢀDUHD  
'LPHQVLRQVꢀLQꢀPP  
Fig 24. PCB footprint for SOT505-1 (TSSOP8); reflow soldering  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
26 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
)RRWSULQWꢀLQIRUPDWLRQꢀIRUꢀUHIORZꢀVROGHULQJꢀRIꢀ76623ꢇꢀSDFNDJH  
627ꢍꢎꢍꢌꢃ  
+[  
*[  
3ꢆ  
ꢌꢅꢂꢁꢆꢄꢍ  
ꢌꢅꢂꢁꢆꢄꢍ  
+\ *\  
%\ $\  
&
'ꢆꢀꢌꢇ[ꢍ  
'ꢁ  
3ꢁ  
*HQHULFꢀIRRWSULQWꢀSDWWHUQꢀ  
5HIHUꢀWRꢀWKHꢀSDFNDJHꢀRXWOLQHꢀGUDZLQJꢀIRUꢀDFWXDOꢀOD\RXW  
VROGHUꢀODQG  
RFFXSLHGꢀDUHD  
',0(16,216ꢀLQꢀPP  
3ꢁ 3ꢆ $\  
%\  
&
'ꢁ  
'ꢆ  
*[  
*\  
+[  
+\  
ꢅꢂꢊꢄꢅ ꢅꢂꢃꢅꢅ ꢇꢂꢇꢅꢅ ꢆꢂꢃꢅꢅ ꢅꢂꢋꢄꢅ ꢅꢂꢇꢅꢅ ꢅꢂꢄꢅꢅ ꢆꢂꢋꢅꢅ ꢉꢂꢊꢅꢅ ꢉꢂꢊꢅꢅ ꢇꢂꢊꢄꢅ  
VRWꢇꢁꢇꢃꢂBIU  
Fig 25. PCB footprint for SOT505-2 (TSSOP8); reflow soldering  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
27 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
)RRWSULQWꢀLQIRUPDWLRQꢀIRUꢀUHIORZꢀVROGHULQJꢀRIꢀ96623ꢇꢀSDFNDJH  
627ꢏꢋꢍꢌꢂ  
+[  
*[  
3ꢆ  
'ꢁ  
ꢌꢅꢂꢁꢆꢄꢍ  
+\ *\  
%\ $\  
&
ꢌꢅꢂꢁꢆꢄꢍ  
ꢌꢅꢂꢁꢃꢄꢍ  
'ꢆꢀꢌꢇ[ꢍ  
3ꢁ  
*HQHULFꢀIRRWSULQWꢀSDWWHUQ  
5HIHUꢀWRꢀWKHꢀSDFNDJHꢀRXWOLQHꢀGUDZLQJꢀIRUꢀDFWXDOꢀOD\RXW  
VROGHUꢀODQG  
RFFXSLHGꢀDUHD  
',0(16,216ꢀLQꢀPP  
3ꢁ 3ꢆ $\  
%\  
&
'ꢁ  
'ꢆ  
*[  
*\  
+[  
+\  
ꢅꢂꢄꢅꢅ ꢅꢂꢄꢄꢅ ꢉꢂꢄꢅꢅ ꢆꢂꢅꢅꢅ ꢅꢂꢃꢄꢅ ꢅꢂꢉꢅꢅ ꢅꢂꢇꢅꢅ ꢆꢂꢆꢄꢅ ꢁꢂꢃꢄꢅ ꢉꢂꢅꢃꢄ ꢉꢂꢃꢄꢅ  
VRWꢈꢆꢇꢃꢄBIU  
Fig 26. PCB footprint for SOT765-1 (VSSOP8); reflow soldering  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
28 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
)RRWSULQWꢀLQIRUPDWLRQꢀIRUꢀUHIORZꢀVROGHULQJꢀRIꢀ;621ꢇꢀSDFNDJH  
627ꢂꢎꢇꢊ  
ꢅꢂꢁꢄꢀ  
ꢌꢋîꢍ  
ꢅꢂꢆꢄꢀ  
ꢌꢋîꢍ  
ꢅꢂꢄꢀ  
ꢌꢋîꢍ  
ꢅꢂꢃ  
ꢁꢂꢇ  
ꢅꢂꢊꢀ  
ꢌꢋîꢍ  
'LPHQVLRQVꢀLQꢀPP  
VROGHUꢀSDVWHꢀ ꢀVROGHUꢀODQG  
ꢅꢂꢉꢄꢀ  
ꢌꢉîꢍ  
ꢁꢂꢇ  
VROGHUꢀUHVLVW  
RFFXSLHGꢀDUHD  
VRWꢄꢁꢅꢀBIU  
Fig 27. PCB footprint for SOT1089 (XSON8); reflow soldering  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
29 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
ꢆꢂꢇꢅꢅꢀSDꢀꢏꢀRD  
ꢆꢂꢅꢅꢅ  
ꢅꢂꢄꢅꢅ  
ꢅꢂꢆꢄꢅ  
ꢅꢂꢄꢅꢅ  
ꢅꢂꢅꢆꢄ  
ꢅꢂꢅꢆꢄ  
ꢉꢂꢇꢅꢅꢀ  
SDꢀꢏꢀRD  
ꢇꢂꢆꢄꢅ  
ꢆꢂꢅꢅꢅ ꢇꢂꢅꢅꢅ  
ꢅꢂꢈꢅꢅ  
SODFHPHQWꢀDUHD  
RFFXSLHGꢀDUHD  
'LPHQVLRQVꢀLQꢀPP  
VROGHUꢀODQGV  
VROGHUꢀSDVWH  
VRWꢀꢀꢆꢃꢂBIU  
Fig 28. PCB footprint for SOT996-2 (XSON8U); reflow soldering  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
30 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
)RRWSULQWꢀLQIRUPDWLRQꢀIRUꢀUHIORZꢀVROGHULQJꢀRIꢀ;4)1ꢇꢀSDFNDJH  
627ꢊꢎꢃꢌꢃ  
+[  
'
ꢌꢋîꢍ  
ꢅꢂꢅꢆꢄ  
ꢅꢂꢅꢆꢄ  
&ꢀꢌꢃîꢍ  
ꢅꢂꢁꢁꢅ  
+\  
ꢁꢂꢅꢅꢅ  
$\  
6/\  
ꢅꢂꢉꢆꢅ  
6/[  
ꢁꢂꢆꢅꢅ  
VROGHUꢀODQG  
VROGHUꢀSDVWHꢀGHSRVLW  
VROGHUꢀODQGꢀSOXVꢀVROGHUꢀSDVWH  
RFFXSLHGꢀDUHD  
',0(16,216ꢀLQꢀPP  
$\  
&
'
6/[  
ꢅꢂꢄ  
6/\  
ꢅꢂꢄ  
+[  
+\  
ꢁꢂꢆ  
ꢅꢂꢆꢆ  
ꢅꢂꢇ  
ꢁꢂꢈ  
ꢁꢂꢈ  
ꢁꢆꢎꢅꢆꢎꢆꢉ  
ꢁꢆꢎꢁꢆꢎꢁꢋ  
,VVXHꢀGDWH  
VRWꢀꢁꢂꢃꢂBIU  
Fig 29. PCB footprint for SOT902-2 (XQFN8); reflow soldering  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
31 of 35  
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
15. Abbreviations  
Table 16. Abbreviations  
Acronym  
CDM  
ESD  
Description  
Charged-Device Model  
ElectroStatic Discharge  
Gunning Transceiver Logic  
Human Body Model  
GTL  
HBM  
I2C-bus  
I/O  
Inter-Integrated Circuit bus  
Input/Output  
LVTTL  
PLL  
Low Voltage Transistor-Transistor Logic  
Phase-Locked Loop  
PRR  
Pulse Repetition Rate  
RC  
Resistor-Capacitor network  
System Management Bus  
SMBus  
16. Revision history  
Table 17. Revision history  
Document ID  
PCA9306 v.8  
Modifications:  
Release date  
Data sheet status  
Change notice  
Supersedes  
20140122  
Product data sheet  
-
PCA9306 v.7  
deleted (old) Section 11.2, “Sizing pull-up resistor”  
added (new) Section 11.2 “How to size pull-up resistor value”  
added (new) Section 11.3 “How to design for maximum frequency operation”  
PCA9306 v.7  
PCA9306 v.6  
PCA9306 v.5  
PCA9306 v.4  
PCA9306 v.3  
PCA9306 v.2  
PCA9306 v.1  
20130517  
20101125  
20100319  
20091026  
20080804  
20070221  
20061020  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
-
-
-
-
PCA9306 v.6  
PCA9306 v.5  
PCA9306 v.4  
PCA9306 v.3  
PCA9306 v.2  
PCA9306 v.1  
-
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
32 of 35  
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
17.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
33 of 35  
 
 
 
 
 
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
non-automotive qualified products in automotive equipment or applications.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP B.V.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCA9306  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 22 January 2014  
34 of 35  
 
 
PCA9306  
NXP Semiconductors  
Dual bidirectional I2C-bus and SMBus voltage-level translator  
19. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
Features and benefits . . . . . . . . . . . . . . . . . . . . 2  
2
3
3.1  
4
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 4  
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
6
6.1  
7
Functional description . . . . . . . . . . . . . . . . . . . 7  
Function table . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended operating conditions. . . . . . . . 7  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 8  
Dynamic characteristics . . . . . . . . . . . . . . . . . . 9  
8
9
10  
11  
Application information. . . . . . . . . . . . . . . . . . 10  
Bidirectional translation . . . . . . . . . . . . . . . . . 11  
How to size pull-up resistor value. . . . . . . . . . 11  
How to design for maximum frequency  
11.1  
11.2  
11.3  
operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 15  
13  
Soldering of SMD packages . . . . . . . . . . . . . . 22  
Introduction to soldering . . . . . . . . . . . . . . . . . 22  
Wave and reflow soldering . . . . . . . . . . . . . . . 22  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 22  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 23  
13.1  
13.2  
13.3  
13.4  
14  
15  
16  
Soldering: PCB footprints. . . . . . . . . . . . . . . . 25  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 32  
17  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 33  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 33  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
17.1  
17.2  
17.3  
17.4  
18  
19  
Contact information. . . . . . . . . . . . . . . . . . . . . 34  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2014.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 22 January 2014  
Document identifier: PCA9306  
 

相关型号:

PCA9306GM-G

IC,TRANSLATOR, OTHER/SPECIAL/MISCELLANEOUS,LLCC,8PIN,PLASTIC
NXP

PCA9306IDCURQ1

DUAL BIDIRECTIONAL I2C BUS AND SMBus VOLTAGE-LEVEL TRANSLATOR
TI

PCA9306TDCURQ1

汽车类 2 位双向 400kHz I2C/SMBus 电压电平转换器 | DCU | 8 | -40 to 105
TI

PCA9306USG

Dual Bidirectional I2C-bus and SMBus Voltage-Level Translator
NXP

PCA9306USG

双双向 I2C 总线和 SMBus 电压级转换器
ONSEMI

PCA9306YZTR

DUAL BIDIRECTIONAL I2C BUS AND SMBus VOLTAGE-LEVEL TRANSLATOR
TI

PCA9306_08

DUAL BIDIRECTIONAL I2C BUS AND SMBus VOLTAGE-LEVEL TRANSLATOR
TI

PCA9306_10

Dual bidirectional I2C-bus and SMBus voltage-level translator
NXP

PCA9306_1011

Dual bidirectional I2C-bus and SMBus voltage-level translator
NXP

PCA9410

3.0 MHz, 500 mA, DC-to-DC boost converter
NXP

PCA9410A

3.0 MHz, 500 mA, DC-to-DC boost converter
NXP

PCA9410AUKZ

PCA9410/9410A - 3.0 MHz, 500 mA, DC-to-DC boost converter
NXP