PCA9506BS [NXP]

40-bit I2C-bus I/O port with RESET, OE, and INT; 40位I2C总线I / O与RESET , OE和INT端口
PCA9506BS
型号: PCA9506BS
厂家: NXP    NXP
描述:

40-bit I2C-bus I/O port with RESET, OE, and INT
40位I2C总线I / O与RESET , OE和INT端口

并行IO端口 微控制器和处理器 外围集成电路
文件: 总30页 (文件大小:163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCA9506  
40-bit I2C-bus I/O port with RESET, OE, and INT  
Rev. 01 — 14 February 2006  
Product data sheet  
1. General description  
The PCA9506 provides 40-bit parallel input/output (I/O) port expansion for I2C-bus  
applications organized in 5 banks of 8 I/Os. At 5 V supply voltage, the outputs are capable  
of sourcing 10 mA and sinking 25 mA with a total package load of 800 mA to allow direct  
driving of 40 LEDs. Any of the 40 I/O ports can be configured as an input or output. Output  
ports are totem-pole and their logic state changes at the Acknowledge (bank change).  
The device can be configured to have each input port to be masked in order to prevent it  
from generating interrupts when its state changes and to have the I/O data logic state to  
be inverted when read by the system master.  
An open-drain interrupt (INT) output pin allows monitoring of the input pins and is  
asserted each time a change occurs in one or several input ports (unless masked).  
The Output Enable (OE) pin 3-states any I/O selected as output and can be used as an  
input signal to blink or dim LEDs (PWM with frequency > 80 Hz and change duty cycle).  
The internal Power-On Reset (POR) or hardware reset (RESET) pin initializes the 40 I/Os  
as inputs. Three address select pins configure one of 8 slave addresses.  
The PCA9506 is available in 56-pin TSSOP and HVQFN packages and is specified over  
the 40 °C to +85 °C industrial temperature range.  
2. Features  
Standard mode (100 kHz) and Fast mode (400 kHz) compatible I2C-bus serial  
interface  
2.3 V to 5.5 V operation with 5.5 V tolerant I/Os  
40 configurable I/O pins that default to inputs at power-up  
Outputs:  
Totem-pole (10 mA source, 25 mA sink) with controlled edge rate output structure  
Active LOW output enable (OE) input pin 3-states all outputs  
Output state change on Acknowledge  
Inputs:  
Open-drain active LOW interrupt (INT) output pin allows monitoring of logic level  
change of pins programmed as inputs  
Programmable Interrupt Mask Control for input pins that do not require an interrupt  
when their states change  
Polarity Inversion register allows inversion of the polarity of the I/O pins when read  
Active LOW reset (RESET) input pin resets device to power-up default state  
3 programmable address pins allowing 8 devices on the same bus  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
Designed for live insertion  
Minimize line disturbance (IOFF and power-up 3-state)  
Signal transient rejection (50 ns noise filter and robust I2C-bus state machine)  
Low standby current  
40 °C to +85 °C operation  
ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per  
JESD22-A115, and 1000 V CDM per JESD22-C101  
Latch-up testing is done to JEDEC Standard JESD78, which exceeds 100 mA  
Offered in TSSOP56 and HVQFN56 packages  
3. Applications  
Servers  
RAID systems  
Industrial control  
Medical equipment  
PLCs  
Cell phones  
Gaming machines  
Instrumentation and test measurement  
4. Ordering information  
Table 1:  
Ordering information  
Type number  
Topside mark  
Package  
Name  
Description  
Version  
PCA9506DGG  
PCA9506BS  
PCA9506DGG  
PCA9506BS  
TSSOP56  
plastic thin shrink small outline package; 56 leads;  
body width 6.1 mm  
SOT364-1  
HVQFN56  
plastic thermal enhanced very thin quad flat package;  
SOT684-1  
no leads; 56 terminals; body 8 × 8 × 0.85 mm  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
2 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
5. Block diagram  
OE  
PCA9506  
IO0_0  
IO0_1  
IO0_2  
8-bit  
A0  
INPUT/  
OUTPUT  
IO0_3  
A1  
A2  
PORTS  
IO0_4  
IO0_5  
IO0_6  
IO0_7  
write pulse 0  
read pulse 0  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
SCL  
SDA  
LOW PASS  
INPUT  
FILTERS  
2
I C-BUS  
CONTROL  
IO4_0  
IO4_1  
IO4_2  
IO4_3  
IO4_4  
IO4_5  
IO4_6  
IO4_7  
8-bit  
INPUT/  
OUTPUT  
PORTS  
write pulse 4  
read pulse 4  
V
DD  
BANK 4  
POWER-ON  
RESET  
V
SS  
RESET  
INTERRUPT  
MANAGEMENT  
INT  
LP FILTER  
002aab492  
All I/Os are set to inputs at power-up and RESET.  
Fig 1. Block diagram of PCA9506  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
3 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
configuration port register data (Cx[y])  
output port register data (Ox[y])  
I/O configuration  
register  
data from  
shift register  
D
Q
V
DD  
write configuration  
pulse  
CK  
Q
IOx_y  
ESD protection  
diode  
data from  
shift register  
D
Q
V
SS  
write pulse  
CK  
Mx[y]  
output port  
register  
INTERRUPT  
MANAGEMENT  
INT  
input port  
register  
D
Q
input port  
register data  
(Ix[y])  
read pulse  
CK  
polarity inversion  
register  
data from  
shift register  
polarity  
register data  
(Px[y])  
D
Q
write polarity  
pulse  
CK  
002aab493  
On power-up or RESET, all registers return to default values.  
Fig 2. Simplified schematic of IO0_0 to IO4_7  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
4 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
6. Pinning information  
6.1 Pinning  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
SDA  
SCL  
RESET  
INT  
2
3
IO0_0  
IO0_1  
IO0_2  
IO4_7  
IO4_6  
IO4_5  
4
5
6
V
SS  
V
SS  
7
IO0_3  
IO0_4  
IO0_5  
IO0_6  
IO4_4  
IO4_3  
IO4_2  
IO4_1  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
V
SS  
V
DD  
IO0_7  
IO1_0  
IO1_1  
IO1_2  
IO1_3  
IO1_4  
IO4_0  
IO3_7  
IO3_6  
IO3_5  
IO3_4  
IO3_3  
PCA9506DGG  
V
DD  
V
SS  
IO1_5  
IO1_6  
IO1_7  
IO2_0  
IO3_2  
IO3_1  
IO3_0  
IO2_7  
V
SS  
V
SS  
IO2_1  
IO2_2  
IO2_3  
A0  
IO2_6  
IO2_5  
IO2_4  
OE  
A1  
A2  
002aab491  
Fig 3. Pin configuration for TSSOP56  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
5 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
terminal 1  
index area  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
IO0_4  
IO0_5  
IO0_6  
IO4_3  
IO4_2  
IO4_1  
3
4
V
SS  
V
DD  
5
IO0_7  
IO1_0  
IO1_1  
IO1_2  
IO1_3  
IO1_4  
IO4_0  
IO3_7  
IO3_6  
IO3_5  
IO3_4  
IO3_3  
6
7
PCA9506BS  
8
9
10  
11  
12  
13  
14  
V
DD  
V
SS  
IO1_5  
IO1_6  
IO1_7  
IO3_2  
IO3_1  
IO3_0  
002aab975  
Transparent top view  
Fig 4. Pin configuration for HVQFN56  
6.2 Pin description  
Table 2:  
Pin description  
Symbol  
Pin  
Type  
Description  
TSSOP56  
HVQFN56  
SDA  
SCL  
1
2
50  
51  
I/O  
I
serial data line  
serial clock line  
input/output bank 0  
IO0_0 to IO0_7 3, 4, 5, 7, 8, 9, 52, 53, 54, 56, 1, I/O  
10, 12 2, 3, 5  
IO1_0 to IO1_7 13, 14, 15, 16, 6, 7, 8, 9, 10, 12, I/O  
17, 19, 20, 21 13, 14  
input/output bank 1  
input/output bank 2  
input/output bank 3  
input/output bank 4  
ground supply voltage  
supply voltage  
IO2_0 to IO2_7 22, 24, 25, 26, 15, 17, 18, 19,  
31, 32, 33, 35 24, 25, 26, 28  
I/O  
I/O  
I/O  
IO3_0 to IO3_7 36, 37, 38, 40, 29, 30, 31, 33,  
41, 42, 43, 44 34, 35, 36, 37  
IO4_0 to IO4_7 45, 47, 48, 49, 38, 40, 41, 42,  
50, 52, 53, 54  
43, 45, 46, 47  
VSS  
VDD  
6, 11, 23, 34,  
39, 51  
4, 16, 27, 32, 44, power  
55[1]  
supply  
18, 46  
11, 39  
power  
supply  
A0  
A1  
A2  
27  
28  
29  
20  
21  
22  
I
I
I
address input 0  
address input 1  
address input 2  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
6 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
Table 2:  
Symbol  
Pin description …continued  
Pin  
Type  
Description  
TSSOP56  
HVQFN56  
OE  
30  
55  
56  
23  
48  
49  
I
active LOW output enable input  
active LOW interrupt output  
active LOW reset input  
INT  
O
I
RESET  
[1] HVQFN package die supply ground is connected to both VSS pins and exposed center pad. VSS pins must  
be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board  
level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad  
on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the  
printed-circuit board in the thermal pad region.  
7. Functional description  
Refer to Figure 1 “Block diagram of PCA9506” and Figure 2 “Simplified schematic of  
IO0_0 to IO4_7”.  
7.1 Device address  
Following a START condition, the bus master must send the address of the slave it is  
accessing and the operation it wants to perform (read or write). The address of the  
PCA9506 is shown in Figure 5. Slave address pins A2, A1, and A0 choose 1 of 8 slave  
addresses and need to be connected to VDD (1) or VSS (0). To conserve power, no internal  
pull-up resistors are incorporated on A2, A1, and A0.  
slave address  
0
1
0
0
A2 A1 A0 R/W  
fixed  
programmable  
002aab494  
Fig 5. PCA9506 address  
The last bit of the first byte defines the operation to be performed. When set to logic 1 a  
read is selected, while a logic 0 selects a write operation.  
7.2 Command register  
Following the successful acknowledgement of the slave address + R/W bit, the bus master  
will send a byte to the PCA9506, which will be stored in the Command register.  
AI  
1
D5 D4 D3 D2 D1 D0  
default at power-up  
or after RESET  
0
0
0
0
0
0
0
register number  
002aab495  
Auto-Increment  
Fig 6. Command register  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
7 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
The lowest 6 bits are used as a pointer to determine which register will be accessed. The  
registers are:  
IP: Input Port registers (5 registers)  
OP: Output Port registers (5 registers)  
PI: Polarity Inversion registers (5 registers)  
IOC: I/O Configuration registers (5 registers)  
MSK: Mask interrupt registers (5 registers)  
If the Auto-Increment flag is set (AI = 1), the 3 least significant bits are automatically  
incremented after a read or write. This allows the user to program and/or read the  
5 register banks sequentially.  
If more than 5 bytes of data are written and AI = 1, previous data in the selected registers  
will be overwritten. Reserved registers are skipped and not accessed (refer to Table 3).  
If the Auto-Increment flag is cleared (AI = 0), the 3 least significant bits are not  
incremented after data is read or written. During a read operation, the same register bank  
is read each time. During a write operation, data is written to the same register bank each  
time.  
Only a Command register code with the 5 least significant bits equal to the 25 allowable  
values as defined in Table 3 are valid. Reserved or undefined command codes must not  
be accessed for proper device functionality. At power-up, this register defaults to 0x80,  
with the AI bit set to logic 1, and the lowest 7 bits set to logic 0.  
During a write operation, the PCA9506 will acknowledge a byte sent to OPx, PIx, and  
IOCx and MSKx registers, but will not acknowledge a byte sent to the IPx registers since  
these are read-only registers.  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
8 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
7.3 Register definitions  
Table 3:  
Register summary  
Register # D5  
(hex)  
D4  
D3  
D2  
D1  
D0  
Symbol  
Access  
Description  
Input Port registers  
00  
01  
02  
03  
04  
05  
06  
07  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IP0  
IP1  
IP2  
IP3  
IP4  
-
read only  
Input Port register bank 0  
Input Port register bank 1  
Input Port register bank 2  
Input Port register bank 3  
Input Port register bank 4  
reserved for future use  
reserved for future use  
reserved for future use  
read only  
read only  
read only  
read only  
-
-
-
-
-
Output Port registers  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
OP0  
OP1  
OP2  
OP3  
OP4  
-
read/write  
Output Port register bank 0  
Output Port register bank 1  
Output Port register bank 2  
Output Port register bank 3  
Output Port register bank 4  
reserved for future use  
read/write  
read/write  
read/write  
read/write  
-
-
-
-
reserved for future use  
-
reserved for future use  
Polarity Inversion registers  
10  
11  
12  
13  
14  
15  
16  
17  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
PI0  
PI1  
PI2  
PI3  
PI4  
-
read/write  
Polarity Inversion register bank 0  
Polarity Inversion register bank 1  
Polarity Inversion register bank 2  
Polarity Inversion register bank 3  
Polarity Inversion register bank 4  
reserved for future use  
read/write  
read/write  
read/write  
read/write  
-
-
-
-
reserved for future use  
-
reserved for future use  
I/O Configuration registers  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IOC0  
IOC1  
IOC2  
IOC3  
IOC4  
-
read/write  
I/O Configuration register bank 0  
I/O Configuration register bank 1  
I/O Configuration register bank 2  
I/O Configuration register bank 3  
I/O Configuration register bank 4  
reserved for future use  
read/write  
read/write  
read/write  
read/write  
-
-
-
-
reserved for future use  
-
reserved for future use  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
9 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
Table 3:  
Register summary …continued  
Register # D5  
(hex)  
D4  
D3  
D2  
D1  
D0  
Symbol  
Access  
Description  
Mask Interrupt registers  
20  
21  
22  
23  
24  
25  
26  
27  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
MSK0  
MSK1  
MSK2  
MSK3  
MSK4  
-
read/write  
Mask Interrupt register bank 0  
Mask Interrupt register bank 1  
Mask Interrupt register bank 2  
Mask Interrupt register bank 3  
Mask Interrupt register bank 4  
reserved for future use  
read/write  
read/write  
read/write  
read/write  
-
-
-
-
reserved for future use  
-
reserved for future use  
7.3.1 IP0 to IP4 - Input Port registers  
These registers are read-only. They reflect the incoming logic levels of the port pins  
regardless of whether the pin is defined as an input or an output by the I/O Configuration  
register. If the corresponding Px[y] bit in the PI registers is set to logic 0, or the inverted  
incoming logic levels if the corresponding Px[y] bit in the PI register is set to logic 1. Writes  
to these registers have no effect.  
Table 4:  
IP0 to IP4 - Input Port registers (address 00h to 04h) bit description  
Legend: * default value ‘X’ determined by the externally applied logic level.  
Address  
00h  
Register  
IP0  
Bit  
Symbol  
I0[7:0]  
I1[7:0]  
I2[7:0]  
I3[7:0]  
I4[7:0]  
Access  
Value  
Description  
7 to 0  
7 to 0  
7 to 0  
7 to 0  
7 to 0  
R
R
R
R
R
XXXX XXXX*  
XXXX XXXX*  
XXXX XXXX*  
XXXX XXXX*  
XXXX XXXX*  
Input Port register bank 0  
Input Port register bank 1  
Input Port register bank 2  
Input Port register bank 3  
Input Port register bank 4  
01h  
IP1  
02h  
IP2  
03h  
IP3  
04h  
IP4  
The Polarity Inversion register can invert the logic states of the port pins. The polarity of  
the corresponding bit is inverted when Px[y] bit in the PI register is set to logic 1. The  
polarity of the corresponding bit is not inverted when Px[y] bits in the PI register is set to  
logic 0.  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
10 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
7.3.2 OP0 to OP4 - Output Port registers  
These registers reflect the outgoing logic levels of the pins defined as outputs by the  
I/O Configuration register. Bit values in these registers have no effect on pins defined as  
inputs. In turn, reads from these registers reflect the values that are in the flip-flops  
controlling the output selection, not the actual pin values.  
Ox[y] = 0: IOx_y = 0 if IOx_y defined as output (Cx[y] in IOC register = 0).  
Ox[y] = 1: IOx_y = 1 if IOx_y defined as output (Cx[y] in IOC register = 0).  
Where ‘x’ refers to the bank number (0 to 4); ‘y’ refers to the bit number (0 to 7).  
Table 5:  
OP0 to OP4 - Output Port registers (address 08h to 0Ch) bit description  
Legend: * default value.  
Address  
08h  
Register  
OP0  
Bit  
Symbol  
O0[7:0]  
O1[7:0]  
O2[7:0]  
O3[7:0]  
O4[7:0]  
Access  
R/W  
Value  
Description  
7 to 0  
7 to 0  
7 to 0  
7 to 0  
7 to 0  
0000 0000*  
0000 0000*  
0000 0000*  
0000 0000*  
0000 0000*  
Output Port register bank 0  
Output Port register bank 1  
Output Port register bank 2  
Output Port register bank 3  
Output Port register bank 4  
09h  
OP1  
R/W  
0Ah  
OP2  
R/W  
0Bh  
OP3  
R/W  
0Ch  
OP4  
R/W  
7.3.3 PI0 to PI4 - Polarity Inversion registers  
These registers allow inversion of the polarity of the corresponding Input Port register.  
Px[y] = 0: The corresponding Input Port register data polarity is retained.  
Px[y] = 1: The corresponding Input Port register data polarity is inverted.  
Where ‘x’ refers to the bank number (0 to 4); ‘y’ refers to the bit number (0 to 7).  
Table 6:  
PI0 to PI4 - Polarity Inversion registers (address 10h to 14h) bit description  
Legend: * default value.  
Address  
10h  
Register  
PI0  
Bit  
Symbol  
P0[7:0]  
P1[7:0]  
P2[7:0]  
P3[7:0]  
P4[7:0]  
Access  
R/W  
Value  
Description  
7 to 0  
7 to 0  
7 to 0  
7 to 0  
7 to 0  
0000 0000*  
0000 0000*  
0000 0000*  
0000 0000*  
0000 0000*  
Polarity Inversion register bank 0  
Polarity Inversion register bank 1  
Polarity Inversion register bank 2  
Polarity Inversion register bank 3  
Polarity Inversion register bank 4  
11h  
PI1  
R/W  
12h  
PI2  
R/W  
13h  
PI3  
R/W  
14h  
PI4  
R/W  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
11 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
7.3.4 IOC0 to IOC4 - I/O Configuration registers  
These registers configure the direction of the I/O pins.  
Cx[y] = 0: The corresponding port pin is an output.  
Cx[y] = 1: The corresponding port pin is an input.  
Where ‘x’ refers to the bank number (0 to 4); ‘y’ refers to the bit number (0 to 7).  
Table 7:  
IOC0 to IOC4 - I/O Configuration registers (address 18h to 1Ch) bit description  
Legend: * default value.  
Address  
18h  
Register  
IOC0  
Bit  
Symbol  
C0[7:0]  
C1[7:0]  
C2[7:0]  
C3[7:0]  
C4[7:0]  
Access  
R/W  
Value  
Description  
7 to 0  
7 to 0  
7 to 0  
7 to 0  
7 to 0  
1111 1111*  
1111 1111*  
1111 1111*  
1111 1111*  
1111 1111*  
I/O Configuration register bank 0  
I/O Configuration register bank 1  
I/O Configuration register bank 2  
I/O Configuration register bank 3  
I/O Configuration register bank 4  
19h  
IOC1  
R/W  
1Ah  
IOC2  
R/W  
1Bh  
IOC3  
R/W  
1Ch  
IOC4  
R/W  
7.3.5 MSK0 to MSK4 - Mask interrupt registers  
These registers mask the interrupt due to a change in the I/O pins configured as inputs. ‘x’  
refers to the bank number (0 to 4); ‘y’ refers to the bit number (0 to 7).  
Mx[y] = 0: A level change at the I/O will generate an interrupt if IOx_y defined as input  
(Cx[y] in IOC register = 1).  
Mx[y] = 1: A level change in the input port will not generate an interrupt if IOx_y defined  
as input (Cx[y] in IOC register = 1).  
Table 8:  
MSK0 to MSK4 - Mask interrupt registers (address 20h to 24h) bit description  
Legend: * default value.  
Address  
20h  
Register  
MSK0  
MSK1  
MSK2  
MSK3  
MSK4  
Bit  
Symbol  
M0[7:0]  
M1[7:0]  
M2[7:0]  
M3[7:0]  
M4[7:0]  
Access  
R/W  
Value  
Description  
7 to 0  
7 to 0  
7 to 0  
7 to 0  
7 to 0  
1111 1111*  
1111 1111*  
1111 1111*  
1111 1111*  
1111 1111*  
Mask Interrupt register bank 0  
Mask Interrupt register bank 1  
Mask Interrupt register bank 2  
Mask Interrupt register bank 3  
Mask Interrupt register bank 4  
21h  
R/W  
22h  
R/W  
23h  
R/W  
24h  
R/W  
7.4 Power-on reset  
When power is applied to VDD, an internal Power-On Reset (POR) holds the PCA9506 in  
a reset condition until VDD has reached VPOR. At that point, the reset condition is released  
and the PCA9506 registers and I2C-bus state machine will initialize to their default states.  
Thereafter, VDD must be lowered below 0.2 V to reset the device.  
7.5 RESET input  
A reset can be accomplished by holding the RESET pin LOW for a minimum of tw(rst). The  
PCA9506 registers and I2C-bus state machine will be held in their default states until the  
RESET input is once again HIGH.  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
12 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
7.6 Interrupt output (INT)  
The open-drain active LOW interrupt is activated when one of the port pins changes state  
and the port pin is configured as an input and the interrupt on it is not masked. The  
interrupt is deactivated when the port pin input returns to its previous state or the Input  
Port register is read.  
Remark: Changing an I/O from an output to an input may cause a false interrupt to occur  
if the state of the pin does not match the contents of the Input Port register.  
Only a Read of the Input Port register that contains the bit(s) image of the input(s) that  
generated the interrupt clears the interrupt condition.  
If more than one input register changed state before a read of the Input Port register is  
initiated, the interrupt is cleared when all the input registers containing all the inputs that  
changed are read.  
Example: If IO0_5, IO2_3, and IO3_7 change state at the same time, the interrupt is  
cleared only when INREG0, INREG2, and INREG3 are read.  
7.7 Output enable input (OE)  
The active LOW output enable pin allows to enable or disable all the I/Os at the same  
time. When a LOW level is applied to the OE pin, all the I/Os configured as outputs are  
enabled and the logic value programmed in their respective OP registers is applied to the  
pins. When a HIGH level is applied to the OE pin, all the I/Os configured as outputs are  
3-stated.  
For applications requiring LED blinking with brightness control, this pin can be used to  
control the brightness by applying a high frequency PWM signal on the OE pin. LEDs can  
be blinked using the Output Port registers and can be dimmed using the PWM signal on  
the OE pin thus controlling the brightness by adjusting the duty cycle.  
7.8 Live insertion  
The PCA9506 is fully specified for live insertion applications using IOFF, power-up  
3-states, robust state machine, and 50 ns noise filter. The IOFF circuitry disables the  
outputs, preventing damaging current backflow through the device when it is powered  
down. The power-up 3-state’s circuitry places the outputs in the high-impedance state  
during power-up and power-down, which prevents driver conflict and bus contention.  
The robust state machine does not respond until it sees a valid START condition and the  
50 ns noise filter will filter out any insertion glitches. The PCA9506 will not cause  
corruption of active data on the bus, nor will the device be damaged or cause damage to  
devices already on the bus when similar featured devices are being used.  
7.9 Standby  
The PCA9506 goes into standby when the I2C-bus is idle. Standby supply current is lower  
than 1 µA (typical).  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
13 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
8. Characteristics of the I2C-bus  
The I2C-bus is for 2-way, 2-line communication between different ICs or modules. The two  
lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be  
connected to a positive supply via a pull-up resistor when connected to the output stages  
of a device. Data transfer may be initiated only when the bus is not busy.  
8.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as control signals (see Figure 7).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 7. Bit transfer  
8.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line while the clock is HIGH is defined as the START condition (S). A  
LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition (P) (see Figure 8).  
SDA  
SCL  
SDA  
SCL  
S
P
STOP condition  
START condition  
mba608  
Fig 8. Definition of START and STOP conditions  
8.2 System configuration  
A device generating a message is a ‘transmitter’; a device receiving is the ‘receiver’. The  
device that controls the message is the ‘master' and the devices which are controlled by  
the master are the ‘slaves' (see Figure 9).  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
14 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
SDA  
SCL  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
2
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
I C-BUS  
TRANSMITTER/  
RECEIVER  
MULTIPLEXER  
SLAVE  
002aaa966  
Fig 9. System configuration  
8.3 Acknowledge  
The number of data bytes transferred between the START and the STOP conditions from  
transmitter to receiver is not limited. Each byte of eight bits is followed by one  
acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter,  
whereas the master generates an extra acknowledge related clock pulse.  
A slave receiver which is addressed must generate an acknowledge after the reception of  
each byte. Also a master must generate an acknowledge after the reception of each byte  
that has been clocked out of the slave transmitter. The device that acknowledges has to  
pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable  
LOW during the HIGH period of the acknowledge related clock pulse; set-up and hold  
times must be taken into account.  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from master  
1
2
8
9
S
clock pulse for  
START  
condition  
acknowledgement  
002aaa987  
Fig 10. Acknowledgement on the I2C-bus  
8.4 Bus transactions  
Data is transmitted to the PCA9506 registers using Write Byte transfers (see Figure 11,  
Figure 12, and Figure 13). Data is read from the PCA9506 registers using Read and  
Receive Byte transfers (see Figure 14).  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
15 of 30  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
STOP  
condition  
slave address  
0 A2 A1 A0 0  
command register  
SDA  
S
0
1
0
A
1
0
0
0
1
0
0
0
A
DATA BANK 0  
A
DATA BANK 1  
A
DATA BANK 2  
A
DATA BANK 3  
A
DATA BANK 4  
A P  
output bank  
register bank 0  
is selected  
START condition  
R/W  
AI = 1  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
write to port  
data valid  
bank 0  
data valid  
bank 1  
data valid  
bank 2  
data valid  
bank 3  
data valid  
bank 4  
data out from port  
002aab496  
t
v(Q)  
OE is LOW to observe a change in the outputs.  
If more than 5 bytes are written, previous data are overwritten.  
Fig 11. Write to the 5 output ports  
slave address  
SDA  
S
0
1
0
0 A2 A1 A0 0  
A
AI  
0
0
0
1 D2 D1 D0 A  
DATA BANK X  
A P  
START condition  
R/W  
acknowledge  
from slave  
acknowledge STOP  
from slave condition  
acknowledge  
from slave  
write to port  
data X  
valid  
data out from port  
t
v(Q)  
002aab497  
OE is LOW to observe a change in the outputs.  
Two, three, or four adjacent banks can be programmed by using the Auto-Increment feature (AI = 1) and change at the corresponding output port becomes effective at  
each acknowledge.  
Fig 12. Write to a specific output port  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
slave address  
A2 A1 A0  
command register  
SDA  
S
0
1
0
0
0
A
1
0 D5 D4 D3 D2 D1 D0 A DATA BANK 0  
A
DATA BANK 1  
A
DATA BANK 2  
A
DATA BANK 3  
A
DATA BANK 4  
A P  
START condition  
R/W  
AI = 1  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
D[5:0] = 01 0000 for Polarity Inversion register programming bank 0  
D[5:0] = 01 1000 for Configuration register programming bank 0  
D[5:0] = 10 0000 for Mask Interrupt register programming bank 0  
STOP  
condition  
002aab498  
The programming becomes effective at the acknowledge.  
Less than 5 bytes can be programmed by using this scheme. D5, D4, D3, D2, D1, D0 refers to the first register to be programmed.  
If more than 5 bytes are written, previous data are overwritten (the sixth Configuration register will roll over to the first addressed Configuration register, the sixth  
Polarity Inversion register will roll over to the first addressed Polarity Inversion register and the sixth Mask Interrupt register will roll over to the first addressed Mask  
Interrupt register).  
Fig 13. Write to the I/O Configuration, Polarity Inversion or Mask Interrupt registers  
repeated START condition  
slave address  
At this moment master-transmitter becomes master-receiver,  
and slave-receiver becomes slave-transmitter.  
slave address  
A2 A1 A0  
command register  
0 D5 D4 D3 D2 D1 D0 A Sr 0 1 0 0 A2 A1 A0 1 A  
SDA  
S
0
1
0
0
0
A
1
(cont.)  
START condition  
R/W  
AI = 1  
acknowledge from slave  
R/W acknowledge from slave  
D[5:0] = 00 0000 for Input Port register bank 0  
D[5:0] = 00 1000 for Output Port register bank 0  
D[5:0] = 01 0000 for Polarity Inversion register bank 0  
D[5:0] = 01 1000 for Configuration register bank 0  
D[5:0] = 10 0000 for Mask Interrupt register bank 0  
acknowledge  
from slave  
acknowledge from master  
data from register  
acknowledge from master  
no acknowledge from master  
data from register  
data from register  
DATA  
DATA  
A
DATA  
A
A
P
second byte  
last byte  
first byte  
register determined by D[5:0]  
STOP  
condition  
002aab499  
If AI = 0, the same register is read during the whole sequence.  
If AI = 1, the register value is incremented after each read. When the last register bank is read, it rolls over to the first byte of the category (see category definition in  
Section 7.2 “Command register”).  
The INT signal is released only when the last register containing an input that changed has been read. For example, when IO2_4 and IO4_7 change at the same time  
and an Input Port register’s read sequence is initiated, starting with IP0, INT is released after IP4 is read (and not after IP2 is read).  
Fig 14. Read from Input Port, Output Port, I/O Configuration, Polarity Inversion or Mask Interrupt registers  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
9. Application design-in information  
5 V  
V
DD  
SUB-SYSTEM 1  
(e.g., temp sensor)  
1.6 k  
1.6 kΩ  
1.1 kΩ  
2 kΩ  
1.1 kΩ  
V
V
DD  
DD  
(optional)  
(optional)  
INT  
MASTER  
CONTROLLER  
SCL  
PCA9506  
SCL  
IO0_0  
SUB-SYSTEM 2  
(e.g., counter)  
SDA  
SDA  
IO0_1  
IO0_2  
IO0_3  
IO0_4  
IO0_5  
RESET  
RESET  
RESET  
A
INT  
OE  
INT  
OE  
GND  
controlled  
switch  
(e.g., CBT device)  
ENABLE  
B
IO1_0  
IO3_7  
SUB-SYSTEM 3  
(e.g., alarm system)  
A2  
A1  
A0  
ALARM  
IO4_0  
IO4_7  
V
DD  
V
SS  
ALPHA NUMERIC  
KEYPAD  
24 LED MATRIX  
002aab500  
Device address configured as 0100 000X for this example.  
IO0_0, IO0_2, IO0_3, IO1_0 to IO3_7 are configured as outputs.  
IO0_1, IO0_4, IO4_0 to IO4_7 configured as inputs.  
Fig 15. Typical application  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
18 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
10. Limiting values  
Table 9:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
VI  
Parameter  
Conditions  
Min  
Max  
+6  
Unit  
V
supply voltage  
0.5  
input voltage  
V
-
SS 0.5  
5.5  
V
II  
input current  
±20  
5.5  
mA  
V
VI/O(n)  
VI/O(IO0n)  
IO(I/On)  
IDD  
input/output voltage on any other pin  
input/output voltage on pin IO0_n  
output current on an I/O pin  
supply current  
V
V
SS 0.5  
SS 0.5  
5.5  
V
20  
+50  
500  
1100  
500  
+150  
+85  
125  
150  
mA  
mA  
mA  
mW  
°C  
°C  
°C  
°C  
-
ISS  
ground supply current  
total power dissipation  
storage temperature  
ambient temperature  
junction temperature  
-
Ptot  
-
Tstg  
65  
Tamb  
Tj  
operating  
operating  
storage  
40  
-
-
11. Static characteristics  
Table 10: Static characteristics  
VDD = 2.3 V to 5.5 V; VSS = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Supply  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
supply current  
2.3  
-
5.5  
V
IDD  
operating mode; no load;  
f
SCL = 400 kHz  
VDD = 2.3 V  
VDD = 3.3 V  
VDD = 5.5 V  
-
-
-
56  
95  
µA  
µA  
µA  
98  
150  
300  
225  
Istb  
standby current  
no load; fSCL = 0 kHz;  
I/O = inputs; VI = VDD  
VDD = 2.3 V  
VDD = 3.3 V  
-
-
-
-
0.15  
0.25  
0.75  
1.70  
11  
µA  
µA  
µA  
V
12  
VDD = 5.5 V  
15.5  
2.0  
VPOR  
power-on reset voltage[1]  
no load; VI = VDD or VSS  
Input SCL; input/output SDA  
VIL  
VIH  
IOL  
IL  
LOW-level input voltage  
0.5  
0.7VDD  
20  
-
+0.3VDD  
V
HIGH-level input voltage  
LOW-level output current  
leakage current  
-
5.5  
-
V
VOL = 0.4 V  
VI = VDD = VSS  
VI = VSS  
-
mA  
µA  
pF  
1  
-
+1  
10  
Ci  
input capacitance  
-
5
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
19 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
Table 10: Static characteristics …continued  
VDD = 2.3 V to 5.5 V; VSS = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
I/Os  
VIL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level output current  
0.5  
-
-
+0.8  
5.5  
V
V
VIH  
2
IOL  
VOL = 0.5 V  
VDD = 2.3 V  
10  
12  
15  
-
-
-
-
-
-
mA  
mA  
mA  
A
VDD = 3.0 V  
-
VDD = 4.5 V  
-
IOL(tot)  
VOH  
total LOW-level output current  
HIGH-level output voltage  
VOL = 0.5 V; VDD = 4.5 V  
IOH = 10 mA  
VDD = 2.3 V  
0.6  
1.6  
2.3  
4.0  
1  
1  
-
-
-
V
VDD = 3.0 V  
-
-
V
VDD = 4.5 V  
-
-
V
ILIH  
HIGH-level input leakage current VDD = 3.6 V; VI = VDD  
-
+1  
+1  
7
µA  
µA  
pF  
pF  
ILIL  
LOW-level input leakage current  
input capacitance  
VDD = 5.5 V; VI = VSS  
-
Ci  
6
6
Co  
output capacitance  
-
7
Interrupt INT  
IOL  
IOH  
Co  
LOW-level output current  
HIGH-level output current  
output capacitance  
VOL = 0.4 V  
6
-
-
mA  
µA  
pF  
1  
-
-
+1  
5
3.0  
Inputs RESET and OE  
VIL  
VIH  
ILI  
LOW-level input voltage  
0.5  
2
-
+0.8  
5.5  
+1  
V
HIGH-level input voltage  
input leakage current  
input capacitance  
-
V
1  
-
-
µA  
pF  
Ci  
3.0  
5
Inputs A0, A1, A2  
VIL  
VIH  
ILI  
LOW-level input voltage  
0.5  
0.7VDD  
1  
-
+0.3VDD  
V
HIGH-level input voltage  
input leakage current  
input capacitance  
-
5.5  
+1  
5
V
-
µA  
pF  
Ci  
-
3.5  
[1] VDD must be lowered to 0.2 V in order to reset part.  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
20 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
12. Dynamic characteristics  
Table 11: Dynamic characteristics  
Symbol Parameter  
Conditions  
Standard mode  
I2C-bus  
Fast mode I2C-bus  
Unit  
Min  
0
Max  
100  
-
Min  
0
Max  
400  
-
[1]  
fSCL  
tBUF  
SCL clock frequency  
kHz  
bus free time between a STOP and  
START condition  
4.7  
1.3  
µs  
tHD;STA  
tSU;STA  
hold time (repeated) START  
condition  
4.0  
4.7  
-
-
0.6  
0.6  
-
-
µs  
µs  
set-up time for a repeated START  
condition  
tSU;STO  
tHD;DAT  
tVD;ACK  
tVD;DAT  
tSU;DAT  
tLOW  
set-up time for STOP condition  
data hold time  
data valid acknowledge time[2]  
data valid time[3]  
4.0  
0
-
0.6  
-
-
µs  
ns  
µs  
µs  
ns  
µs  
µs  
ns  
-
3.45  
3.45  
-
0
0.1  
0.1  
0.1  
250  
4.7  
4.0  
-
0.9  
0.9  
-
0.1  
data set-up time  
100  
LOW period of the SCL clock  
HIGH period of the SCL clock  
-
1.3  
-
tHIGH  
-
0.6  
-
[4] [5]  
[4] [5]  
[7]  
[6]  
[6]  
tf  
fall time of both SDA and SCL  
signals  
300  
20 + 0.1Cb  
300  
tr  
rise time of both SDA and SCL  
signals  
-
-
1000  
50  
20 + 0.1Cb  
-
300  
50  
ns  
ns  
tSP  
pulse width of spikes that must be  
suppressed by the input filter  
Port timing  
ten  
enable time  
output  
output  
-
-
80  
40  
250  
-
-
-
80  
40  
250  
-
ns  
ns  
ns  
ns  
µs  
tdis  
disable time  
tv(Q)  
data output valid time  
data input setup time  
data input hold time  
-
-
tsu(D)  
th(D)  
100  
0.5  
100  
0.5  
-
-
Interrupt timing  
tv(INT_N)  
valid time on pin INT_N  
-
-
4
4
-
-
4
4
µs  
µs  
trst(INT_N) reset time on pin INT_N  
Reset  
tw(rst)  
trec(rst)  
trst  
reset pulse width  
reset recovery time  
reset time  
4
0
-
-
-
4
0
-
-
-
ns  
ns  
ns  
100  
100  
[1] Minimum SCL clock frequency is limited by the bus time-out feature, which resets the serial bus interface if either SDA or SCL is held  
LOW for a minimum of 25 ms. Disable bus time-out feature for DC operation.  
[2] tVD;ACK = time for Acknowledgement signal from SCL LOW to SDA (out) LOW.  
[3] tVD;DAT = minimum time for SDA data out to be valid following SCL LOW.  
[4] A master device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the VIL of the SCL signal) in order to  
bridge the undefined region SCLs falling edge.  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
21 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
[5] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected between the SDA and the SCL pins and the SDA/SCL bus lines without  
exceeding the maximum specified tf.  
[6] Cb = total capacitance of one bus line in pF.  
[7] Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns.  
SDA  
t
t
t
t
SP  
t
r
f
HD;STA  
BUF  
t
LOW  
SCL  
t
t
t
SU;STO  
HD;STA  
SU;STA  
t
t
t
SU;DAT  
HD;DAT  
HIGH  
P
S
Sr  
P
002aaa986  
Fig 16. Definition of timing on the I2C-bus  
START  
condition  
(S)  
bit 7  
MSB  
(A7)  
STOP  
condition  
(P)  
bit 6  
(A6)  
bit 0 acknowledge  
(R/W) (A)  
protocol  
t
t
t
HIGH  
SU;STA  
LOW  
1
/f  
SCL  
SCL  
SDA  
t
t
BUF  
f
t
r
t
t
t
t
t
t
HD;DAT  
VD;DAT  
VD;ACK  
SU;STO  
002aab175  
HD;STA  
SU;DAT  
Rise and fall times refer to VIL and VIH.  
Fig 17. I2C-bus timing diagram  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
22 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
ACK or read cycle  
START  
SCL  
SDA  
30 %  
t
rst  
RESET  
IOx_y  
50 %  
50 %  
50 %  
t
rec(rst)  
t
w(rst)  
t
rst  
50 %  
output off  
002aac018  
Fig 18. Reset timing  
13. Test information  
2V  
DD  
open  
V
SS  
V
R
L
500 Ω  
DD  
V
V
O
I
PULSE  
DUT  
GENERATOR  
C
50 pF  
L
R
T
500 Ω  
002aac019  
RL = load resistance  
CL = load capacitance includes jig and probe capacitance  
RT = termination resistance should be equal to the output impedance Zo of the pulse  
generators.  
Fig 19. Test circuitry for switching times  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
23 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
14. Package outline  
TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1 mm  
SOT364-1  
E
D
A
X
c
H
v
M
A
y
E
Z
56  
29  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
θ
L
p
L
detail X  
1
28  
w
M
b
e
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions).  
A
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
8o  
0o  
0.15  
0.05  
1.05  
0.85  
0.28  
0.17  
0.2  
0.1  
14.1  
13.9  
6.2  
6.0  
8.3  
7.9  
0.8  
0.4  
0.50  
0.35  
0.5  
0.1  
mm  
1.2  
0.5  
1
0.25  
0.25  
0.08  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT364-1  
MO-153  
Fig 20. Package outline SOT364-1 (TSSOP56)  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
24 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
HVQFN56: plastic thermal enhanced very thin quad flat package; no leads;  
56 terminals; body 8 x 8 x 0.85 mm  
SOT684-1  
D
B
A
terminal 1  
index area  
A
E
A
1
c
detail X  
C
e
1
y
y
e
1/2 e  
b
v
M
M
C
C
A
B
C
1
w
15  
28  
L
29  
14  
e
e
E
h
2
1/2 e  
1
42  
terminal 1  
index area  
56  
43  
X
D
h
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
(1)  
(1)  
E
UNIT  
A
1
b
c
E
e
e
1
e
2
y
D
D
L
v
w
y
1
h
h
0.05 0.30  
0.00 0.18  
8.1  
7.9  
4.45  
4.15  
8.1  
7.9  
4.45  
4.15  
0.5  
0.3  
mm  
0.2  
0.5  
6.5  
6.5  
0.05  
0.1  
1
0.1 0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-08-08  
02-10-22  
SOT684-1  
- - -  
MO-220  
- - -  
Fig 21. Package outline SOT684-1 (HVQFN56)  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
25 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
15. Handling information  
Inputs and outputs are protected against electrostatic discharge in normal handling.  
However, to be totally safe, it is desirable to take precautions appropriate to handling MOS  
devices. Advice can be found in Data Handbook IC24 under “Handling MOS devices”.  
16. Soldering  
16.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
16.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
16.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
26 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
16.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
16.5 Package related soldering information  
Table 12: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
27 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
17. Abbreviations  
Table 13: Abbreviations  
Acronym  
CDM  
DUT  
Description  
Charged Device Model  
Device Under Test  
ESD  
ElectroStatic Discharge  
Human Body Model  
Integrated Circuit  
HBM  
IC  
I2C-bus  
LED  
Inter IC bus  
Light Emitting Diode  
Machine Model  
MM  
PLC  
Programmable Logic Controller  
Power-On Reset  
POR  
PWM  
RAID  
Pulse Width Modulation  
Redundant Array of Independent Disks  
18. Revision history  
Table 14: Revision history  
Document ID  
Release date Data sheet status  
20060214 Product data sheet  
Change notice Doc. number  
9397 750 14939  
Supersedes  
PCA9506_1  
-
-
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
28 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
19. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
20. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
makes no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
22. Trademarks  
Notice — All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
I2C-bus — logo is a trademark of Koninklijke Philips Electronics N.V.  
21. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
23. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14939  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 14 February 2006  
29 of 30  
PCA9506  
Philips Semiconductors  
40-bit I2C-bus I/O port with RESET, OE, and INT  
24. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
19  
20  
21  
22  
23  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 29  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Contact information . . . . . . . . . . . . . . . . . . . . 29  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
7
7.1  
7.2  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
Functional description . . . . . . . . . . . . . . . . . . . 7  
Device address. . . . . . . . . . . . . . . . . . . . . . . . . 7  
Command register . . . . . . . . . . . . . . . . . . . . . . 7  
Register definitions . . . . . . . . . . . . . . . . . . . . . . 9  
IP0 to IP4 - Input Port registers . . . . . . . . . . . 10  
OP0 to OP4 - Output Port registers . . . . . . . . 11  
PI0 to PI4 - Polarity Inversion registers. . . . . . 11  
IOC0 to IOC4 - I/O Configuration registers. . . 12  
MSK0 to MSK4 - Mask interrupt registers . . . 12  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . 12  
RESET input. . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Interrupt output (INT) . . . . . . . . . . . . . . . . . . . 13  
Output enable input (OE) . . . . . . . . . . . . . . . . 13  
Live insertion . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.5  
7.6  
7.7  
7.8  
7.9  
8
Characteristics of the I2C-bus. . . . . . . . . . . . . 14  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
START and STOP conditions . . . . . . . . . . . . . 14  
System configuration . . . . . . . . . . . . . . . . . . . 14  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Bus transactions . . . . . . . . . . . . . . . . . . . . . . . 15  
8.1  
8.1.1  
8.2  
8.3  
8.4  
9
Application design-in information . . . . . . . . . 18  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 19  
Static characteristics. . . . . . . . . . . . . . . . . . . . 19  
Dynamic characteristics . . . . . . . . . . . . . . . . . 21  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 23  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 24  
Handling information. . . . . . . . . . . . . . . . . . . . 26  
10  
11  
12  
13  
14  
15  
16  
16.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 26  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 26  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 27  
Package related soldering information . . . . . . 27  
16.2  
16.3  
16.4  
16.5  
17  
18  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 28  
© Koninklijke Philips Electronics N.V. 2006  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 14 February 2006  
Document number: 9397 750 14939  
Published in The Netherlands  

相关型号:

PCA9506BS,118

PCA9505/06 - 40-bit I2C-bus I/O port with RESET, OE and INT QFN 56-Pin
NXP

PCA9506DGG

40-bit I2C-bus I/O port with RESET, OE, and INT
NXP

PCA9506DGG,512

PCA9505/06 - 40-bit I2C-bus I/O port with RESET, OE and INT TSSOP 56-Pin
NXP

PCA9506DGG,518

PCA9505/06 - 40-bit I2C-bus I/O port with RESET, OE and INT TSSOP 56-Pin
NXP

PCA9507

2-wire serial bus extender for HDMI DDC I2C-bus and SMBus
NXP

PCA9507D

2-wire serial bus extender for HDMI DDC I2C-bus and SMBus
NXP

PCA9507D,112

PCA9507 - 2-wire serial bus extender for HDMI DDC I2C-bus and SMBus SOIC 8-Pin
NXP

PCA9507D,118

PCA9507 - 2-wire serial bus extender for HDMI DDC I2C-bus and SMBus SOIC 8-Pin
NXP

PCA9507D-T

暂无描述
NXP

PCA9507DP

2-wire serial bus extender for HDMI DDC I2C-bus and SMBus
NXP

PCA9507DP,118

PCA9507 - 2-wire serial bus extender for HDMI DDC I2C-bus and SMBus TSSOP 8-Pin
NXP

PCA9507DP-T

暂无描述
NXP