PCF2127T [NXP]

Accurate RTC with integrated quartz crystal for industrial applications;
PCF2127T
型号: PCF2127T
厂家: NXP    NXP
描述:

Accurate RTC with integrated quartz crystal for industrial applications

文件: 总100页 (文件大小:1077K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF2127  
Accurate RTC with integrated quartz crystal for industrial  
applications  
Rev. 8 — 19 December 2014  
Product data sheet  
1. General description  
The PCF2127 is a CMOS1 Real Time Clock (RTC) and calendar with an integrated  
Temperature Compensated Crystal (Xtal) Oscillator (TCXO) and a 32.768 kHz quartz  
crystal optimized for very high accuracy and very low power consumption. The PCF2127  
has 512 bytes of general-purpose static RAM, a selectable I2C-bus or SPI-bus, a backup  
battery switch-over circuit, a programmable watchdog function, a timestamp function, and  
many other features.  
For a selection of NXP Real-Time Clocks, see Table 94 on page 89  
2. Features and benefits  
UL Recognized Component  
Operating temperature range from 40 C to +85 C  
Temperature Compensated Crystal Oscillator (TCXO) with integrated capacitors  
Typical accuracy:  
PCF2127AT: 3 ppm from 15 C to +60 C  
PCF2127T: 3 ppm from 30 C to +80 C  
Integration of a 32.768 kHz quartz crystal and oscillator in the same package  
Provides year, month, day, weekday, hours, minutes, seconds, and leap year  
correction  
512 bytes of general-purpose static RAM  
Timestamp function  
with interrupt capability  
detection of two different events on one multilevel input pin (for example, for tamper  
detection)  
Two line bidirectional 400 kHz Fast-mode I2C-bus interface  
3 line SPI-bus with separate data input and output (maximum speed 6.5 Mbit/s)  
Battery backup input pin and switch-over circuitry  
Battery backed output voltage  
Battery low detection function  
Extra power fail detection function with input and output pins  
Power-On Reset Override (PORO)  
Oscillator stop detection function  
Interrupt output (open-drain)  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 21.  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Programmable 1 second or 1 minute interrupt  
Programmable watchdog timer with interrupt  
Programmable alarm function with interrupt capability  
Programmable square wave output pin  
Programmable countdown timer with interrupt  
Clock operating voltage: 1.8 V to 4.2 V  
Low supply current: typical 0.70 A at VDD = 3.3 V  
3. Applications  
Electronic metering for electricity, water, and gas  
Precision timekeeping  
Access to accurate time of the day  
GPS equipment to reduce time to first fix  
Applications that require an accurate process timing  
Products with long automated unattended operation time  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
PCF2127AT  
PCF2127T  
SO20  
plastic small outline package; 20 leads;  
body width 7.5 mm  
SOT163-1  
SO16  
plastic small outline package; 16 leads;  
body width 7.5 mm  
SOT162-1  
4.1 Ordering options  
Table 2.  
Ordering options  
Product type number Orderable part number Sales item  
(12NC)  
Delivery form  
IC  
revision  
PCF2127AT/2  
PCF2127T/2  
PCF2127AT/2Y  
PCF2127T/2Y  
935299867518 tape and reel, 13 inch, dry pack  
935299866518 tape and reel, 13 inch, dry pack  
2
2
5. Marking  
Table 3.  
Marking codes  
Product type number  
PCF2127AT/2  
PCF2127T/2  
Marking code  
PCF2127AT  
PCF2127T  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
2 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
6. Block diagram  
,17  
7&;2  
7(03  
26&,  
&/.287  
&RQWUROBꢀ  
&RQWUROBꢂ  
ꢋꢋK  
ꢋꢀK  
ꢋꢂK  
ꢋꢇK  
ꢋꢌK  
ꢋꢃK  
ꢋꢉK  
ꢋꢈK  
ꢋꢊK  
ꢋꢍK  
ꢋ$K  
ꢋ%K  
ꢋ&K  
ꢋ'K  
ꢋ(K  
ꢋ)K  
ꢀꢋK  
ꢀꢀK  
ꢀꢂK  
ꢀꢇK  
ꢀꢌK  
ꢀꢃK  
ꢀꢉK  
ꢀꢈK  
ꢀꢊK  
ꢀꢍK  
ꢀ$K  
ꢀ%K  
ꢀ&K  
ꢀ'K  
ꢄ',9,'(5  
$1'  
ꢇꢂꢁꢈꢉꢊꢄN+]  
26&2  
7,0(5  
3),  
&RQWUROBꢇ  
ꢀꢁꢂꢃꢄ9  
ꢅLQWHUQDOꢆ  
6HFRQGV  
3)2  
0LQXWHV  
9
''  
+RXUV  
ꢀꢄ+]  
%$77(5<ꢄ%$&.ꢄ83  
6:,7&+ꢏ29(5  
&,5&8,75<  
9
%$7  
'D\V  
LQWHUQDOꢄRSHUDWLQJ  
9
66  
:HHNGD\V  
YROWDJHꢄ9  
RSHUꢅLQWꢆ  
/2*,&  
&21752/  
%%6  
0RQWKV  
<HDUV  
26&,//$725  
021,725  
5(6(7  
6HFRQGBDODUP  
0LQXWHBDODUP  
+RXUBDODUP  
'D\BDODUP  
567  
63,ꢏ%86  
,17(5)$&(  
$''5(66  
5(*,67(5  
:HHNGD\BDODUP  
&/.287BFWO  
:DWFKGJBWLPBFWO  
:DWFKGJBWLPBYDO  
7LPHVWSBFWO  
6HFBWLPHVWS  
0LQBWLPHVWS  
+RXUBWLPHVWS  
'D\BWLPHVWS  
0RQBWLPHVWS  
<HDUBWLPHVWS  
$JLQJBRIIVHW  
5$0BDGGUB06%  
5$0BDGGUB/6%  
5$0BZUWBFPG  
5$0BUGBFPG  
6'$ꢎ&(  
6'2  
6(5,$/ꢄ%86  
,17(5)$&(  
6(/(&725  
6',  
6&/  
,)6  
3&)ꢀꢁꢀꢂ  
, &ꢏ%86  
,17(5)$&(  
5
38  
76  
6&/  
6'2  
ꢃꢀꢂꢄ%<7(6  
67$7,&ꢄ5$0  
6',  
6'$ꢎ&(  
7(03(5$785(  
6(1625  
7(03  
DDDꢀꢁꢂꢃꢄꢅꢆ  
7(67  
Fig 1. Block diagram of PCF2127  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
3 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
7. Pinning information  
7.1 Pinning  
ꢂꢋ  
ꢀꢍ  
ꢀꢊ  
ꢀꢈ  
ꢀꢉ  
ꢀꢃ  
ꢀꢌ  
ꢀꢇ  
ꢀꢂ  
ꢀꢀ  
6&/  
6',  
9
9
''  
%$7  
6'2  
%%6  
,17  
6'$ꢎ&(  
,)6  
567  
3),  
3&)ꢀꢁꢀꢂ$7  
76  
&/.287  
3)2  
7(67  
QꢁFꢁ  
9
66  
QꢁFꢁ  
QꢁFꢁ  
ꢀꢋ  
QꢁFꢁ  
ꢁꢁꢂDDMꢇꢄꢇ  
Top view. For mechanical details, see Figure 59.  
Fig 2. Pin configuration for PCF2127AT (SO20)  
ꢀꢉ  
ꢀꢃ  
ꢀꢌ  
ꢀꢇ  
ꢀꢂ  
ꢀꢀ  
ꢀꢋ  
6&/  
6',  
9
9
''  
%$7  
6'2  
%%6  
,17  
6'$ꢎ&(  
,)6  
3&)ꢀꢁꢀꢂ7  
567  
3),  
76  
&/.287  
3)2  
7(67  
9
66  
DDDꢀꢁꢁꢈꢆꢅꢉ  
Top view. For mechanical details, see Figure 59.  
Fig 3. Pin configuration for PCF2127T (SO16)  
DDDꢀꢁꢂꢈꢁꢉꢊ  
Fig 4. Position of the stubs from the package assembly process  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
4 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
After lead forming and cutting, there remain stubs from the package assembly process.  
These stubs are present at the edge of the package as illustrated in Figure 4. The stubs  
are at an electrical potential. To avoid malfunction of the PCF2127, it has to be ensured  
that they are not shorted with another electrical potential (e.g. by condensation).  
7.2 Pin description  
Table 4.  
Pin description of PCF2127  
Input or input/output pins must always be at a defined level (VSS or VDD) unless otherwise specified.  
Symbol  
Pin  
Description  
PCF2127AT  
PCF2127T  
SCL  
SDI  
1
2
1
2
combined serial clock input for both I2C-bus and SPI-bus  
serial data input for SPI-bus  
connect to pin VSS if I2C-bus is selected  
SDO  
3
4
3
4
serial data output for SPI-bus, push-pull  
combined serial data input and output for the I2C-bus and  
chip enable input (active LOW) for the SPI-bus  
SDA/CE  
IFS  
5
5
interface selector input  
connect to pin VSS to select the SPI-bus  
connect to pin BBS to select the I2C-bus  
timestamp input (active LOW) with 200 kinternal pull-up  
TS  
6
6
resistor (RPU  
)
CLKOUT  
VSS  
7
7
clock output (open-drain)  
8
8
ground supply voltage  
n.c.  
9 to 12  
13  
14  
15  
16  
17  
18  
19  
-
not connected; do not connect; do not use as feed through  
do not connect; do not use as feed through  
power fail output (open-drain; active LOW)  
power fail input  
TEST  
PFO  
PFI  
9
10  
11  
12  
13  
14  
15  
RST  
INT  
reset output (open-drain; active LOW)  
interrupt output (open-drain; active LOW)  
output voltage (battery backed)  
battery supply voltage (backup)  
connect to VSS if battery switch-over is not used  
supply voltage  
BBS  
VBAT  
VDD  
20  
16  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
5 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8. Functional description  
The PCF2127 is a Real Time Clock (RTC) and calendar with an on-chip Temperature  
Compensated Crystal (Xtal) Oscillator (TCXO) and a 32.768 kHz quartz crystal integrated  
into the same package (see Section 8.3.3).  
Address and data are transferred by a selectable 400 kHz Fast-mode I2C-bus or a 3 line  
SPI-bus with separate data input and output (see Section 9). The maximum speed of the  
SPI-bus is 6.5 Mbit/s.  
The PCF2127 has a backup battery input pin and backup battery switch-over circuit which  
monitors the main power supply. The backup battery switch-over circuit automatically  
switches to the backup battery when a power failure condition is detected (see  
Section 8.6.1). Accurate timekeeping is maintained even when the main power supply is  
interrupted.  
A battery low detection circuit monitors the status of the battery (see Section 8.6.2). When  
the battery voltage drops below a certain threshold value, a flag is set to indicate that the  
battery must be replaced soon. This ensures the integrity of the data during periods of  
battery backup.  
8.1 Register overview  
The PCF2127 contains an auto-incrementing address register: the built-in address  
register will increment automatically after each read or write of a data byte up to the  
register 1Bh. After register 1Bh, the auto-incrementing will wrap around to address 00h  
(see Figure 5).  
DGGUHVVꢄUHJLVWHU  
ꢋꢋK  
ꢋꢀK  
ꢋꢂK  
ꢋꢇK  
ꢁꢁꢁ  
DXWRꢏLQFUHPHQW  
ꢀꢍK  
ꢀ$K  
ꢀ%K  
ꢀ&K  
ꢀ'K  
ZUDSꢄDURXQG  
QRWꢄUHDFKDEOHꢄE\ꢄDXWRꢏLQFꢁꢄꢏꢄQHHGVꢄWRꢄEHꢄDGGUHVVHGꢄGLUHFWO\  
QRWꢄUHDFKDEOHꢄE\ꢄDXWRꢏLQFꢁꢄꢏꢄQHHGVꢄWRꢄEHꢄDGGUHVVHGꢄGLUHFWO\  
ꢁꢁꢂDDMꢃꢁꢄ  
Fig 5. Handling address registers  
The first three registers (memory address 00h, 01h, and 02h) are used as control  
registers (see Section 8.2).  
The memory addresses 03h through to 09h are used as counters for the clock  
function (seconds up to years). The date is automatically adjusted for months with  
fewer than 31 days, including corrections for leap years. The clock can operate in  
12-hour mode with an AM/PM indication or in 24-hour mode (see Section 8.9).  
The registers at addresses 0Ah through 0Eh define the alarm function. It can be  
selected that an interrupt is generated when an alarm event occurs (see  
Section 8.10).  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
6 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
The register at address 0Fh defines the temperature measurement period and the  
clock out mode. The temperature measurement can be selected from every 4 minutes  
(default) down to every 30 seconds (see Table 14). CLKOUT frequencies of  
32.768 kHz (default) down to 1 Hz for use as system clock, microcontroller clock, and  
so on, can be chosen (see Table 15).  
The registers at addresses 10h and 11h are used for the watchdog and countdown  
timer functions. The watchdog timer has four selectable source clocks allowing for  
timer periods from less than 1 ms to greater than 4 hours (see Table 58). Either the  
watchdog timer or the countdown timer can be enabled (see Section 8.11). For the  
watchdog timer, it is possible to select whether an interrupt or a pulse on the reset pin  
is generated when the watchdog times out. For the countdown timer, it is only  
possible that an interrupt is generated at the end of the countdown.  
The registers at addresses 12h to 18h are used for the timestamp function. When the  
trigger event happens, the actual time is saved in the timestamp registers (see  
Section 8.12).  
The register at address 19h is used for the correction of the crystal aging effect (see  
Section 8.4.1).  
The registers at addresses 1Ah and 1Bh define the RAM address. The register at  
address 1Ch (RAM_wrt_cmd) is the RAM write command; register 1Dh  
(RAM_rd_cmd) is the RAM read command. Data is transferred to or from the RAM by  
the serial interface (see Section 8.5).  
The registers Seconds, Minutes, Hours, Days, Months, and Years are all coded in  
Binary Coded Decimal (BCD) format to simplify application use. Other registers are  
either bit-wise or standard binary.  
When one of the RTC registers is written or read, the content of all counters is temporarily  
frozen. This prevents a faulty writing or reading of the clock and calendar during a carry  
condition (see Section 8.9.8).  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
7 of 100  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 5.  
Register overview  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as T must always be written with logic 0. Bits labeled as X are undefined at  
power-on and unchanged by subsequent resets.  
Address Register name  
Bit  
Reset value  
Reference  
7
6
5
4
3
2
1
0
Control registers  
00h  
Control_1  
EXT_  
TEST  
T
STOP  
TSF2  
TSF1  
POR_  
OVRD  
12_24  
MI  
SI  
0000 1000  
Table 7 on page 10  
01h  
02h  
Control_2  
Control_3  
MSF  
WDTF  
AF  
CDTF  
BF  
TSIE  
BLF  
AIE  
BIE  
CDTIE 0000 0000  
Table 9 on page 11  
Table 11 on page 12  
PWRMNG[2:0]  
BTSE  
BLIE  
0000 0000  
Time and date registers  
03h  
04h  
05h  
Seconds  
Minutes  
Hours  
OSF  
SECONDS (0 to 59)  
MINUTES (0 to 59)  
1XXX XXXX  
- XXX XXXX  
- - XX XXXX  
- - XX XXXX  
- - XX XXXX  
- - - - - XXX  
- - - X XXXX  
XXXX XXXX  
Table 28 on page 30  
Table 31 on page 31  
Table 33 on page 32  
-
-
-
AMPM  
HOURS (1 to 12) in 12-hour mode  
HOURS (0 to 23) in 24-hour mode  
DAYS (1 to 31)  
06h  
07h  
08h  
09h  
Days  
-
-
-
-
-
-
Table 35 on page 32  
Table 37 on page 33  
Table 40 on page 34  
Table 43 on page 35  
Weekdays  
Months  
Years  
-
-
-
-
WEEKDAYS (0 to 6)  
MONTHS (1 to 12)  
YEARS (0 to 99)  
Alarm registers  
0Ah  
0Bh  
0Ch  
Second_alarm  
AE_S  
AE_M  
AE_H  
SECOND_ALARM (0 to 59)  
MINUTE_ALARM (0 to 59)  
1XXX XXXX  
1XXX XXXX  
Table 45 on page 38  
Table 47 on page 38  
Minute_alarm  
Hour_alarm  
-
AMPM  
HOUR_ALARM (1 to 12) in 12-hour mode  
HOUR_ALARM (0 to 23) in 24-hour mode  
DAY_ALARM (1 to 31)  
1 - XX XXXX Table 49 on page 39  
1 - XX XXXX  
0Dh  
0Eh  
Day_alarm  
AE_D  
AE_W  
-
-
1 - XX XXXX Table 51 on page 39  
Weekday_alarm  
-
-
-
-
-
-
-
WEEKDAY_ALARM (0 to 6) 1 - - - - XXX  
Table 53 on page 40  
Table 13 on page 12  
CLKOUT control register  
0Fh CLKOUT_ctl  
watchdog registers  
TCR[1:0]  
OTPR  
TI_TP  
COF[2:0]  
00X - - 000  
10h  
11h  
Watchdg_tim_ctl  
Watchdg_tim_val  
WD_CD[1:0]  
-
TF[1:0]  
000 - - - 11  
Table 55 on page 41  
Table 57 on page 42  
WATCHDG_TIM_VAL[7:0]  
XXXX XXXX  
Timestamp registers  
12h Timestp_ctl  
TSM  
TSOFF  
-
1_O_16_TIMESTP[4:0]  
00 - X XXXX  
Table 68 on page 50  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Register overview …continued  
Table 5.  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as T must always be written with logic 0. Bits labeled as X are undefined at  
power-on and unchanged by subsequent resets.  
Address Register name  
Bit  
Reset value  
Reference  
7
-
6
5
AMPM  
-
4
3
2
1
0
13h  
14h  
15h  
Sec_timestp  
Min_timestp  
Hour_timestp  
SECOND_TIMESTP (0 to 59)  
MINUTE_TIMESTP (0 to 59)  
- XXX XXXX  
- XXX XXXX  
- - XX XXXX  
- - XX XXXX  
- - XX XXXX  
- - - X XXXX  
XXXX XXXX  
Table 70 on page 50  
Table 72 on page 51  
Table 74 on page 51  
-
-
-
HOUR_TIMESTP (1 to 12) in 12-hour mode  
HOUR_TIMESTP (0 to 23) in 24-hour mode  
DAY_TIMESTP (1 to 31)  
16h  
17h  
18h  
Day_timestp  
Mon_timestp  
Year_timestp  
-
-
-
-
Table 76 on page 52  
Table 78 on page 52  
Table 80 on page 52  
MONTH_TIMESTP (1 to 12)  
YEAR_TIMESTP (0 to 99)  
Aging offset register  
19h Aging_offset  
RAM registers  
-
-
-
-
-
-
-
-
AO[3:0]  
- - - - 1000  
Table 17 on page 14  
1Ah  
1Bh  
1Ch  
1Dh  
RAM_addr_MSB  
-
-
-
RA8  
- - - - - - - 0  
0000 0000  
XXXX XXXX  
XXXX XXXX  
Table 20 on page 16  
Table 22 on page 16  
Table 23 on page 16  
Table 24 on page 16  
RAM_addr_LSB  
RAM_wrt_cmd  
RAM_rd_cmd  
RA[7:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.2 Control registers  
The first 3 registers of the PCF2127, with the addresses 00h, 01h, and 02h, are used as  
control registers.  
8.2.1 Register Control_1  
Table 6.  
Control_1 - control and status register 1 (address 00h) bit allocation  
Bits labeled as T must always be written with logic 0.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
EXT_  
TEST  
T
STOP  
TSF1  
POR_  
OVRD  
12_24  
MI  
SI  
Reset  
value  
0
0
0
0
1
0
0
0
Table 7.  
Control_1 - control and status register 1 (address 00h) bit description  
Bits labeled as T must always be written with logic 0.  
Bit  
Symbol  
Value  
Description  
Reference  
7
EXT_TEST  
0
1
0
0
1
normal mode  
Section 8.14  
external clock test mode  
unused  
6
5
T
-
STOP  
RTC source clock runs  
RTC clock is stopped;  
Section 8.15  
RTC divider chain flip-flops are asynchronously  
set logic 0;  
CLKOUT at 32.768 kHz, 16.384 kHz, or  
8.192 kHz is still available  
4
3
2
TSF1  
0
1
no timestamp interrupt generated  
Section 8.12.1  
flag set when TS input is driven to an intermediate  
level between power supply and ground;  
flag must be cleared to clear interrupt  
POR_OVRD  
12_24  
0
1
Power-On Reset Override (PORO) facility disabled; Section 8.8.2  
set logic 0 for normal operation  
Power-On Reset Override (PORO) sequence  
reception enabled  
0
1
24-hour mode selected  
12-hour mode selected  
Table 33,  
Table 49,  
Table 74  
1
0
MI  
SI  
0
1
0
1
minute interrupt disabled  
minute interrupt enabled  
second interrupt disabled  
second interrupt enabled  
Section 8.13.1  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
10 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.2.2 Register Control_2  
Table 8.  
Bit  
Control_2 - control and status register 2 (address 01h) bit allocation  
7
MSF  
0
6
WDTF  
0
5
TSF2  
0
4
AF  
0
3
CDTF  
0
2
TSIE  
0
1
AIE  
0
0
CDTIE  
0
Symbol  
Reset  
value  
Table 9.  
Control_2 - control and status register 2 (address 01h) bit description  
Bit  
Symbol  
Value  
Description  
no minute or second interrupt generated  
Reference  
7
MSF  
0
1
Section 8.13  
flag set when minute or second interrupt generated;  
flag must be cleared to clear interrupt  
6
WDTF  
0
1
no watchdog timer interrupt or reset generated  
Section 8.13.4  
flag set when watchdog timer interrupt or reset  
generated;  
flag cannot be cleared by command (read-only)  
no timestamp interrupt generated  
5
4
3
TSF2  
AF  
0
1
Section 8.12.1  
Section 8.10.6  
Section 8.11.4  
flag set when TS input is driven to ground;  
flag must be cleared to clear interrupt  
no alarm interrupt generated  
0
1
flag set when alarm triggered;  
flag must be cleared to clear interrupt  
no countdown timer interrupt generated  
flag set when countdown timer interrupt generated;  
flag must be cleared to clear interrupt  
no interrupt generated from timestamp flag  
interrupt generated when timestamp flag set  
no interrupt generated from the alarm flag  
interrupt generated when alarm flag set  
no interrupt generated from countdown timer flag  
interrupt generated when countdown timer flag set  
CDTF  
0
1
2
1
0
TSIE  
AIE  
0
1
0
1
0
1
Section 8.13.6  
Section 8.13.5  
Section 8.13.2  
CDTIE  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
11 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.2.3 Register Control_3  
Table 10. Control_3 - control and status register 3 (address 02h) bit allocation  
Bit  
7
6
5
4
BTSE  
0
3
BF  
0
2
BLF  
0
1
BIE  
0
0
BLIE  
0
Symbol  
PWRMNG[2:0]  
0
Reset  
value  
0
0
Table 11. Control_3 - control and status register 3 (address 02h) bit description  
Bit  
Symbol  
Value  
Description  
Reference  
7 to 5  
PWRMNG[2:0]  
see  
control of the battery switch-over, battery low  
Section 8.6  
Table 25  
detection, and extra power fail detection functions  
no timestamp when battery switch-over occurs  
time-stamped when battery switch-over occurs  
no battery switch-over interrupt generated  
flag set when battery switch-over occurs;  
flag must be cleared to clear interrupt  
battery status ok;  
4
3
BTSE  
BF  
0
1
0
1
Section 8.12.4  
Section 8.6.1  
and  
Section 8.12.4  
2
BLF  
0
1
Section 8.6.2  
no battery low interrupt generated  
battery status low;  
flag cannot be cleared by command  
no interrupt generated from the battery flag (BF)  
interrupt generated when BF is set  
1
0
BIE  
0
1
0
1
Section 8.13.7  
BLIE  
no interrupt generated from battery low flag (BLF) Section 8.13.8  
interrupt generated when BLF is set  
8.3 Register CLKOUT_ctl  
Table 12. CLKOUT_ctl - CLKOUT control register (address 0Fh) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
6
5
OTPR  
X
4
-
3
-
2
1
COF[2:0]  
0
0
Symbol  
TCR[1:0]  
Reset  
value  
0
0
-
-
0
0
Table 13. CLKOUT_ctl - CLKOUT control register (address 0Fh) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7 to 6  
5
Symbol  
TCR[1:0]  
OTPR  
Value  
Description  
see Table 14  
temperature measurement period  
no OTP refresh  
0
1
OTP refresh performed  
unused  
4 to 3  
2 to 0  
-
-
COF[2:0]  
see Table 15  
CLKOUT frequency selection  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
12 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.3.1 Temperature compensated crystal oscillator  
The frequency of tuning fork quartz crystal oscillators is temperature-dependent. In the  
PCF2127, the frequency deviation caused by temperature variation is corrected by  
adjusting the load capacitance of the crystal oscillator.  
The load capacitance is changed by switching between two load capacitance values using  
a modulation signal with a programmable duty cycle. In order to compensate the spread of  
the quartz parameters every chip is factory calibrated.  
The frequency accuracy can be evaluated by measuring the frequency of the square  
wave signal available at the output pin CLKOUT. However, the selection of  
fCLKOUT = 32.768 kHz (default value) leads to inaccurate measurements. Accurate  
frequency measurement occurs when fCLKOUT = 16.384 kHz or lower is selected (see  
Table 15).  
8.3.1.1 Temperature measurement  
The PCF2127 has a temperature sensor circuit used to perform the temperature  
compensation of the frequency. The temperature is measured immediately after power-on  
and then periodically with a period set by the temperature conversion rate TCR[1:0] in the  
register CLKOUT_ctl.  
Table 14. Temperature measurement period  
TCR[1:0]  
Temperature measurement period  
[1]  
00  
01  
10  
11  
4 min  
2 min  
1 min  
30 seconds  
[1] Default value.  
8.3.2 OTP refresh  
Each IC is calibrated during production and testing of the device. The calibration  
parameters are stored on EPROM cells called One Time Programmable (OTP) cells. It is  
recommended to process an OTP refresh once after the power is up and the oscillator is  
operating stable. The OTP refresh takes less than 100 ms to complete.  
To perform an OTP refresh, bit OTPR has to be cleared (set to logic 0) and then set to  
logic 1 again.  
8.3.3 Clock output  
A programmable square wave is available at pin CLKOUT. Operation is controlled by the  
COF[2:0] control bits in register CLKOUT_ctl. Frequencies of 32.768 kHz (default) down  
to 1 Hz can be generated for use as system clock, microcontroller clock, charge pump  
input, or for calibrating the oscillator.  
CLKOUT is an open-drain output and enabled at power-on. When disabled, the output is  
high-impedance.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
13 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Table 15. CLKOUT frequency selection  
COF[2:0]  
000  
CLKOUT frequency (Hz)  
Typical duty cycle[1]  
[2][3]  
32768  
60 : 40 to 40 : 60  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
-
001  
16384  
010  
8192  
011  
4096  
100  
2048  
101  
1024  
110  
1
111  
CLKOUT = high-Z  
[1] Duty cycle definition: % HIGH-level time : % LOW-level time.  
[2] Default value.  
[3] The specified accuracy of the RTC can be only achieved with CLKOUT frequencies not equal to  
32.768 kHz or if CLKOUT is disabled.  
The duty cycle of the selected clock is not controlled, however, due to the nature of the  
clock generation all but the 32.768 kHz frequencies are 50 : 50.  
8.4 Register Aging_offset  
Table 16. Aging_offset - crystal aging offset register (address 19h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read.  
Bit  
7
-
6
-
5
-
4
-
3
2
1
0
Symbol  
AO[3:0]  
Reset  
value  
-
-
-
-
1
0
0
0
Table 17. Aging_offset - crystal aging offset register (address 19h) bit description  
Bit positions labeled as - are not implemented and return 0 when read.  
Bit  
Symbol  
-
Value  
Description  
unused  
7 to 4  
3 to 0  
-
AO[3:0]  
see Table 18  
aging offset value  
8.4.1 Crystal aging correction  
The PCF2127 has an offset register Aging_offset to correct the crystal aging effects2.  
The accuracy of the frequency of a quartz crystal depends on its aging. The aging offset  
adds an adjustment, positive or negative, in the temperature compensation circuit which  
allows correcting the aging effect.  
At 25 C, the aging offset bits allow a frequency correction of typically 1 ppm per AO[3:0]  
value, from 7 ppm to +8 ppm.  
2. For further information, refer to the application note Ref. 3 “AN11266”.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
14 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Table 18. Frequency correction at 25C, typical  
AO[3:0]  
ppm  
Decimal  
Binary  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
+8  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
0
1
2
3
4
5
6
7
[1]  
8
9
1  
2  
3  
4  
5  
6  
7  
10  
11  
12  
13  
14  
15  
[1] Default value.  
8.5 General purpose 512 bytes static RAM  
The PCF2127 contains a general purpose 512 bytes static RAM. This integrated SRAM is  
battery backed and can therefore be used to store data which is essential for the  
application to survive a power outage.  
9 bits, RA[8:0], define the RAM address pointer in registers RAM_addr_MSB and  
RAM_addr_LSB. The register address pointer increments after each read or write  
automatically up to 1Bh and then wraps around to address 00h (see Figure 5 on page 6).  
Data is transferred to or from the RAM by the interface. To write to the RAM, the register  
RAM_wrt_cmd, to read from the RAM the register RAM_rd_cmd must be addressed  
explicitly.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
15 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.5.1 Register RAM_addr_MSB  
Table 19. RAM_addr_MSB - RAM address MSB register (address 1Ah) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read.  
Bit  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
RA8  
0
Symbol  
Reset  
value  
-
-
-
-
-
-
-
Table 20. RAM_addr_MSB - RAM address MSB register (address 1Ah) bit description  
Bit positions labeled as - are not implemented and return 0 when read.  
Bit  
7 to 1  
0
Symbol  
Description  
-
unused  
RAM address, MSB (9th bit)  
RA8  
8.5.2 Register RAM_addr_LSB  
Table 21. RAM_addr_LSB - RAM address LSB register (address 1Bh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
RA[7:0]  
Reset  
value  
0
0
0
0
0
0
0
0
Table 22. RAM_addr_LSB - RAM address LSB register (address 1Bh) bit description  
Bit  
Symbol  
Description  
7 to 0  
RA[7:0]  
RAM address, LSB (1st to 8th bit)  
8.5.3 Register RAM_wrt_cmd  
Table 23. RAM_wrt_cmd - RAM write command register (address 1Ch) bit description  
Bit  
Symbol  
Description  
7 to 0  
-
data to be written into RAM  
8.5.4 Register RAM_rd_cmd  
Table 24. RAM_rd_cmd - RAM read command register (address 1Dh) bit description  
Bit  
Symbol  
Description  
7 to 0  
-
data to be read from RAM  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
16 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.5.5 Operation examples  
8.5.5.1 Writing to the RAM  
1. Set RAM address:  
Select register RAM_addr_MSB (send address 1Ah).  
Set value for bit RA8 (data byte of register 1Ah).  
Note: register address will be incremented automatically to 1Bh.  
Set value for array RA[7:0] (data byte of register 1Bh).  
2. Send RAM write command:  
Select register RAM_wrt_cmd (send address 1Ch).  
3. Write data into the RAM:  
Write n data byte into RAM.  
For details, see Figure 46 on page 69.  
8.5.5.2 Reading from the RAM  
1. Set RAM address:  
Select register RAM_addr_MSB (send address 1Ah).  
Set value for bit RA8 (data byte of register 1Ah).  
Note: register address will be incremented automatically to 1Bh.  
Set value for array RA[7:0] (data byte of register 1Bh).  
2. Send RAM read command:  
Select register RAM_rd_cmd (send address 1Dh).  
3. Read from the RAM:  
Read n data byte from the RAM.  
For details, see Figure 47 on page 70.  
8.6 Power management functions  
The PCF2127 has two power supplies:  
VDD the main power supply  
VBAT the battery backup supply  
Internally, the PCF2127 is operating with the internal operating voltage Voper(int) which is  
also available as VBBS on the battery backed output voltage pin, BBS. Depending on the  
condition of the main power supply and the selected power management function,  
V
oper(int) is either on the potential of VDD or VBAT (see Section 8.6.4).  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
17 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Three power management functions are implemented:  
Battery switch-over function. monitoring the main power supply VDD and switching to  
BAT in case a power fail condition is detected (see Section 8.6.1).  
V
Battery low detection function. monitoring the status of the battery, VBAT (see  
Section 8.6.2).  
Extra power fail detection function. monitoring the voltage at the power fail input pin,  
PFI (see Section 8.6.3).  
The power management functions are controlled by the control bits PWRMNG[2:0] (see  
Table 25) in register Control_3 (see Table 11):  
Table 25. Power management control bit description  
PWRMNG[2:0]  
Function  
[1]  
000  
battery switch-over function is enabled in standard mode;  
battery low detection function is enabled;  
extra power fail detection function is enabled  
battery switch-over function is enabled in standard mode;  
battery low detection function is disabled;  
001  
010  
011  
100  
101  
110  
extra power fail detection function is enabled  
battery switch-over function is enabled in standard mode;  
battery low detection function is disabled;  
extra power fail detection function is disabled  
battery switch-over function is enabled in direct switching mode;  
battery low detection function is enabled;  
extra power fail detection function is enabled  
battery switch-over function is enabled in direct switching mode;  
battery low detection function is disabled;  
extra power fail detection function is enabled  
battery switch-over function is enabled in direct switching mode;  
battery low detection function is disabled;  
extra power fail detection function is disabled  
[2]  
[2]  
battery switch-over function is disabled - only one power supply  
(VDD);  
battery low detection function is disabled;  
extra power fail detection function is enabled  
111  
battery switch-over function is disabled - only one power supply  
(VDD);  
battery low detection function is disabled;  
extra power fail detection function is disabled  
[1] Default value.  
[2] When the battery switch-over function is disabled, the PCF2127 works only with the power supply VDD  
.
VBAT must be put to ground and the battery low detection function is disabled.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
18 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.6.1 Battery switch-over function  
The PCF2127 has a backup battery switch-over circuit which monitors the main power  
supply VDD. When a power failure condition is detected, it automatically switches to the  
backup battery.  
One of two operation modes can be selected:  
Standard mode — the power failure condition happens when:  
VDD < VBAT AND VDD < Vth(sw)bat  
Vth(sw)bat is the battery switch threshold voltage. Typical value is 2.5 V. The battery  
switch-over in standard mode works only for VDD > 2.5 V  
Direct switching mode — the power failure condition happens when VDD < VBAT. Direct  
switching from VDD to VBAT without requiring VDD to drop below Vth(sw)bat  
When a power failure condition occurs and the power supply switches to the battery, the  
following sequence occurs:  
1. The battery switch flag BF (register Control_3) is set logic 1.  
2. An interrupt is generated if the control bit BIE (register Control_3) is enabled  
(see Section 8.13.7).  
3. If the control bit BTSE (register Control_3) is logic 1, the timestamp registers store the  
time and date when the battery switch occurred (see Section 8.12.4).  
4. The battery switch flag BF is cleared by command; it must be cleared to clear the  
interrupt.  
The interface is disabled in battery backup operation:  
Interface inputs are not recognized, preventing extraneous data being written to the  
device  
Interface outputs are high-impedance  
For further information about I2C-bus communication and battery backup operation, see  
Section 9.3 on page 70.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
19 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.6.1.1 Standard mode  
If VDD > VBAT OR VDD > Vth(sw)bat: Voper(int) is at VDD potential.  
If VDD < VBAT AND VDD < Vth(sw)bat: Voper(int) is at VBAT potential.  
EDFNXSꢄEDWWHU\ꢄRSHUDWLRQ  
9
''  
9
9
RSHUꢅLQWꢆ  
RSHUꢅLQWꢆ  
9
%$7  
LQWHUQDOꢄRSHUDWLQJꢄYROWDJHꢄꢅ9  
RSHUꢅLQWꢆ  
9
WKꢅVZꢆEDW  
ꢅ ꢄꢂꢁꢃꢄ9ꢆ  
9 ꢄꢅ ꢄꢋꢄ9ꢆ  
''  
%)  
,17  
FOHDUHGꢄYLDꢄLQWHUIDFH  
ꢁꢁꢂDDMꢃꢂꢂ  
Vth(sw)bat is the battery switch threshold voltage. Typical value is 2.5 V. In standard mode, the  
battery switch-over works only for VDD > 2.5 V.  
VDD may be lower than VBAT (for example VDD = 3 V, VBAT = 4.1 V).  
Fig 6. Battery switch-over behavior in standard mode with bit BIE set logic 1 (enabled)  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
20 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.6.1.2 Direct switching mode  
If VDD > VBAT: Voper(int) is at VDD potential.  
If VDD < VBAT: Voper(int) is at VBAT potential.  
The direct switching mode is useful in systems where VDD is always higher than VBAT  
.
This mode is not recommended if the VDD and VBAT values are similar (for example,  
VDD = 3.3 V, VBAT 3.0 V). In direct switching mode, the power consumption is reduced  
compared to the standard mode because the monitoring of VDD and Vth(sw)bat is not  
performed.  
EDFNXSꢄEDWWHU\ꢄRSHUDWLRQ  
9
''  
9
9
RSHUꢅLQWꢆ  
RSHUꢅLQWꢆ  
9
%$7  
LQWHUQDOꢄRSHUDWLQJꢄYROWDJHꢄꢅ9  
RSHUꢅLQWꢆ  
9
WKꢅVZꢆEDW  
ꢅ ꢄꢂꢁꢃꢄ9ꢆ  
9 ꢄꢅ ꢄꢋꢄ9ꢆ  
''  
%)  
,17  
FOHDUHGꢄYLDꢄLQWHUIDFH  
ꢁꢁꢂDDMꢃꢂꢆ  
Fig 7. Battery switch-over behavior in direct switching mode with bit BIE set logic 1  
(enabled)  
8.6.1.3 Battery switch-over disabled: only one power supply (VDD  
)
When the battery switch-over function is disabled:  
The power supply is applied on the VDD pin  
The VBAT pin must be connected to ground  
Voper(int) is at VDD potential  
The battery flag (BF) is always logic 0  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
21 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.6.1.4 Battery switch-over architecture  
The architecture of the battery switch-over circuit is shown in Figure 8.  
FRPSDUDWRUV  
ORJLF  
VZLWFKHV  
9
''  
9
9
WKꢅVZꢆEDW  
9
''  
9
/2*,&  
RSHUꢅLQWꢆ  
WKꢅVZꢆEDW  
9
%$7  
9
%$7  
ꢁꢁꢂDDJꢁꢇꢂ  
Fig 8. Battery switch-over circuit, simplified block diagram  
Voper(int) is at VDD or VBAT potential.  
Remark: It has to be assured that there are decoupling capacitors on the pins VDD, VBAT  
,
and BBS.  
8.6.2 Battery low detection function  
The PCF2127 has a battery low detection circuit which monitors the status of the battery  
VBAT  
.
When VBAT drops below the threshold value Vth(bat)low (typically 2.5 V), the BLF flag  
(register Control_3) is set to indicate that the battery is low and that it must be replaced.  
Monitoring of the battery voltage also occurs during battery operation.  
An unreliable battery cannot prevent that the supply voltage drops below Vlow (typical  
1.2 V) and with that the data integrity gets lost. (For further information about Vlow see  
Section 8.7.)  
When VBAT drops below the threshold value Vth(bat)low, the following sequence occurs (see  
Figure 9):  
1. The battery low flag BLF is set logic 1.  
2. An interrupt is generated if the control bit BLIE (register Control_3) is enabled  
(see Section 8.13.8).  
3. The flag BLF remains logic 1 until the battery is replaced. BLF cannot be cleared by  
command. It is automatically cleared by the battery low detection circuit when the  
battery is replaced or when the voltage rises again above the threshold value. This  
could happen if a super capacitor is used as a backup source and the main power is  
applied again.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
22 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
9 ꢄ ꢄ9  
'' RSHUꢅLQWꢆ  
LQWHUQDOꢄRSHUDWLQJꢄYROWDJHꢄꢅ9  
RSHUꢅLQWꢆ  
9
%$7  
9
WKꢅEDWꢆORZ  
ꢅ ꢄꢂꢁꢃꢄ9ꢆ  
9
%$7  
%/)  
,17  
ꢁꢁꢂDDMꢃꢆꢆ  
Fig 9. Battery low detection behavior with bit BLIE set logic 1 (enabled)  
8.6.3 Extra power fail detection function  
The PCF2127 has an extra power fail detection circuit which compares the voltage at the  
power fail input pin PFI to an internal reference voltage equal to 1.25 V.  
If VPFI < 1.25 V, the power fail output PFO is driven LOW. PFO is an open-drain, active  
LOW output which requires an external pull-up resistor in any application.  
The extra power fail detection function is typically used as a low voltage detection for the  
main power supply VDD (see Figure 10).  
9
''  
5ꢀ  
5
38  
3&)ꢀꢁꢀꢂ  
ꢀꢁꢂꢃꢄ9  
ꢅLQWHUQDOꢆ  
3),  
3)2  
%DWWHU\  
VZLWFK  
FRQWURO  
WRꢄ0&8  
&
5ꢂ  
9
66  
DDDꢀꢁꢂꢃꢄꢅꢉ  
Fig 10. Typical application of the extra power fail detection function  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
23 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Usually R1 and R2 should be chosen such that the voltage at pin PFI  
is higher than 1.25 V at start-up  
falls below 1.25 V when VDD falls below a desired threshold voltage, Vth(uvp), defined  
by Equation 1:  
R1  
Vthuvp  
=
+ 1 1.25V  
(1)  
-----  
R2  
V
th(uvp) value is usually set to a value that there are several milliseconds before VDD falls  
below the minimum operating voltage of the system, in order to allow the microcontroller  
to perform early backup operations, like terminating the communication with the  
PCF2127.  
The value of C is determined from Equation 2:  
0.02 As  
R1//R2V  
-------------------- -----  
C =  
(2)  
If the extra power fail detection function is not used, pin PFI must be connected to VSS and  
pin PFO must be left open circuit.  
8.6.3.1 Extra power fail detection when the battery switch-over function is enabled  
When the power switches to the backup battery supply VBAT, the power fail  
comparator is switched off and the power fail output at pin PFO goes (or remains)  
LOW  
When the power switches back to the main VDD, the pin PFO is not driven LOW  
anymore. It is pulled HIGH through the external pull-up resistance for a certain time  
(trec = 15.63 ms to 31.25 ms). Then the power fail comparator is enabled again  
For illustration, see Figure 11 and Figure 12.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
24 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
9
''  
9
WKꢅXYSꢆ  
9
%$7  
LQWHUQDOꢄRSHUDWLQJꢄYROWDJHꢄꢅ9  
RSHUꢅLQWꢆ  
9
9
RSHUꢅLQWꢆ  
RSHUꢅLQWꢆ  
9
WKꢅVZꢆEDW  
ꢅ ꢄꢂꢁꢃꢄ9ꢆ  
9 ꢄꢅ ꢄꢋꢄ9ꢆ  
''  
FRPSDUDWRU  
HQDEOHG  
FRPSDUDWRU  
GLVDEOHG  
FRPSDUDWRU  
HQDEOHG  
3)ꢋ  
W
ꢄ ꢄ>ꢀꢃꢁꢉꢇꢄꢐꢄꢇꢀꢁꢂꢃ@ꢄPV  
UHF  
ꢁꢁꢂDDMꢃꢂꢅ  
Fig 11. PFO signal behavior when battery switch-over is enabled in standard mode and  
Vth(uvp) > (VBAT, Vth(sw)bat  
)
9
''  
9
9
RSHUꢅLQWꢆ  
RSHUꢅLQWꢆ  
LQWHUQDOꢄRSHUDWLQJꢄYROWDJHꢄꢅ9  
RSHUꢅLQWꢆ  
9
%$7  
WKꢅXYSꢆ  
9
9
WKꢅVZꢆEDW  
ꢅ ꢄꢂꢁꢃꢄ9ꢆ  
9 ꢄꢅ ꢄꢋꢄ9ꢆ  
''  
FRPSDUDWRU  
HQDEOHG  
FRPSDUDWRU  
GLVDEOHG  
FRPSDUDWRU  
HQDEOHG  
3)ꢋ  
W
UHF  
ꢁꢁꢂDDMꢃꢆꢁ  
Fig 12. PFO signal behavior when battery switch-over is enabled in direct switching  
mode and Vth(uvp) < VBAT  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
25 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.6.3.2 Extra power fail detection when the battery switch-over function is disabled  
If the battery switch-over function is disabled and the power fail comparator is enabled,  
the power fail output at pin PFO depends only on the result of the comparison between  
V
PFI and 1.25 V:  
If VPFI > 1.25 V, PFO = HIGH (through the external pull-up resistor)  
If VPFI < 1.25 V, PFO = LOW  
9
''  
9
WKꢅXYSꢆꢄ  
9
WKꢅVZꢆEDW  
ꢅ ꢄꢂꢁꢃꢄ9ꢆ  
FRPSDUDWRUꢄDOZD\VꢄHQDEOHGꢄ  
3)ꢋ  
ꢁꢁꢂDDMꢃꢆꢂ  
Fig 13. PFO signal behavior when battery switch-over is disabled  
8.6.4 Battery backup supply  
The VBBS voltage on the output pin BBS is at the same potential as the internal operating  
voltage Voper(int), depending on the selected battery switch-over function mode:  
Table 26. Output pin BBS  
Battery switch-over function Conditions  
mode  
Potential of  
Voper(int) and  
VBBS  
standard  
VDD > VBAT OR VDD > Vth(sw)bat  
VDD  
VBAT  
VDD  
VBAT  
VDD  
VDD < VBAT AND VDD < Vth(sw)bat  
VDD > VBAT  
direct switching  
disabled  
VDD < VBAT  
only VDD available,  
VBAT must be put to ground  
The output pin BBS can be used as a supply for external devices with battery backup  
needs, such as SRAM (see Ref. 3 “AN11266”). For this case, Figure 14 shows the typical  
driving capability when VBBS is driven from VDD  
.
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
26 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
ꢁꢁꢂDDMꢃꢆꢄ  
9
%%6  
ꢄꢏ ꢄ9  
''  
ꢅP9ꢆ  
 ꢂꢋꢋ  
9
ꢄ ꢄꢌꢁꢂꢄ9  
''  
 ꢌꢋꢋ  
 ꢉꢋꢋ  
 ꢊꢋꢋ  
9
ꢄ ꢄꢇꢄ9  
ꢄ ꢄꢂꢄ9  
''  
9
''  
,
ꢄꢅP$ꢆ  
%%6  
Fig 14. Typical driving capability of VBBS: (VBBS VDD) with respect to the output load  
current IBBS  
8.7 Oscillator stop detection function  
The PCF2127 has an on-chip oscillator detection circuit which monitors the status of the  
oscillation: whenever the oscillation stops, a reset occurs and the oscillator stop flag OSF  
(in register Seconds) is set logic 1.  
Power-on:  
a. The oscillator is not running, the chip is in reset (OSF is logic 1).  
b. When the oscillator starts running and is stable after power-on, the chip exits from  
reset.  
c. The flag OSF is still logic 1 and can be cleared (OSF set logic 0) by command.  
Power supply failure:  
a. When the power supply of the chip drops below a certain value (Vlow), typically  
1.2 V, the oscillator stops running and a reset occurs.  
b. When the power supply returns to normal operation, the oscillator starts running  
again, the chip exits from reset.  
c. The flag OSF is still logic 1 and can be cleared (OSF set logic 0) by command.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
27 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
9
''  
9
''  
9
9
RSHUꢅLQWꢆ  
RSHUꢅLQWꢆ  
9
%$7  
9
%$7  
9
''  
9
WKꢅVZꢆEDW  
ꢅ ꢄꢂꢁꢃꢄ9ꢆ  
9
''  
EDWWHU\ꢄGLVFKDUJH  
9
ORZ  
9
ꢅ ꢄꢀꢁꢂꢄ9ꢆ  
RSHUꢅLQWꢆ  
9
%$7  
9
66  
9
66  
ꢅꢀꢆ  
ꢅꢂꢆ  
26)  
ꢁꢁꢂDDMꢉꢁꢅ  
(1) Theoretical state of the signals since there is no power.  
(2) The oscillator stop flag (OSF), set logic 1, indicates that the oscillation has stopped and a reset has  
occurred since the flag was last cleared (OSF set logic 0). In this case, the integrity of the clock  
information is not guaranteed. The OSF flag is cleared by command.  
Fig 15. Power failure event due to battery discharge: reset occurs  
8.8 Reset function  
The PCF2127 has a Power-On Reset (POR) and a Power-On Reset Override (PORO)  
function implemented.  
8.8.1 Power-On Reset (POR)  
The POR is active whenever the oscillator is stopped. The oscillator is considered to be  
stopped during the time between power-on and stable crystal resonance (see Figure 16).  
This time may be in the range of 200 ms to 2 s depending on temperature and supply  
voltage. Whenever an internal reset occurs, the oscillator stop flag is set (OSF set  
logic 1).  
The OTP refresh (see Section 8.3.2 on page 13) should ideally be executed as the first  
instruction after start-up and also after a reset due to an oscillator stop.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
28 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
FKLSꢄLQꢄUHVHW  
FKLSꢄQRWꢄLQꢄUHVHW  
FKLSꢄIXOO\ꢄRSHUDWLYH  
&/.287  
DYDLODEOH  
9
''  
RVFLOODWLRQ  
567  
2735  
W
DDDꢀꢁꢂꢉꢊꢁꢉ  
Fig 16. Dependency between POR and oscillator  
After POR, the following mode is entered:  
32.768 kHz CLKOUT active  
Power-On Reset Override (PORO) available to be set  
24-hour mode is selected  
Battery switch-over is enabled  
Battery low detection is enabled  
Extra power fail detection is enabled  
The register values after power-on are shown in Table 5 on page 8.  
8.8.2 Power-On Reset Override (PORO)  
The POR duration is directly related to the crystal oscillator start-up time. Due to the long  
start-up times experienced by these types of circuits, a mechanism has been built in to  
disable the POR and therefore speed up the on-board test of the device.  
RVFꢄVWRSSHG  
ꢋꢄ ꢄVWRSSHGꢑꢄꢀꢄ ꢄUXQQLQJ  
26&,//$725  
UHVHWꢄ  
6&/  
5(6(7ꢄ  
ꢋꢄ ꢄRYHUULGHꢄLQDFWLYH  
ꢀꢄ ꢄRYHUULGHꢄDFWLYH  
29(55,'(  
6'$ꢎ&(  
&/($5  
ꢋꢄ ꢄFOHDUꢄRYHUULGHꢄPRGH  
ꢀꢄ ꢄRYHUULGHꢄSRVVLEOH  
325B295'  
ꢁꢁꢂDDMꢃꢆꢉ  
Fig 17. Power-On Reset (POR) system  
The setting of the PORO mode requires that POR_OVRD in register Control_1 is set  
logic 1 and that the signals at the interface pins SDA/CE and SCL are toggled as  
illustrated in Figure 18. All timings shown are required minimum.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
29 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
SRZHUꢄXS  
ꢊꢄPV  
PLQLPXPꢄꢃꢋꢋꢄQV  
PLQLPXPꢄꢂꢋꢋꢋꢄQV  
6'$ꢎ&(  
6&/  
UHVHWꢄRYHUULGH  
ꢁꢁꢂDDMꢃꢆꢇ  
Fig 18. Power-On Reset Override (PORO) sequence, valid for both I2C-bus and SPI-bus  
Once the override mode is entered, the device is immediately released from the reset  
state and the set-up operation can commence.  
The PORO mode is cleared by writing logic 0 to POR_OVRD. POR_OVRD must be  
logic 1 before a re-entry into the override mode is possible. Setting POR_OVRD logic 0  
during normal operation has no effect except to prevent accidental entry into the PORO  
mode.  
8.9 Time and date function  
Most of these registers are coded in the Binary Coded Decimal (BCD) format.  
8.9.1 Register Seconds  
Table 27. Seconds - seconds and clock integrity register (address 03h) bit allocation  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
7
OSF  
1
6
5
4
3
2
1
0
Symbol  
SECONDS (0 to 59)  
X
Reset  
value  
X
X
X
X
X
X
Table 28. Seconds - seconds and clock integrity register (address 03h) bit description  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Place value Description  
7
OSF  
0
1
-
-
clock integrity is guaranteed  
clock integrity is not guaranteed:  
oscillator has stopped and chip reset has occurred  
since flag was last cleared  
6 to 4  
3 to 0  
SECONDS  
0 to 5  
0 to 9  
ten’s place actual seconds coded in BCD format  
unit place  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
30 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Table 29. Seconds coded in BCD format  
Seconds Upper-digit (ten’s place)  
Digit (unit place)  
value in  
decimal  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00  
01  
02  
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
09  
10  
:
0
0
:
0
0
:
0
1
:
1
0
:
0
0
:
0
0
:
1
0
:
58  
59  
1
1
0
0
1
1
1
1
0
0
0
0
0
1
8.9.2 Register Minutes  
Table 30. Minutes - minutes register (address 04h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
-
6
5
4
3
2
1
0
Symbol  
MINUTES (0 to 59)  
X
Reset  
value  
-
X
X
X
X
X
X
Table 31. Minutes - minutes register (address 04h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
-
Value  
-
Place value Description  
unused  
7
-
6 to 4  
3 to 0  
MINUTES  
0 to 5  
0 to 9  
ten’s place actual minutes coded in BCD format  
unit place  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
31 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.9.3 Register Hours  
Table 32. Hours - hours register (address 05h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
-
-
AMPM  
HOURS (1 to 12) in 12-hour mode  
HOURS (0 to 23) in 24-hour mode  
Reset  
value  
-
-
X
X
X
X
X
X
Table 33. Hours - hours register (address 05h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Place value Description  
7 to 6  
-
-
-
unused  
12-hour mode[1]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOURS  
0 to 1  
0 to 9  
ten’s place actual hours coded in BCD format when in 12-hour  
mode  
3 to 0  
unit place  
24-hour mode[1]  
5 to 4  
3 to 0  
HOURS  
0 to 2  
0 to 9  
ten’s place actual hours coded in BCD format when in 24-hour  
mode  
unit place  
[1] Hour mode is set by the bit 12_24 in register Control_1 (see Table 7).  
8.9.4 Register Days  
Table 34. Days - days register (address 06h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
-
6
-
5
4
3
2
1
0
Symbol  
DAYS (1 to 31)  
Reset  
value  
-
-
X
X
X
X
X
X
Table 35. Days - days register (address 06h) bit description  
Bit  
Symbol  
Value  
-
Place value Description  
- unused  
7 to 6  
5 to 4  
3 to 0  
-
DAYS[1]  
0 to 3  
0 to 9  
ten’s place actual day coded in BCD format  
unit place  
[1] If the year counter contains a value which is exactly divisible by 4, including the year 00, the RTC compensates for leap years by adding  
a 29th day to February.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
32 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.9.5 Register Weekdays  
Table 36. Weekdays - weekdays register (address 07h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
-
6
-
5
-
4
-
3
-
2
1
0
Symbol  
WEEKDAYS (0 to 6)  
X
Reset  
value  
-
-
-
-
-
X
X
Table 37. Weekdays - weekdays register (address 07h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
-
Description  
7 to 3  
2 to 0  
-
unused  
WEEKDAYS  
0 to 6  
actual weekday value, see Table 38  
Although the association of the weekdays counter to the actual weekday is arbitrary, the  
PCF2127 assumes that Sunday is 000 and Monday is 001 for the purpose of determining  
the increment for calendar weeks.  
Table 38. Weekday assignments  
Day[1]  
Bit  
2
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
Sunday  
0
Monday  
Tuesday  
Wednesday  
Thursday  
Friday  
0
0
0
1
1
Saturday  
1
[1] Definition may be reassigned by the user.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
33 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.9.6 Register Months  
Table 39. Months - months register (address 08h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
-
6
-
5
-
4
3
2
1
0
Symbol  
MONTHS (1 to 12)  
X
Reset  
value  
-
-
-
X
X
X
X
Table 40. Months - months register (address 08h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
-
Value  
-
Place value Description  
- unused  
7 to 5  
4
MONTHS  
0 to 1  
0 to 9  
ten’s place actual month coded in BCD format, see Table 41  
unit place  
3 to 0  
Table 41. Month assignments in BCD format  
Month  
Upper-digit  
(ten’s place)  
Digit (unit place)  
Bit 4  
0
Bit 3  
0
Bit 2  
Bit 1  
0
Bit 0  
1
January  
February  
March  
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
April  
0
0
0
0
May  
0
0
0
1
June  
0
0
1
0
July  
0
0
1
1
August  
September  
October  
November  
December  
0
1
0
0
0
1
0
1
1
0
0
0
1
0
0
1
1
0
1
0
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
34 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.9.7 Register Years  
Table 42. Years - years register (address 09h) bit allocation  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
YEARS (0 to 99)  
Reset  
value  
X
X
X
X
X
X
X
X
Table 43. Years - years register (address 09h) bit description  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
Symbol  
Value  
0 to 9  
0 to 9  
Place value Description  
7 to 4  
3 to 0  
YEARS  
ten’s place actual year coded in BCD format  
unit place  
8.9.8 Setting and reading the time  
Figure 19 shows the data flow and data dependencies starting from the 1 Hz clock tick.  
During read/write operations, the time counting circuits (memory locations 03h through  
09h) are blocked.  
This prevents  
Faulty reading of the clock and calendar during a carry condition  
Incrementing the time registers during the read cycle  
ꢀꢄ+]ꢄWLFN  
6(&21'6  
0,187(6  
ꢀꢂBꢂꢌꢄKRXUꢄPRGH  
+2856  
'$<6  
/($3ꢄ<($5ꢄ  
&$/&8/$7,21  
:((.'$<  
0217+6  
<($56  
ꢁꢁꢂDDIꢅꢁꢂ  
Fig 19. Data flow of the time function  
After this read/write access is completed, the time circuit is released again. Any pending  
request to increment the time counters that occurred during the read/write access is  
serviced. A maximum of 1 request can be stored; therefore, all accesses must be  
completed within 1 second (see Figure 20).  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
35 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
WꢄꢒꢄꢀꢄV  
6/$9(ꢄ$''5(66  
'$7$  
'$7$  
6723  
67$57  
ꢁꢂꢃDDDꢆꢂꢈ  
Fig 20. Access time for read/write operations  
As a consequence of this method, it is very important to make a read or write access in  
one go. That is, setting or reading seconds through to years should be made in one single  
access. Failing to comply with this method could result in the time becoming corrupted.  
As an example, if the time (seconds through to hours) is set in one access and then in a  
second access the date is set, it is possible that the time may increment between the two  
accesses. A similar problem exists when reading. A roll-over may occur between reads  
thus giving the minutes from one moment and the hours from the next. Therefore it is  
advised to read all time and date registers in one access.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
36 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.10 Alarm function  
When one or more of the alarm bit fields are loaded with a valid second, minute, hour, day,  
or weekday and its corresponding alarm enable bit (AE_x) is logic 0, then that information  
is compared with the actual second, minute, hour, day, and weekday (see Figure 21).  
H[DPSOH  
FKHFNꢄQRZꢄVLJQDO  
$(B6ꢄ  
$(B6ꢄ ꢄꢀ  
6(&21'ꢄ$/$50  
6(&21'ꢄ7,0(  
 
 
$(B0  
$(B+  
$(B'  
$(B:  
0,187(ꢄ$/$50  
0,187  ꢄ7,0(  
+285ꢄ$/$50  
+285ꢄ7,0(  
 
 
 
ꢅꢀꢆ  
VHWꢄDODUPꢄIODJꢄ$)  
'$<ꢄ$/$50  
'$<ꢄ7,0(  
:((.'$<ꢄ$/$50  
:((.'$<ꢄ7,0(  
ꢁꢂꢃDDDꢆꢃꢇ  
(1) Only when all enabled alarm settings are matching.  
Fig 21. Alarm function block diagram  
The generation of interrupts from the alarm function is described in Section 8.13.5.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
37 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.10.1 Register Second_alarm  
Table 44. Second_alarm - second alarm register (address 0Ah) bit allocation  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
7
AE_S  
1
6
5
4
3
2
1
0
Symbol  
SECOND_ALARM (0 to 59)  
Reset  
value  
X
X
X
X
X
X
X
Table 45. Second_alarm - second alarm register (address 0Ah) bit description  
Bit  
Symbol  
Value  
0
Place value Description  
7
AE_S  
-
-
second alarm is enabled  
second alarm is disabled  
1
6 to 4  
3 to 0  
SECOND_ALARM  
0 to 5  
0 to 9  
ten’s place second alarm information coded in BCD format  
unit place  
8.10.2 Register Minute_alarm  
Table 46. Minute_alarm - minute alarm register (address 0Bh) bit allocation  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
7
AE_M  
1
6
5
4
3
2
1
0
Symbol  
MINUTE_ALARM (0 to 59)  
Reset  
value  
X
X
X
X
X
X
X
Table 47. Minute_alarm - minute alarm register (address 0Bh) bit description  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
Symbol  
Value  
0
Place value Description  
7
AE_M  
-
-
minute alarm is enabled  
minute alarm is disabled  
1
6 to 4  
3 to 0  
MINUTE_ALARM  
0 to 5  
0 to 9  
ten’s place minute alarm information coded in BCD format  
unit place  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
38 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.10.3 Register Hour_alarm  
Table 48. Hour_alarm - hour alarm register (address 0Ch) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
AE_H  
-
AMPM  
HOUR_ALARM (1 to 12) in 12-hour mode  
HOUR_ALARM (0 to 23) in 24-hour mode  
Reset  
value  
1
-
X
X
X
X
X
X
Table 49. Hour_alarm - hour alarm register (address 0Ch) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Place value Description  
7
AE_H  
0
1
-
-
-
-
hour alarm is enabled  
hour alarm is disabled  
unused  
6
-
12-hour mode[1]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOUR_ALARM  
0 to 1  
0 to 9  
ten’s place hour alarm information coded in BCD format when in  
12-hour mode  
3 to 0  
unit place  
24-hour mode[1]  
5 to 4  
3 to 0  
HOUR_ALARM  
0 to 2  
0 to 9  
ten’s place hour alarm information coded in BCD format when in  
24-hour mode  
unit place  
[1] Hour mode is set by the bit 12_24 in register Control_1.  
8.10.4 Register Day_alarm  
Table 50. Day_alarm - day alarm register (address 0Dh) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
AE_D  
1
6
-
5
4
3
2
1
0
Symbol  
DAY_ALARM (1 to 31)  
Reset  
value  
-
X
X
X
X
X
X
Table 51. Day_alarm - day alarm register (address 0Dh) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Place value Description  
7
AE_D  
0
-
-
-
day alarm is enabled  
1
day alarm is disabled  
unused  
6
-
-
5 to 4  
3 to 0  
DAY_ALARM  
0 to 3  
0 to 9  
ten’s place day alarm information coded in BCD format  
unit place  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
39 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.10.5 Register Weekday_alarm  
Table 52. Weekday_alarm - weekday alarm register (address 0Eh) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
AE_W  
1
6
-
5
-
4
-
3
-
2
1
0
Symbol  
WEEKDAY_ALARM (0 to 6)  
Reset  
value  
-
-
-
-
X
X
X
Table 53. Weekday_alarm - weekday alarm register (address 0Eh) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Description  
7
AE_W  
0
weekday alarm is enabled  
weekday alarm is disabled  
unused  
1
6 to 3  
2 to 0  
-
-
WEEKDAY_ALARM  
0 to 6  
weekday alarm information  
8.10.6 Alarm flag  
When all enabled comparisons first match, the alarm flag AF (register Control_2) is set.  
AF remains set until cleared by command. Once AF has been cleared, it will only be set  
again when the time increments to match the alarm condition once more. For clearing the  
flags, see Section 8.11.6  
Alarm registers which have their alarm enable bit AE_x at logic 1 are ignored.  
PLQXWHVꢄFRXQWHU  
PLQXWHꢄDODUP  
$)  
ꢌꢌ  
ꢌꢃ  
ꢌꢃ  
ꢌꢉ  
,17ꢄZKHQꢄ$,(ꢄ ꢄꢀ  
ꢁꢁꢂDDIꢅꢁꢃ  
Example where only the minute alarm is used and no other interrupts are enabled.  
Fig 22. Alarm flag timing diagram  
8.11 Timer functions  
The PCF2127 has two different timer functions, a watchdog timer and a countdown timer.  
The timers can be selected by using the control bits WD_CD[1:0] in the register  
Watchdg_tim_ctl.  
The watchdog timer has four selectable source clocks. It can, for example, be used to  
detect a microcontroller with interrupt and reset capability which is out of control (see  
Section 8.11.3)  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
40 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
The countdown timer has four selectable source clocks allowing for countdown  
periods from less than 1 ms to more than 4 hours (see Section 8.11.4)  
To control the timer functions and timer output, the registers Control_2, Watchdg_tim_ctl,  
and Watchdg_tim_val are used.  
8.11.1 Register Watchdg_tim_ctl  
Table 54. Watchdg_tim_ctl - watchdog timer control register (address 10h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read.  
Bit  
7
6
5
TI_TP  
0
4
-
3
-
2
-
1
0
Symbol  
WD_CD[1:0]  
TF[1:0]  
Reset  
value  
0
0
-
-
-
1
1
Table 55. Watchdg_tim_ctl - watchdog timer control register (address 10h) bit description  
Bit positions labeled as - are not implemented and return 0 when read.  
Bit  
Symbol  
Value  
Description  
7 to 6  
WD_CD[1:0]  
00  
Watchdog timer disabled;  
countdown timer disabled  
01  
watchdog timer disabled;  
countdown timer enabled  
if CDTIE is set logic 1, the interrupt pin INT is  
activated when the countdown timed out  
10  
11  
watchdog timer enabled;  
the interrupt pin INT is activated when timed out;  
countdown timer not available  
watchdog timer enabled;  
the reset pin RST is activated when timed out;  
countdown timer not available  
5
TI_TP  
0
1
-
the interrupt pin INT is configured to generate a  
permanent active signal when MSF and/or CDTF is  
set  
the interrupt pin INT is configured to generate a  
pulsed signal when MSF flag and/or CDTF flag is set  
(see Figure 27)  
4 to 2  
1 to 0  
-
unused  
TF[1:0]  
timer source clock for watchdog and countdown timer  
00  
01  
10  
11  
4.096 kHz  
64 Hz  
1 Hz  
1
60 Hz  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
41 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.11.2 Register Watchdg_tim_val  
Table 56. Watchdg_tim_val - watchdog timer value register (address 11h) bit allocation  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
WATCHDG_TIM_VAL[7:0]  
Reset  
value  
X
X
X
X
X
X
X
X
Table 57. Watchdg_tim_val - watchdog timer value register (address 11h) bit description  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Description  
7 to 0  
WATCHDG_TIM_  
VAL[7:0]  
00 to FF  
timer period in seconds:  
n
TimerPeriod =  
--------------------------------------------------------------  
SourceClockFrequency  
where n is the timer value  
Table 58. Programmable watchdog timer  
TF[1:0] Timer source  
clock frequency  
Units  
Minimum timer  
period (n = 1)  
Units  
Maximum timer  
period (n = 255)  
Units  
00  
01  
10  
11  
4.096  
64  
kHz  
Hz  
244  
15.625  
1
s  
ms  
s
62.256  
3.984  
255  
ms  
s
1
Hz  
s
1
Hz  
60  
s
15300  
s
60  
8.11.3 Watchdog timer function  
The watchdog timer function is enabled or disabled by the WD_CD[1:0] bits of the register  
Watchdg_tim_ctl (see Table 55).  
The two bits TF[1:0] in register Watchdg_tim_ctl determine one of the four source clock  
frequencies for the watchdog timer: 4.096 kHz, 64 Hz, 1 Hz, or 160 Hz (see Table 58).  
When the watchdog timer function is enabled, the 8-bit timer in register Watchdg_tim_val  
determines the watchdog timer period (see Table 58).  
The watchdog timer counts down from the software programmed 8-bit binary value n in  
register Watchdg_tim_val. When the counter reaches 1, the watchdog timer flag WDTF  
(register Control_2) is set logic 1.  
If WDTF is logic 1 and:  
if WD_CD[1:0] = 10 an interrupt will be generated  
if WD_CD[1:0] = 11 a reset will be generated  
The counter does not automatically reload.  
When WD_CD[1:0] = 10 or WD_CD[1:0] = 11 and the Microcontroller Unit (MCU) loads a  
watchdog timer value n:  
the flag WDTF is reset  
INT or RST is cleared  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
42 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
the watchdog timer starts again  
Loading the counter with 0 will:  
reset the flag WDTF  
clear INT or RST  
stop the watchdog timer  
Remark: WDTF is read only and cannot be cleared by command. WDTF can be cleared  
by:  
loading a value in register Watchdg_tim_val  
reading of the register Control_2  
Writing a logic 0 or logic 1 to WDTF has no effect.  
0&8  
ZDWFKGRJꢄ  
WLPHUꢄYDOXH  
Qꢄ ꢄꢀ  
Q
:'7)  
,17  
ꢁꢁꢂDDJꢁꢇꢆ  
Counter reached 1, WDTF is logic 1, and an interrupt is generated.  
Fig 23. WD_CD[1:0] = 10: watchdog activates an interrupt when timed out  
When the watchdog timer counter reaches 1, the watchdog timer flag WDTF is set  
logic 1  
When a minute or second interrupt occurs, the minute/second flag MSF is set logic 1  
(see Section 8.13.1)  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
43 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
0&8  
ZDWFKGRJꢄ  
WLPHUꢄYDOXH  
Qꢄ ꢄꢀ  
Q
:'7)  
567  
ꢁꢁꢂDDJꢁꢇꢃ  
W
ZꢅUVWꢆ  
Counter reached 1, WDTF is set logic 1, reset pulse on the RST pin is generated for a time equal  
to tw(rst)  
.
Fig 24. WD_CD[1:0] = 11: watchdog activates a reset pulse when timed out  
Table 59. Specification of tw(rst)  
WD_CD[1:0]  
TF[1:0]  
00  
tw(rst)  
11  
244 s  
01  
15.625 ms  
15.625 ms  
15.625 ms  
10  
11  
8.11.4 Countdown timer function  
The countdown timer function is controlled by the WD_CD[1:0] bits in register  
Watchdg_tim_ctl (see Table 55).  
The timer counts down from the software programmed 8-bit binary value n in register  
Watchdg_tim_val. When the counter reaches 1  
the countdown timer flag CDTF is set  
the counter automatically reloads  
and the next time period starts  
Loading the counter with 0 effectively stops the timer.  
Reading the timer returns the actual value of the countdown counter.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
44 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
FRXQWGRZQꢄYDOXHꢑꢄQ  
;;  
ꢋꢇ  
ꢋꢇ  
WLPHUꢄVRXUFHꢄFORFN  
FRXQWGRZQꢄFRXQWHU  
:'ꢎ&'ꢄ>ꢀꢐꢋ@  
&'7)  
;;  
ꢋꢋ  
ꢋꢂ  
ꢋꢀ  
ꢋꢇ  
ꢋꢂ  
ꢋꢀ  
ꢋꢇ  
ꢋꢂ  
ꢋꢀ  
ꢋꢇ  
ꢋꢀ  
,17  
Q
Q
GXUDWLRQꢄRIꢄILUVWꢄWLPHUꢄSHULRGꢄDIWHUꢄ  
HQDEOHꢄPD\ꢄUDQJHꢄIURPꢄQꢏ ꢀꢄWRꢄQꢓꢀ  
ꢁꢁꢂDDJꢁꢄꢂ  
In this example, it is assumed that the countdown timer flag (CDTF) is cleared before the next  
countdown period expires and that INT is set to pulsed mode.  
Fig 25. General countdown timer behavior  
If a new value of n is written before the end of the actual timer period, this value takes  
immediate effect. It is not recommended to change n without first disabling the counter by  
setting WD_CD[1:0] = 00. The update of n is asynchronous to the timer clock. Therefore  
changing it on the fly could result in a corrupted value loaded into the countdown counter.  
This can result in an undetermined countdown period for the first period. The countdown  
value n will, however, be correctly stored and correctly loaded on subsequent timer  
periods.  
If this mode is enabled and the countdown timer flag CDTF is set, an interrupt signal on  
INT will be generated. See Section 8.13.2 for details on how the interrupt can be  
controlled.  
When starting the countdown timer for the first time, only the first period will not have a  
fixed duration. The amount of inaccuracy for the first timer period depends on the chosen  
source clock, see Table 60.  
Table 60. First period delay for timer counter  
Timer source clock  
4.096 kHz  
Minimum timer period  
Maximum timer period  
n
n + 1  
64 Hz  
n
n + 1  
1 Hz  
(n 1) + 164 Hz  
(n 1) + 164 Hz  
n + 164 Hz  
n + 164 Hz  
1
60 Hz  
At the end of every countdown, the timer sets the countdown timer flag (CDTF). CDTF  
may only be cleared by command. The asserted CDTF can be used to generate an  
interrupt (INT). The interrupt may be generated as a pulsed signal every countdown  
period or as a permanently active signal which follows the condition of CDTF. TI_TP is  
used to control this mode selection. The interrupt output may be disabled with the CDTIE  
bit, see Table 9.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
45 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
When reading the timer, the actual countdown value is returned and not the initial value n.  
Since it is not possible to freeze the countdown timer counter during read back, it is  
recommended to read the register twice and check for consistent results.  
8.11.5 Pre-defined timers: second and minute interrupt  
PCF2127 has two pre-defined timers which are used to generate an interrupt either once  
per second or once per minute (see Section 8.13.1). The pulse generator for the minute or  
second interrupt operates from an internal 64 Hz clock. It is independent of the watchdog  
or countdown timers. Each of these timers can be enabled by the bits SI (second interrupt)  
and MI (minute interrupt) in register Control_1.  
8.11.6 Clearing flags  
The flags MSF, CDTF, AF and TSFx can be cleared by command. To prevent one flag  
being overwritten while clearing another, a logic AND is performed during the write  
access. A flag is cleared by writing logic 0 while a flag is not cleared by writing logic 1.  
Writing logic 1 results in the flag value remaining unchanged.  
Four examples are given for clearing the flags. Clearing the flags is made by a write  
command:  
Bits labeled with - must be written with their previous values  
WDTF is read only and has to be written with logic 0  
Repeatedly rewriting these bits has no influence on the functional behavior.  
Table 61. Flag location in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
MSF  
WDTF  
TSF2  
AF  
CDTF  
-
-
-
Table 62. Example values in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
1
0
1
1
1
0
0
0
The following tables show what instruction must be sent to clear the appropriate flag.  
Table 63. Example to clear only CDTF (bit 3)  
Register  
Bit  
7
6
5
4
3
2
1
0
[1]  
[1]  
[1]  
Control_2  
1
0
1
1
0
-
-
-
[1] The bits labeled as - have to be rewritten with the previous values.  
Table 64. Example to clear only AF (bit 4)  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
1
0
1
0
1
0[1]  
0[1]  
0[1]  
[1] The bits labeled as - have to be rewritten with the previous values.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
46 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Table 65. Example to clear only MSF (bit 7)  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
0
0
1
1
1
0[1]  
0[1]  
0[1]  
[1] The bits labeled as - have to be rewritten with the previous values.  
Table 66. Example to clear both CDTF and MSF  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
0
0
1
1
0
0[1]  
0[1]  
0[1]  
[1] The bits labeled as - have to be rewritten with the previous values.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
47 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.12 Timestamp function  
The PCF2127 has an active LOW timestamp input pin TS, internally pulled with an  
on-chip pull-up resistor to Voper(int). It also has a timestamp detection circuit which can  
detect two different events:  
1. Input on pin TS is driven to an intermediate level between power supply and ground.  
2. Input on pin TS is driven to ground.  
9
RSHUꢅLQWꢆ  
5ꢀꢄ  
ꢂꢋꢋꢄN  
“ꢄꢂꢋꢄꢔ  
76  
ꢅꢀꢆ  
5ꢂ  
ꢂꢂꢋꢄN  
“ꢄꢃꢄꢔ  
3&)ꢀꢁꢀꢂ  
SXVKꢏEXWWRQꢄꢂ  
FRQQHFWHGꢄWR  
FRYHUꢄꢂ  
SXVKꢏEXWWRQꢄꢀ  
FRQQHFWHGꢄWR  
FRYHUꢄꢀ  
ꢀꢄQ)ꢄ  
9
DDDꢀꢁꢂꢈꢃꢉꢁ  
66  
(1) When using switches or push-buttons, it is recommended to connect a 1 nF capacitance to the TS  
pin to ensure proper switching.  
Fig 26. Timestamp detection with two push-buttons on the TS pin (for example, for  
tamper detection)  
The timestamp function is enabled by default after power-on and it can be switched off by  
setting the control bit TSOFF (register Timestp_ctl).  
A most common application of the timestamp function is described in Ref. 3 “AN11266”.  
See Section 8.13.6 for a description of interrupt generation from the timestamp function.  
8.12.1 Timestamp flag  
1. When the TS input pin is driven to an intermediate level between the power supply  
and ground, either on the falling edge from VDD or on the rising edge from ground,  
then the following sequence occurs:  
a. The actual date and time are stored in the timestamp registers.  
b. The timestamp flag TSF1 (register Control_1) is set.  
c. If the TSIE bit (register Control_2) is active, an interrupt on the INT pin is  
generated.  
The TSF1 flag can be cleared by command. Clearing the flag clears the interrupt.  
Once TSF1 is cleared, it will only be set again when a new negative or positive edge  
on pin TS is detected.  
2. When the TS input pin is driven to ground, the following sequence occurs:  
a. The actual date and time are stored in the timestamp registers.  
b. In addition to the TSF1 flag, the TSF2 flag (register Control_2) is set.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
48 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
c. If the TSIE bit is active, an interrupt on the INT pin is generated.  
The TSF1 and TSF2 flags can be cleared by command; clearing both flags clears the  
interrupt. Once TSF2 is cleared, it will only be set again when TS pin is driven to  
ground once again.  
8.12.2 Timestamp mode  
The timestamp function has two different modes selected by the control bit TSM  
(timestamp mode) in register Timestp_ctl:  
If TSM is logic 0 (default): in subsequent trigger events without clearing the timestamp  
flags, the last timestamp event is stored  
If TSM is logic 1: in subsequent trigger events without clearing the timestamp flags,  
the first timestamp event is stored  
The timestamp function also depends on the control bit BTSE in register Control_3, see  
Section 8.12.4.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
49 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.12.3 Timestamp registers  
8.12.3.1 Register Timestp_ctl  
Table 67. Timestp_ctl - timestamp control register (address 12h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
TSM  
0
6
TSOFF  
0
5
-
4
3
2
1
0
Symbol  
1_O_16_TIMESTP[4:0]  
X
Reset  
value  
-
X
X
X
X
Table 68. Timestp_ctl - timestamp control register (address 12h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Description  
7
TSM  
0
in subsequent events without clearing the timestamp  
flags, the last event is stored  
1
in subsequent events without clearing the timestamp  
flags, the first event is stored  
6
TSOFF  
0
1
-
timestamp function active  
timestamp function disabled  
5
-
unused  
1
4 to 0  
1_O_16_TIMESTP[4:0]  
16 second timestamp information coded in BCD  
format  
8.12.3.2 Register Sec_timestp  
Table 69. Sec_timestp - second timestamp register (address 13h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
-
6
5
4
3
2
1
0
Symbol  
SECOND_TIMESTP (0 to 59)  
Reset  
value  
-
X
X
X
X
X
X
X
Table 70. Sec_timestp - second timestamp register (address 13h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
-
Place value Description  
unused  
7
-
-
6 to 4  
3 to 0  
SECOND_TIMESTP  
0 to 5  
0 to 9  
ten’s place second timestamp information coded in BCD format  
unit place  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
50 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.12.3.3 Register Min_timestp  
Table 71. Min_timestp - minute timestamp register (address 14h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
-
6
5
4
3
2
1
0
Symbol  
MINUTE_TIMESTP (0 to 59)  
Reset  
value  
-
X
X
X
X
X
X
X
Table 72. Min_timestp - minute timestamp register (address 14h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
-
Place value Description  
unused  
7
-
-
6 to 4  
3 to 0  
MINUTE_TIMESTP  
0 to 5  
0 to 9  
ten’s place minute timestamp information coded in BCD format  
unit place  
8.12.3.4 Register Hour_timestp  
Table 73. Hour_timestp - hour timestamp register (address 15h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
-
-
AMPM  
HOUR_TIMESTP (1 to 12) in 12-hour mode  
HOUR_TIMESTP (0 to 23) in 24-hour mode  
Reset  
value  
-
-
X
X
X
X
X
X
Table 74. Hour_timestp - hour timestamp register (address 15h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Place value Description  
7 to 6  
-
-
-
unused  
12-hour mode[1]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOUR_TIMESTP  
0 to 1  
0 to 9  
ten’s place hour timestamp information coded in BCD format  
when in 12-hour mode  
3 to 0  
unit place  
24-hour mode[1]  
5 to 4  
3 to 0  
HOUR_TIMESTP  
0 to 2  
0 to 9  
ten’s place hour timestamp information coded in BCD format  
when in 24-hour mode  
unit place  
[1] Hour mode is set by the bit 12_24 in register Control_1.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
51 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.12.3.5 Register Day_timestp  
Table 75. Day_timestp - day timestamp register (address 16h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
-
6
-
5
4
3
2
1
0
Symbol  
DAY_TIMESTP (1 to 31)  
Reset  
value  
-
-
X
X
X
X
X
X
Table 76. Day_timestp - day timestamp register (address 16h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
-
Place value Description  
- unused  
7 to 6  
5 to 4  
3 to 0  
-
DAY_TIMESTP  
0 to 3  
0 to 9  
ten’s place day timestamp information coded in BCD format  
unit place  
8.12.3.6 Register Mon_timestp  
Table 77. Mon_timestp - month timestamp register (address 17h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
-
6
-
5
-
4
3
2
1
0
Symbol  
MONTH_TIMESTP (1 to 12)  
Reset  
value  
-
-
-
X
X
X
X
X
Table 78. Mon_timestp - month timestamp register (address 17h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
-
Place value Description  
- unused  
7 to 5  
4
-
MONTH_TIMESTP  
0 to 1  
0 to 9  
ten’s place month timestamp information coded in BCD format  
unit place  
3 to 0  
8.12.3.7 Register Year_timestp  
Table 79. Year_timestp - year timestamp register (address 18h) bit allocation  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
YEAR_TIMESTP (0 to 99)  
Reset  
value  
X
X
X
X
X
X
X
X
Table 80. Year_timestp - year timestamp register (address 18h) bit description  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
Symbol  
Value  
0 to 9  
0 to 9  
Place value Description  
7 to 4  
3 to 0  
YEAR_TIMESTP  
ten’s place year timestamp information coded in BCD format  
unit place  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
52 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.12.4 Dependency between Battery switch-over and timestamp  
The timestamp function depends on the control bit BTSE in register Control_3:  
Table 81. Battery switch-over and timestamp  
BTSE  
BF  
Description  
[1]  
[1]  
0
-
the battery switch-over does not affect the  
timestamp registers  
1
If a battery switch-over event occurs:  
0
1
the timestamp registers store the time and  
date when the switch-over occurs;  
after this event occurred BF is set logic 1  
the timestamp registers are not modified;  
in this condition subsequent battery  
switch-over events or falling edges on pin TS  
are not registered  
[1] Default value.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
53 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.13 Interrupt output, INT  
6,  
06)ꢐꢄ  
0,187(ꢄ  
WRꢄLQWHUIDFHꢐꢄ  
UHDGꢄ06)  
6(&21'6ꢄ&2817(5  
0,187(6ꢄ&2817(5  
6,ꢎ0,  
6(&21'ꢄ)/$*  
6(7  
0,  
&/($5  
38/6(ꢄ  
*(1(5$725ꢄꢀꢄ  
75,**(5  
&/($5  
IURPꢄLQWHUIDFHꢐꢄ  
FOHDUꢄ06)  
7,B73  
,17ꢄSLQ  
&'7)ꢐꢄ  
&2817'2:1ꢄ  
7,0(5ꢄ)/$*  
WRꢄLQWHUIDFHꢐꢄ  
UHDGꢄ&'7)  
:'B&'>ꢀꢐꢋ@ꢄ ꢄꢋꢀ  
&'7,(  
&2817'2:1ꢄ  
&2817(5  
6(7  
&/($5  
38/6(ꢄ  
*(1(5$725ꢄꢂꢄ  
75,**(5  
&/($5  
IURPꢄLQWHUIDFHꢐꢄ  
FOHDUꢄ&'7)  
:'7)ꢐꢄ  
WRꢄLQWHUIDFHꢐꢄ  
UHDGꢄ:'7)  
:'B&'>ꢀꢐꢋ@ꢄ ꢄꢋꢋ  
:'B&'>ꢀꢐꢋ@ꢄ ꢄꢋꢀ  
:$7&+'2*ꢄ  
7,0(5ꢄ)/$*  
:$7&+'2*ꢄ  
&2817(5  
6(7  
&/($5  
0&8ꢄORDGLQJꢄ  
ZDWFKGRJꢄFRXQWHU  
WRꢄLQWHUIDFHꢐꢄ  
UHDGꢄ$)  
$,(  
76,(  
$)ꢐꢄ$/$50ꢄ  
)/$*  
VHWꢄDODUPꢄ  
IODJꢑꢄ$)  
6(7  
&/($5  
IURPꢄLQWHUIDFHꢐꢄ  
FOHDUꢄ$)  
WRꢄLQWHUIDFHꢐꢄ  
UHDGꢄ76)[  
76)[ꢐꢄ7,0(67$03ꢄ  
)/$*  
VHWꢄWLPHVWDPSꢄ  
IODJꢑꢄ76)[  
6(7  
&/($5  
IURPꢄLQWHUIDFHꢐꢄ  
FOHDUꢄ76)[  
WRꢄLQWHUIDFHꢐꢄ  
UHDGꢄ%)  
%,(  
%)ꢐꢄ%$77(5<ꢄ  
)/$*  
VHWꢄEDWWHU\ꢄ  
IODJꢑꢄ%)  
6(7  
&/($5  
IURPꢄLQWHUIDFHꢐꢄ  
FOHDUꢄ%)  
WRꢄLQWHUIDFHꢐꢄ  
UHDGꢄ%/)  
%/,(  
%/)ꢐꢄ%$77(5<ꢄ  
/2:ꢄ)/$*  
VHWꢄEDWWHU\ꢄ  
ORZꢄIODJꢑꢄ%/)  
6(7  
&/($5  
IURPꢄEDWWHU\ꢄ  
ORZꢄGHWHFWLRQꢄ  
FLUFXLWꢐꢄFOHDUꢄ%)  
ꢁꢁꢂDDJꢁꢄꢁ  
When SI, MI, CDTIE, WD_CD[1:0], AIE, TSIE, BIE, BLIE are all disabled, INT remains high-impedance.  
Fig 27. Interrupt block diagram  
PCF2127 has an interrupt output pin INT which is open-drain, active LOW (requiring a  
pull-up resistor if used). Interrupts may be sourced from different places:  
second or minute timer  
countdown timer  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
54 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
watchdog timer  
alarm  
timestamp  
battery switch-over  
battery low detection  
The control bit TI_TP (register Watchdg_tim_ctl) is used to configure whether the  
interrupts generated from the second/minute timer (flag MSF in register Control_2) and  
the countdown timer (flag CDTF in register Control_2) are pulsed signals or a  
permanently active signal. All the other interrupt sources generate a permanently active  
interrupt signal which follows the status of the corresponding flags. When the interrupt  
sources are all disabled, INT remains high-impedance.  
The flags MSF, CDTF, AF, TSFx, and BF can be cleared by command.  
The flag WDTF is read only. How it can be cleared is explained in Section 8.11.6.  
The flag BLF is read only. It is cleared automatically from the battery low detection  
circuit when the battery is replaced.  
8.13.1 Minute and second interrupts  
Minute and second interrupts are generated by predefined timers. The timers can be  
enabled independently from one another by the bits MI and SI in register Control_1.  
However, a minute interrupt enabled on top of a second interrupt cannot be  
distinguishable since it occurs at the same time.  
The minute/second flag MSF (register Control_2) is set logic 1 when either the seconds or  
the minutes counter increments according to the enabled interrupt (see Table 82). The  
MSF flag can be cleared by command.  
Table 82. Effect of bits MI and SI on pin INT and bit MSF  
MI  
0
SI  
0
Result on INT  
Result on MSF  
no interrupt generated  
an interrupt once per minute  
MSF never set  
1
0
MSF set when minutes  
counter increments  
0
1
1
1
an interrupt once per second  
an interrupt once per second  
MSF set when seconds  
counter increments  
MSF set when seconds  
counter increments  
When MSF is set logic 1:  
If TI_TP is logic 1, the interrupt is generated as a pulsed signal.  
If TI_TP is logic 0, the interrupt is permanently active signal that remains until MSF is  
cleared.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
55 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
VHFRQGVꢄFRXQWHU  
PLQXWHVꢄFRXQWHU  
ꢃꢊ  
ꢃꢍ  
ꢃꢍ  
ꢀꢀ  
ꢋꢋ  
ꢀꢂ  
ꢋꢋ  
ꢋꢀ  
,17ꢄZKHQꢄ6,ꢄHQDEOHG  
06)ꢄZKHQꢄ6,ꢄHQDEOHG  
,17ꢄZKHQꢄRQO\ꢄ0,ꢄHQDEOHG  
06)ꢄZKHQꢄRQO\ꢄ0,ꢄHQDEOHG  
ꢁꢁꢂDDIꢅꢁꢈ  
In this example, bit TI_TP is logic 1 and the MSF flag is not cleared after an interrupt.  
Fig 28. INT example for SI and MI when TI_TP is logic 1  
VHFRQGVꢄFRXQWHU  
PLQXWHVꢄFRXQWHU  
ꢃꢊ ꢃꢍ  
ꢃꢍ ꢋꢋ  
ꢀꢀ ꢀꢂ  
ꢋꢋ ꢋꢀ  
,17ꢄZKHQꢄ6,ꢄHQDEOH  
06)ꢄZKHQꢄ6,ꢄHQDEOH  
,17ꢄZKHQꢄRQO\ꢄ0,ꢄHQDEOHG  
06)ꢄZKHQꢄRQO\ꢄ0,ꢄHQDEOHG  
ꢁꢁꢂDDJꢁꢄꢆ  
In this example, bit TI_TP is logic 0 and the MSF flag is cleared after an interrupt.  
Fig 29. INT example for SI and MI when TI_TP is logic 0  
The pulse generator for the minute/second interrupt operates from an internal 64 Hz clock  
and generates a pulse of 164 seconds in duration.  
8.13.2 Countdown timer interrupts  
The generation of interrupts from the countdown timer is controlled by the CDTIE bit  
(register Control_2).  
The interrupt may be generated as a pulsed signal at every countdown period or as a  
permanently active signal which follows the status of the countdown timer flag CDTF. Bit  
TI_TP is used to control this bit.  
8.13.3 INT pulse shortening  
The pulse generator for the countdown timer interrupt also uses an internal clock, but this  
time it is dependent on the selected source clock for the countdown timer and on the  
countdown value n. As a consequence, the width of the interrupt pulse varies (see  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
56 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Table 83).  
Table 83. INT operation (bit TI_TP = 1)  
Source clock (Hz)  
INT period (s)  
n = 1[1]  
n > 1  
1
1
4096  
64  
8192  
4096  
1
1
128  
64  
1
1
1
64  
64  
1
1
1
60  
64  
64  
[1] n = loaded countdown value. Timer stopped when n = 0.  
If the MSF or CDTF flag (register Control_2) is cleared before the end of the INT pulse,  
then the INT pulse is shortened. This allows the source of a system interrupt to be cleared  
immediately when it is serviced, that is, the system does not have to wait for the  
completion of the pulse before continuing, see Figure 30 and Figure 31. Instructions for  
clearing bit MSF and bit CDTF can be found in Section 8.11.6.  
VHFRQGVꢄFRXQWHU  
06)  
ꢃꢊ  
ꢃꢍ  
,17  
ꢅꢀꢆ  
6&/  
ꢊWKꢄFORFN  
LQVWUXFWLRQ  
&/($5ꢄ,16758&7,21  
ꢁꢁꢂDDIꢅꢁꢊ  
(1) Indicates normal duration of INT pulse.  
The timing shown for clearing bit MSF is also valid for the non-pulsed interrupt mode. That is, when  
TI_TP is logic 0, where the INT pulse may be shortened by setting both bits MI and SI logic 0.  
Fig 30. Example of shortening the INT pulse by clearing the MSF flag  
FRXQWGRZQꢄFRXQWHU  
ꢋꢀ  
Q
&'7)  
,17  
ꢅꢀꢆ  
6&/  
ꢊWKꢄFORFN  
LQVWUXFWLRQ  
&/($5ꢄ,16758&7,21  
ꢁꢁꢂDDIꢅꢁꢅ  
(1) Indicates normal duration of INT pulse.  
The timing shown for clearing CDTF is also valid for the non-pulsed interrupt mode. That is, when  
TI_TP is logic 0, where the INT pulse may be shortened by setting CDTIE logic 0.  
Fig 31. Example of shortening the INT pulse by clearing the CDTF flag  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
57 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.13.4 Watchdog timer interrupts  
The generation of interrupts from the watchdog timer is controlled using the WD_CD[1:0]  
bits (register Watchdg_tim_ctl). The interrupt is generated as an active signal which  
follows the status of the watchdog timer flag WDTF (register Control_2). No pulse  
generation is possible for watchdog timer interrupts.  
The interrupt is cleared when the flag WDTF is reset. WDTF is a read-only bit and cannot  
be cleared by command. Instructions for clearing it can be found in Section 8.11.6.  
8.13.5 Alarm interrupts  
Generation of interrupts from the alarm function is controlled by the bit AIE (register  
Control_2). If AIE is enabled, the INT pin follows the status of bit AF (register Control_2).  
Clearing AF immediately clears INT. No pulse generation is possible for alarm interrupts.  
PLQXWHꢄFRXQWHU  
PLQXWHꢄDODUP  
$)  
ꢌꢌ  
ꢌꢃ  
ꢌꢃ  
,17  
6&/  
ꢊWKꢄFORFN  
LQVWUXFWLRQ  
&/($5ꢄ,16758&7,21  
ꢁꢁꢂDDIꢅꢂꢁ  
Example where only the minute alarm is used and no other interrupts are enabled.  
Fig 32. AF timing diagram  
8.13.6 Timestamp interrupts  
Interrupt generation from the timestamp function is controlled using the TSIE bit (register  
Control_2). If TSIE is enabled, the INT pin follows the status of the flags TSFx. Clearing  
the flags TSFx immediately clears INT. No pulse generation is possible for timestamp  
interrupts.  
8.13.7 Battery switch-over interrupts  
Generation of interrupts from the battery switch-over is controlled by the BIE bit (register  
Control_3). If BIE is enabled, the INT pin follows the status of bit BF in register Control_3  
(see Table 81). Clearing BF immediately clears INT. No pulse generation is possible for  
battery switch-over interrupts.  
8.13.8 Battery low detection interrupts  
Generation of interrupts from the battery low detection is controlled by the BLIE bit  
(register Control_3). If BLIE is enabled, the INT pin follows the status of bit BLF (register  
Control_3). The interrupt is cleared when the battery is replaced (BLF is logic 0) or when  
bit BLIE is disabled (BLIE is logic 0). BLF is read only and therefore cannot be cleared by  
command.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
58 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.14 External clock test mode  
A test mode is available which allows on-board testing. In this mode, it is possible to set  
up test conditions and control the operation of the RTC.  
The test mode is entered by setting bit EXT_TEST logic 1 (register Control_1). Then  
pin CLKOUT becomes an input. The test mode replaces the internal clock signal (64 Hz)  
with the signal applied to pin CLKOUT. Every 64 positive edges applied to pin CLKOUT  
generate an increment of one second.  
The signal applied to pin CLKOUT should have a minimum pulse width of 300 ns and a  
maximum period of 1000 ns. The internal clock, now sourced from CLKOUT, is divided  
down by a 26 divider chain called prescaler (see Table 84). The prescaler can be set into a  
known state by using bit STOP. When bit STOP is logic 1, the prescaler is reset to 0.  
STOP must be cleared before the prescaler can operate again.  
From a stop condition, the first 1 second increment will take place after 32 positive edges  
on pin CLKOUT. Thereafter, every 64 positive edges cause a 1 second increment.  
Remark: Entry into test mode is not synchronized to the internal 64 Hz clock. When  
entering the test mode, no assumption as to the state of the prescaler can be made.  
Operating example:  
1. Set EXT_TEST test mode (register Control_1, EXT_TEST is logic 1).  
2. Set bit STOP (register Control_1, STOP is logic 1).  
3. Set time registers to desired value.  
4. Clear STOP (register Control_1, STOP is logic 0).  
5. Apply 32 clock pulses to CLKOUT.  
6. Read time registers to see the first change.  
7. Apply 64 clock pulses to CLKOUT.  
8. Read time registers to see the second change.  
Repeat 7 and 8 for additional increments.  
8.15 STOP bit function  
The function of the STOP bit is to allow for accurate starting of the time circuits. STOP  
causes the upper part of the prescaler (F9 to F14) to be held in reset and thus no 1 Hz ticks  
are generated. The time circuits can then be set and will not increment until the STOP bit  
is released. STOP doesn't affect the CLKOUT signal but the output of the prescaler in the  
range of 32 Hz to 1 Hz (see Figure 33).  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
59 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
/2:(5ꢄ35(6&$/(5  
833(5ꢄ35(6&$/(5  
ꢀꢂꢊꢄ+]  
ꢌꢋꢍꢉꢄ+]  
ꢇꢂꢈꢉꢊꢄ+]  
ꢀꢉꢇꢊꢌꢄ+]  
ꢊꢀꢍꢂꢄ+]  
ꢉꢌꢄ+]  
)
)
)
)
)
)
)
)
ꢀꢌ  
ꢀꢋ  
ꢀꢇ  
ꢀꢄ+]ꢄWLFN  
26&  
5(6  
5(6  
5(6  
5(6  
VWRS  
ꢁꢁꢂDDMꢃꢉꢆ  
Fig 33. STOP bit functional diagram  
The lower stages of the prescaler, F0 to F8, are not reset and because the I2C-bus and the  
SPI-bus are asynchronous to the crystal oscillator, the accuracy of restarting the time  
circuits is between 0 and one 64 Hz cycle (0.484375 s and 0.500000 s), see Table 84 and  
Figure 34.  
Table 84. First increment of time circuits after stop release  
Bit  
Prescaler bits[1]  
1 Hz tick  
Time  
Comment  
STOP  
F0 to F8 - F9 to F14  
hh:mm:ss  
Clock is running normally  
0
010000111-010100  
12:45:12  
prescaler counting normally  
STOP bit is activated by user. F0 to F8 are not reset and values cannot be predicted externally  
1
xxxxxxxxx-000000  
12:45:12  
prescaler is reset; time circuits are frozen  
prescaler is reset; time circuits are frozen  
prescaler is now running  
New time is set by user  
1
xxxxxxxxx-000000  
08:00:00  
STOP bit is released by user  
0
0
0
0
:
xxxxxxxxx-000000  
xxxxxxxxx-100000  
xxxxxxxxx-100000  
xxxxxxxxx-110000  
:
08:00:00  
08:00:00  
08:00:00  
08:00:00  
:
0
0
0
:
111111111-111110  
000000000-000001  
100000000-000001  
:
08:00:00  
08:00:01  
08:00:01  
:
0 to 1 transition of F14 increments the time circuits  
0
0
0
:
111111111-111111  
000000000-000000  
100000000-000000  
:
08:00:01  
08:00:01  
:
0
0
111111111-111110  
000000000-000001  
08:00:01  
08:00:02  
0 to 1 transition of F14 increments the time circuits  
ꢁꢁꢂDDMꢉꢄꢅ  
[1] F0 is clocked at 32.768 kHz.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
60 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
ꢉꢌꢄ+]  
VWRSꢄUHOHDVHG  
ꢋꢄPVꢄꢏꢄꢀꢃꢁꢉꢂꢃꢄPVꢄ  
ꢁꢁꢂDDMꢃꢉꢃ  
Fig 34. STOP bit release timing  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
61 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
9. Interfaces  
The PCF2127 has an I2C-bus or SPI-bus interface using the same pins. The selection is  
done using the interface selection pin IFS (see Table 85).  
Table 85. Interface selection input pin IFS  
Pin  
Connection  
VSS  
Bus interface  
SPI-bus  
I2C-bus  
Reference  
Section 9.1  
Section 9.2  
IFS  
BBS  
9
''  
9
''  
5
38  
5
38  
6&/  
6',  
6&/  
6'$  
6'2  
&(  
9
6&/  
6',  
''  
9
''  
6&/  
6',  
6'2  
%%6  
6'$ꢎ&(  
,)6  
6'2  
%%6  
3&)ꢀꢁꢀꢂ  
6'$ꢎ&(  
,)6  
3&)ꢀꢁꢀꢂ  
9
66  
9
66  
9
9
66  
66  
DDDꢀꢁꢂꢃꢄꢅꢇ  
DDDꢀꢁꢂꢃꢄꢅꢄ  
To select the SPI-bus interface, pin IFS has to be  
connected to pin VSS  
To select the I2C-bus interface, pin IFS has to be  
connected to pin BBS.  
.
a. SPI-bus interface selection  
b. I2C-bus interface selection  
Fig 35. Interface selection  
9.1 SPI-bus interface  
Data transfer to and from the device is made by a 3 line SPI-bus (see Table 86). The data  
lines for input and output are split. The data input and output line can be connected  
together to facilitate a bidirectional data bus (see Figure 36). The SPI-bus is initialized  
whenever the chip enable line pin SDA/CE is inactive.  
6',  
6',  
6'2  
6'2  
WZRꢄZLUHꢄPRGH  
VLQJOHꢄZLUHꢄPRGH  
ꢁꢁꢂDDLꢈꢇꢁ  
Fig 36. SDI, SDO configurations  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
62 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Table 86. Serial interface  
Symbol Function  
Description  
[1]  
SDA/CE chip enable input;  
active LOW  
when HIGH, the interface is reset;  
input may be higher than VDD  
when SDA/CE is HIGH, input may float;  
input may be higher than VDD  
when SDA/CE is HIGH, input may float;  
SCL  
serial clock input  
SDI  
serial data input  
input may be higher than VDD  
;
input data is sampled on the rising edge of  
SCL  
SDO  
serial data output  
push-pull output;  
drives from VSS to Voper(int) (VBBS);  
output data is changed on the falling edge of  
SCL  
[1] The chip enable must not be wired permanently LOW.  
9.1.1 Data transmission  
The chip enable signal is used to identify the transmitted data. Each data transfer is a  
whole byte, with the Most Significant Bit (MSB) sent first.  
The transmission is controlled by the active LOW chip enable signal SDA/CE. The first  
byte transmitted is the command byte. Subsequent bytes are either data to be written or  
data to be read (see Figure 37).  
GDWDꢄEXV  
6'$ꢎ&(  
&200$1'  
'$7$  
'$7$  
'$7$  
ꢁꢂꢃDDDꢃꢂꢂ  
Fig 37. Data transfer overview  
The command byte defines the address of the first register to be accessed and the  
read/write mode. The address counter will auto increment after every access and will  
reset to zero after the last valid register is accessed. The R/W bit defines if the following  
bytes are read or write information.  
Table 87. Command byte definition  
Bit  
Symbol  
Value  
Description  
7
R/W  
data read or write selection  
write data  
0
1
read data  
6 to 5 SA  
4 to 0 RA  
01  
subaddress;  
other codes will cause the device to ignore  
data transfer  
00h to 1Dh  
register address  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
63 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
5ꢎ:  
6$  
DGGUꢄꢋꢇK  
VHFRQGVꢄGDWDꢄꢌꢃ  
PLQXWHVꢄGDWDꢄꢀꢋ  
%&'  
%&'  
Eꢈꢄ Eꢉꢄ Eꢃꢄ Eꢌꢄ Eꢇꢄ Eꢂꢄ Eꢀꢄ Eꢋꢄ Eꢈꢄ Eꢉꢄ Eꢃꢄ Eꢌꢄ Eꢇꢄ Eꢂꢄ Eꢀꢄ Eꢋꢄ Eꢈꢄ Eꢉꢄ Eꢃꢄ Eꢌꢄ Eꢇꢄ Eꢂꢄ Eꢀꢄ Eꢋꢄ  
6&/  
6',  
6'$ꢎ&(  
DGGUHVVꢄ  
FRXQWHU  
[[  
ꢋꢇ  
ꢋꢌ  
ꢋꢃ  
ꢁꢁꢂDDMꢃꢉꢊ  
In this example, the Seconds register is set to 45 seconds and the Minutes register to 10 minutes.  
a. Writing seconds and minutes  
5ꢎ:  
6$  
UHJLVWHUꢄDGGUHVVꢄꢀ$K  
GDWDꢄꢋK  
GDWDꢄꢋꢂK  
Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ  
6&/  
6',  
6'2  
6'$ꢎ&(  
5ꢎ:  
6$  
DGGUꢄꢀ&K  
ꢋꢄWRꢄQꢄGDWDꢄE\WHV  
Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ  
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
6&/  
6',  
6'2  
6'$ꢎ&(  
DDDꢀꢁꢂꢉꢉꢉꢃ  
b. Writing to RAM address 02h  
Fig 38. SPI-bus write examples  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
64 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
5ꢎ:  
6$  
DGGUꢄꢋꢊK  
PRQWKVꢄGDWDꢄꢀꢀ  
\HDUVꢄGDWDꢄꢋꢉ  
%&'  
%&'  
Eꢈꢄ Eꢉꢄ Eꢃꢄ Eꢌꢄ Eꢇꢄ Eꢂꢄ Eꢀꢄ Eꢋꢄ Eꢈꢄ Eꢉꢄ Eꢃꢄ Eꢌꢄ Eꢇꢄ Eꢂꢄ Eꢀꢄ Eꢋꢄ Eꢈꢄ Eꢉꢄ Eꢃꢄ Eꢌꢄ Eꢇꢄ Eꢂꢄ Eꢀꢄ Eꢋꢄ  
6&/  
6',  
6'2  
6'$ꢎ&(  
DGGUHVVꢄ  
FRXQWHU  
[[  
ꢋꢊ  
ꢋꢍ  
ꢋ$  
ꢁꢁꢂDDMꢃꢉꢅ  
In this example, the registers Months and Years are read. The pins SDI and SDO are not connected together. For this  
configuration, it is important that pin SDI is never left floating. It must always be driven either HIGH or LOW. If pin SDI is left  
open, high IDD currents may result.  
a. Reading month and year  
5ꢎ:  
6$  
UHJLVWHUꢄDGGUHVVꢄꢀ$K  
GDWDꢄꢋꢀK  
GDWDꢄꢋꢂK  
Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ  
6&/  
6',  
6'2  
6'$ꢎ&(  
5ꢎ:  
6$  
DGGUꢄꢀ'K  
ꢋꢄWRꢄQꢄGDWDꢄE\WHV  
Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ Eꢈ Eꢉ Eꢃ Eꢌ Eꢇ Eꢂ Eꢀ Eꢋ  
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
6&/  
6',  
6'2  
6'$ꢎ&(  
DDDꢀꢁꢂꢉꢉꢉꢆ  
b. Reading from RAM address 12h  
Fig 39. SPI-bus read examples  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
65 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
9.2 I2C-bus interface  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines are  
connected to a positive supply by a pull-up resistor. Data transfer is initiated only when the  
bus is not busy.  
9.2.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line remains  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
are interpreted as control signals (see Figure 40).  
6'$  
6&/  
GDWDꢄOLQHꢄ  
VWDEOHꢕꢄ  
FKDQJHꢄ  
RIꢄGDWDꢄ  
DOORZHG  
GDWDꢄYDOLG  
PEFꢇꢆꢂ  
Fig 40. Bit transfer  
9.2.2 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line, while the clock is HIGH, is defined as the START condition S.  
A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition P (see Figure 41).  
6'$  
6&/  
6'$  
6&/  
6
3
67$57ꢄFRQGLWLRQ  
6723ꢄFRQGLWLRQ  
PEFꢆꢆ  
Fig 41. Definition of START and STOP conditions  
Remark: For the PCF2127, a repeated START is not allowed. Therefore a STOP has to  
be released before the next START.  
9.2.3 System configuration  
A device generating a message is a transmitter; a device receiving a message is the  
receiver. The device that controls the message is the master; and the devices which are  
controlled by the master are the slaves.  
The PCF2127 can act as a slave transmitter and a slave receiver.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
66 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
6'$  
6&/  
0$67(5ꢄ  
75$160,77(5ꢄ  
5(&(,9(5  
6/$9(ꢄ  
75$160,77(5ꢄ  
5(&(,9(5  
0$67(5ꢄ  
75$160,77(5ꢄ  
5(&(,9(5  
6/$9(ꢄ  
0$67(5ꢄ  
5(&(,9(5  
75$160,77(5  
PEDꢇꢁꢈ  
Fig 42. System configuration  
9.2.4 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
cycle.  
A slave receiver which is addressed must generate an acknowledge after the  
reception of each byte.  
Also a master receiver must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be considered).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
Acknowledgement on the I2C-bus is illustrated in Figure 43.  
GDWDꢄRXWSXWꢄ  
E\ꢄWUDQVPLWWHU  
QRWꢄDFNQRZOHGJH  
GDWDꢄRXWSXWꢄ  
E\ꢄUHFHLYHU  
DFNQRZOHGJH  
6&/ꢄIURPꢄ  
PDVWHU  
6
FORFNꢄSXOVHꢄIRUꢄ  
67$57ꢄ  
FRQGLWLRQ  
DFNQRZOHGJHPHQW  
PEFꢇꢁꢆ  
Fig 43. Acknowledgement on the I2C-bus  
9.2.5 I2C-bus protocol  
After a start condition, a valid hardware address has to be sent to a PCF2127 device. The  
appropriate I2C-bus slave address is 1010001. The entire I2C-bus slave address byte is  
shown in Table 88.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
67 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Table 88. I2C slave address byte  
Slave address  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
1
0
1
0
0
0
1
The R/W bit defines the direction of the following single or multiple byte data transfer (read  
is logic 1, write is logic 0).  
For the format and the timing of the START condition (S), the STOP condition (P), and the  
acknowledge (A) refer to the I2C-bus specification Ref. 13 “UM10204” and the  
characteristics table (Table 93). In the write mode, a data transfer is terminated by sending  
a STOP condition. A repeated START (Sr) condition is not applicable.  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
6
$
$
$
3
6
VODYHꢄDGGUHVV  
UHJLVWHUꢄDGGUHVV  
ꢋꢋKꢄWRꢄꢀ'K  
ꢋꢄWRꢄQꢄꢅGDWDꢄE\WHV  
SOXVꢄ$&.ꢆ  
ZULWHꢄELW  
6723  
67$57  
DDDꢀꢁꢂꢃꢄꢅꢊ  
Fig 44. Bus protocol, writing to registers  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
VHWꢄUHJLVWHU  
6
6
$
$
3
DGGUHVV  
VODYHꢄDGGUHVV  
UHJLVWHUꢄDGGUHVV  
ꢋꢋKꢄWRꢄꢀ'K  
ZULWHꢄELW  
6723  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
DFNQRZOHGJH  
IURPꢄPDVWHU  
QRꢄDFNQRZOHGJH  
/$67ꢄ'$7$ꢄ%<7(ꢄ  
UHDGꢄUHJLVWHU  
GDWD  
$
'$7$ꢄ%<7(  
$
$
3
VODYHꢄDGGUHVV  
ꢋꢄWRꢄQꢄꢅGDWDꢄE\WHV  
SOXVꢄ$&.ꢆꢄ  
UHDGꢄELW  
DDDꢀꢁꢁꢈꢃꢁꢁ  
Fig 45. Bus protocol, reading from registers  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
68 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
6
$
UHJLVWHUꢄDGGUHVVꢄꢀ$K  
$
VODYHꢄDGGUHVV  
ZULWHꢄELW  
VHWꢄ5$0  
DGGUHVV  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
GDWDꢄE\WHꢄꢀ$K  
$
GDWDꢄE\WHꢄꢀ%K  
$
3
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
5$0ꢄZULWH  
FRPPDQG  
6
$
UHJLVWHUꢄDGGUHVVꢄꢀ&K  
$
VODYHꢄDGGUHVV  
ZULWHꢄELW  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
ZULWHꢄGDWD  
WRꢄ5$0  
GDWDꢄE\WHꢄꢅ5$0ꢄDGGUHVVꢆ  
$
3
ꢋꢄWRꢄQꢄꢅGDWDꢄE\WHV  
SOXVꢄ$&.ꢆ  
DDDꢀꢁꢁꢈꢃꢁꢆ  
Fig 46. Bus protocol, writing to RAM  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
69 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
6
$
UHJLVWHUꢄDGGUHVVꢄꢀ$K  
$
VODYHꢄDGGUHVV  
ZULWHꢄELW  
VHWꢄ5$0  
DGGUHVV  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
GDWDꢄE\WHꢄꢀ$K  
$
GDWDꢄE\WHꢄꢀ%K  
$
3
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
5$0  
UHDGꢄFRPPDQG  
6
6
$
UHJLVWHUꢄDGGUHVVꢄꢀ'K  
$
3
VODYHꢄDGGUHVV  
ZULWHꢄELW  
DFNQRZOHGJH  
IURPꢄ3&)ꢂꢀꢂꢈ  
DFNQRZOHGJH  
IURPꢄPDVWHU  
$
GDWDꢄE\WH  
$
UHDGꢄGDWD  
IURPꢄ5$0  
VODYHꢄDGGUHVV  
ꢋꢄWRꢄQꢄꢅGDWDꢄE\WHV  
SOXVꢄ$&.ꢆ  
UHDGꢄELW  
QRꢄDFNQRZOHGJH  
ODVWꢄGDWDꢄE\WH  
$
3
DDDꢀꢁꢁꢈꢃꢁꢃ  
Fig 47. Bus protocol, reading from RAM  
9.3 Bus communication and battery backup operation  
To save power during battery backup operation (see Section 8.6.1), the bus interfaces are  
inactive. Therefore the communication via I2C- or SPI-bus should be terminated before  
the supply of the PCF2127 is switched from VDD to VBAT  
.
The extra power fail detection function (see Section 8.6.3) of the PCF2127 allows early  
detection of a dropping VDD. The output on pin PFO indicates to the microcontroller to  
terminate the bus communication properly. When the bus communication is not  
terminated in a proper way, the time counters get corrupted.  
Remark: If the I2C-bus communication was terminated uncontrolled, the I2C-bus has to  
be reinitialized by sending a STOP followed by a START after the device switched back  
from battery backup operation to VDD supply operation.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
70 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
10. Internal circuitry  
9
9
''  
6&/  
6',  
%$7  
%%6  
6'2  
,17  
567  
3),  
6'$ꢎ&(  
,)6  
76  
&/.287  
3)2  
9
7(67  
66  
3&)ꢀꢁꢀꢂ  
DDDꢀꢁꢂꢉꢃꢅꢁ  
Fig 48. Device diode protection diagram of PCF2127  
11. Safety notes  
CAUTION  
This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling  
electrostatic sensitive devices.  
Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or  
equivalent standards.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
71 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
12. Limiting values  
Table 89. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
0.5  
50  
0.5  
10  
0.5  
10  
10  
0.5  
-
Max  
+6.5  
+50  
Unit  
V
VDD  
IDD  
Vi  
supply voltage  
supply current  
input voltage  
input current  
output voltage  
output current  
mA  
V
+6.5  
+10  
II  
mA  
V
VO  
IO  
+6.5  
+10  
mA  
mA  
V
at pin SDA/CE  
+20  
VBAT  
Ptot  
battery supply voltage  
total power dissipation  
+6.5  
300  
mW  
V
[1]  
[2]  
[3]  
[4]  
VESD  
electrostatic  
discharge voltage  
HBM  
CDM  
-
4000  
1250  
200  
-
V
Ilu  
latch-up current  
-
mA  
C  
C  
Tstg  
Tamb  
storage temperature  
55  
40  
+85  
ambient temperature operating device  
+85  
[1] Pass level; Human Body Model (HBM) according to Ref. 7 “JESD22-A114”.  
[2] Pass level; Charged-Device Model (CDM), according to Ref. 8 “JESD22-C101”.  
[3] Pass level; latch-up testing according to Ref. 9 “JESD78” at maximum ambient temperature (Tamb(max)).  
[4] According to the store and transport requirements (see Ref. 14 “UM10569”) the devices have to be stored at a temperature of +8 C to  
+45 C and a humidity of 25 % to 75 %.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
72 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
13. Static characteristics  
Table 90. Static characteristics  
VDD = 1.8 V to 4.2 V; VSS = 0 V; Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supplies  
VDD  
[1]  
supply voltage  
1.8  
1.8  
-
-
4.2  
4.2  
-
V
V
V
VBAT  
battery supply voltage  
-
VDD(cal)  
calibration supply  
voltage  
3.3  
Vlow  
IDD  
low voltage  
-
1.2  
-
V
supply current  
interface active;  
supplied by VDD  
SPI-bus (fSCL = 6.5 MHz)  
I2C-bus (fSCL = 400 kHz)  
-
-
-
-
800  
200  
A  
A  
interface inactive (fSCL = 0 Hz)[2];  
TCR[1:0] = 00 (see Table 13 on page 12)  
PWRMNG[2:0] = 111 (see Table 25 on page 18);  
TSOFF = 1 (see Table 68 on page 50);  
COF[2:0] = 111 (see Table 15 on page 14)  
VDD = 1.8 V  
VDD = 3.3 V  
VDD = 4.2 V  
-
-
-
470  
700  
800  
-
nA  
nA  
nA  
1500  
-
PWRMNG[2:0] = 111 (see Table 25 on page 18);  
TSOFF = 1 (see Table 68 on page 50);  
COF[2:0] = 000 (see Table 15 on page 14)  
VDD = 1.8 V  
VDD = 3.3 V  
VDD = 4.2 V  
-
-
-
560  
-
-
-
nA  
nA  
nA  
850  
1050  
PWRMNG[2:0] = 000 (see Table 25 on page 18);  
TSOFF = 0 (see Table 68 on page 50);  
COF[2:0] = 111 (see Table 15 on page 14)  
[3]  
VDD or VBAT = 1.8 V  
VDD or VBAT = 3.3 V  
VDD or VBAT = 4.2 V  
-
-
-
1750  
2150  
2350  
-
nA  
nA  
nA  
[3]  
[3]  
-
3500  
PWRMNG[2:0] = 000 (see Table 25 on page 18);  
TSOFF = 0 (see Table 68 on page 50);  
COF[2:0] = 000 (see Table 15 on page 14)  
[3]  
VDD or VBAT = 1.8 V  
VDD or VBAT = 3.3 V  
VDD or VBAT = 4.2 V  
-
-
-
-
1840  
2300  
2600  
50  
-
nA  
nA  
nA  
nA  
[3]  
[3]  
-
-
IL(bat)  
battery leakage  
current  
VDD is active supply;  
VBAT = 3.0 V  
100  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
73 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Table 90. Static characteristics …continued  
VDD = 1.8 V to 4.2 V; VSS = 0 V; Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Power management  
Vth(sw)bat battery switch  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
-
2.5  
-
V
threshold voltage  
Vth(bat)low  
low battery threshold  
voltage  
-
2.5  
-
-
V
V
V
Tamb = 25 C  
2.25  
-
2.85  
-
Vth(PFI)  
threshold voltage on  
pin PFI  
1.25  
Inputs[4]  
VI  
input voltage  
0.5  
-
-
-
VDD + 0.5  
0.25VDD  
0.3VDD  
V
V
V
VIL  
LOW-level input  
voltage  
-
-
Tamb = 20 C to +85 C;  
VDD > 2.0 V  
VIH  
ILI  
HIGH-level input  
voltage  
0.7VDD  
-
-
V
input leakage current VI = VDD or VSS  
post ESD event  
-
0
-
-
A  
A  
pF  
1  
-
+1  
7
[5]  
Ci  
input capacitance  
-
Outputs  
VO  
output voltage  
on pins CLKOUT, INT, RST and  
PFO, referring to external pull-up  
0.5  
-
5.5  
4.2  
V
on pin BBS  
1.8  
-
-
-
-
V
V
V
V
on pin SDO  
0.5  
0.8VDD  
VSS  
VDD + 0.5  
VOH  
VOL  
HIGH output voltage  
LOW output voltage  
on pin SDO  
VDD  
on pins CLKOUT, INT, RST,  
SDO, and PFO  
0.2VDD  
IOL  
LOW-level output  
current  
output sink current;  
VOL = 0.4 V  
[6]  
on pin SDA/CE  
3
17  
-
-
-
-
mA  
mA  
mA  
on all other outputs  
1.0  
1.0  
IOH  
HIGH-level output  
current  
output source current;  
on pin SDO;  
-
VOH = 3.8 V;  
V
DD = 4.2 V  
ILO  
output leakage current VO = VDD or VSS  
post ESD event  
-
0
-
-
A  
A  
1  
+1  
[1] For reliable oscillator start-up at power-on: VDD(po)min = VDD(min) + 0.3 V.  
[2] Timer source clock = 1  
60 Hz, level of pins SDA/CE, SDI, and SCL is VDD or VSS  
.
[3] When the device is supplied by the VBAT pin instead of the VDD pin, the current values for IBAT are as specified for IDD under the same  
conditions.  
[4] The I2C-bus and SPI-bus interfaces of PCF2127 are 5 V tolerant.  
[5] Tested on sample basis.  
[6] For further information, see Figure 49.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
74 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
13.1 Current consumption characteristics, typical  
ꢁꢁꢂDDOꢄꢇꢃ  
ꢂꢂ  
,
2/  
ꢅP$ꢆ  
ꢀꢊ  
ꢀꢌ  
ꢀꢋ  
ꢀꢁꢃ  
ꢂꢁꢃ  
ꢇꢁꢃ  
ꢌꢁꢃ  
9
ꢄꢅ9ꢆ  
''  
Typical value; VOL = 0.4 V.  
Fig 49. IOL on pin SDA/CE  
ꢁꢁꢂDDMꢉꢃꢆ  
ꢂꢁꢋ  
,
''  
ꢅ—$ꢆ  
ꢀꢁꢉ  
ꢀꢁꢂ  
ꢋꢁꢊ  
ꢋꢁꢌ  
9
9
ꢄ ꢄꢇꢄ9  
ꢄ ꢄꢂꢄ9  
''  
''  
 ꢌꢋ  
 ꢂꢋ  
ꢂꢋ  
ꢌꢋ  
ꢉꢋ  
ꢊꢋ  
ꢀꢋꢋ  
7HPSHUDWXUHꢄꢅƒ&ꢆ  
CLKOUT disabled; PWRMNG[2:0] = 111; TSOFF = 1; TS input floating.  
Fig 50. IDD as a function of temperature  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
75 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
ꢁꢁꢂDDMꢉꢃꢃ  
ꢂꢁꢋ  
,
''  
ꢅ—$ꢆ  
ꢀꢁꢉ  
ꢀꢁꢂ  
ꢋꢁꢊ  
ꢋꢁꢌ  
&/.287ꢄHQDEOHGꢄDWꢄ  
ꢇꢂꢄN+]ꢄ  
&/.287ꢄ2))ꢄ  
ꢀꢁꢊ  
ꢂꢁꢂ  
ꢂꢁꢉ  
ꢇꢁꢋ  
ꢇꢁꢌ  
ꢇꢁꢊ  
ꢌꢁꢂ  
9
ꢄꢅ9ꢆ  
''  
a. PWRMNG[2:0] = 111; TSOFF = 1; Tamb = 25 C; TS input floating  
ꢁꢁꢂDDMꢉꢃꢉ  
ꢌꢁꢋ  
,
''  
ꢅ—$ꢆ  
ꢇꢁꢂ  
&/.287ꢄHQDEOHGꢄDWꢄ  
ꢇꢂꢄN+]  
ꢂꢁꢌ  
ꢀꢁꢉ  
ꢋꢁꢊ  
&/.287ꢄ2))  
ꢀꢁꢊ  
ꢂꢁꢂ  
ꢂꢁꢉ  
ꢇꢁꢋ  
ꢇꢁꢌ  
ꢇꢁꢊ  
ꢌꢁꢂ  
9
ꢄꢅ9ꢆ  
''  
b. PWRMNG[2:0] = 000; TSOFF = 0; Tamb = 25 C; TS input floating  
Fig 51. IDD as a function of VDD  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
76 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
,
''  
ꢅꢉꢆ  
ꢅꢉꢆ  
ꢅ—$ꢆ  
ꢅꢉꢆ  
ꢅꢇꢆ  
ꢅꢉꢆ  
ꢅꢉꢆ  
ꢂꢁꢃ  
ꢅꢃꢆ  
ꢅꢃꢆ  
ꢅꢃꢆ  
ꢅꢂꢆ  
ꢅꢃꢆ  
ꢅꢃꢆ  
ꢀꢁꢃ  
ꢅꢌꢆ  
ꢅꢌꢆ  
ꢅꢀꢆ  
ꢅꢌꢆ  
ꢅꢌꢆ  
ꢅꢌꢆ  
ꢅꢉꢆ  
ꢅꢃꢆ  
ꢅꢇꢆ  
ꢅꢂꢆ  
ꢅꢌꢆ  
ꢅꢀꢆ  
ꢋꢁꢃ  
ꢀꢀꢀ  
ꢀꢀꢋ  
ꢀꢋꢀ  
ꢀꢋꢋ  
ꢋꢀꢀ  
ꢋꢀꢋ  
ꢋꢋꢀ  
ꢋꢋꢋ  
3:50*>ꢂꢐꢋ@  
DDDꢀꢁꢂꢃꢊꢄꢄ  
Interface inactive; Tamb = 25 C; VBAT = 0 V; default configuration.  
Description of the PWRMNG[2:0] settings, see Table 25 on page 18.  
(1)  
VDD = 1.8 V.  
(2) VDD = 3.3 V.  
(3) VDD = 4.2 V.  
(4)  
VDD or VBAT = 1.8 V.  
(5) VDD or VBAT = 3.3 V.  
(6) VDD or VBAT = 4.2 V.  
Fig 52. Typical IDD as a function of the power management settings  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
77 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
13.2 Frequency characteristics  
Table 91. Frequency characteristics  
VDD = 1.8 V to 4.2 V; VSS = 0 V; Tamb = +25 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fo  
output frequency  
on pin CLKOUT;  
-
32.768  
-
kHz  
V
DD or VBAT = 3.3 V;  
COF[2:0] = 000;  
AO[3:0] = 1000  
f/f  
frequency stability  
VDD or VBAT = 3.3 V  
PCF2127AT  
Tamb = 15 C to +60 C  
-
-
3  
5  
5  
ppm  
ppm  
Tamb = 25 C to 15 C  
and  
10  
Tamb = +60 C to +65 C  
PCF2127T  
[1][2]  
[1][2]  
T
amb = 30 C to +80 C  
-
-
3  
5  
8  
ppm  
ppm  
Tamb = 40 C to 30 C  
and  
15  
Tamb = +80 C to +85 C  
[3]  
fxtal/fxtal  
relative crystal  
frequency variation  
crystal aging  
PCF2127AT  
first year;  
-
-
3  
ppm  
VDD or VBAT = 3.3 V  
PCF2127T  
first year  
-
-
-
-
3  
8  
-
ppm  
ten years  
-
ppm  
f/V  
frequency variation  
with voltage  
on pin CLKOUT  
1  
ppm/V  
[1] 1 ppm corresponds to a time deviation of 0.0864 seconds per day.  
[2] Only valid if CLKOUT frequencies are not equal to 32.768 kHz or if CLKOUT is disabled.  
[3] Not production tested. Effects of reflow soldering are included (see Ref. 3 “AN11266”).  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
78 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
ꢁꢂꢃDDDꢈꢅꢃ  
ꢌꢋ  
)UHTXHQF\  
VWDELOLW\  
ꢅSSPꢆ  
“ꢄꢃꢄSSP  
“ꢄꢇꢄSSP  
“ꢄꢃꢄSSP  
ꢏꢌꢋ  
ꢏꢊꢋ  
ꢅꢀꢆ  
ꢅꢂꢆ  
ꢏꢌꢋ  
ꢏꢂꢋ  
ꢂꢋ  
ꢌꢋ  
ꢉꢋ  
ꢊꢋ  
ꢀꢋꢋ  
7HPSHUDWXUHꢄꢅƒ&ꢆ  
(1) Typical temperature compensated frequency response.  
(2) Uncompensated typical tuning-fork crystal frequency.  
Fig 53. Typical characteristic of frequency with respect to temperature of PCF2127AT  
ꢁꢂꢃDDDꢃꢉꢈ  
ꢌꢋ  
)UHTXHQF\  
VWDELOLW\  
ꢅSSPꢆ  
“ꢄꢃꢄSSP  
“ꢄꢇꢄSSP  
“ꢄꢃꢄSSP  
ꢏꢌꢋ  
ꢏꢊꢋ  
ꢅꢀꢆ  
ꢅꢂꢆ  
ꢏꢌꢋ  
ꢏꢂꢋ  
ꢂꢋ  
ꢌꢋ  
ꢉꢋ  
ꢊꢋ  
ꢀꢋꢋ  
7HPSHUDWXUHꢄꢅƒ&ꢆ  
(1) Typical temperature compensated frequency response.  
(2) Uncompensated typical tuning-fork crystal frequency.  
Fig 54. Typical characteristic of frequency with respect to temperature of PCF2127T  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
79 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
14. Dynamic characteristics  
14.1 SPI-bus timing characteristics  
Table 92. SPI-bus characteristics  
DD = 1.8 V to 4.2 V; VSS = 0 V; Tamb = 40 C to +85 C, unless otherwise specified. All timing values are valid within the  
V
operating supply voltage at ambient temperature and referenced to VIL and VIH with an input voltage swing of VSS to VDD (see  
Figure 55).  
Symbol  
Parameter  
Conditions  
VDD = 1.8 V  
VDD = 4.2 V  
Unit  
Min  
Max  
Min  
Max  
Pin SCL  
fclk(SCL)  
SCL clock frequency register read/write access  
RAM write access  
-
2.0  
-
6.5  
MHz  
MHz  
MHz  
ns  
-
2.0  
-
6.5  
RAM read access  
-
1.11  
-
6.25  
tSCL  
SCL time  
register read/write access  
RAM write access  
RAM read access  
register read/write access  
RAM write access  
RAM read access  
register read/write access  
RAM write access  
RAM read access  
for SCL signal  
800  
800  
900  
100  
100  
450  
400  
400  
450  
-
-
140  
140  
160  
70  
70  
80  
70  
70  
80  
-
-
-
-
ns  
-
-
ns  
tclk(H)  
clock HIGH time  
clock LOW time  
-
-
ns  
-
-
ns  
-
-
ns  
tclk(L)  
-
-
ns  
-
-
ns  
-
-
ns  
tr  
rise time  
fall time  
100  
100  
100  
100  
ns  
tf  
for SCL signal  
-
-
ns  
Pin SDA/CE  
tsu(CE_N)  
th(CE_N)  
trec(CE_N)  
tw(CE_N)  
Pin SDI  
tsu  
CE_N set-up time  
CE_N hold time  
60  
40  
100  
-
-
30  
25  
30  
-
-
ns  
ns  
ns  
s
-
-
CE_N recovery time  
CE_N pulse width  
-
-
0.99  
0.99  
set-up time  
hold time  
set-up time for SDI data  
hold time for SDI data  
70  
70  
-
-
20  
20  
-
-
ns  
ns  
th  
Pin SDO  
td(R)SDO  
SDO read delay time CL = 50 pF  
register read access  
-
225  
410  
90  
-
-
55  
55  
25  
-
ns  
ns  
ns  
ns  
RAM read access  
-
-
[1]  
tdis(SDO)  
SDO disable time  
-
-
tt(SDI-SDO) transition time from  
SDI to SDO  
to avoid bus conflict  
0
0
[1] No load value; bus is held up by bus capacitance; use RC time constant with application values.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
80 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Wꢄ  
Zꢅ&(B1ꢆꢄ  
&(ꢄ  
Wꢄ  
UHFꢅ&(B1ꢆꢄ  
Wꢄ  
Wꢄ  
Uꢄ  
VXꢅ&(B1ꢆꢄ  
Wꢄ  
Iꢄ  
Wꢄ  
Wꢄ  
Kꢅ&(B1ꢆꢄ  
FONꢅ6&/ꢆꢄ  
ꢊꢋꢔꢄ  
6&/ꢄ  
ꢂꢋꢔꢄ  
Wꢄ  
FONꢅ/ꢆꢄ  
Wꢄ  
FONꢅ+ꢆꢄ  
:5,7(ꢄ  
Wꢄ  
VXꢄ  
Wꢄ  
Kꢄ  
6',ꢄ  
5ꢎ:ꢄ  
6$ꢂꢄ  
5$ꢋꢄ  
Eꢈꢄ  
Eꢉꢄ  
Eꢋꢄ  
KLJKꢏ=ꢄ  
6'2ꢄ  
5($'ꢄ  
6',ꢄ  
Eꢈꢄ  
Eꢉꢄ  
Eꢋꢄ  
Wꢄ  
Wꢅ6',ꢏ6'2ꢆꢄ  
Wꢄ  
Gꢅ5ꢆ6'2ꢄ  
Wꢄ  
GLVꢅ6'2ꢆꢄ  
KLJKꢏ=ꢄ  
6'2ꢄ  
Eꢈꢄ  
Eꢉꢄ  
Eꢋꢄ  
ꢁꢂꢃDDDꢂꢈꢆꢋ  
Fig 55. SPI-bus timing  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
81 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
14.2 I2C-bus timing characteristics  
Table 93. I2C-bus characteristics  
All timing characteristics are valid within the operating supply voltage and ambient temperature range and reference to 30 %  
and 70 % with an input voltage swing of VSS to VDD (see Figure 56).  
Symbol  
Parameter  
Standard mode  
Fast-mode (Fm)  
Unit  
Min  
Max  
Min  
Max  
Pin SCL  
fSCL  
SCL clock frequency  
0
100  
0
400  
kHz  
s  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4.0  
-
-
1.3  
0.6  
-
-
tHIGH  
s  
Pin SDA/CE  
tSU;DAT  
tHD;DAT  
data set-up time  
data hold time  
250  
0
-
-
100  
0
-
-
ns  
ns  
Pins SCL and SDA/CE  
tBUF  
bus free time between a STOP  
4.7  
-
1.3  
-
s  
and START condition  
tSU;STO  
tHD;STA  
set-up time for STOP condition  
4.0  
4.0  
-
-
0.6  
0.6  
-
-
s  
s  
hold time (repeated) START  
condition  
tSU;STA  
set-up time for a repeated START  
condition  
4.7  
-
0.6  
-
s  
ns  
ns  
[1][2][3]  
[1][2][3]  
tr  
tf  
rise time of both SDA and SCL  
signals  
-
-
1000  
300  
20 + 0.1Cb  
20 + 0.1Cb  
300  
300  
fall time of both SDA and SCL  
signals  
[4]  
[5]  
[6]  
tVD;ACK  
tVD;DAT  
tSP  
data valid acknowledge time  
data valid time  
0.1  
300  
-
3.45  
-
0.1  
75  
-
0.9  
-
s  
ns  
ns  
pulse width of spikes that must be  
suppressed by the input filter  
50  
50  
[1] A master device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the VIL of the SCL signal) in order to  
bridge the undefined region of the falling edge of SCL.  
[2] Cb is the total capacitance of one bus line in pF.  
[3] The maximum tf for the SDA and SCL bus lines is 300 ns. The maximum fall time for the SDA output stage, tf is 250 ns. This allows  
series protection resistors to be connected between the SDA/CE pin, the SCL pin, and the SDA/SCL bus lines without exceeding the  
maximum tf.  
[4]  
tVD;ACK is the time of the acknowledgement signal from SCL LOW to SDA (out) LOW.  
[5] tVD;DAT is the minimum time for valid SDA (out) data following SCL LOW.  
[6] Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
82 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
67$57ꢄ  
&21',7,21ꢄ  
ꢅ6ꢆ  
%,7ꢄꢈꢄ  
06%ꢄ  
ꢅ$ꢈꢆ  
%,7ꢄꢉꢄ  
ꢅ$ꢉꢆ  
%,7ꢄꢋꢄ  
/6%ꢄ  
ꢅ5ꢎ:ꢆ  
$&.12:/('*(ꢄ  
ꢅ$ꢆ  
6723ꢄ  
&21',7,21ꢄ  
ꢅ3ꢆ  
35272&2/  
W
W
W
+,*+ꢄ  
68ꢕ67$  
/2:ꢄ  
ꢀꢄꢎꢄI  
6&/ꢄ  
6&/  
6'$  
W
W
W
Iꢄ  
%8)ꢄ  
Uꢄ  
W
W
W
W
W
+'ꢕ67$  
68ꢕ'$7  
+'ꢕ'$7ꢄ  
9'ꢕ'$7  
68ꢕ672ꢄ  
PEGꢊꢆꢁ  
Fig 56. I2C-bus timing diagram; rise and fall times refer to 30 % and 70 %  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
83 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
15. Application information  
ꢀꢋꢋꢄQ)  
ꢉꢁꢊꢄ—)  
9
6&/  
6',  
''  
ꢇꢇꢋꢄȍ  
9
''  
,QWHUIDFH  
6'2  
ꢀꢋꢋꢄQ)  
9
%$7  
6'$ꢎ&(  
%%6  
%%6  
, &  
,)6  
%%6  
,17  
63,  
ꢀꢄWRꢄꢀꢋꢋꢄQ)  
76  
,17  
5
5
38  
3&)ꢀꢁꢀꢂ  
9
''  
ꢂꢂꢋꢄNȍ  
&
L
567  
567  
38  
9
''  
5ꢀ  
9
''  
&/.287  
&/.287  
3),  
5
38  
5ꢂ  
9
''  
9
66  
3)2  
3)2  
5
38  
9
''  
7(67  
QꢁFꢁ  
DDDꢀꢁꢂꢉꢇꢉꢉ  
Ci: In case mechanical switches are used, a capacitor of 1 nF is recommended.  
R1, R2: Voltage dividers for setting the power-fail level.  
RPU: For example, 10 k.  
Fig 57. General application diagram  
For information about application configuration, see Ref. 3 “AN11266” on page 92  
16. Test information  
16.1 Quality information  
UL Component Recognition  
This (component or material) is Recognized by UL. Representative samples of this  
component have been evaluated by UL and meet applicable UL requirements.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
84 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
17. Package outline  
62ꢀꢈꢉꢃSODVWLFꢃVPDOOꢃRXWOLQHꢃSDFNDJHꢊꢃꢀꢈꢃOHDGVꢊꢃERG\ꢃZLGWKꢃꢂꢄꢋꢃPPꢃ  
627ꢁꢌꢅꢍꢁꢃ  
'ꢄ  
(ꢄ  
$ꢄ  
;ꢄ  
Fꢄ  
\ꢄ  
+ꢄ  
(ꢄ  
Yꢄ 0ꢄ  
$ꢄ  
=ꢄ  
ꢂꢋꢄ  
ꢀꢀꢄ  
4ꢄ  
$ꢄ  
ꢂꢄ  
$ꢄ  
ꢅ$ꢄꢄꢆꢄ  
ꢇꢄ  
$ꢄ  
ꢀꢄ  
SLQꢄꢀꢄLQGH[ꢄ  
șꢄ  
/ꢄ  
Sꢄ  
/ꢄ  
ꢀꢄ  
ꢀꢋꢄ  
Zꢄ 0ꢄ  
GHWDLOꢄ;ꢄ  
Hꢄ  
Eꢄ  
Sꢄ  
ꢋꢄ  
ꢃꢄ  
ꢀꢋꢄPPꢄ  
VFDOHꢄ  
',0(16,216ꢃꢆLQFKꢃGLPHQVLRQVꢃDUHꢃGHULYHGꢃIURPꢃWKHꢃRULJLQDOꢃPPꢃGLPHQVLRQVꢇꢃ  
$ꢃ  
ꢆꢁꢇꢃ  
ꢆꢁꢇꢃ  
ꢆꢁꢇꢃ  
81,7ꢃ  
$ꢃ  
$ꢃ  
$ꢃ  
Eꢃ  
Sꢃ  
Fꢃ  
'ꢃ  
(ꢃ  
Hꢃ  
+ꢃ  
/ꢃ  
/ꢃ  
4ꢃ  
Yꢃ  
Zꢃ  
\ꢃ  
ꢋꢁꢀꢄ  
șꢄ  
ꢁꢃ  
ꢀꢃ  
ꢅꢃ  
(ꢃ  
Sꢃ  
=ꢃ  
PD[ꢄꢃ  
ꢋꢁꢇꢄ  
ꢋꢁꢀꢄ  
ꢂꢁꢌꢃꢄ  
ꢂꢁꢂꢃꢄ  
ꢋꢁꢌꢍꢄ ꢋꢁꢇꢂꢄ ꢀꢇꢁꢋꢄ  
ꢋꢁꢇꢉꢄ ꢋꢁꢂꢇꢄ ꢀꢂꢁꢉꢄ  
ꢈꢁꢉꢄ  
ꢈꢁꢌꢄ  
ꢀꢋꢁꢉꢃꢄ  
ꢀꢋꢁꢋꢋꢄ  
ꢀꢁꢀꢄ  
ꢋꢁꢌꢄ  
ꢀꢁꢀꢄ  
ꢀꢁꢋꢄ  
ꢋꢁꢍꢄ  
ꢋꢁꢌꢄ  
PPꢄ  
ꢂꢁꢉꢃꢄ  
ꢋꢁꢂꢃꢄ  
ꢋꢁꢋꢀꢄ  
ꢀꢁꢂꢈꢄ  
ꢋꢁꢋꢃꢄ  
ꢀꢁꢌꢄ  
ꢋꢁꢂꢃꢄ ꢋꢁꢂꢃꢄ  
Rꢄ  
ꢊꢄ  
Rꢄ  
ꢋꢄ  
ꢋꢁꢋꢀꢂꢄ ꢋꢁꢋꢍꢉꢄ  
ꢋꢁꢋꢋꢌꢄ ꢋꢁꢋꢊꢍꢄ  
ꢋꢁꢋꢀꢍꢄ ꢋꢁꢋꢀꢇꢄ ꢋꢁꢃꢀꢄ ꢋꢁꢇꢋꢄ  
ꢋꢁꢋꢀꢌꢄ ꢋꢁꢋꢋꢍꢄ ꢋꢁꢌꢍꢄ ꢋꢁꢂꢍꢄ  
ꢋꢁꢌꢀꢍꢄ  
ꢋꢁꢇꢍꢌꢄ  
ꢋꢁꢋꢌꢇꢄ ꢋꢁꢋꢌꢇꢄ  
ꢋꢁꢋꢀꢉꢄ ꢋꢁꢋꢇꢍꢄ  
ꢋꢁꢋꢇꢃꢄ  
ꢋꢁꢋꢀꢉꢄ  
LQFKHVꢄ ꢋꢁꢀꢄ  
ꢋꢁꢋꢃꢃꢄ  
ꢋꢁꢋꢀꢄ ꢋꢁꢋꢀꢄ ꢋꢁꢋꢋꢌꢄ  
1RWHꢃ  
ꢀꢁꢄ3ODVWLFꢄRUꢄPHWDOꢄSURWUXVLRQVꢄRIꢄꢋꢁꢀꢃꢄPPꢄꢅꢋꢁꢋꢋꢉꢄLQFKꢆꢄPD[LPXPꢄSHUꢄVLGHꢄDUHꢄQRWꢄLQFOXGHGꢁꢄꢄꢄ  
ꢃ5()(5(1&(6ꢃ  
ꢃ-('(&ꢃ ꢃ-(,7$ꢃ  
ꢄ06ꢏꢋꢀꢇꢄ  
287/,1(ꢃ  
9(56,21ꢃ  
(8523($1ꢃ  
352-(&7,21ꢃ  
,668(ꢃ'$7(ꢃ  
ꢃ,(&ꢃ  
ꢍꢍꢏꢀꢂꢏꢂꢈꢄ  
ꢋꢇꢏꢋꢂꢏꢀꢍꢄ  
ꢄ627ꢀꢉꢇꢏꢀꢄ  
ꢄꢋꢈꢃ(ꢋꢌꢄ  
Fig 58. Package outline SOT163-1 (SO20) of PCF2127AT  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
85 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
62ꢁꢌꢉꢃSODVWLFꢃVPDOOꢃRXWOLQHꢃSDFNDJHꢊꢃꢁꢌꢃOHDGVꢊꢃERG\ꢃZLGWKꢃꢂꢄꢋꢃPPꢃ  
627ꢁꢌꢀꢍꢁꢃ  
'ꢄ  
(ꢄ  
$ꢄ  
;ꢄ  
Fꢄ  
+ꢄ  
(ꢄ  
Yꢄ 0ꢄ  
$ꢄ  
\ꢄ  
=ꢄ  
ꢀꢉꢄ  
ꢍꢄ  
4ꢄ  
$ꢄ  
ꢂꢄ  
$ꢄ  
ꢅ$ꢄꢄꢆꢄ  
ꢇꢄ  
$ꢄ  
ꢀꢄ  
SLQꢄꢀꢄLQGH[ꢄ  
șꢄ  
/ꢄ  
Sꢄ  
/ꢄ  
ꢀꢄ  
ꢊꢄ  
Zꢄ 0ꢄ  
GHWDLOꢄ;ꢄ  
Hꢄ  
Eꢄ  
Sꢄ  
ꢋꢄ  
ꢃꢄ  
ꢀꢋꢄPPꢄ  
VFDOHꢄ  
',0(16,216ꢃꢆLQFKꢃGLPHQVLRQVꢃDUHꢃGHULYHGꢃIURPꢃWKHꢃRULJLQDOꢃPPꢃGLPHQVLRQVꢇꢃ  
$ꢃ  
ꢆꢁꢇꢃ  
ꢆꢁꢇꢃ  
ꢆꢁꢇꢃ  
81,7ꢃ  
PPꢄ  
$ꢃ  
$ꢃ  
$ꢃ  
Eꢃ  
Sꢃ  
Fꢃ  
'ꢃ  
(ꢃ  
Hꢃ  
+ꢃ  
/ꢃ  
/ꢃ  
4ꢃ  
Yꢃ  
Zꢃ  
\ꢃ  
șꢄ  
ꢁꢃ  
ꢀꢃ  
ꢅꢃ  
(ꢃ  
Sꢃ  
=ꢃ  
PD[ꢄꢃ  
ꢋꢁꢇꢄ  
ꢋꢁꢀꢄ  
ꢂꢁꢌꢃꢄ  
ꢂꢁꢂꢃꢄ  
ꢋꢁꢌꢍꢄ ꢋꢁꢇꢂꢄ ꢀꢋꢁꢃꢄ  
ꢋꢁꢇꢉꢄ ꢋꢁꢂꢇꢄ ꢀꢋꢁꢀꢄ  
ꢈꢁꢉꢄ  
ꢈꢁꢌꢄ  
ꢀꢋꢁꢉꢃꢄ  
ꢀꢋꢁꢋꢋꢄ  
ꢀꢁꢀꢄ  
ꢋꢁꢌꢄ  
ꢀꢁꢀꢄ  
ꢀꢁꢋꢄ  
ꢋꢁꢍꢄ  
ꢋꢁꢌꢄ  
ꢂꢁꢉꢃꢄ  
ꢋꢁꢀꢄ  
ꢋꢁꢂꢃꢄ ꢋꢁꢂꢃꢄ  
ꢋꢁꢀꢄ  
ꢋꢁꢂꢃꢄ  
ꢋꢁꢋꢀꢄ  
ꢀꢁꢂꢈꢄ  
ꢋꢁꢋꢃꢄ  
ꢀꢁꢌꢄ  
Rꢄ  
ꢊꢄ  
Rꢄ  
ꢋꢄ  
ꢋꢁꢋꢀꢂꢄ ꢋꢁꢋꢍꢉꢄ  
ꢋꢁꢋꢋꢌꢄ ꢋꢁꢋꢊꢍꢄ  
ꢋꢁꢋꢀꢍꢄ ꢋꢁꢋꢀꢇꢄ ꢋꢁꢌꢀꢄ ꢋꢁꢇꢋꢄ  
ꢋꢁꢋꢀꢌꢄ ꢋꢁꢋꢋꢍꢄ ꢋꢁꢌꢋꢄ ꢋꢁꢂꢍꢄ  
ꢋꢁꢌꢀꢍꢄ  
ꢋꢁꢇꢍꢌꢄ  
ꢋꢁꢋꢌꢇꢄ ꢋꢁꢋꢌꢇꢄ  
ꢋꢁꢋꢀꢉꢄ ꢋꢁꢋꢇꢍꢄ  
ꢋꢁꢋꢇꢃꢄ  
ꢋꢁꢋꢀꢉꢄ  
LQFKHVꢄ  
ꢋꢁꢋꢀꢄ ꢋꢁꢋꢀꢄ ꢋꢁꢋꢋꢌꢄ  
ꢋꢁꢋꢃꢃꢄ  
1RWHꢃ  
ꢀꢁꢄ3ODVWLFꢄRUꢄPHWDOꢄSURWUXVLRQVꢄRIꢄꢋꢁꢀꢃꢄPPꢄꢅꢋꢁꢋꢋꢉꢄLQFKꢆꢄPD[LPXPꢄSHUꢄVLGHꢄDUHꢄQRWꢄLQFOXGHGꢁꢄꢄꢄ  
ꢃ5()(5(1&(6ꢃ  
ꢃ-('(&ꢃ ꢃ-(,7$ꢃ  
ꢄ06ꢏꢋꢀꢇꢄ  
287/,1(ꢃ  
9(56,21ꢃ  
(8523($1ꢃ  
352-(&7,21ꢃ  
,668(ꢃ'$7(ꢃ  
ꢃ,(&ꢃ  
ꢍꢍꢏꢀꢂꢏꢂꢈꢄ  
ꢋꢇꢏꢋꢂꢏꢀꢍꢄ  
ꢄ627ꢀꢉꢂꢏꢀꢄ  
ꢄꢋꢈꢃ(ꢋꢇꢄ  
Fig 59. Package outline SOT162-1 (SO16) of PCF2127T  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
86 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
18. Packing information  
18.1 Tape and reel information  
For tape and reel packing information, see  
Ref. 11 “SOT162-1_518” on page 92 for the PCF2127T.  
Ref. 12 “SOT163-1_518” on page 92 for the PCF2127AT.  
19. Soldering  
For information about soldering, see Ref. 3 “AN11266” on page 92.  
19.1 Footprint information  
ꢀꢇꢁꢌꢋ  
ꢋꢁꢉꢋꢄꢅꢂꢋîꢆ  
ꢀꢁꢃꢋ  
ꢊꢁꢋꢋ ꢀꢀꢁꢋꢋ ꢀꢀꢁꢌꢋ  
ꢀꢁꢂꢈꢄꢅꢀꢊîꢆ  
VROGHUꢄODQGV  
VRWꢂꢇꢃꢀꢂBIU  
RFFXSLHGꢄDUHD  
SODFHPHQWꢄDFFXUDF\ꢄ“ꢄꢋꢁꢂꢃ  
'LPHQVLRQVꢄLQꢄPP  
Fig 60. Footprint information for reflow soldering of SOT163-1 (SO20) of PCF2127AT  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
87 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
)RRWSULQWꢃLQIRUPDWLRQꢃIRUꢃUHIORZꢃVROGHULQJꢃRIꢃ62ꢁꢌꢃSDFNDJH  
627ꢁꢌꢀꢍꢁ  
+[  
*[  
3ꢂ  
ꢅꢋꢁꢀꢂꢃꢆ  
ꢅꢋꢁꢀꢂꢃꢆ  
+\ *\  
%\ $\  
&
'ꢀ  
'ꢂꢄꢅꢌ[ꢆ  
3ꢀ  
*HQHULFꢄIRRWSULQWꢄSDWWHUQ  
5HIHUꢄWRꢄWKHꢄSDFNDJHꢄRXWOLQHꢄGUDZLQJꢄIRUꢄDFWXDOꢄOD\RXW  
VROGHUꢄODQG  
RFFXSLHGꢄDUHD  
',0(16,216ꢄLQꢄPP  
3ꢀ 3ꢂ $\  
ꢀꢁꢂꢈꢋ ꢀꢁꢇꢂꢋ ꢀꢀꢁꢂꢋꢋ ꢉꢁꢌꢋꢋ ꢂꢁꢌꢋꢋ ꢋꢁꢈꢋꢋ ꢋꢁꢊꢋꢋ ꢀꢋꢁꢋꢌꢋ ꢊꢁꢉꢋꢋ ꢀꢀꢁꢍꢋꢋ ꢀꢀꢁꢌꢃꢋ  
%\  
&
'ꢀ  
'ꢂ  
*[  
*\  
+[  
+\  
VRWꢂꢇꢆꢀꢂBIU  
Fig 61. Footprint information for reflow soldering of SOT162-1 (SO16) of PCF2127T  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
88 of 100  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
20. Appendix  
20.1 Real-Time Clock selection  
Table 94. Selection of Real-Time Clocks  
Type name  
Alarm, Timer, Interrupt Interface IDD  
,
Battery Timestamp,  
AEC-Q100 Special features  
Packages  
Watchdog  
output  
typical (nA) backup tamper input compliant  
PCF8563  
X
1
I2C  
250  
-
-
-
-
SO8, TSSOP8,  
HVSON10  
PCF8564A  
PCA8565  
X
X
1
1
I2C  
I2C  
250  
600  
-
-
-
-
-
integrated oscillator caps WLCSP  
grade 1  
high robustness,  
TSSOP8, HVSON10  
Tamb40 C to 125 C  
PCA8565A  
PCF85063  
X
-
1
1
I2C  
I2C  
600  
220  
-
-
-
-
-
-
integrated oscillator caps, WLCSP  
Tamb40 C to 125 C  
basic functions only, no  
alarm  
HXSON8  
PCF85063A  
PCF85063B  
PCF85263A  
X
X
X
1
1
2
I2C  
SPI  
I2C  
220  
220  
230  
-
-
-
-
-
tiny package  
tiny package  
SO8, DFN2626-10  
DFN2626-10  
-
-
X
X
time stamp, battery  
backup, stopwatch 1100  
SO8, TSSOP10,  
TSSOP8,  
s
DFN2626-10  
PCF85263B  
PCF85363A  
X
X
2
2
SPI  
I2C  
230  
230  
X
X
X
X
-
-
time stamp, battery  
TSSOP10,  
DFN2626-10  
backup, stopwatch 1100  
s
time stamp, battery  
backup, stopwatch 1100s, DFN2626-10  
TSSOP10,  
64 Byte RAM  
PCF85363B  
X
2
SPI  
230  
X
X
-
time stamp, battery  
TSSOP10,  
backup, stopwatch 1100s, DFN2626-10  
64 Byte RAM  
PCF8523  
PCF2123  
PCF2127  
X
X
X
2
1
1
I2C  
150  
100  
500  
X
-
-
-
-
-
lowest power 150 nA in  
operation, FM+ 1 MHz  
SO8, HVSON8,  
TSSOP14, WLCSP  
SPI  
-
lowest power 100 nA in  
operation  
TSSOP14, HVQFN16  
I2C and  
SPI  
X
X
temperature  
SO16  
compensated, quartz built  
in, calibrated, 512 Byte  
RAM  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 94. Selection of Real-Time Clocks …continued  
Type name  
Alarm, Timer, Interrupt Interface IDD  
,
Battery Timestamp,  
AEC-Q100 Special features  
Packages  
Watchdog  
output  
typical (nA) backup tamper input compliant  
PCF2127A  
X
1
I2C and  
SPI  
500  
X
X
-
temperature  
SO20  
compensated, quartz built  
in, calibrated, 512 Byte  
RAM  
PCF2129  
PCF2129A  
PCA2129  
PCA21125  
X
X
X
X
1
1
1
1
I2C and  
SPI  
500  
500  
500  
820  
X
X
X
-
X
X
X
-
-
temperature  
compensated, quartz built  
in, calibrated  
SO16  
I2C and  
SPI  
-
temperature  
compensated, quartz built  
in, calibrated  
SO20  
I2C and  
SPI  
grade 3  
grade 1  
temperature  
compensated, quartz built  
in, calibrated  
SO16  
SPI  
high robustness,  
TSSOP14  
Tamb40 C to 125 C  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
21. Abbreviations  
Table 95. Abbreviations  
Acronym  
Description  
ACK  
AM  
ACKnowledge (I2C-bus)  
Ante Meridiem  
BCD  
CDM  
CMOS  
DC  
Binary Coded Decimal  
Charged Device Model  
Complementary Metal-Oxide Semiconductor  
Direct Current  
GPS  
HBM  
I2C  
Global Positioning System  
Human Body Model  
Inter-Integrated Circuit  
Integrated Circuit  
IC  
LSB  
MCU  
MSB  
PM  
Least Significant Bit  
Microcontroller Unit  
Most Significant Bit  
Post Meridiem  
POR  
PORO  
PPM  
RAM  
RC  
Power-On Reset  
Power-On Reset Override  
Parts Per Million  
Random Access Memory  
Resistance-Capacitance  
Real Time Clock  
RTC  
SCL  
SDA  
SPI  
Serial CLock line  
Serial DAta line  
Serial Peripheral Interface  
Static Random Access Memory  
Temperature Compensated Xtal Oscillator  
crystal  
SRAM  
TCXO  
Xtal  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
91 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
22. References  
[1] AN10365 Surface mount reflow soldering description  
[2] AN10853 Handling precautions of ESD sensitive devices  
[3] AN11266 Application and soldering information for the PCF2127 industrial TCXO  
RTC  
[4] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[5] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[6] IPC/JEDEC J-STD-020D — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[7] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[8] JESD22-C101 Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components  
[9] JESD78 IC Latch-Up Test  
[10] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[11] SOT162-1_518 SO16; Reel pack; SMD, 13”, packing information  
[12] SOT163-1_518 SO20; Reel pack; SMD, 13”, packing information  
[13] UM10204 I2C-bus specification and user manual  
[14] UM10569 Store and transport requirements  
[15] UM10762 User manual for the accurate RTC demo board OM13513 containing  
PCF2127T and PCF2129AT  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
92 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
23. Revision history  
Table 96. Revision history  
Document ID  
PCF2127 v.8  
Modifications:  
Release date  
20141219  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF2127 v.7  
Added VOH and VOL values in Table 90  
Enhanced ESD HBM values  
Corrected Figure 8  
Enhanced description of internal operating voltage  
Added register bit allocation tables  
Fixed typos  
PCF2127 v.7  
20141003  
Product data sheet  
-
PCF2127AT v.6  
PCF2127 v.3  
PCF2127AT  
PCF2127AT v.6  
PCF2127AT v.5  
PCF2127AT v.4  
PCF2127AT v.3  
PCF2127A v.2  
PCF2127A v.1  
PCF2127T  
20130711  
20130128  
20121207  
20121004  
20100507  
20100121  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
-
-
-
PCF2127AT v.5  
PCF2127AT v.4  
PCF2127AT v.3  
PCF2127A v.2  
PCF2127A v.1  
-
PCF2127 v.3  
PCF2127 v.2  
PCF2127 v.1  
20130711  
20130422  
20130212  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
PCF2127 v.2  
PCF2127 v.1  
-
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
93 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
24. Legal information  
24.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
24.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
24.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
94 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
non-automotive qualified products in automotive equipment or applications.  
24.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP Semiconductors N.V.  
25. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
95 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
26. Tables  
Table 1. Ordering information. . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Ordering options. . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 3. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 4. Pin description of PCF2127 . . . . . . . . . . . . . . . .5  
Table 5. Register overview . . . . . . . . . . . . . . . . . . . . . . .8  
Table 6. Control_1 - control and status register 1 (address  
00h) bit allocation . . . . . . . . . . . . . . . . . . . . . .10  
Table 7. Control_1 - control and status register 1 (address  
00h) bit description . . . . . . . . . . . . . . . . . . . . . .10  
Table 8. Control_2 - control and status register 2 (address  
01h) bit allocation . . . . . . . . . . . . . . . . . . . . . .11  
Table 9. Control_2 - control and status register 2 (address  
01h) bit description . . . . . . . . . . . . . . . . . . . . .11  
Table 10. Control_3 - control and status register 3 (address  
02h) bit allocation . . . . . . . . . . . . . . . . . . . . . .12  
Table 11. Control_3 - control and status register 3 (address  
02h) bit description . . . . . . . . . . . . . . . . . . . . . .12  
Table 12. CLKOUT_ctl - CLKOUT control register (address  
0Fh) bit allocation . . . . . . . . . . . . . . . . . . . . . .12  
Table 13. CLKOUT_ctl - CLKOUT control register (address  
0Fh) bit description. . . . . . . . . . . . . . . . . . . . . .12  
Table 14. Temperature measurement period . . . . . . . . . .13  
Table 15. CLKOUT frequency selection. . . . . . . . . . . . . .14  
Table 16. Aging_offset - crystal aging offset register  
(address 19h) bit allocation . . . . . . . . . . . . . . .14  
Table 17. Aging_offset - crystal aging offset register  
(address 19h) bit description . . . . . . . . . . . . . .14  
Table 18. Frequency correction at 25 °C, typical . . . . . . .15  
Table 19. RAM_addr_MSB - RAM address MSB register  
(address 1Ah) bit allocation . . . . . . . . . . . . . . .16  
Table 20. RAM_addr_MSB - RAM address MSB register  
(address 1Ah) bit description . . . . . . . . . . . . . .16  
Table 21. RAM_addr_LSB - RAM address LSB register  
(address 1Bh) bit allocation . . . . . . . . . . . . . . .16  
Table 22. RAM_addr_LSB - RAM address LSB register  
(address 1Bh) bit description . . . . . . . . . . . . . .16  
Table 23. RAM_wrt_cmd - RAM write command register  
(address 1Ch) bit description . . . . . . . . . . . . . .16  
Table 24. RAM_rd_cmd - RAM read command register  
(address 1Dh) bit description . . . . . . . . . . . . . .16  
Table 25. Power management control bit description . . .18  
Table 26. Output pin BBS. . . . . . . . . . . . . . . . . . . . . . . . .26  
Table 27. Seconds - seconds and clock integrity register  
(address 03h) bit allocation . . . . . . . . . . . . . . .30  
Table 28. Seconds - seconds and clock integrity register  
(address 03h) bit description . . . . . . . . . . . . . .30  
Table 29. Seconds coded in BCD format . . . . . . . . . . . .31  
Table 30. Minutes - minutes register (address 04h) bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Table 31. Minutes - minutes register (address 04h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Table 32. Hours - hours register (address 05h) bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Table 33. Hours - hours register (address 05h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Table 34. Days - days register (address 06h) bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 35. Days - days register (address 06h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 36. Weekdays - weekdays register (address 07h) bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 37. Weekdays - weekdays register (address 07h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 38. Weekday assignments . . . . . . . . . . . . . . . . . . 33  
Table 39. Months - months register (address 08h) bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 40. Months - months register (address 08h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 41. Month assignments in BCD format . . . . . . . . . 34  
Table 42. Years - years register (address 09h) bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 43. Years - years register (address 09h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 44. Second_alarm - second alarm register (address  
0Ah) bit allocation . . . . . . . . . . . . . . . . . . . . . . 38  
Table 45. Second_alarm - second alarm register (address  
0Ah) bit description . . . . . . . . . . . . . . . . . . . . . 38  
Table 46. Minute_alarm - minute alarm register (address  
0Bh) bit allocation . . . . . . . . . . . . . . . . . . . . . . 38  
Table 47. Minute_alarm - minute alarm register (address  
0Bh) bit description . . . . . . . . . . . . . . . . . . . . . 38  
Table 48. Hour_alarm - hour alarm register (address 0Ch)  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 49. Hour_alarm - hour alarm register (address 0Ch)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 50. Day_alarm - day alarm register (address 0Dh) bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 51. Day_alarm - day alarm register (address 0Dh) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 52. Weekday_alarm - weekday alarm register  
(address 0Eh) bit allocation . . . . . . . . . . . . . . 40  
Table 53. Weekday_alarm - weekday alarm register  
(address 0Eh) bit description . . . . . . . . . . . . . . 40  
Table 54. Watchdg_tim_ctl - watchdog timer control register  
(address 10h) bit allocation . . . . . . . . . . . . . . . 41  
Table 55. Watchdg_tim_ctl - watchdog timer control register  
(address 10h) bit description . . . . . . . . . . . . . . 41  
Table 56. Watchdg_tim_val - watchdog timer value register  
(address 11h) bit allocation . . . . . . . . . . . . . . . 42  
Table 57. Watchdg_tim_val - watchdog timer value register  
(address 11h) bit description . . . . . . . . . . . . . . 42  
Table 58. Programmable watchdog timer . . . . . . . . . . . . 42  
Table 59. Specification of tw(rst) . . . . . . . . . . . . . . . . . . . . 44  
Table 60. First period delay for timer counter . . . . . . . . . 45  
Table 61. Flag location in register Control_2 . . . . . . . . . . 46  
Table 62. Example values in register Control_2 . . . . . . . 46  
Table 63. Example to clear only CDTF (bit 3) . . . . . . . . . 46  
Table 64. Example to clear only AF (bit 4). . . . . . . . . . . . 46  
Table 65. Example to clear only MSF (bit 7) . . . . . . . . . . 47  
Table 66. Example to clear both CDTF and MSF . . . . . . 47  
Table 67. Timestp_ctl - timestamp control register (address  
12h) bit allocation . . . . . . . . . . . . . . . . . . . . . . 50  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
96 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
Table 68. Timestp_ctl - timestamp control register (address  
12h) bit description . . . . . . . . . . . . . . . . . . . . . .50  
Table 69. Sec_timestp - second timestamp register  
(address 13h) bit allocation . . . . . . . . . . . . . . .50  
Table 70. Sec_timestp - second timestamp register  
(address 13h) bit description . . . . . . . . . . . . . .50  
Table 71. Min_timestp - minute timestamp register (address  
14h) bit allocation . . . . . . . . . . . . . . . . . . . . . .51  
Table 72. Min_timestp - minute timestamp register (address  
14h) bit description . . . . . . . . . . . . . . . . . . . . .51  
Table 73. Hour_timestp - hour timestamp register (address  
15h) bit allocation . . . . . . . . . . . . . . . . . . . . . .51  
Table 74. Hour_timestp - hour timestamp register (address  
15h) bit description . . . . . . . . . . . . . . . . . . . . . .51  
Table 75. Day_timestp - day timestamp register (address  
16h) bit allocation . . . . . . . . . . . . . . . . . . . . . .52  
Table 76. Day_timestp - day timestamp register (address  
16h) bit description . . . . . . . . . . . . . . . . . . . . . .52  
Table 77. Mon_timestp - month timestamp register (address  
17h) bit allocation . . . . . . . . . . . . . . . . . . . . . .52  
Table 78. Mon_timestp - month timestamp register (address  
17h) bit description . . . . . . . . . . . . . . . . . . . . . .52  
Table 79. Year_timestp - year timestamp register (address  
18h) bit allocation . . . . . . . . . . . . . . . . . . . . . .52  
Table 80. Year_timestp - year timestamp register (address  
18h) bit description . . . . . . . . . . . . . . . . . . . . . .52  
Table 81. Battery switch-over and timestamp. . . . . . . . . .53  
Table 82. Effect of bits MI and SI on pin INT and bit MSF55  
Table 83. INT operation (bit TI_TP = 1) . . . . . . . . . . . . . .57  
Table 84. First increment of time circuits after stop  
release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Table 85. Interface selection input pin IFS . . . . . . . . . . . .62  
Table 86. Serial interface . . . . . . . . . . . . . . . . . . . . . . . . .63  
Table 87. Command byte definition . . . . . . . . . . . . . . . . .63  
Table 88. I2C slave address byte . . . . . . . . . . . . . . . . . . .68  
Table 89. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .72  
Table 90. Static characteristics . . . . . . . . . . . . . . . . . . . .73  
Table 91. Frequency characteristics . . . . . . . . . . . . . . . .78  
Table 92. SPI-bus characteristics. . . . . . . . . . . . . . . . . . .80  
Table 93. I2C-bus characteristics . . . . . . . . . . . . . . . . . . .82  
Table 94. Selection of Real-Time Clocks . . . . . . . . . . . . .89  
Table 95. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Table 96. Revision history . . . . . . . . . . . . . . . . . . . . . . . .93  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
97 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
27. Figures  
Fig 1. Block diagram of PCF2127 . . . . . . . . . . . . . . . . . .3  
Fig 2. Pin configuration for PCF2127AT (SO20) . . . . . . .4  
Fig 3. Pin configuration for PCF2127T (SO16) . . . . . . . .4  
Fig 4. Position of the stubs from the package assembly  
process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Fig 5. Handling address registers . . . . . . . . . . . . . . . . . .6  
Fig 6. Battery switch-over behavior in standard mode with  
bit BIE set logic 1 (enabled). . . . . . . . . . . . . . . . .20  
Fig 7. Battery switch-over behavior in direct switching  
mode with bit BIE set logic 1 (enabled) . . . . . . . .21  
Fig 8. Battery switch-over circuit, simplified block  
diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Fig 9. Battery low detection behavior with bit BLIE set logic  
1 (enabled). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Fig 10. Typical application of the extra power fail detection  
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Fig 11. PFO signal behavior when battery switch-over is  
enabled in standard mode and  
Fig 38. SPI-bus write examples . . . . . . . . . . . . . . . . . . . 64  
Fig 39. SPI-bus read examples. . . . . . . . . . . . . . . . . . . . 65  
Fig 40. Bit transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Fig 41. Definition of START and STOP conditions . . . . . 66  
Fig 42. System configuration. . . . . . . . . . . . . . . . . . . . . . 67  
Fig 43. Acknowledgement on the I2C-bus. . . . . . . . . . . . 67  
Fig 44. Bus protocol, writing to registers. . . . . . . . . . . . . 68  
Fig 45. Bus protocol, reading from registers . . . . . . . . . . 68  
Fig 46. Bus protocol, writing to RAM. . . . . . . . . . . . . . . . 69  
Fig 47. Bus protocol, reading from RAM. . . . . . . . . . . . . 70  
Fig 48. Device diode protection diagram of PCF2127 . . 71  
Fig 49. IOL on pin SDA/CE . . . . . . . . . . . . . . . . . . . . . . . 75  
Fig 50. IDD as a function of temperature . . . . . . . . . . . . . 75  
Fig 51. IDD as a function of VDD. . . . . . . . . . . . . . . . . . . . 76  
Fig 52. Typical IDD as a function of the power management  
settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Fig 53. Typical characteristic of frequency with respect to  
temperature of PCF2127AT . . . . . . . . . . . . . . . . 79  
Fig 54. Typical characteristic of frequency with respect to  
temperature of PCF2127T . . . . . . . . . . . . . . . . . 79  
Fig 55. SPI-bus timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Fig 56. I2C-bus timing diagram; rise and fall times refer to  
30 % and 70 % . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Fig 57. General application diagram . . . . . . . . . . . . . . . . 84  
Fig 58. Package outline SOT163-1 (SO20)  
Vth(uvp) > (VBAT, Vth(sw)bat). . . . . . . . . . . . . . . . . . .25  
Fig 12. PFO signal behavior when battery switch-over is  
enabled in direct switching mode  
and Vth(uvp) < VBAT . . . . . . . . . . . . . . . . . . . . . . . .25  
Fig 13. PFO signal behavior when battery switch-over is  
disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Fig 14. Typical driving capability of VBBS: (VBBS - VDD) with  
respect to the output load current IBBS. . . . . . . . .27  
Fig 15. Power failure event due to battery discharge: reset  
occurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Fig 16. Dependency between POR and oscillator . . . . . .29  
Fig 17. Power-On Reset (POR) system. . . . . . . . . . . . . .29  
Fig 18. Power-On Reset Override (PORO) sequence, valid  
for both I2C-bus and SPI-bus. . . . . . . . . . . . . . . .30  
Fig 19. Data flow of the time function. . . . . . . . . . . . . . . .35  
Fig 20. Access time for read/write operations . . . . . . . . .36  
Fig 21. Alarm function block diagram. . . . . . . . . . . . . . . .37  
Fig 22. Alarm flag timing diagram . . . . . . . . . . . . . . . . . .40  
Fig 23. WD_CD[1:0] = 10: watchdog activates an interrupt  
when timed out . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Fig 24. WD_CD[1:0] = 11: watchdog activates a reset pulse  
when timed out . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Fig 25. General countdown timer behavior . . . . . . . . . . .45  
Fig 26. Timestamp detection with two push-buttons on the  
TS pin (for example, for tamper detection) . . . . .48  
Fig 27. Interrupt block diagram . . . . . . . . . . . . . . . . . . . .54  
Fig 28. INT example for SI and MI when TI_TP is logic 156  
Fig 29. INT example for SI and MI when TI_TP is logic 056  
Fig 30. Example of shortening the INT pulse by clearing the  
MSF flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Fig 31. Example of shortening the INT pulse by clearing the  
CDTF flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Fig 32. AF timing diagram . . . . . . . . . . . . . . . . . . . . . . . .58  
Fig 33. STOP bit functional diagram . . . . . . . . . . . . . . . .60  
Fig 34. STOP bit release timing. . . . . . . . . . . . . . . . . . . .61  
Fig 35. Interface selection . . . . . . . . . . . . . . . . . . . . . . . .62  
Fig 36. SDI, SDO configurations . . . . . . . . . . . . . . . . . . .62  
Fig 37. Data transfer overview. . . . . . . . . . . . . . . . . . . . .63  
of PCF2127AT. . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Fig 59. Package outline SOT162-1 (SO16)  
of PCF2127T. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Fig 60. Footprint information for reflow soldering of  
SOT163-1 (SO20) of PCF2127AT. . . . . . . . . . . . 87  
Fig 61. Footprint information for reflow soldering of  
SOT162-1 (SO16) of PCF2127T. . . . . . . . . . . . . 88  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
98 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
28. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.8  
Reset function . . . . . . . . . . . . . . . . . . . . . . . . 28  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . 28  
Power-On Reset Override (PORO) . . . . . . . . 29  
Time and date function. . . . . . . . . . . . . . . . . . 30  
Register Seconds. . . . . . . . . . . . . . . . . . . . . . 30  
Register Minutes . . . . . . . . . . . . . . . . . . . . . . 31  
Register Hours. . . . . . . . . . . . . . . . . . . . . . . . 32  
Register Days . . . . . . . . . . . . . . . . . . . . . . . . 32  
Register Weekdays . . . . . . . . . . . . . . . . . . . . 33  
Register Months. . . . . . . . . . . . . . . . . . . . . . . 34  
Register Years . . . . . . . . . . . . . . . . . . . . . . . . 35  
Setting and reading the time . . . . . . . . . . . . . 35  
Alarm function . . . . . . . . . . . . . . . . . . . . . . . . 37  
Register Second_alarm . . . . . . . . . . . . . . . . . 38  
Register Minute_alarm. . . . . . . . . . . . . . . . . . 38  
Register Hour_alarm . . . . . . . . . . . . . . . . . . . 39  
Register Day_alarm . . . . . . . . . . . . . . . . . . . . 39  
Register Weekday_alarm. . . . . . . . . . . . . . . . 40  
Alarm flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Timer functions. . . . . . . . . . . . . . . . . . . . . . . . 40  
Register Watchdg_tim_ctl . . . . . . . . . . . . . . . 41  
Register Watchdg_tim_val . . . . . . . . . . . . . . . 42  
Watchdog timer function . . . . . . . . . . . . . . . . 42  
Countdown timer function . . . . . . . . . . . . . . . 44  
Pre-defined timers: second and minute  
8.8.1  
8.8.2  
8.9  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3
4
4.1  
5
8.9.1  
8.9.2  
8.9.3  
8.9.4  
8.9.5  
8.9.6  
8.9.7  
8.9.8  
8.10  
8.10.1  
8.10.2  
8.10.3  
8.10.4  
8.10.5  
8.10.6  
8.11  
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
8.1  
8.2  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Register overview. . . . . . . . . . . . . . . . . . . . . . . 6  
Control registers . . . . . . . . . . . . . . . . . . . . . . . 10  
Register Control_1 . . . . . . . . . . . . . . . . . . . . . 10  
Register Control_2 . . . . . . . . . . . . . . . . . . . . . 11  
Register Control_3 . . . . . . . . . . . . . . . . . . . . . 12  
Register CLKOUT_ctl. . . . . . . . . . . . . . . . . . . 12  
Temperature compensated crystal oscillator . 13  
Temperature measurement . . . . . . . . . . . . . . 13  
OTP refresh . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Register Aging_offset . . . . . . . . . . . . . . . . . . . 14  
Crystal aging correction . . . . . . . . . . . . . . . . . 14  
General purpose 512 bytes static RAM . . . . . 15  
Register RAM_addr_MSB . . . . . . . . . . . . . . . 16  
Register RAM_addr_LSB . . . . . . . . . . . . . . . . 16  
Register RAM_wrt_cmd . . . . . . . . . . . . . . . . . 16  
Register RAM_rd_cmd . . . . . . . . . . . . . . . . . . 16  
Operation examples . . . . . . . . . . . . . . . . . . . . 17  
Writing to the RAM . . . . . . . . . . . . . . . . . . . . . 17  
Reading from the RAM. . . . . . . . . . . . . . . . . . 17  
Power management functions . . . . . . . . . . . . 17  
Battery switch-over function . . . . . . . . . . . . . . 19  
Standard mode . . . . . . . . . . . . . . . . . . . . . . . . 20  
Direct switching mode . . . . . . . . . . . . . . . . . . 21  
Battery switch-over disabled: only one power  
supply (VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Battery switch-over architecture . . . . . . . . . . . 22  
Battery low detection function. . . . . . . . . . . . . 22  
Extra power fail detection function . . . . . . . . . 23  
Extra power fail detection when the battery  
8.2.1  
8.2.2  
8.2.3  
8.3  
8.3.1  
8.3.1.1  
8.3.2  
8.3.3  
8.4  
8.11.1  
8.11.2  
8.11.3  
8.11.4  
8.11.5  
8.4.1  
8.5  
interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Clearing flags. . . . . . . . . . . . . . . . . . . . . . . . . 46  
Timestamp function . . . . . . . . . . . . . . . . . . . . 48  
Timestamp flag. . . . . . . . . . . . . . . . . . . . . . . . 48  
Timestamp mode . . . . . . . . . . . . . . . . . . . . . . 49  
Timestamp registers. . . . . . . . . . . . . . . . . . . . 50  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.5.1  
8.5.5.2  
8.6  
8.6.1  
8.6.1.1  
8.6.1.2  
8.6.1.3  
8.11.6  
8.12  
8.12.1  
8.12.2  
8.12.3  
8.12.3.1 Register Timestp_ctl . . . . . . . . . . . . . . . . . . . 50  
8.12.3.2 Register Sec_timestp. . . . . . . . . . . . . . . . . . . 50  
8.12.3.3 Register Min_timestp . . . . . . . . . . . . . . . . . . . 51  
8.12.3.4 Register Hour_timestp . . . . . . . . . . . . . . . . . . 51  
8.12.3.5 Register Day_timestp. . . . . . . . . . . . . . . . . . . 52  
8.12.3.6 Register Mon_timestp . . . . . . . . . . . . . . . . . . 52  
8.12.3.7 Register Year_timestp . . . . . . . . . . . . . . . . . . 52  
8.12.4  
Dependency between Battery switch-over and  
timestamp . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Interrupt output, INT. . . . . . . . . . . . . . . . . . . . 54  
Minute and second interrupts. . . . . . . . . . . . . 55  
Countdown timer interrupts . . . . . . . . . . . . . . 56  
INT pulse shortening . . . . . . . . . . . . . . . . . . . 56  
Watchdog timer interrupts . . . . . . . . . . . . . . . 58  
Alarm interrupts . . . . . . . . . . . . . . . . . . . . . . . 58  
Timestamp interrupts . . . . . . . . . . . . . . . . . . . 58  
Battery switch-over interrupts . . . . . . . . . . . . 58  
8.6.1.4  
8.6.2  
8.6.3  
8.13  
8.13.1  
8.13.2  
8.13.3  
8.13.4  
8.13.5  
8.13.6  
8.13.7  
8.6.3.1  
switch-over function is enabled . . . . . . . . . . . 24  
Extra power fail detection when the battery  
switch-over function is disabled . . . . . . . . . . . 26  
Battery backup supply . . . . . . . . . . . . . . . . . . 26  
Oscillator stop detection function . . . . . . . . . . 27  
8.6.3.2  
8.6.4  
8.7  
continued >>  
PCF2127  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 8 — 19 December 2014  
99 of 100  
PCF2127  
NXP Semiconductors  
Accurate RTC with integrated quartz crystal for industrial applications  
8.13.8  
8.14  
Battery low detection interrupts . . . . . . . . . . . 58  
External clock test mode . . . . . . . . . . . . . . . . 59  
8.15  
STOP bit function . . . . . . . . . . . . . . . . . . . . . . 59  
9
9.1  
9.1.1  
9.2  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.3  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
SPI-bus interface . . . . . . . . . . . . . . . . . . . . . . 62  
Data transmission. . . . . . . . . . . . . . . . . . . . . . 63  
I2C-bus interface. . . . . . . . . . . . . . . . . . . . . . . 66  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
START and STOP conditions . . . . . . . . . . . . . 66  
System configuration . . . . . . . . . . . . . . . . . . . 66  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 67  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 67  
Bus communication and battery backup  
operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
10  
11  
12  
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 71  
Safety notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 72  
13  
13.1  
13.2  
Static characteristics. . . . . . . . . . . . . . . . . . . . 73  
Current consumption characteristics, typical . 75  
Frequency characteristics. . . . . . . . . . . . . . . . 78  
14  
14.1  
14.2  
Dynamic characteristics . . . . . . . . . . . . . . . . . 80  
SPI-bus timing characteristics . . . . . . . . . . . . 80  
I2C-bus timing characteristics. . . . . . . . . . . . . 82  
15  
Application information. . . . . . . . . . . . . . . . . . 84  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 84  
Quality information . . . . . . . . . . . . . . . . . . . . . 84  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 85  
Packing information . . . . . . . . . . . . . . . . . . . . 87  
Tape and reel information. . . . . . . . . . . . . . . . 87  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Footprint information. . . . . . . . . . . . . . . . . . . . 87  
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Real-Time Clock selection . . . . . . . . . . . . . . . 89  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 91  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 93  
16  
16.1  
17  
18  
18.1  
19  
19.1  
20  
20.1  
21  
22  
23  
24  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 94  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 94  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
24.1  
24.2  
24.3  
24.4  
25  
26  
27  
28  
Contact information. . . . . . . . . . . . . . . . . . . . . 95  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2014.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 19 December 2014  
Document identifier: PCF2127  

相关型号:

PCF2128

Integrated RTC / TCXO / Crystal
NXP

PCF2128T

Integrated RTC / TCXO / Crystal
NXP

PCF2128T1

Integrated RTC / TCXO / Crystal
NXP

PCF2129(A)

Smart, simple solutions for the 12 most common design concerns
NXP

PCF2129A

Integrated RTC, TCXO and quartz crystal
NXP

PCF2129AT

Integrated RTC, TCXO and quartz crystal
NXP

PCF2129AT-1

Integrated RTC, TCXO and quartz crystal
NXP

PCF2129AT/1

IC REAL TIME CLOCK, PDSO20, 7.50 MM WIDTH, PLASTIC, SOT163-1, MO-013, DSO-20, Timer or RTC
NXP

PCF2129AT/1,512

PCF2129 - Accurate RTC with integrated quartz crystal for industrial applications SOP 20-Pin
NXP

PCF2129AT/1,518

PCF2129 - Accurate RTC with integrated quartz crystal for industrial applications SOP 20-Pin
NXP

PCF2129AT/2

IC REAL TIME CLOCK, Timer or RTC
NXP

PCF2129AT/2,518

PCF2129 - Accurate RTC with integrated quartz crystal for industrial applications SOP 20-Pin
NXP