PCF85363ATL/AX [NXP]

PCF85363A - Tiny real-time clock/calendar DFN 10-Pin;
PCF85363ATL/AX
型号: PCF85363ATL/AX
厂家: NXP    NXP
描述:

PCF85363A - Tiny real-time clock/calendar DFN 10-Pin

PC 光电二极管 外围集成电路
文件: 总95页 (文件大小:820K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF85363A  
Tiny Real-Time Clock/calendar with 64 byte RAM, alarm  
function, battery switch-over time stamp input, and I2C-bus  
Rev. 3 — 18 November 2015  
Product data sheet  
1. General description  
The PCF85363A is a CMOS1 Real-Time Clock (RTC) and calendar optimized for low  
power consumption and with automatic switching to battery on main power loss. The RTC  
can also be configured as a stop-watch (elapsed time counter). Three time log registers  
triggered from battery switch-over as well as input driven events. Featuring clock output  
and two independent interrupt signals, two alarms, I2C interface and quartz crystal  
calibration, 64 byte battery backed-up RAM.  
For a selection of NXP Real-Time Clocks, see Table 72 on page 86.  
2. Features and benefits  
UL Recognized Component (PCF85363ATL)  
Provides year, month, day, weekday, hours, minutes, seconds and 100th seconds  
based on a 32.768 kHz quartz crystal  
Stop-watch mode for elapsed time counting. From 100th seconds to 999999 hours  
Two independent alarms  
Battery back-up circuit  
WatchDog timer  
Three timestamp registers  
Two independent interrupt generators plus predefined interrupts at every second,  
minute, or hour  
64 byte battery backed-up RAM  
Frequency adjustment via programmable offset register  
Clock operating voltage: 0.9 V to 5.5 V  
Low current; typical 0.28 A at VDD = 3.0 V and Tamb = 25 C  
400 kHz two-line I2C-bus interface (at VDD = 1.8 V to 5.5 V)  
Programmable clock output for peripheral devices (32.768 kHz, 16.384 kHz,  
8.192 kHz, 4.096 kHz, 2.048 kHz, 1.024 kHz, and 1 Hz)  
Configurable oscillator circuit for a wide variety of quartzes: CL = 6 pF, CL = 7 pF, and  
CL = 12.5 pF  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 24.  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
3. Applications  
Elapsed time counter  
Printers and copiers  
Network powered devices  
Battery backed up systems  
Data loggers  
Digital voice recorders  
Mobile equipment  
Digital cameras  
White goods  
Accurate high duration timer  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
PCF85363ATL  
DFN2626-10  
plastic thermal enhanced extremely  
thin small outline package; no leads;  
10 terminals; body 2.6 2.6 0.5 mm  
SOT1197-1  
PCF85363ATT  
PCF85363ATT1  
TSSOP8  
plastic thin shrink small outline  
package; 8 leads; body width 3 mm  
SOT505-1  
SOT552-1  
TSSOP10  
plastic thin shrink small outline  
package; 10 leads; body width 3 mm  
4.1 Ordering options  
Table 2.  
Ordering options  
Product type number Orderable part number Sales item  
(12NC)  
Delivery form  
IC  
revision  
PCF85363ATL/A  
PCF85363ATT/A  
PCF85363ATT1/A  
PCF85363ATL/AX  
PCF85363ATT/AJ  
PCF85363ATT1/AJ  
935304648115 tape and reel, 7 inch  
1
1
1
935304751118 tape and reel, 13 inch  
935304752118 tape and reel, 13 inch  
5. Marking  
Table 3.  
Marking codes  
Product type number  
PCF85363ATL/A  
PCF85363ATT/A  
PCF85363ATT1/A  
Marking code  
363A  
363A  
363A  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
2 of 95  
 
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
6. Block diagram  
$ODUPꢂFRQWURO  
ꢃꢄꢂE\WHꢂ5$0  
ꢀꢁꢁ7+ꢂVHFRQGV  
6HFRQGV  
6'$  
6&/  
0LQXWHV  
$ODUPꢂꢀ  
$ODUPꢂꢅ  
, &ꢂLQWHUIDFH  
6WRSZDWFK  
+RXUVꢂ[[[[ꢁꢁ  
+RXUVꢂ[[ꢁꢁ[[  
+RXUVꢂꢁꢁ[[[[  
57&  
+RXUV  
:HHNGD\V  
'D\V  
7LPHꢂVWDPSꢂꢀ  
7LPHꢂVWDPSꢂꢅ  
7LPHꢂVWDPSꢂꢆ  
0RQWKV  
<HDUV  
7LPHꢂVWDPSꢂFRQWURO  
966  
9
''ꢋLQWꢌ  
0HFKDQLFDO  
VZLWFKꢂGHWHFꢊ  
EDWWBPRGH  
9
''  
6WRSZDWFK  
FRQWURO  
9''  
9%$7  
9
ꢍ9  
%$7 7+  
9
''ꢋLQWꢌ  
%DWWHU\ꢂVZLWFKꢂRYHU  
EDWWBPRGH  
ꢋꢀꢌ  
76ꢂ  
ꢋ&/.ꢍ,17%ꢌ  
,17$  
ꢋ&/.ꢌ  
$ODUPV  
7LPHꢂVWDPSV  
3HULRGLFꢂLQWHUUXSW  
2IIVHWꢂFDOLEUDWLRQ  
:DWFK'RJ  
3XOVHꢍ  
OHYHO  
3XOVHꢍ  
OHYHO  
%DWWHU\ꢂPRGH  
,QWHUUXSW  
JHQHUDWLRQ  
,QWHUUXSW  
JHQHUDWLRQ  
ꢋꢀꢌ  
&/.ꢂ  
ꢆꢅꢇꢃꢈꢂ+]  
26&,  
&/.  
JHQHUDWLRQ  
TXDUW]  
26&2  
RVFLOODWRU  
3&)ꢀꢁꢂꢃꢂ$  
2IIVHW  
FDOLEUDWLRQ  
:DWFK'RJ  
DDDꢀꢁꢂꢂꢁꢃꢃ  
(1) Not available on all package types.  
Fig 1. Block diagram of PCF85363A  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
3 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
7. Pinning information  
7.1 Pinning  
WHUPLQDOꢂꢀ  
LQGH[ꢂDUHD  
26&,  
26&2  
ꢀꢁ 9''  
,17$ꢂꢋ&/.ꢌ  
9%$7  
&/.  
6&/  
6'$  
3&)ꢀꢁꢂꢃꢂ$7/  
76ꢂꢋ&/.ꢍ,17%ꢌ  
966  
DDDꢀꢁꢂꢂꢁꢄꢃ  
7UDQVSDUHQWꢂWRSꢂYLHZ  
For mechanical details, see Figure 43 on page 78.  
Fig 2. Pin configuration for PCF85363ATL (DFN2626-10)  
26&,   
26&2   
9%$7   
966   
 9''  
 ,17$ꢋ&/.ꢌ  
 6&/  
3&)ꢀꢁꢂꢃꢂ$77  
 6'$  
DDDꢀꢁꢂꢂꢁꢄꢅ  
For mechanical details, see Figure 44 on page 79.  
Fig 3. Pin configuration for PCF85363ATT (TSSOP8)  
26&,  
26&2  
ꢀꢁ 9''  
,17$ꢂꢋ&/.ꢌ  
9%$7  
&/.  
6&/  
6'$  
3&)ꢀꢁꢂꢃꢂ$77  
76ꢂꢋ&/.ꢍ,17%ꢌ  
966  
DDDꢀꢁꢂꢂꢁꢄꢆ  
For mechanical details, see Figure 45 on page 80.  
Fig 4. Pin configuration for PCF85363ATT1 (TSSOP10)  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
4 of 95  
 
 
 
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
7.2 Pin description  
Table 4.  
Pin description  
Input or input/output pins must always be at a defined level (VSS or VDD) unless otherwise specified.  
Symbol  
Type  
Description  
Primary use  
PCF85363ATL  
(DFN2626-10)  
PCF85363ATT  
(TSSOP8)  
PCF85363ATT1  
(TSSOP10)  
Secondary use  
OSCI  
OSCO  
VBAT  
1
2
3
1
2
3
1
2
3
input  
oscillator input  
oscillator output  
-
-
-
output  
supply  
battery backup supply  
voltage[1]  
TS (CLK/INTB)  
4
-
4
input/  
can be configured with TSPM[1:0][2]  
output  
timestamp input  
INTB and CLK output  
(push-pull); stop-watch  
control  
VSS  
SDA  
5[3]  
6
4
5
5
6
supply  
ground supply voltage  
serial data line  
-
-
input/  
output  
SCL  
7
8
9
6
-
7
8
9
input  
serial clock input  
CLK (push-pull)  
can be configured with INTAPM[1:0][4]  
-
-
CLK  
output  
output  
INTA (CLK)  
7
interrupt output  
(open-drain)  
CLK output (open-drain)  
VDD  
10  
8
10  
supply  
supply voltage  
-
[1] Connect to VDD if not used.  
[2] See Table 7 and Table 47.  
[3] The die paddle (exposed pad) is connected to VSS through high ohmic (non-conductive) silicon attach and should be electrically isolated. It is good engineering practice to solder  
the exposed pad to an electrically isolated PCB copper pad as shown in Figure 43 “Package outline SOT1197-1 (DFN2626-10), PCF85363ATL” for better heat transfer but it is not  
required as the RTC doesn’t consume much power. In no case should traces be run under the package exposed pad.  
[4] See Table 7 and Table 49.  
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8. Functional description  
The PCF85363A contains 8-bit registers for time information, for timestamp information  
and registers for system configuration. Included is an auto-incrementing register address,  
an on-chip 32.768 kHz oscillator with integrated capacitors, a frequency divider which  
provides the source clock for the Real-Time Clock (RTC) and calender, and an I2C-bus  
interface with a maximum data rate of 400 kbit/s.  
The built-in address register will increment automatically after each read or write of a data  
byte. After register 2Fh, the auto-incrementing will wrap around to address 00h. When the  
RAM is accessed, the wrap around will happen after address 7Fh, (see Figure 5).  
DGGUHVVꢂUHJLVWHU  
DGGUHVVꢂUHJLVWHU  
ꢁꢁK  
ꢁꢀK  
ꢁꢅK  
ꢁꢆK  
ꢊꢊꢊ  
ꢄꢁK  
ꢄꢀK  
ꢄꢅK  
ꢄꢆK  
ꢊꢊꢊ  
DXWRꢉLQFUHPHQW  
DXWRꢉLQFUHPHQW  
ꢅ'K  
ꢅ(K  
ꢅ)K  
ꢇ'K  
ꢇ(K  
ꢇ)K  
ZUDSꢂDURXQG  
ZUDSꢂDURXQG  
7LPHꢂDQGꢂFRQILJXUDWLRQ  
UHJLVWHUV  
5$0ꢂUHJLVWHUV  
DDDꢀꢁꢂꢂꢁꢄꢄ  
Fig 5. Address register incrementing  
ꢁꢁK  
ꢀVWꢂ5$0ꢂE\WH  
ꢄꢁK  
7LPHꢂUHJLVWHUV  
ꢅQGꢂ5$0ꢂE\WH  
ꢆUGꢂ5$0ꢂE\WH  
ꢄꢅK  
ꢁꢇK  
ꢁꢈK  
$ODUPꢂUHJLVWHUV  
ꢀꢁK  
ꢀꢀK  
7LPHVWDPSꢂUHJLVWHUV  
ꢅꢆK  
ꢅꢄK  
ꢅꢏK  
2IIVHWꢂUHJLVWHU  
&RQWUROꢂUHJLVWHUV  
ꢅ%K  
6LQJOHꢂ5$0ꢂE\WH  
:DWFKGRJ  
ꢅ&K  
ꢅ'K  
ꢃꢅQGꢂ5$0ꢂE\WH  
ꢃꢆUGꢂ5$0ꢂE\WH  
ꢃꢄWKꢂ5$0ꢂE\WH  
ꢇ'K  
ꢅ(K  
ꢅ)K  
6WRSꢂDQGꢂUHVHW  
ꢇ)K  
7LPHꢂDQGꢂFRQILJXUDWLRQ  
UHJLVWHUV  
5$0ꢂUHJLVWHUV  
DDDꢀꢁꢂꢂꢁꢄꢇ  
Fig 6. Register map  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
6 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
All registers (see Table 5 on page 8, Table 6 on page 10, and Table 7 on page 12) are  
designed as addressable 8-bit parallel registers although not all bits are implemented.  
Figure 6 gives an overview of the address map.  
The 100th seconds, seconds, minutes, hours, days, months, and years as well as the  
corresponding alarm registers are all coded in Binary Coded Decimal (BCD) format. When  
one of the RTC registers is read, the contents of all time counters are frozen. Therefore,  
faulty reading of the clock and calendar during a carry condition is prevented.  
8.1 Registers organization overview  
8.1.1 Time mode registers  
The PCF85363A has two time mode register sets, one for the real-time clock mode and  
one for the stopwatch clock mode. The access to these registers can be switched by the  
RTCM bit in the Function control register (28h), see Table 7 on page 12 and Table 54 on  
page 54.  
UHDOꢉWLPHꢂFORFNꢂPRGHꢂ  
57&0  
UHJLVWHUꢂVHW  
VWRSZDWFKꢂPRGHꢂ  
UHJLVWHUꢂVHW  
DDDꢀꢁꢁꢈꢄꢁꢁ  
Fig 7. Time mode register set selection  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
7 of 95  
 
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
8.1.1.1 RTC mode time registers overview (RTCM = 0)  
Table 5.  
RTC mode time registers  
Bit positions labeled as - are not implemented. After reset, all registers are set according to Table 62 on page 58.  
Address Register name Bit  
Reference  
7
6
5
4
3
2
1
0
RTC time and date registers  
00h  
01h  
02h  
03h  
100th_seconds  
Seconds  
Minutes  
100TH_SECONDS (0 to 99)  
Section 8.2  
OS  
SECONDS (0 to 59)  
MINUTES (0 to 59)  
EMON  
-
Hours  
-
AMPM  
HOURS (1 to 12) in 12 hour mode  
HOURS (0 to 23) in 24 hour mode  
DAYS (1 to 31)  
04h  
05h  
06h  
07h  
Days  
-
-
-
-
-
-
Weekdays  
Months  
Years  
-
-
-
-
WEEKDAYS (0 to 6)  
MONTHS (1 to 12)  
YEARS (0 to 99)  
RTC alarm1  
08h  
09h  
0Ah  
Second_alarm1  
-
-
-
SEC_ALARM1 (0 to 59)  
MIN_ALARM1 (0 to 59)  
Section 8.4  
Minute_alarm1  
Hour_alarm1  
-
AMPM  
HR_ALARM1 (1 to 12) in 12 hour mode  
HR_ALARM1 (0 to 23) in 24 hour mode  
DAY_ALARM1 (1 to 31)  
0Bh  
0Ch  
Day_alarm1  
-
-
-
-
Month_alarm1  
-
MON_ALARM1 (1 to 12)  
RTC alarm2  
0Dh  
0Eh  
0Fh  
Minute_alarm2  
-
-
-
MIN_ALARM2 (0 to 59)  
Section 8.4  
Hour_alarm2  
-
-
AMPM  
-
HR_ALARM2 (1 to 12) in 12 hour mode  
Weekday_alarm  
2
-
-
WDAY_ALARM2 (0 to 6)  
RTC alarm enables  
10h Alarm_enables  
WDAY_A2E HR_A2E  
MIN_A2E  
MON_A1E  
DAY_A1E  
HR_A1E  
MIN__A1E  
SEC__A1E Section 8.4  
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
RTC mode time registers …continued  
Table 5.  
Bit positions labeled as - are not implemented. After reset, all registers are set according to Table 62 on page 58.  
Address Register name Bit  
Reference  
7
6
5
4
3
2
1
0
RTC timestamp1 (TSR1)  
11h  
12h  
13h  
TSR1_seconds  
TSR1_minutes  
TSR1_hours  
-
-
-
TSR1_SECONDS (0 to 59)  
TSR1_MINUTES (0 to 59)  
Section 8.7  
-
AMPM  
TSR1_HOURS (1 to 12) in 12 hour mode  
TSR1_HOURS (0 to 23) in 24 hour mode  
TSR1_DAYS (1 to 31)  
14h  
15h  
16h  
TSR1_days  
TSR1_months  
TSR1_years  
-
-
-
-
-
TSR1_MONTHS (1 to 12)  
TSR1_YEARS (0 to 99)  
RTC timestamp2 (TSR2)  
17h  
18h  
19h  
TSR2_seconds  
TSR2_minutes  
TSR2_hours  
-
-
-
TSR2_SECONDS (0 to 59)  
TSR2_MINUTES (0 to 59)  
Section 8.7  
Section 8.7  
Section 8.7  
-
AMPM  
TSR2_HOURS (1 to 12) in 12 hour mode  
TSR2_HOURS (0 to 23) in 24 hour mode  
TSR2_DAYS (1 to 31)  
1Ah  
1Bh  
1Ch  
TSR2_days  
TSR2_months  
TSR2_years  
-
-
-
-
-
TSR2_MONTHS (1 to 12)  
TSR2_YEARS (0 to 99)  
RTC timestamp3 (TSR3)  
1Dh  
1Eh  
1Fh  
TSR3_seconds  
TSR3_minutes  
TSR3_hours  
-
-
-
TSR3_SECONDS (0 to 59)  
TSR3_MINUTES (0 to 59)  
-
AMPM  
TSR3_HOURS (1 to 12) in 12 hour mode  
TSR3_HOURS (0 to 23) in 24 hour mode  
TSR3_DAYS (1 to 31)  
20h  
21h  
22h  
TSR3_days  
TSR3_months  
TSR3_years  
-
-
-
-
-
TSR3_MONTHS (1 to 12)  
TSR3_YEARS (0 to 99)  
RTC timestamp mode control  
23h TSR_mode  
TSR3M[1:0]  
-
TSR2M[2:0]  
TSR1M[1:0]  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
8.1.1.2 Stop-watch mode time registers (RTCM = 1)  
Table 6.  
Stop-watch mode time registers  
Bit positions labeled as - are not implemented. After reset, all registers are set according to Table 62 on page 58.  
Address Register name  
Bit  
7
Reference  
6
5
4
3
2
1
0
Stop-watch time registers  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
100th_seconds  
Seconds  
100TH_SECONDS (0 to 99)  
Section 8.3  
OS  
SECONDS (0 to 59)  
MINUTES (0 to 59)  
Minutes  
EMON  
Hours_xx_xx_00  
Hours_xx_00_xx  
Hours_00_xx_xx  
not used  
HR_XX_XX_00 (0 to 99)  
HR_XX_00_XX (0 to 99)  
HR_00_XX_XX (0 to 99)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
not used  
Stop-watch alarm1  
08h  
09h  
0Ah  
0Bh  
0Ch  
Second_alm1  
Minute_alm1  
-
-
SEC_ALM1 (0 to 59)  
MIN_ALM1 (0 to 59)  
Section 8.4  
Hr_xx_xx_00_alm1 HR_XX_XX_00_ALM1 (0 to 99)  
Hr_xx_00_xx_alm1 HR_XX_00_XX_ALM1 (0 to 99)  
Hr_00_xx_xx_alm1 HR_00_XX_XX_ALM1 (0 to 99)  
Stop-watch alarm2  
0Dh  
0Eh  
0Fh  
Minute_alm2  
-
MIN_ALM2 (0 to 59)  
Section 8.4  
Section 8.4  
Hr_xx_00_alm2  
Hr_00_xx_alm2  
HR_XX_00_ALM2 (0 to 99)  
HR_00_XX_ALM2 (0 to 99)  
Stop-watch alarm enables  
10h Alarm_enables  
HR_00_XX HR_XX_00 MIN_A2E  
_A2E  
HR_00_XX HR_XX_00 HR_XX_XX MIN_A1E  
_XX_A1E _XX_A1E _00_A1E  
SEC_A1E  
_A2E  
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Stop-watch mode time registers …continued  
Table 6.  
Bit positions labeled as - are not implemented. After reset, all registers are set according to Table 62 on page 58. …continued  
Address Register name  
Bit  
7
Reference  
6
5
4
3
2
1
0
Stop-watch timestamp1 (TSR1)  
11h  
12h  
13h  
14h  
15h  
16h  
TSR1_seconds  
TSR1_minutes  
-
-
TSR1_SECONDS (0 to 59)  
TSR1_MINUTES (0 to 59)  
Section 8.7  
TSR1_hr_xx_xx_00 TSR1_HR_XX_XX_00 (0 to 99)  
TSR1_hr_xx_00_xx TSR1_HR_XX_00_XX (0 to 99)  
TSR1_hr_00_xx_xx TSR1_HR_00_XX_XX (0 to 99)  
not used  
-
-
-
-
-
-
-
-
Stop-watch timestamp2 (TSR2)  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
TSR2_seconds  
TSR2_minutes  
-
-
TSR2_SECONDS (0 to 59)  
TSR2_MINUTES (0 to 59)  
Section 8.7  
Section 8.7  
Section 8.7  
TSR2_hr_xx_xx_00 TSR2_HR_XX_XX_00 (0 to 99)  
TSR2_hr_xx_00_xx TSR2_HR_XX_00_XX (0 to 99)  
TSR2_hr_00_xx_xx TSR2_HR_00_XX_XX (0 to 99)  
not used  
-
-
-
-
-
-
-
-
Stop-watch timestamp3 (TSR3)  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
TSR3_seconds  
TSR3_minutes  
-
-
TSR3_SECONDS (0 to 59)  
TSR3_MINUTES (0 to 59)  
TSR3_hr_xx_xx_00 TSR3_HR_XX_XX_00 (0 to 99)  
TSR3_hr_xx_00_xx TSR3_HR_XX_00_XX (0 to 99)  
TSR3_hr_00_xx_xx TSR3_HR_00_XX_XX (0 to 99)  
not used  
-
-
-
-
-
-
-
-
Stop-watch timestamp mode control  
23h TSR_mode TSR3M[1:0]  
-
TSR2M[2:0]  
TSR1M[1:0]  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
8.1.2 Control registers overview  
Table 7.  
Control and function registers overview  
Bit positions labeled as - are not implemented. After reset, all registers are set according to Table 62 on page 58.  
Address Register name Bit  
Reference  
7
6
5
4
3
2
1
0
Offset register  
24h  
Offset  
OFFSET[7:0]  
Section 8.8  
Control registers  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
Oscillator  
CLKIV  
-
OFFM  
-
12_24  
-
LOWJ  
BSOFF  
TSIM  
OSCD[1:0]  
BSRR  
CL[1:0]  
Section 8.10  
Section 8.11  
Section 8.12  
Section 8.13  
Section 8.9  
Section 8.9  
Section 8.14  
Battery_switch  
Pin_IO  
BSM[1:0]  
BSTH  
CLKPM  
100TH  
ILPA  
ILPB  
PIF  
TSPULL  
PI[1:0]  
PIEA  
PIEB  
A2F  
TSL  
TSPM[1:0]  
STOPM  
A2IEA  
INTAPM[1:0]  
Function  
RTCM  
A1IEA  
A1IEB  
WDF  
COF[2:0]  
TSRIEA  
TSRIEB  
TSR3F  
INTA_enable  
INTB_enable  
Flags  
OIEA  
OIEB  
A1F  
BSIEA  
BSIEB  
TSR2F  
WDIEA  
WDIEB  
TSR1F  
A2IEB  
BSF  
Single RAM byte  
2Ch  
RAM_byte  
B[7:0]  
WDM  
-
Section 8.6  
Section 8.5  
Section 8.16  
Section 8.15  
Section 8.17  
WatchDog registers  
2Dh  
WatchDog  
Stop_enable  
Resets  
WDR[4:0]  
WDS[1:0]  
Stop  
2Eh  
-
-
-
-
-
-
STOP  
CTS  
Reset  
2Fh  
CPR  
B[7:0]  
0
1
0
SR  
1
0
RAM (64 byte)  
40h to  
7Fh  
RAM  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.2 RTC mode time and date registers  
RTC mode is enabled by setting RTCM = 0. These registers are coded in the BCD format  
to simplify application use.  
Default state is:  
Time — 00:00:00.00  
Date — 2000 01 01  
Weekday — Saturday  
Monitor bits — OS = 1, EMON = 0  
Table 8.  
Time and date registers in RTC mode (RTCM = 0)  
Bit positions labeled as - are not implemented and return 0 when read.  
Address Register name Upper-digit (ten’s place) Digit (unit place)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00h  
01h  
02h  
03h  
100th_seconds[1] 0 to 9  
0 to 9  
0 to 9  
0 to 9  
Seconds  
Minutes  
Hours[2]  
OS  
0 to 5  
EMON 0 to 5  
-
-
AMPM 0 to 1 0 to 9  
0 to 2  
0 to 9  
0 to 9  
-
04h  
05h  
06h  
07h  
Days[3]  
Weekdays  
Months  
Years  
-
-
-
-
0 to 3  
-
-
-
-
0 to 6  
-
0 to 1 0 to 9  
0 to 9  
0 to 9  
[1] The 100th_seconds register is only available when the 100TH mode is enabled, see Section 8.13.1. When  
the 100TH mode is disabled, this register always returns 0.  
[2] Hour mode is set by the 12_24 bit in the Oscillator register, see Section 8.10 on page 41.  
[3] If the year counter contains a value, which is exactly divisible by 4, the PCF85363A compensates for leap  
years by adding a 29th day to February.  
8.2.1 Definition of BCD  
The Binary-Coded Decimal (BCD) is an encoding of numbers where each digit is  
represented by a separate bit field. Each bit field may only contain the values 0 to 9. In this  
way, decimal numbers and counting is implemented.  
Example: 59 encoded as an entire number is represented by 3Bh or 111011. In BCD the 5  
is represented as 5h or 0101 and the 9 as 9h or 1001 which combines to 59h.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
13 of 95  
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 9.  
BCD coding  
Upper-digit (ten’s place)  
Value in  
decimal  
Digit (unit place)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00  
01  
02  
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
09  
10  
:
1
0
:
0
0
:
0
0
:
1
0
:
1
0
:
0
0
:
0
0
:
1
0
:
98  
99  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
8.2.2 OS: Oscillator stop  
When the oscillator of the PCF85363A is stopped, the OS status bit is set. The oscillator  
can be stopped, for example, by connecting one of the oscillator pins OSCI or OSCO to  
ground. The oscillator is considered to be stopped during the time between power-on and  
stable crystal resonance. This time can be in the range of 200 ms to 2 s depending on  
crystal type, temperature, and supply voltage.  
The status bit remains set until cleared by command (see Figure 8). If the bit cannot be  
cleared, then the oscillator is not running. This method can be used to monitor the  
oscillator and to determine if the supply voltage has reduced to the point where oscillation  
fails.  
26ꢂ ꢂꢀꢂDQGꢂELWꢂFDQꢂQRWꢂEHꢂFOHDUHG  
26ꢂ ꢂꢀꢂDQGꢂELWꢂFDQꢂEHꢂFOHDUHG  
9
''  
RVFLOODWLRQ  
26ꢂIODJ  
26ꢂELWꢂVHWꢂZKHQ  
RVFLOODWLRQꢂVWRSV  
26ꢂELWꢂFOHDUHG  
E\ꢂVRIWZDUH  
W
RVFLOODWLRQꢂQRZꢂVWDEOH  
DDDꢀꢁꢁꢈꢆꢇꢄ  
Fig 8. OS status bit  
8.2.3 EMON: event monitor  
The EMON can be used to monitor the status of all the flags in the Flags register, see  
Section 8.14 on page 56. When one or more of the flags is set, then the EMON bit returns  
a logic 1. The EMON bit cannot be cleared. EMON returns a logic 0 when all flags are  
cleared.  
See Figure 21 on page 40 for a pictorial representation.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
14 of 95  
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.2.4 Definition of weekdays  
Definition may be reassigned by the user.  
Table 10. Weekday assignments  
Day  
Bit  
2
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
Sunday  
0
Monday  
Tuesday  
Wednesday  
Thursday  
Friday  
0
0
0
1
1
Saturday  
1
8.2.5 Definition of months  
Table 11. Month assignments in BCD format  
Month  
Upper-digit  
(ten’s place)  
Digit (unit place)  
Bit 4  
0
Bit 3  
0
Bit 2  
Bit 1  
0
Bit 0  
1
January  
February  
March  
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
April  
0
0
0
0
May  
0
0
0
1
June  
0
0
1
0
July  
0
0
1
1
August  
September  
October  
November  
December  
0
1
0
0
0
1
0
1
1
0
0
0
1
0
0
1
1
0
1
0
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
15 of 95  
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.2.6 Setting and reading the time in RTC mode  
Figure 9 shows the data flow and data dependencies starting from the 100 Hz clock tick.  
ꢀꢁꢁꢂ+]ꢂWLFN  
ꢀꢁꢁ7+B6(&21'  
ꢀꢂ+]ꢂWLFN  
ꢀꢁꢁ7+  
6(&21'6  
0,187(6  
ꢀꢅBꢅꢄ  
+2856  
'$<6  
/($3ꢂ<($5  
&$/&8/$7,21  
:((.'$<  
0217+6  
<($56  
DDDꢀꢁꢁꢈꢆꢉꢁ  
Fig 9. Data flow for the time function  
During read operations, the time counting circuits (memory locations 00h through 07h) are  
copied into an output register. The RTC continues counting in the background.  
When reading or writing the time it is very important to make a read or write access in one  
go, that is, setting or reading 100th seconds through to years should be made in one  
single access. Failing to comply with this method could result in the time becoming  
corrupted.  
As an example, if the time (seconds through to hours) is set in one access and then in a  
second access the date is set, it is possible that the time increments between the two  
accesses. A similar problem exists when reading. A roll-over may occur between reads  
thus giving the minutes from one moment and the hours from the next.  
Before setting the time, the STOP bit should be set and the prescalers should be cleared  
(see Section 8.16 “Stop_enable register” on page 59).  
An example of setting the time: 14 hours, 23 minutes and 19 seconds.  
I2C START condition  
I2C slave address + write (A2h)  
register address (2Eh)  
write data (set STOP, 01h)  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
16 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
write data (clear prescaler, A4h)  
write data (100th seconds, 00h)  
write data (Hours, 14h)  
write data (Minutes, 23h)  
write data (Seconds, 19h)  
I2C START condition  
I2C slave address + write (A2h)  
register address (2Eh)  
write data (clear STOP, 00h). Time starts counting from this point  
I2C STOP condition  
8.3 Stop-watch mode time registers  
These registers are coded in the BCD format to simplify application use.  
Stop-watch mode is enabled by setting RTCM = 1. In stop-watch mode, the PCF85363A  
counts from 100th seconds to 999999 hours. There are no days, weekdays, months or  
year registers.  
Default state is:  
Time — 000000:00:00.00  
Monitor bits — OS = 1, EMON = 0 (see Section 8.2.2 on page 14 and Section 8.2.3 on  
page 14)  
Table 12. Time registers in stop-watch mode (RTCM = 1)  
Bit positions labeled as - are not implemented and return 0 when read.  
Address Register name Upper-digit (ten’s place)  
Digit (unit place)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
0 to 9  
0 to 9  
0 to 9  
0 to 9  
0 to 9  
0 to 9  
-
Bit 2  
Bit 1  
Bit 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
100th_seconds[1] 0 to 9  
Seconds  
Minutes  
OS  
0 to 5  
EMON 0 to 5  
Hours_xx_xx_00 0 to 9  
Hours_xx_00_xx 0 to 9  
Hours_00_xx_xx 0 to 9  
not used  
not used  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[1] The 100th_seconds register is only available when the 100TH mode is enabled, see Section 8.13.1 on  
page 53. When the 100TH mode is disabled, this register always returns 0.  
8.3.1 Setting and reading the time in stop-watch mode  
Figure 10 shows the data flow and data dependencies starting from the 100 Hz clock tick.  
During read operations, the time counting circuits (memory locations 00h through 07h) are  
copied into an output register. The RTC continues counting in the background.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
17 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
When reading or writing the time it is very important to make a read or write access in one  
go, that is, setting or reading 100th_seconds through to HR_00_xx_xx should be made in  
one single access. Failing to comply with this method could result in the time becoming  
corrupted.  
As an example, if the seconds value is set in one access and then in a following access  
the minutes value is set, it is possible that the time increments between the two accesses.  
A similar problem exists when reading. A roll-over may occur between reads thus giving  
the seconds from one moment and the minutes from the next.  
ꢀꢁꢁꢂ+]ꢂWLFN  
ꢀꢁꢁ7+B6(&21'6  
ꢀꢂ+]ꢂWLFN  
ꢀꢁꢁ7+  
6(&21'6  
0,187(6  
+5B;;B;;Bꢁꢁ  
+5B;;BꢁꢁB;;  
+5BꢁꢁB;;B;;  
DDDꢀꢁꢁꢈꢆꢉꢂ  
Fig 10. Data flow for the stop-watch function  
8.4 Alarms  
There are two independent alarms. Each is separately configured and may be used to  
generate an interrupt. In RTC mode, an alarm is configured for time and date. In  
stop-watch mode when the RTC is functioning as an elapsed time counter, an alarm is  
configured for time only.  
8.4.1 Alarms in RTC mode  
In RTC mode, Alarm 1 can be configured from seconds to months. Alarm 2 operates on  
minutes, hours and weekday. Each segment of the time is independently enabled. Alarms  
can be output on the INTA and INTB pins.  
8.4.1.1 Alarm1 and alarm2 registers in RTC mode  
Setting the time for alarm1: Only the information which is relevant for the alarm condition  
must to be programmed. The unused parts are ignored.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
18 of 95  
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 13. Alarm1 and alarm2 registers in RTC mode coded in BCD (RTCM = 0)  
Bit positions labeled as - are not implemented.  
Address Register name  
Upper-digit (ten’s place)  
Digit (unit place)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RTC alarm1 registers  
08h  
09h  
0Ah  
Second_alarm1  
Minute_alarm1  
Hour_alarm1  
-
-
-
0 to 5  
0 to 5  
-
0 to 9  
0 to 9  
AMPM 0 to 1 0 to 9  
0 to 2  
0 to 3  
-
0 to 9  
0 to 9  
0Bh  
0Ch  
Day_alarm1  
-
-
-
-
Month_alarm1  
0 to 1 0 to 9  
RTC alarm2 registers  
0Dh  
0Eh  
Minute_alarm2  
Hour_alarm2  
-
-
0 to 5  
-
0 to 9  
AMPM 0 to 1 0 to 9  
0 to 2  
-
0 to 9  
-
0Fh  
Weekday_alarm2 -  
-
-
0 to 6  
8.4.1.2 Alarm1 and alarm2 control in RTC mode  
Table 14. Alarm_enables- alarm enable control register (address 10h) bit description  
Bit  
Symbol  
Value  
Description  
RTC alarm2  
7
6
5
WDAY_A2E  
weekday alarm2 enable  
disabled  
0[1]  
1
enabled  
HR_A2E  
MIN_A2E  
hour alarm2 enable  
disabled  
0[1]  
1
enabled  
minute alarm2 enable  
disabled  
0[1]  
1
enabled  
RTC alarm1  
4
3
2
1
MON_A1E  
month alarm1 enable  
disabled  
0[1]  
1
enabled  
DAY_A1E  
HR_A1E  
MIN_A1E  
day alarm1 enable  
disabled  
0[1]  
1
enabled  
hour alarm1 enable  
disabled  
0[1]  
1
enabled  
minute alarm1 enable  
disabled  
0[1]  
1
enabled  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
19 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 14. Alarm_enables- alarm enable control register (address 10h) bit description  
Bit  
Symbol  
Value  
Description  
second alarm1 enable  
disabled  
0
SEC_A1E  
0[1]  
1
enabled  
[1] Default value.  
8.4.1.3 Alarm1 and alarm2 function in RTC mode  
The registers at addresses 08h through 0Ch contain alarm1 information. When one or  
more of these registers is loaded with second, minute, hour, day, or month, and its  
corresponding alarm enable bit (SEC_A1E to MON_A1E) is set logic 1, then that  
information is compared with the current second, minute, hour, day, and month.  
The registers at addresses 0Dh through 0Fh contain alarm2 information. When one or  
more of these registers is loaded with minute, hour or weekday, and its corresponding  
alarm enable bit (MIN_A2E to WDAY_A2E) is set logic 1, then that information is  
compared with the current minute, hour and weekday.  
Alarm registers which have their alarm enable bit at logic 0 are ignored.  
When the time increments to match the enabled alarms, the alarm flag in the Flags  
register (Section 8.14 on page 56) is set. A1F for alarm1 and A2F for alarm2. The alarm  
flag is cleared by command.  
When the time increments to match the enabled alarms, an interrupt can be generated.  
See Section 8.4.3 “Alarm interrupts”.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
20 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
H[DPSOH  
FKHFNꢂQRZꢂVLJQDO  
6(&B$ꢀ(  
6(&B$ꢀ(ꢂ ꢂꢁ  
6(&21'ꢂ$/$50ꢀ  
 
6(&21'ꢂ7,0(  
0,1B$ꢀ(  
0,187(ꢂ$/$50ꢀ  
 
0,187(ꢂ7,0(  
+5B$ꢀ(  
+285ꢂ$/$50ꢀ  
ꢋꢀꢌ  
VHWꢂDODUPꢂIODJꢂ$ꢀ)ꢂ  
 
 
 
+285ꢂ7,0(  
'$<B$ꢀ(  
021B$ꢀ(  
'$<ꢂ$/$50ꢀ  
'$<ꢂ7,0(  
0217+ꢂ$/$50ꢀ  
0217+ꢂ7,0(  
H[DPSOH  
FKHFNꢂQRZꢂVLJQDO  
0,187(ꢂ$/$50ꢅ  
0,1B$ꢅ(  
+5B$ꢅ(  
0,1B$ꢅ(ꢂ ꢂꢁ  
 
 
 
0,187(ꢂ7,0(  
+285ꢂ$/$50ꢅ  
+285ꢂ7,0(  
ꢋꢀꢌ  
VHWꢂDODUPꢂIODJꢂ$ꢅ)ꢂ  
:'$<B$ꢅ(  
:((.'$<ꢂ$/$50ꢅ  
:((.'$<ꢂ7,0(  
DDDꢀꢁꢁꢈꢆꢉꢊ  
(1) Only when all enabled alarm settings are matching.  
The flag is set only on increment to a matched case (and not all the time it is equal).  
Fig 11. Alarm1 and alarm2 function block diagram (RTC mode)  
8.4.2 Alarms in stop-watch mode  
In stop-watch mode, Alarm 1 can be configured from seconds to 999999 hours. Alarm 2  
operates on minutes up to 9999 hours.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
21 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.4.2.1 Alarm1 and alarm2 registers in stop-watch mode  
Setting the time for alarm1 and alarm2: Only the information which is relevant for the  
alarm condition must to be programmed. The unused parts are ignored.  
Table 15. Alarm1 and alarm2 registers in stop-watch mode coded in BCD (RTCM = 1)  
Bit positions labeled as - are not implemented.  
Address Register name  
Upper-digit (ten’s place)  
Digit (unit place)  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Stop-watch alarm1 registers  
08h  
09h  
09h  
0Bh  
0Ch  
Second_alm1  
Minute_alm1  
-
-
0 to 5  
0 to 5  
0 to 9  
0 to 9  
0 to 9  
0 to 9  
0 to 9  
Hr_xx_xx_00_alm1 0 to 9  
Hr_xx_00_xx_alm1 0 to 9  
Hr_00_xx_xx_alm1 0 to 9  
Stop-watch alarm2 registers  
0Dh  
0Eh  
0Fh  
Minute_alm2  
-
0 to 5  
0 to 9  
0 to 9  
0 to 9  
Hr_xx_00_alm2  
Hr_00_xx_alm2  
0 to 9  
0 to 9  
8.4.2.2 Alarm1 and alarm2 control in stop-watch mode  
Table 16. Alarm_enables- alarm enable control register (address 10h) bit description  
Bit  
Symbol  
Value  
Description  
Stop-watch alarm2  
7
6
5
HR_00_XX_A2E  
thousands of hours alarm2 enable  
0[1]  
1
disabled  
enabled  
HR_XX_00_A2E  
MIN_A2E  
tens of hours alarm2 enable  
disabled  
0[1]  
1
enabled  
minute alarm2 enable  
disabled  
0[1]  
1
enabled  
Stop-watch alarm1  
4
3
2
HR_00_XX_XX_A1E  
100 thousands of hours alarm1 enable  
0[1]  
1
disabled  
enabled  
HR_XX_00_XX_A1E  
HR_XX_XX_00_A1E  
thousands of hours alarm1 enable  
0[1]  
1
disabled  
enabled  
tens of hour alarm1 enable  
disabled  
0[1]  
1
enabled  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
22 of 95  
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 16. Alarm_enables- alarm enable control register (address 10h) bit description  
Bit  
Symbol  
Value  
Description  
minute alarm1 enable  
disabled  
1
MIN_A1E  
0[1]  
1
enabled  
0
SEC_A1E  
second alarm1 enable  
disabled  
0[1]  
1
enabled  
[1] Default value.  
8.4.2.3 Alarm1 and alarm2 function in stop-watch mode  
The registers at addresses 08h through 0Ch contain alarm1 information. When one or  
more of these registers is loaded with second, minute, and hours, and its corresponding  
alarm enable bit (SEC_A1E to HR_00_XX_XX_A1E) is set logic 1, then that information is  
compared with the current second, minute, and hours.  
The registers at addresses 0Dh through 0Fh contain alarm2 information. When one or  
more of these registers is loaded with minute and hours, and its corresponding alarm  
enable bit (MIN_A2E to HR_00_XX_A2E) is set logic 1, then that information is compared  
with the current minute and hours.  
Alarm registers which have their alarm enable bit at logic 0 are ignored.  
When the time increments to match the enabled alarms, the alarm flag in the Flags  
register (Section 8.14 on page 56) is set. A1F for alarm1 and A2F for alarm2. The alarm  
flag is cleared by command.  
When the time increments to match the enabled alarms, an interrupt can be generated.  
See Section 8.4.3 “Alarm interrupts”.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
23 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
H[DPSOH  
FKHFNꢂQRZꢂVLJQDO  
6(&B$ꢀ(  
6(&B$ꢀ(ꢂ ꢂꢁ  
6(&21'ꢂ$/$50ꢀ  
 
6(&21'ꢂ7,0(  
0,1B$ꢀ(  
0,187(ꢂ$/$50ꢀ  
 
0,187(ꢂ7,0(  
+5B[[B[[BꢁꢁB$ꢀ(  
+5B[[B[[Bꢁꢁꢂ$/$50ꢀ  
ꢋꢀꢌ  
VHWꢂDODUPꢂIODJꢂ$ꢀ)ꢂ  
 
 
 
[[B[[Bꢁꢁꢂ+285ꢂ7,0(  
+5B[[BꢁꢁB[[B$ꢀ(  
+5BꢁꢁB[[B[[B$ꢀ(  
+5B[[BꢁꢁB[[ꢂ$/$50ꢀ  
[[BꢁꢁB[[ꢂ+285ꢂ7,0(  
+5BꢁꢁB[[B[[ꢂ$/$50ꢀ  
ꢁꢁB[[B[[ꢂ+285ꢂ7,0(  
H[DPSOH  
FKHFNꢂQRZꢂVLJQDO  
0,187(ꢂ$/$50ꢅ  
0,1B$ꢅ(  
0,1B$ꢅ(ꢂ ꢂꢁ  
 
 
 
0,187(ꢂ7,0(  
+5B[[BꢁꢁB$ꢅ(  
+5BꢁꢁB[[B$ꢅ(  
+5B[[Bꢁꢁꢂ$/$50ꢅ  
ꢋꢀꢌ  
VHWꢂDODUPꢂIODJꢂ$ꢅ)ꢂ  
[[B[[Bꢁꢁꢂ+285ꢂ7,0(  
+5BꢁꢁB[[ꢂ$/$50ꢅ  
[[BꢁꢁB[[ꢂ+285ꢂ7,0(  
DDDꢀꢁꢁꢈꢆꢉꢅ  
(1) Only when all enabled alarm settings are matching.  
The flag is set only on increment to a matched case (and not all the time it is equal).  
Fig 12. Alarm1 and alarm2 function block diagram (stop-watch mode)  
8.4.3 Alarm interrupts  
The generation of interrupts from the alarm functions is controlled via the alarm interrupt  
enable bits; A1IEA, A1IEB, A2IEA, A2IEB. These bits are in registers INTA_enable  
(address 29h) and INTB_enable (address 2Ah).  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
24 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
The assertion of flags A1F or A2F can be used to generate an interrupt at the pins INTA  
and INTB. The interrupt may be generated as a pulse signal every time the time  
increments to match the alarm setting or as a permanently active signal which follows the  
condition of bit A1F and/or A2F. See Section 8.9 on page 37 for interrupt control.  
A1F and A2F remain set until cleared by command. Once an alarm flag has been cleared,  
it will only be set again when the time increments to match the alarm condition once more.  
When an interrupt pin is configured to pulse mode and if an alarm flag is not cleared and  
the time increments to match the alarm condition again, then a repeated interrupt pulse  
will be generated.  
8.5 WatchDog  
Table 17. WatchDog - WatchDog control and register (address 2Dh) bit description  
Bit  
Symbol  
Value  
Description  
7
WDM  
WatchDog mode  
0[1]  
1
single shot  
repeat mode  
6 to 2 WDR[4:0]  
1 to 0 WDS[1:0]  
WatchDog register bits  
Write: WatchDog counter load value  
Read: current counter value  
WatchDog step size (source clock)  
4 seconds (0.25 Hz)  
1 second (1 Hz)  
0h[1] to 1Fh  
0h to 1Fh  
00[1]  
01  
10  
14 second (4 Hz)  
1
11  
16 second (16 Hz)  
[1] Default value.  
8.5.1 WatchDog functions  
The WatchDog has four selectable step sizes allowing for periods in the range from  
62.5 ms to 124 seconds. For periods greater than 2 minutes, the alarm function can be  
used.  
WatchDog-duration = WDR stepsize  
(1)  
Table 18. WatchDog durations  
WDS[1:0] WatchDog step Delay  
size[1]  
Minimum WatchDog duration Maximum WatchDog duration  
WDR = 1  
4 s  
WDR = 31  
00  
01  
10  
11  
4 s  
1 s  
14 s  
124 s  
1 s  
31 s  
0.25 s  
0.0625 s  
7.75 s  
1
16 s  
1.9375 s  
[1] Time periods can be affected by correction pulses.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
25 of 95  
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Remark: Note that all timings are generated from the 32.768 kHz oscillator and are based  
on the assumption that there is 0 ppm deviation. Deviation in oscillator frequency results  
in deviation in timings. This is not applicable to interface timing.  
The WatchDog counts down from a software-loaded 5-bit binary value, WDR[4:0], in  
register WatchDog. Loading the counter with 0 stops the WatchDog. Loading the counter  
with a non-0 value starts the counter. Values from 1 to 31 are allowed.  
FRXQWGRZQꢂYDOXHꢑꢂ:'5  
:DWFK'RJꢂFORFN  
FRXQWHU  
ꢁꢁ  
ꢁꢆ  
ꢁꢅ  
ꢁꢀ  
ꢁꢆ  
ꢁꢅ  
ꢁꢀ  
ꢁꢆ  
ꢁꢅ  
ꢁꢀ  
ꢁꢆ  
ꢁꢁ  
ꢁꢆ  
:')  
,17$ꢂRUꢂ,17%  
:'5ꢂFRXQWV  
:'5ꢂFRXQWV  
GXUDWLRQꢂRIꢂILUVWꢂ:DWFK'RJꢂSHULRGꢂDIWHUꢂVWDUW  
PD\ꢂUDQJHꢂIURPꢂ:'5ꢂWRꢂ:'5ꢂꢉꢀꢂFRXQWV  
DDDꢀꢁꢁꢈꢆꢉꢃ  
In this example, it is assumed that the WatchDog flag (WDF) is cleared before the next WatchDog  
period expires and that the interrupt output is set to pulsed mode.  
Fig 13. WatchDog repeat mode  
If a new value of WDR[4:0] is written before the end of the current WatchDog period, then  
this value takes immediate effect.  
When starting the timer for the first time or when reloading WDR[4:0] before the end of the  
current period, the first period has an uncertainty of maximum one count. The uncertainty  
is a result of loading the WDR[4:0] from the interface clock which is asynchronous from  
the WatchDog source clock. Subsequent WatchDog periods do not have such variation.  
Reading the WatchDog register returns the current value of the WatchDog counter (see  
Figure 13) and not the initial value WDR[4:0]. Since it is not possible to freeze the  
WatchDog counter during read back, it is recommended to read the register twice and  
check for consistent results.  
8.5.1.1 WatchDog repeat mode  
In repeat mode, at the end of every WatchDog period, the WatchDog flag (bit WDF in the  
Flags register, Section 8.14 on page 56) is set and the counter automatically reloads and  
starts the next WatchDog period. An example is given in Figure 13. The asserted bit WDF  
can be used to generate an interrupt. Bit WDF can only be cleared by command.  
8.5.1.2 WatchDog single shot mode  
In single shot mode, at the end of the countdown period, the WatchDog flag (bit WDF in  
the Flags register, Section 8.14 on page 56) is set and the counter stops with the value 0.  
The WatchDog register must be reloaded to start another WatchDog period.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
26 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
FRXQWGRZQꢂYDOXHꢑꢂ:'5  
:DWFK'RJꢂFORFN  
FRXQWHU  
ꢁꢁ  
ꢁꢁ  
ꢁꢃ  
ꢁꢏ  
ꢁꢄ  
ꢁꢆ  
ꢁꢅ  
ꢁꢀ  
ꢁꢁ  
ꢁꢃ  
:')  
,17$ꢂRUꢂ,17%  
GXUDWLRQꢂRIꢂ:DWFK'RJꢂSHULRGꢂDIWHUꢂVWDUW  
PD\ꢂUDQJHꢂIURPꢂ:'5ꢂWRꢂ:'5ꢂꢉꢀꢂFRXQWV  
DDDꢀꢁꢁꢈꢆꢉꢆ  
Fig 14. WatchDog single shot mode  
8.5.1.3 WatchDog interrupts  
The generation of interrupts from the WatchDog functions is controlled via the WatchDog  
interrupt enable bits; WDIEA and WDIEB. These bits are in registers INTA_enable  
(address 29h) and INTB_enable (address 2Ah).  
The assertion of the flag WDF can be used to generate an interrupt at pins INTA and  
INTB. The interrupt may be generated as a pulsed signal every time the WatchDog  
counter reaches the end of the countdown period. Alternatively as a permanently active  
signal which follows the condition of bit WDF. WDF remains set until cleared by command.  
When enabled, interrupts are triggered every time the WatchDog counter reaches the end  
of the countdown period and even if the WDF is not cleared, an interrupt pulse can be  
generated.  
See Section 8.9 on page 37 for interrupt control.  
8.6 Single RAM byte  
Table 19. RAM_byte - 8-bit RAM register (address 2Ch) bit description  
Bit  
Symbol  
Value  
Description  
7 to 0 B[7:0]  
00000000[1] to single RAM byte content  
11111111  
[1] Default value.  
The PCF85363A provides a free single RAM byte, which can be used for any purpose, for  
example, status bits of the system.  
8.7 Timestamps  
There are three timestamp registers which can be independently configured to record the  
time for battery switch-over events and/or transitions on the TS pin.  
Each timestamp register has an associated flag. It is also possible to generate an interrupt  
signal for every timestamp register update.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
27 of 95  
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Timestamps work in both RTC and stop-watch mode. During battery operation, the  
mechanical switch detector may also be used to trigger the timestamp.  
The timestamp registers are read only and cannot be written. It is possible to set all three  
registers to 0 with the CTS instruction in the Resets register (Section 8.15 on page 57).  
PRGH  
765ꢀ0>ꢀꢐꢁ@  
IODJ  
765ꢀ)  
PRGH  
765ꢅ0>ꢅꢐꢁ@  
IODJ  
765ꢅ)  
PRGH  
765ꢆ0>ꢀꢐꢁ@  
IODJ  
765ꢆ)  
WLPHUꢂUHJLVWHUV  
57&ꢄPRGH  
VHFRQGV  
PLQXWHV  
WLPHVWDPS  
WLPHVWDPS  
WLPHVWDPS  
UHJLVWHU  
UHJLVWHU  
UHJLVWHU  
\HDUV  
765ꢀ  
765ꢅ  
765ꢆ  
VWRSZDWFKꢄPRGH  
VHFRQGV  
PLQXWHV  
ꢎꢎꢎꢎꢎꢎꢂKRXUV  
ORDG  
ORDG  
ORDG  
ORDG  
76ꢂSLQ  
EDWWHU\  
VZLWFKRYHU  
DDDꢀꢁꢁꢈꢆꢈꢆ  
Fig 15. Timestamp  
The mode for each register is controlled by the TSR_mode register.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
28 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 20. TSR_mode - timestamp mode control register (address 23h) bit description  
Bit  
Symbol  
Value  
Description  
Timestamp3 (TSR3)  
7 to 6 TSR3M[1:0]  
timestamp register 3 mode  
no timestamp  
00[1]  
01  
10  
11  
FB, record First time switch to Battery event  
LB, record Last time switch to Battery event  
LV, record Last time switch to VDD event  
not used  
5
-
0
Timestamp2 (TSR2)  
4 to 2 TSR2M[2:0]  
timestamp register 2 mode  
no timestamp  
000[1]  
001  
FB, record First time switch to Battery event  
LB, record Last time switch to Battery event  
LV, record Last time switch to VDD event  
FE, record First TS pin Event  
LE, record Last TS pin Event  
no timestamp  
010  
011  
100  
101  
110 to 111  
Timestamp1 (TSR1)  
1 to 0 TSR1M[1:0]  
timestamp register 1 mode  
no timestamp  
00[1]  
01  
FE, record First TS pin Event  
LE, record Last TS pin Event  
no timestamp  
10  
11  
[1] Default value.  
First event means that the time is only stored on the first event and not recorded for  
subsequent events. When the first event occurs, the associated timestamp flag is set.  
When the flag is cleared, then a new ‘first’ event is recorded. See Figure 16 and  
Figure 17.  
Last event means that the time is stored on every event. When an event occurs, the  
associated timestamp flag is set. It is not necessary to clear the flag before a new event is  
recorded.  
Interrupts can be generated in INTA pin and/or INTB pin. Interrupts are generated every  
time a timestamp register is updated. Interrupt generation is not conditional on the state of  
the timestamp flags. See Section 8.7.1.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
29 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
VRXUFHꢂRIꢂ  
SRZHU  
9
ꢂSRZHU  
''  
EDWWHU\ꢂSRZHU  
9
ꢂSRZHU  
EDWWHU\ꢂSRZHU  
9
ꢂSRZHU  
''  
''  
HYHQWꢂWLPH  
HYHQWꢂW\SH  
Wꢀ  
)%ꢑꢂ/%  
Wꢅ  
Wꢆ  
)%ꢑꢂ/%  
Wꢄ  
Wꢏ  
/9  
/9  
/%  
WLPHVWDPSꢆꢂIODJꢑꢂ  
765ꢆ)  
IODJꢂFOHDUHGꢂE\ꢂLQWHUIDFH  
765ꢆꢂVHWꢂWRꢂILUVWꢂWLPHꢂ  
VZLWFKꢂWRꢂEDWWHU\ꢑꢂ)%  
765ꢆꢂ ꢂWꢀ  
QRꢂFKDQJH  
765ꢅꢂ ꢂWꢅ  
765ꢆꢂ ꢂWꢆ  
QRꢂFKDQJH  
765ꢅꢂ ꢂWꢄ  
QRꢂFKDQJH  
765ꢅꢂVHWꢂWRꢂODVWꢂWLPHꢂ  
QRꢂFKDQJH  
QRꢂFKDQJH  
QRꢂFKDQJH  
VZLWFKꢂWRꢂ9 ꢑꢂ/9  
''  
DDDꢀꢁꢁꢈꢆꢈꢄ  
Fig 16. Example battery switch-over timestamp  
ꢋꢀꢌ  
76ꢂSLQ  
HYHQWꢂWLPH  
HYHQWꢂW\SH  
Wꢀ  
Wꢅ  
Wꢆ  
Wꢄ  
)(ꢑꢂ/(  
Wꢏ  
)(ꢑꢂ/(  
/(  
/(  
/(  
WLPHVWDPSꢀꢂIODJꢑꢂ765ꢀ)  
IODJꢂFOHDUHGꢂE\ꢂLQWHUIDFH  
765ꢅꢂVHWꢂWRꢂODVW  
76ꢂSLQꢂHYHQWꢑꢂ/(  
765ꢅꢂ ꢂWꢀ  
765ꢅꢂ ꢂWꢅ  
765ꢅꢂ ꢂWꢆ  
QRꢂFKDQJH  
765ꢅꢂ ꢂWꢄ  
765ꢅꢂ ꢂWꢏ  
765ꢀꢂVHWꢂWRꢂILUVW  
76ꢂSLQꢂHYHQWꢑꢂ)(  
765ꢆꢂ ꢂWꢀ  
QRꢂFKDQJH  
765ꢆꢂ ꢂWꢄ  
QRꢂFKDQJH  
DDDꢀꢁꢁꢈꢄꢁꢃ  
(1) TS pin set to active HIGH (TSL = 0), see register Pin_IO (address 27h), Section 8.12.  
Fig 17. Example TS pin driven timestamp  
The recorded time is stored in the associated timestamp register. The time format  
depends on the RTC mode. The timestamp registers follows the time format of the time  
registers.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
30 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 21. Timestamp registers in RTC mode (RTCM = 0)  
Bit positions labeled as - are not implemented and return 0 when read.  
Address Register name Upper-digit (ten’s place) Digit (unit place)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RTC timestamp1 (TSR1)  
11h  
12h  
13h  
TSR1_seconds  
TSR1_minutes  
TSR1_hours  
-
-
-
0 to 5  
0 to 5  
-
0 to 9  
0 to 9  
AMPM 0 to 1 0 to 9  
0 to 2  
0 to 3  
-
0 to 9  
0 to 9  
14h  
15h  
16h  
TSR1_days  
TSR1_months  
TSR1_years  
-
-
-
-
0 to 1 0 to 9  
0 to 9  
0 to 9  
RTC timestamp2 (TSR2)  
17h  
18h  
19h  
TSR2_seconds  
TSR2_minutes  
TSR2_hours  
-
-
-
0 to 5  
0 to 5  
-
0 to 9  
0 to 9  
AMPM 0 to 1 0 to 9  
0 to 2  
0 to 3  
-
0 to 9  
0 to 9  
1Ah  
1Bh  
1Ch  
TSR2_days  
TSR2_months  
TSR2_years  
-
-
-
-
0 to 1 0 to 9  
0 to 9  
0 to 9  
RTC timestamp3 (TSR3)  
1Dh  
1Eh  
1Fh  
TSR3_seconds  
TSR3_minutes  
TSR3_hours  
-
-
-
0 to 5  
0 to 5  
-
0 to 9  
0 to 9  
AMPM 0 to 1 0 to 9  
0 to 2  
0 to 3  
-
0 to 9  
0 to 9  
20h  
21h  
22h  
TSR3_days  
TSR3_months  
TSR3_years  
-
-
-
-
0 to 1 0 to 9  
0 to 9  
0 to 9  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
31 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 22. timestamp registers in stop-watch mode (RTCM = 1)  
Bit positions labeled as - are not implemented and return 0 when read.  
Address Register name  
Upper-digit (ten’s place)  
Digit (unit place)  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1  
Bit 0  
Stop-watch timestamp1 (TSR1)  
11h  
12h  
13h  
14h  
15h  
16h  
TSR1_seconds  
TSR1_minutes  
-
-
0 to 5  
0 to 5  
0 to 9  
0 to 9  
0 to 9  
0 to 9  
0 to 9  
-
TSR1_hr_xx_xx_00 0 to 9  
TSR1_hr_xx_00_xx 0 to 9  
TSR1_hr_00_xx_xx 0 to 9  
not used  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Stop-watch timestamp2 (TSR2)  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
TSR2_seconds  
TSR2_minutes  
-
-
0 to 5  
0 to 5  
0 to 9  
0 to 9  
0 to 9  
0 to 9  
0 to 9  
-
TSR2_hr_xx_xx_00 0 to 9  
TSR2_hr_xx_00_xx 0 to 9  
TSR2_hr_00_xx_xx 0 to 9  
not used  
-
-
Stop-watch timestamp3 (TSR3)  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
TSR3_seconds  
TSR3_minutes  
-
-
0 to 5  
0 to 5  
0 to 9  
0 to 9  
0 to 9  
0 to 9  
0 to 9  
-
TSR3_hr_xx_xx_00 0 to 9  
TSR3_hr_xx_00_xx 0 to 9  
TSR3_hr_00_xx_xx 0 to 9  
not used  
-
-
8.7.1 Timestamps interrupts  
The generation of interrupts from the timestamp functions is controlled via the timestamp  
interrupt enable bits; TSRIEA and TSRIEB. These bits are in registers INTA_enable  
(address 29h) and INTB_enable (address 2Ah).  
The loading of new information into one of the timestamp registers can be used to  
generate an interrupt at pins INTA and INTB. The interrupt may be generated as a pulsed  
signal every time a timestamp register updates or as a permanently active signal which  
follows the condition of timestamp flags, TSR1F to TSR3F. The timestamp flags remain  
set until cleared by command.  
When enabled, interrupts are triggered every time a timestamp register updates and even  
if the associated flag is not cleared, an interrupt pulse can be generated.  
See Section 8.9 on page 37 for interrupt control.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
32 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.8 Offset register  
The PCF85363A incorporates an offset register (address 24h) which can be used to  
implement several functions, such as:  
Accuracy tuning  
Aging adjustment  
Temperature compensation  
Table 23. Offset - offset register (address 24h) bit description  
Bit  
Symbol  
Value  
Description  
offset value  
7 to 0 OFFSET[7:0]  
see Table 25  
There are two modes which define the correction period, normal mode and fast mode.  
The normal mode is suitable for offset trimming. The fast mode is suitable for dynamic  
offset correction e.g. implementing a temperature correction. The fast mode consumes  
more current. Offset mode is defined by bit OFFM in the Oscillator register (Section 8.10).  
Table 24. OFFM bit - oscillator control register (address 25h)  
See Section 8.10 on page 41.  
Bit  
Symbol  
Value  
Description  
6
OFFM  
offset mode bit  
0[1]  
1
normal mode: correction is made every 4  
hours; 2.170 ppm/step  
fast mode: correction is made once every 8  
minutes;2.0345 ppm/step  
[1] Default value.  
For OFFM = 0, each LSB introduces an offset of 2.170 ppm. For OFFM = 1, each LSB  
introduces an offset of 2.0345 ppm. The offset value is coded in two’s complement giving  
a range of +127 LSB to 128 LSB, see Table 25.  
Table 25. Offset values  
OFFSET[7:0]  
Offset value in  
decimal  
Offset value in ppm  
Normal mode  
OFFM = 0  
Fast mode  
OFFM = 1  
01111111  
01111110  
:
+127  
+126  
:
+275.590  
+273.420  
:
+258.3815  
+256.3470  
:
00000010  
00000001  
00000000[1]  
11111111  
11111110  
:
+2  
+4.340  
+2.170  
0[1]  
+4.0690  
+2.0345  
0[1]  
+1  
0
1  
2.170  
4.340  
:
2.0345  
4.0690  
:
2  
:
10000001  
10000000  
127  
128  
275.590  
277.760  
258.3815  
260.416  
[1] Default value.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
33 of 95  
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
The correction is made by adding or subtracting clock correction pulses, thereby changing  
the period of a single second but not by changing the oscillator frequency.  
It is possible to monitor when correction pulses are applied. See Section 8.8.4.  
8.8.1 Correction when OFFM = 0  
The correction is triggered once every four hours and then correction pulses are applied  
once per minute until the programmed correction values have been implemented.  
Table 26. Correction pulses for OFFM = 0  
Correction value  
+1 or 1  
Every nth hour  
Actual minute  
00  
4
+2 or 2  
4
00 and 01  
00, 01, and 02  
:
+3 or 3  
4
:
:
+59 or 59  
+60 or 60  
+61 or 61  
4
00 to 58  
00 to 59  
00 to 59  
00  
4
4
4 + 1  
4
+62 or 62  
00 to 59  
00 and 01  
:
4 + 1  
:
:
+123 or 123  
4
00 to 59  
00 to 59  
00, 01, and 02  
00 to 59  
00 to 59  
00 to 07  
4 + 1  
4 + 2  
4
128  
4 + 1  
4 + 2  
8.8.2 Correction when OFFM = 1  
The correction is triggered once every eight minutes and then correction pulses are  
applied once per second until the programmed correction values have been implemented.  
Clock correction is made more frequently in OFFM = 1; however, this can result in higher  
power consumption.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
34 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 27. Correction pulses for OFFM = 1  
Correction value  
+1 or 1  
Every nth minute  
Actual second  
00  
8
+2 or 2  
8
00 and 01  
00, 01, and 02  
:
+3 or 3  
8
:
:
+59 or 59  
+60 or 60  
+61 or 61  
8
00 to 58  
00 to 59  
00 to 59  
00  
8
8
8 + 1  
8
+62 or 62  
00 to 59  
00 and 01  
:
8 + 1  
:
:
+123 or 123  
8
00 to 59  
00 to 59  
00, 01, and 02  
00 to 59  
00 to 59  
00 to 07  
8 + 1  
8 + 2  
8
128  
8 + 1  
8 + 2  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
35 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.8.3 Offset calibration workflow  
The calibration offset has to be calculated based on the time. Figure 18 shows the  
workflow how the offset register values can be calculated:  
VDPSOHꢂFDOFXODWLRQꢐ  
0HDVXUHꢂWKHꢂIUHTXHQF\ꢂRQꢂSLQꢂ&/.287  
I
PHDV  
ꢆꢅꢇꢃꢈꢊꢅꢈꢂ+]  
ꢆꢁꢊꢏꢀꢇꢆꢅꢁꢂ—V  
&RQYHUWꢂWRꢂWLPHꢐ  
W
ꢂ ꢂꢀꢂꢍꢂI  
PHDV  
PHDV  
&DOFXODWHꢂWKHꢂGLIIHUHQFHꢂWRꢂWKHꢂLGHDO  
SHULRGꢂRIꢂꢀꢂꢍꢂꢆꢅꢇꢃꢈꢊꢁꢁꢐꢂ  
ꢁꢊꢁꢁꢁꢅꢃꢁꢂ—V  
ꢈꢊꢏꢀꢎꢇꢏꢂSSP  
'
ꢂ ꢂꢀꢂꢍꢂꢆꢅꢇꢃꢈꢂꢉꢂW  
PHDV  
PHDV  
&DOFXODWHꢂWKHꢂSSPꢂGHYLDWLRQꢂFRPSDUHG  
WRꢂWKHꢂPHDVXUHGꢂYDOXHꢐꢂ  
(
ꢂ ꢂꢀꢁꢁꢁꢁꢁꢁꢂîꢂ' ꢂꢂꢍꢂW  
PHDV PHDV  
SSP  
&DOFXODWHꢂWKHꢂRIIVHWꢂUHJLVWHUꢂYDOXHꢐ  
2))0ꢂ ꢂꢁꢂꢋORZꢂSRZHUꢌꢐ  
2IIVHWꢂYDOXHꢂ ꢂ(  
SSP  
ꢂꢍꢂꢅꢊꢀꢇ  
ꢆꢊꢎꢅꢃꢂ  
ꢄꢊꢀꢈꢈꢂ  
ꢄꢂFRUUHFWLRQꢂSXOVHV  
DUHꢂQHHGHG  
2))0ꢂ ꢂꢀꢂꢋIDVWꢂFRUUHFWLRQꢌ  
2IIVHWꢂYDOXHꢂ ꢂ( ꢂꢍꢂꢅꢊꢁꢆꢄꢏ  
ꢄꢂFRUUHFWLRQꢂSXOVHV  
DUHꢂQHHGHG  
SSP  
DDDꢀꢁꢁꢈꢄꢅꢄ  
Fig 18. Offset calibration calculation workflow  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
36 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
ꢋꢀꢌ  
ꢋꢅꢌ  
ꢋꢆꢌ  
ꢉꢀ  
ꢉꢅ  
GHYLDWLRQꢂDIWHU  
ꢂFRUUHFWLRQꢂLQꢂ  
2))0ꢂ ꢂꢁ  
GHYLDWLRQꢂDIWHU  
ꢂFRUUHFWLRQꢂLQꢂ  
2))0ꢂ ꢂꢀ  
PHDVXUHGꢍFDOFXODWHG  
GHYLDWLRQꢂꢂꢂꢈꢊꢏꢀꢎꢇꢏꢂSSP  
ꢂꢂꢉꢁꢊꢀꢃꢁꢂSSP  
ꢂꢂꢂꢒꢁꢊꢆꢈꢅꢂSSP  
DDDꢀꢁꢁꢈꢄꢅꢇ  
With the offset calibration an accuracy of 1 ppm (0.5 offset per LSB) can be reached (see  
Table 25).  
1 ppm corresponds to a time deviation of 0.0864 seconds per day.  
(1) 4 correction pulses in OFFM = 0 correspond to 8.680 ppm.  
(2) 4 correction pulses in OFFM = 1 correspond to 8.138 ppm.  
(3) Reachable accuracy zone.  
Fig 19. Result of offset calibration  
8.8.4 Offset interrupts  
The generation of interrupts from the offset functions is controlled via the offset interrupt  
enable bits; OIEA and OIEB. These bits are in registers INTA_enable (address 29h) and  
INTB_enable (address 2Ah).  
Every time a correction pulse is made an interrupt pulse can be generated at pins INTA  
and INTB. As there are is no offset calibration flag, it is only possible to generate pulse  
interrupts.  
See Section 8.9 on page 37 for interrupt control.  
8.9 Interrupts  
There are two interrupt output pins, INTA and INTB. Both pins have the same possible  
sources and a dedicated register to control what is output. The pins can be used  
independently from each other.  
INTA data is output on the INTA pin. INTA is an interrupt output pin with open-drain drive.  
INTA pin mode is controlled by INTAPM[1:0] bits in the Pin_IO register (Section 8.12 on  
page 49).  
INTB data is output on TS pin with push-pull drive. The TS pin must first be configured as  
INTB output by setting TSIO[1:0] bits in the Pin_IO register (Section 8.12 on page 49).  
Interrupts will only be output when the pin mode is correctly defined. Interrupts are output  
from the IC as active LOW signals.  
The registers INTA_enable (address 29h) and INTB_enable (address 2Ah) are used to  
select which interrupts should be output on which pin.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
37 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 28. INTA and INTB interrupt control bits  
Bit  
INTA_enable - INTA pin enable control (address 29h)  
Symbol ILPA PIEA OIEA A1IEA  
INTB_enable - INTB pin enable control (address 2Ah)  
Symbol ILPB PIEB OIEB A1IEB  
7
6
5
4
3
2
1
0
A2IEA  
A2IEB  
TSRIEA  
TSRIEB  
BSIEA  
BSIEB  
WDIEA  
WDIEB  
Table 29. Definition of interrupt control bits  
Bit  
Symbol  
INTA  
Value  
Description  
INTB  
7
ILPA  
ILPB  
level or pulse mode  
0[1]  
1
interrupt generates a pulse  
interrupt follows flags (permanent signal)  
periodic interrupt enable  
6
5
4
3
2
1
0
PIEA  
PIEB  
0[1]  
1
no periodic interrupt generated  
periodic interrupt generated  
OIEA  
OIEB  
offset correction interrupt enable  
no correction interrupt generated  
interrupt generated from correction  
alarm1 interrupt enable  
0[1]  
1
A1IEA  
A2IEA  
TSRIEA  
BSIEA  
WDIEA  
A1IEB  
A2IEB  
TSRIEB  
BSIEB  
WDIEB  
0[1]  
1
no alarm interrupt generated  
alarm interrupt generated  
alarm2 interrupt enable  
0[1]  
1
no alarm interrupt generated  
alarm interrupt generated  
timestamp register interrupt enable  
no timestamp register interrupt generated  
timestamp register interrupt generated  
battery switch interrupt enable  
no battery switch interrupt generated  
battery switch interrupt generated  
WatchDog interrupt enable  
0[1]  
1
0[1]  
1
0[1]  
1
no WatchDog interrupt generated  
WatchDog interrupt generated  
[1] Default value.  
8.9.1 ILPA/ILPB: interrupt level or pulse mode  
Interrupts can be configured to generate a pulse or to send a continuous level (permanent  
signal) which follows the state of the flag.  
In pulse mode, an interrupt pulse is generated every time that the selected source  
triggers.  
Triggered means  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
38 of 95  
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
for periodic interrupts, every time a period has elapsed  
for offset correction, every time a correction pulse is initiated  
for alarms, every time the time increments to match the alarm time  
for timestamps, every time a register updates  
for battery switch, every time the IC switches to or from battery  
for WatchDog, every time the counter reaches the end of its count  
The interrupt signal goes active coincident with the triggering event. The signal is cleared  
by an internal 128 Hz clock. The internal clock is asynchronous to the triggering event and  
so the pulse duration has a minimum period of one 128 Hz cycle and a maximum of two  
128 Hz cycles. Interrupt pulses may be shortened by clearing the flag before the end of  
the pulse period.  
)ODJꢂGRHVꢂQRWꢂQHHGꢂWRꢂEHꢂFOHDUHG  
IRUꢂLQWHUUXSWVꢂWRꢂEHꢂJHQHUDWHG  
WULJJHUꢂHYHQW  
IODJ  
LQWHUUXSW  
ꢀꢅꢈꢂ+]ꢂFORFN  
0D[LPXP  
LQWHUUXSW  
SHULRG  
0LQLPXP  
LQWHUUXSW  
SHULRG  
DDDꢀꢁꢁꢈꢄꢅꢉ  
Fig 20. Interrupt pulse width  
In level mode, the interrupt signal follows the state of the flag. Only interrupts which are  
enabled will affect the pin state. All enabled flags must be cleared for the interrupt signal  
to be cleared.  
The EMON is used only for monitoring all flags and can be read back in the minutes  
register. See Section 8.2.3 on page 14.  
8.9.2 Interrupt enable bits  
The remainder of the bits in register INTA_enable (address 29h) and register  
INTB_enable (address 2Ah) are used to select which interrupt data goes where. See  
Figure 21 “Interrupt selection”  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
39 of 95  
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
3XOVHꢂJHQHUDWRU  
WULJJHU  
FOHDU  
ꢀꢅꢈꢂ+]ꢂ  
,/3$  
)ODJꢐꢂ$ꢀ)  
FOHDU  
$ODUPꢂꢀ  
VHW  
$ꢀ,(%  
$ꢀ,(%  
$ꢀ,($  
$ꢅ,($  
$ꢀ,($  
,17$ꢂGDWD  
)ODJꢐꢂ$ꢅ)  
FOHDU  
$ODUPꢂꢅ  
VHW  
VHW  
$ꢅ,(%  
%6,(%  
$ꢅ,(%  
%6,(%  
$ꢅ,($  
%6,($  
:',($  
)ODJꢐꢂ%6)  
FOHDU  
%DWWHU\ꢂVZLWFK  
%6,($  
)ODJꢐꢂ:')  
FOHDU  
VHW  
VHW  
:DWFK'RJ  
:',($  
:',(%  
:',(%  
76,(%  
(021  
25  
)ODJꢐꢂ765ꢀ)  
FOHDU  
7LPHVWDPSꢀ  
76,($  
765,($  
765,(%  
)ODJꢐꢂ765ꢅ)  
FOHDU  
7LPHVWDPSꢅ  
7LPHVWDPSꢆ  
VHW  
VHW  
)ODJꢐꢂ765ꢆ)  
FOHDU  
)ODJꢐꢂ3,)  
FOHDU  
3HULRGLF  
LQWHUUXSW  
VHW  
3,($  
2,($  
3,(%  
2,(%  
3,($  
3,(%  
)ODJꢋVꢌꢂFOHDUHG  
E\ꢂFRPPDQGꢂ  
2IIVHW  
FDOLEUDWLRQ  
,17%ꢂGDWD  
3XOVHꢂJHQHUDWRU  
WULJJHU  
FOHDU  
,/3%  
DDDꢀꢁꢂꢁꢅꢄꢇ  
ꢀꢅꢈꢂ+]ꢂ  
Fig 21. Interrupt selection  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.10 Oscillator register  
Table 30. Oscillator - oscillator control register (address 25h) bit description  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Section  
CLKIV  
OFFM  
12_24  
LOWJ  
OSCD[1:0]  
CL[1:0]  
Section 8.10.6  
Section 8.16  
Section 8.8  
Section 8.10.3  
Section 8.10.4  
Section 8.10.5  
8.10.1 CLKIV: invert the clock output  
Table 31. CLKIV bit - oscillator control register (address 25h)  
Bit  
Symbol  
Value  
Description  
7
CLKIV  
output clock inversion  
0[1]  
1
non-inverting; LOWJ mode will affect rising  
edge  
inverted; LOWJ mode will affect falling edge  
[1] Default value.  
The clock selected with the COF[2:0] bits (register Function, address 28h) can be  
inverted. This is intended for use in conjunction with the low jitter mode, LOWJ. The low  
jitter mode reduces the jitter for the rising edge of the output clock. If the reduced jitter  
needs to be on the falling edge, for example when using an open-drain clock output, then  
the CLKIV bit can be used to implement this.  
8.10.2 OFFM: offset calibration mode  
See Section 8.8 “Offset register” on page 33 for a full description of offset calibration.  
8.10.3 12_24: 12 hour or 24 hour clock  
Table 32. 12_24 bit - oscillator control register (address 25h)  
Bit  
Symbol  
Value  
Description  
5
12_24  
12 hour or 24 hour mode  
24 hour mode is selected  
12 hour mode is selected  
0[1]  
1
[1] Default value.  
In RTC mode, time counting can be configured for 24 hour clock or 12 hour clock with the  
AMPM flag.  
This bit is ignored in stop-watch mode.  
8.10.4 LOWJ: low jitter mode  
Table 33. LOWJ bit - oscillator control register (address 25h)  
Bit  
Symbol  
Value  
Description  
4
LOWJ  
low jitter CLK output bit  
normal  
0[1]  
1
reduced CLK output jitter; increase IDD  
[1] Default value.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
41 of 95  
 
 
 
 
 
 
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Oscillator circuits suffer from jitter. In particular, ultra low-power oscillators like the one  
used in the PCF85363A are optimized for power and not jitter. By setting the LOWJ bit,  
the jitter performance can be improved at the cost of power consumption.  
8.10.5 OSCD[1:0]: quartz oscillator drive control  
Table 34. OSCD[1:0] bits - oscillator control register (address 25h)  
Bit  
Symbol  
Value  
Description  
3 to 2 OSCD[1:0]  
oscillator drive bits  
00[1]  
01  
normal drive; RS(max): 100 k  
low drive; RS(max): 60 k; reduced IDD  
high drive; RS(max): 500 k; increased IDD  
10, 11  
[1] Default value.  
The oscillator is designed to be used with quartz with a series resistance up to 100 k.  
This covers the typical range of 32.768 kHz quartz crystals. Series resistance is also  
referred to as: ESR, motional resistance, or RS.  
A low drive mode is available for low series resistance quartz. This reduces the current  
consumption.  
For very high series resistance quartz, there is a high drive mode. Current consumption  
increases substantially in this mode.  
8.10.6 CL[1:0]: quartz oscillator load capacitance  
Table 35. CL[1:0] bits - oscillator control register (address 25h)  
Bit  
Symbol  
Value  
Description  
1 to 0 CL[1:0]  
internal oscillator capacitor selection for  
quartz crystals with the corresponding load  
capacitance of CL:  
00[1]  
01  
7.0 pF  
6.0 pF  
12.5 pF  
12.5 pF  
10  
11  
[1] Default value.  
CL refers to the load capacitance of the oscillator circuit and allows for a certain amount of  
package and PCB parasitic capacitance. When the oscillator circuit matches the CL  
parameter of the quartz, then the frequency offset is zero.  
The PCF85363A is designed to operate with quartz with CL values of 6.0 pF, 7.0 pF and  
12.5 pF.  
12.5 pF are generally the cheapest and most widely available, but also require the most  
power to drive. The circuit also operates with 9.0 pF quartz, however the offset calibration  
would be needed to compensate. If a 9.0 pF quartz is used, then it is recommended to set  
CL to 7.0 pF.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
42 of 95  
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.11 Battery switch register  
This register configures the battery switch-over mode.  
Associated with the battery switch-over is the battery switch flag (BSF) in the Flags  
register (Section 8.14 on page 56). Whenever the IC switches to battery operation, the  
flag is set. The flag can only be read when operating from VDD power, however an  
interrupt pulse or static LOW signal can be generated whenever switching to battery. An  
interrupt pulse can also be generated when switching back to VDD power. Examples are  
given in Figure 23 and Figure 24.  
When switched to battery, the VDD power domain is disabled. This means that I2C pins are  
ignored, CLK output is disabled and Hi-Z, TS pin output mode is disabled and Hi-Z, TS  
digital input is ignored and may be left floating. TS pin mechanical switch detector is  
active. INTA output is still active for interrupt output and battery switch indication, but  
disabled for clock output.  
Table 36. IO pin behavior in battery mode  
IO pin (mode)  
VDD operation  
active input  
VBAT operation  
SCL  
disabled; may be left floating  
disabled; may be left floating  
disabled; Hi-Z  
SDA  
active input/output  
active output  
active output  
active input  
CLK  
TS (output mode)  
TS (digital input)  
TS (mechanical switch input)  
INTA  
disabled; Hi-Z  
disabled; may be left floating  
active input  
active input  
active output  
active interrupt output  
Table 37. Battery_switch - battery switch control (address 26h) bit description  
Bit  
7
-
6
-
5
-
4
3
2
1
0
Symbol  
Section  
BSOFF  
BSRR  
BSM[1:0]  
Section 8.11.3  
BSTH  
-
-
-
Section 8.11.1  
Section 8.11.2  
Section 8.11.4  
8.11.1 BSOFF: battery switch on/off control  
Table 38. BSOFF bit - battery switch control (address 26h) bit description  
Bit  
Symbol  
Value  
Description  
4
BSOFF  
battery switch on/off  
enable battery switch feature  
disable battery switch feature  
0[1]  
1
[1] Default value.  
The battery switch circuit may be disabled when not used. This disables all the circuit and  
save power consumption. When disabled connect VBAT and VDD together.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
43 of 95  
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.11.2 BSRR: battery switch internal refresh rate  
Table 39. BSRR bit - battery switch control (address 26h) bit description  
Bit  
Symbol  
Value  
Description  
3
BSRR  
battery switch refresh rate  
0[1]  
1
low  
high  
[1] Default value.  
Non-user bit. Recommended to leave set at default.  
8.11.3 BSM[1:0]: battery switch mode  
Table 40. BSM[1:0] bits - battery switch control (address 26h) bit description  
Bit  
Symbol  
Value  
Description  
2 to 1 BSM[1:0]  
battery switch mode bits  
switching at the Vth level  
00[1]  
01  
switching at the VBAT level  
switching at the higher level of Vth or VBAT  
switching at the lower level of Vth or VBAT  
10  
11  
[1] Default value.  
Switching is automatic and controlled by the voltages on the VBAT and VDD pins. There  
are three modes:  
Compare VDD with an internal reference (Vth)  
Compare VDD with VBAT  
Compare VDD with an internal reference (Vth) and VBAT  
The last mode is useful when a rechargeable battery is employed.  
Table 41. Battery switch-over modes  
BSM[1:0]  
Condition  
Internal power  
VDD  
00  
VDD > Vth  
VDD < Vth  
VBAT  
01  
10  
11  
VDD > VBAT  
VDD  
VDD < VBAT  
VBAT  
VDD > the higher of Vth or VBAT  
VDD < the higher of Vth or VBAT  
VDD > the lower of Vth or VBAT  
VDD < the lower of Vth or VBAT  
VDD  
VBAT  
VDD  
VBAT  
Due to the nature of the power switch circuit there is a switching hysteresis (see Figure 22  
and Table 68).  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
44 of 95  
 
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
9
''  
VZLWFKLQJꢂSRLQW  
K\VWHUHVLV  
9
ꢂLQFUHDVLQJ  
''  
9
ꢂGHFUHDVLQJ  
''  
PD[  
W\S  
9
WKꢋORZꢌ  
9
WKꢋKLJKꢌ  
PLQ  
W
EDWWHU\ꢂRSHUDWLRQ  
57&ꢂSRZHU  
VXSSO\  
VZLWFKꢂWRꢂ9  
VZLWFKꢂWRꢂEDWWHU\  
ꢂRSHUDWLRQ  
''  
9
9 ꢂRSHUDWLRQ  
''  
''  
DDDꢀꢁꢂꢁꢄꢄꢆ  
Fig 22. Threshold voltage switching hysteresis  
8.11.3.1 Switching at the Vth level, BSM[1:0] = 00  
9
''  
9
%$7  
LQWHUQDOꢂSRZHUꢂVXSSO\  
9
WK  
9 ꢂꢋ ꢂꢁꢂ9ꢌ  
''  
FOHDUHGꢂYLDꢂLQWHUIDFH  
%6)  
,17$  
EDWWHU\ꢂPRGHꢂLQGLFDWLRQ  
LQWHUIDFHꢂLQDFWLYH  
, &  
LQWHUIDFHꢂDFWLYH  
LQWHUIDFHꢂDFWLYH  
DDDꢀꢁꢂꢁꢃꢊꢅ  
Fig 23. Switching at Vth  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
45 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.11.3.2 Switching at the VBAT level, BSM[1:0] = 01  
9
''  
9
%$7  
LQWHUQDOꢂSRZHUꢂVXSSO\  
9
WK  
9 ꢂꢋ ꢂꢁꢂ9ꢌ  
''  
FOHDUHGꢂYLDꢂLQWHUIDFH  
%6)  
,17$  
EDWWHU\ꢂPRGHꢂLQGLFDWLRQ  
, &  
LQWHUIDFHꢂDFWLYH  
LQWHUIDFHꢂDFWLYH  
LQWHUIDFHꢂLQDFWLYH  
DDDꢀꢁꢂꢁꢃꢊꢆ  
Fig 24. Switching at VBAT  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
46 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.11.3.3 Switching at the higher of VBAT or Vth level, BSM[1:0] = 10  
With this mode switching takes place when VDD falls below the higher of Vth or VBAT. In  
Figure 25, an example is given where the threshold is set to 1.5 V and a single cell battery  
is connected to VBAT. In this example, switching to the battery voltage takes place when  
V
DD falls below Vth.  
9
''  
9
ꢂ ꢂꢀꢊꢏꢂ9  
ꢂ ꢂꢀꢊꢅꢂ9  
WK  
LQWHUQDOꢂSRZHUꢂVXSSO\  
9
%$7  
9
ꢂꢋ ꢂꢁꢂ9ꢌ  
%6)  
''  
FOHDUHGꢂYLDꢂLQWHUIDFH  
,17$  
EDWWHU\ꢂPRGHꢂLQGLFDWLRQ  
LQWHUIDFHꢂLQDFWLYH  
, &  
LQWHUIDFHꢂDFWLYH  
LQWHUIDFHꢂDFWLYH  
DDDꢀꢁꢂꢁꢃꢊꢄ  
Fig 25. Switching at the higher of VBAT or Vth  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
47 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.11.3.4 Switching at the lower of VBAT and Vth level, BSM[1:0] = 11  
With this mode switching takes place when VDD falls below the lower of Vth or VBAT. In  
Figure 26, an example is given where the threshold is set to 1.5 V and a single cell battery  
is connected to VBAT. In this example, switching to the battery voltage takes place when  
V
DD falls below VBAT.  
9
''  
9
ꢂ ꢂꢀꢊꢏꢂ9  
ꢂ ꢂꢀꢊꢅꢂ9  
WK  
9
%$7  
LQWHUQDOꢂSRZHUꢂVXSSO\  
9
ꢂꢋ ꢂꢁꢂ9ꢌ  
%6)  
''  
FOHDUHGꢂYLDꢂLQWHUIDFH  
,17$  
EDWWHU\ꢂPRGHꢂLQGLFDWLRQ  
LQWHUIDFHꢂLQDFWLYH  
, &  
LQWHUIDFHꢂDFWLYH  
LQWHUIDFHꢂDFWLYH  
DDDꢀꢁꢂꢁꢃꢊꢈ  
Fig 26. Switching at the lower of VBAT or Vth  
8.11.4 BSTH: threshold voltage control  
Table 42. BSTH - battery switch control (address 26h) bit description  
Bit  
Symbol  
Value  
Description  
0
BSTH  
battery switch threshold voltage, Vth  
0[1]  
1
Vth = 1.5 V  
Vth = 2.8 V  
[1] Default value.  
The threshold for battery switch-over is selectable between two voltages, 1.5 V and 2.8 V.  
8.11.5 Battery switch interrupts  
The generation of interrupts from the battery switch function is controlled via the battery  
switch interrupt enable bits; BSIEA and BSIEB. These bits are in registers INTA_enable  
(address 29h) and INTB_enable (address 2Ah).  
The assertion of the flag BSF (register Flags, address 2Bh) can be used to generate an  
interrupt at pins INTA and INTB. The interrupt may be generated as a pulsed signal or  
alternatively as a permanently active signal which follows the condition of bit BSF. BSF  
remains set until cleared by command.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
48 of 95  
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
When enabled, interrupts are triggered every time the battery switch circuit switches to  
either battery or to VDD and even if the BSF is not cleared, an interrupt pulse can be  
generated.  
In addition, the INTA pin can be configured as a battery mode indicator  
(INTAPM[1:0] = 00). See Section 8.12.6 on page 51. This mode differs from a general  
interrupt signal in that it is only controlled by the current battery switch status.  
See Section 8.9 on page 37 for interrupt control.  
Remark: INTB pin is only active when the IC is operating from VDD  
.
8.12 Pin_IO register  
Table 43. Pin_IO- pin input output control register (address 27h) bit description  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Section  
CLKPM  
TSPULL  
TSL  
TSIM  
TSPM[1:0]  
INTAPM[1:0]  
Section 8.12.1  
Section 8.12.2  
Section 8.12.3  
Section 8.12.5  
Section 8.12.4  
Section 8.12.6  
This register is used to define the input and output modes of the IC.  
8.12.1 CLKPM: CLK pin mode control  
Table 44. CLKPM bit - Pin_IO control register (address 27h)  
Bit  
Symbol  
Value  
Description  
7
CLKPM[1]  
CLK pin mode  
enable CLK pin  
disable CLK pin  
0[2]  
1
[1] CLK pin is not available on all package types.  
[2] Default value.  
Setting the CLKPM bit disables the CLK output and force the pin to drive out a logic 0.  
Clearing this bit enables the pad to output the selected clock frequency (see bits COF[2:0]  
in the Function register, see Table 51 on page 53).  
8.12.2 TSPULL: TS pin pull-up resistor value  
Table 45. TSPULL bit - Pin_IO control register (address 27h)  
Bit  
Symbol  
Value  
Description  
6
TSPULL  
TS pin pull-up resistor value  
0[1]  
1
80 k  
40 k  
[1] Default value.  
Controls the pull-up resistor value used in the mechanical switch detector. For  
applications where there is a large capacitance on the TS pin e.g. from a long connecting  
cable to the mechanical switch, the pull-up resistor value can be halved to improve switch  
detection.  
Using the low-resistance value increases current consumption when the switch is closed  
i.e. shorting to VSS  
.
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
49 of 95  
 
 
 
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.12.3 TSL: TS pin level sense  
Table 46. TSL bit - Pin_IO control register (address 27h)  
Bit  
Symbol  
Value  
Description  
5
TSL  
TS pin input sense  
active HIGH  
0[1]  
1
active LOW  
[1] Default value.  
The active state of the TS pin can be defined for use as a timestamp trigger and/or as stop  
control for the time counting. Active HIGH implies a transition from logic 0 to logic 1 is  
active. Active LOW implies a transition from logic 1 to logic 0 is active.  
8.12.4 TSPM[1:0]: TS pin I/O control  
Table 47. TSPM[1:0] bits - Pin_IO control register (address 27h)  
Bit  
Symbol  
Value  
Description  
3 to 2 TSPM[1:0]  
TS pin IO mode  
00[1]  
01  
disabled; input can be left floating  
INTB output; push-pull  
CLK output; push-pull  
input mode  
10  
11  
[1] Default value.  
These bits control the operation of the TS pin.  
PHFKDQLFDO  
VZLWFKꢂGHWHFWRU  
YGGBLQW  
VDPSOHꢂFORFN  
76/  
VDPSOH  
ꢈꢁꢂNȍꢍ  
ꢄꢁꢂNȍ  
LQYHUW  
LQSXWꢂGDWD  
ꢋꢀꢌ  
76ꢂꢋ&/.ꢍ,17%ꢌꢂSLQꢂ  
,17%ꢂGDWD  
FORFNꢂGDWD  
DDDꢀꢁꢂꢁꢃꢃꢅ  
(1) Not available on all package types.  
Fig 27. TS pin  
TSIM is only considered when the TS pin is in input mode.  
8.12.4.1 TS pin output mode; INTB  
It is possible to output INTB data on the TS pin. The output is push-pull. No output is  
available when on VBAT. When on VBAT the output is Hi-Z.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
50 of 95  
 
 
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.12.4.2 TS pin output mode; CLK  
It is possible to output a clock frequency on the TS pin. Clock frequency is selected with  
the COF[2:0] bits in the Function register (Section 8.13 on page 53). The output is  
push-pull. No output is available when on VBAT. When on VBAT the output is Hi-Z.  
8.12.4.3 TS pin disabled  
When disabled the pin is Hi-Z and can be left floating.  
8.12.5 TSIM: TS pin input type control  
Table 48. TSIM bit - Pin_IO control register (address 27h)  
Bit  
Symbol  
Value  
Description  
4
TSIM  
TS pin input mode  
0[1]  
1
CMOS input; reference to VDD; disabled when  
on VBAT  
mechanical switch mode; active pull-up  
sampled at 16 Hz; operates on VDD and VBAT  
[1] Default value.  
In CMOS input mode (TSIM = 0), input is taken directly from the TS pin. The input is  
conditioned by the setting of TSL. When operating on the battery voltage (VBAT), the input  
is disabled and is allowed to float.  
In mechanical switch detector mode (TSIM = 1), the TS pin is sampled at a rate of 16 Hz  
for a period of 30.5 s. At the same time as the sample a pull-up resistor is activated to  
detect an open pin or a pin shorted to VSS. The input is referenced to the internal power  
supply. This mode operates when on VDD or VBAT. The pull-up resistor value can be  
controlled by TSPULL bit in the Pin_IO register (see Section 8.12 on page 49).  
8.12.5.1 TS pin input mode  
There are two input types which are controlled by the TSIM bit. The TS input can be used  
to generate a timestamp event by configuring the timestamp mode bits; TSR2M[2:0] and  
TSR1M[1:0] bits in TSR_mode register (see Table 20 on page 29).  
Also it is possible to use the TS pin to control counting of time. This is typically for use with  
the stop-watch mode where an elapsed time counter function can be implemented. Using  
the STOPM bit in the Function register (see Table 51 on page 53) it is possible to control  
the STOP bit by the TS pin.  
8.12.6 INTAPM[1:0]: INTA pin mode control  
Table 49. INTAPM[1:0] bits - Pin_IO control register (address 27h)  
Bit  
Symbol  
Value  
Description  
1 to 0 INTAPM[1:0]  
INTA pin mode  
CLK output mode  
battery mode indication  
INTA output  
00[1]  
01  
10  
11  
Hi-Z  
[1] Default value.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
51 of 95  
 
 
 
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
The INTA pin can be used to output three different signals.  
EDWWHU\ꢂPRGH  
FORFNꢂGDWD  
,17$ꢂGDWD  
,17$ꢂꢋ&/.ꢌ  
DDDꢀꢁꢂꢁꢃꢄꢃ  
Fig 28. INTA pin  
8.12.6.1 INTAPM[1:0]: INTA  
The primary function of the INTA pin is to output INTA data. INTA data is controlled by the  
bits of the INTA_enable register (see Table 29 on page 38).  
The output is active LOW with an open-drain output. The output is available during VDD  
and VBAT operation.  
8.12.6.2 INTAPM[1:0]: clock data  
It is possible to output a clock frequency on the INTA pin. Clock frequency is selected with  
the COF[2:0] bits in the Function register (Section 8.13 on page 53). The output is active  
LOW with an open-drain output. The output is available only during VDD operation. The  
output is Hi-Z when operating from VBAT  
.
Remark: Clock output is the default state. To save power, it is recommended to disable  
the clock when not being used. If no clock is required, then set COF[2:0] in the Function  
register (Section 8.13 on page 53) to CLK disabled. If clock output is only required on the  
CLK pin, then set the INTA pin to either INTA data or battery mode.  
8.12.6.3 INTAPM[1:0]: battery mode indication  
It is possible to output the state of the power switch on the INTA pin. The output has an  
open-drain output. The output is available during VDD and VBAT operation.  
Table 50. INTA battery mode  
Power supply  
VDD  
INTA pin state  
INTA = Hi-Z  
VBAT  
INTA = logic 0  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
52 of 95  
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.13 Function register  
Table 51. Function - chip function control register (address 28h) bit description  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Section  
100TH  
PI[1:0]  
Section 8.13.2  
RTCM  
STOPM  
COF[2:0]  
Section 8.13.1  
Section 8.13.3  
Section 8.13.4  
Section 8.13.5  
8.13.1 100TH: 100th seconds mode  
Table 52. 100TH bit - Function control register (address 28h)  
Bit  
Symbol  
Value  
Description  
7
100TH  
100th second mode  
0[1]  
1
100th second disabled  
100th second enabled  
[1] Default value.  
The PCF85363A can be configured to count at a resolution of 1 second or 0.01 seconds.  
In 100th mode, the 100th_seconds register becomes available and the RTC counts at a  
resolution of 0.01 seconds.  
The 256 Hz clock signal is divided by 3 for fourteen 100 Hz periods and then by 2 for  
eleven 100 Hz periods. This produces an effective division ratio of 2.56 with a maximum  
jitter of 3.91 ms. Over twenty-five 100 Hz cycles the jitter is 0 ns.  
8.13.2 PI[1:0]: Periodic interrupt  
Table 53. PI[1:0] bits - Function control register (address 28h)  
Bit  
Symbol  
Value  
Description  
6 to 5 PI[1:0]  
periodic interrupt  
no periodic interrupt  
once per second  
once per minute  
once per hour  
00[1]  
01  
10  
11  
[1] Default value.  
The periodic interrupt mode can be used to enable pre-defined timers for generating  
pulses on the interrupt pin. Interrupts once per second, once per minute or once per hour  
can be generated.  
When disabled, the timers are reset. When enabled, the time to the first pulse is between  
the chosen period and the chosen period minus 1 seconds.  
The timers are not affected by STOP.  
When the periodic interrupt triggers, the PIF (PI flag) in the Flags register (Section 8.14 on  
page 56) is set.  
The flag does not have to be cleared to allow another INTA or INTB pulse.  
The duration of the periodic interrupt is unaffected by offset calibration.  
See Section 8.9 “Interrupts” for a description of interrupt pulse control and output pins.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
53 of 95  
 
 
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.13.3 RTCM: RTC mode  
Table 54. RTCM bit - Function control register (address 28h)  
Bit  
Symbol  
Value  
Description  
4
RTCM  
RTC mode  
0[1]  
1
real-time clock mode  
stop-watch mode  
[1] Default value.  
The RTC mode is used to control how the time is counted. When configured as a classic  
RTC, then time is counted from 100th seconds to years. In stop-watch mode, time is  
counted from 100th seconds to 999999 hours.  
Table 55. RTC time counting modes  
RTCM Mode  
Time counting  
0
1
RTC  
100th seconds[1], seconds, minutes, hours, days, weekdays, months, years  
stop-watch 100th seconds[1], seconds, minutes, hours (0 hours to 999999 hours)  
[1] Enabled with 100TH bit in the Function register (Section 8.13 on page 53).  
8.13.4 STOPM: STOP mode control  
Table 56. STOPM bit - Function control register (address 28h)  
Bit  
Symbol  
Value  
Description  
3
STOPM  
STOP mode  
0[1]  
1
RTC stop is controlled by STOP bit only  
RTC stop is controlled by STOP bit or TS pin  
[1] Default value.  
The STOP register bit in the Oscillator register (Section 8.10 on page 41) is used to stop  
the counting of time in both RTC mode and stop-watch mode. Stopping of the oscillator  
can also be controlled from the TS pin. The TS pin must first be configured as an input by  
the TSPM[1:0] bits, then selected for active HIGH or active LOW by the TSL bits.  
Table 57. Oscillator stop control when STOPM = 1  
STOP bit[1]  
TSL  
TS pin[2]  
Oscillator state  
running  
Description  
0
0
0
1
0
1
-
TS pin active HIGH  
stopped  
1
-
stopped  
TS pin active LOW  
TS pin ignored  
running  
1
stopped  
[1] In the Oscillator register (Section 8.10 on page 41).  
[2] TSPM[1:0] = 11.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
54 of 95  
 
 
 
 
 
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.13.5 COF[2:0]: Clock output frequency  
Table 58. COF[2:0] bits - Function control register (address 28h)  
Bit  
Symbol  
Value  
Frequency selection (Hz)  
CLK pin  
32768  
16384  
8192  
TS pin  
32768  
16384  
8192  
INTA pin  
32768  
16384  
8192  
4096  
2048  
1024  
1
2 to 0  
COF[2:0]  
000[1]  
001  
010  
011  
100  
101  
110  
111  
4096  
4096  
2048  
2048  
1024  
1024  
1
1
static LOW  
static LOW  
Hi-Z  
[1] Default value.  
A programmable square wave is available at pin CLK. Operation is controlled by the  
COF[2:0] bits. Frequencies of 32.768 kHz (default) down to 1 Hz can be generated for use  
as a system clock, microcontroller clock, input to a charge pump, or for calibration of the  
oscillator.  
Pin CLK is a push-pull output and enabled at power-on. Pin CLK can be disabled by  
setting CLKPM = 1 in the Pin_IO register (Section 8.12 on page 49). When disabled, the  
CLK pin is LOW.  
The selected clock frequency may also be output on the TS pin and the INTA pin. The  
CLKIV bit may be used to invert the clock output. CLKIV does not invert for the setting  
COF[2:0] = 111.  
The duty cycle of the selected clock is not controlled. However, due to the nature of the  
clock generation, all clock frequencies except 32.768 kHz have a duty cycle of 50 : 50.  
Table 59. Clock duty cycles  
COF[2:0]  
000[2]  
001  
Frequency (Hz)  
32768  
16384  
8192  
Typical duty cycle[1]  
60 : 40 to 40 : 60  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
-
010  
011  
4096  
100  
2048  
101  
1024  
1[3]  
110  
111  
static  
[1] Duty cycle definition: % HIGH-level time : % LOW-level time.  
[2] Default values. The duty cycle of the CLKOUT when outputting 32,768 Hz could change from 60:40 to  
40:60 depending on the detector since the 32,768 Hz is derived from the oscillator output which is not  
perfect. It could change from device to device and it depends on the silicon diffusion. There is nothing that  
can be done from outside the chip to influence the duty cycle.  
[3] 1 Hz clock pulses are not affected by offset correction pulses.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
55 of 95  
 
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.14 Flags register  
Table 60. Flags - Flag status register (address 2Bh) bit description  
Bit  
Symbol Flag name  
Value  
Description  
7
PIF  
Periodic Interrupt Flag  
Section 8.13.2 on page 53  
0[1]  
read: periodic interrupt flag inactive  
write: periodic interrupt flag is cleared  
read: periodic interrupt flag active  
write: periodic interrupt flag remains unchanged  
read: alarm2 flag inactive  
1
6
5
4
3
2
1
0
A2F  
Alarm2 Flag  
0[1]  
Section 8.4 on page 18  
write: alarm2 flag is cleared  
1
0[1]  
read: alarm2 flag active  
write: alarm2 flag remains unchanged  
read: alarm1 flag inactive  
A1F  
Alarm1 Flag  
Section 8.4 on page 18  
write: alarm1 flag is cleared  
1
0[1]  
read: alarm1 flag active  
write: alarm1 flag remains unchanged  
read: WatchDog flag inactive  
WDF  
BSF  
WatchDog Flag  
Section 8.5 on page 25  
write: WatchDog flag is cleared  
1
0[1]  
read: WatchDog flag active  
write: WatchDog flag remains unchanged  
read: battery switch flag inactive  
Battery Switch Flag  
Section 8.11 on page 43  
write: battery switch flag is cleared  
read: battery switch flag active  
1
0[1]  
write: battery switch flag remains unchanged  
read: timestamp register 3 flag inactive  
write: timestamp register 3 flag is cleared  
read: timestamp register 3 flag active  
write: timestamp register 3 flag remains unchanged  
read: timestamp register 2 flag inactive  
write: timestamp register 2 flag is cleared  
read: timestamp register 2 flag active  
write: timestamp register 2 flag remains unchanged  
read: timestamp register 1 flag inactive  
write: timestamp register 1 flag is cleared  
read: timestamp register 1 flag active  
write: timestamp register 1 flag remains unchanged  
TSR3F  
TSR2F  
TSR1F  
Timestamp Register 3  
event Flag  
Section 8.7 on page 27  
1
0[1]  
Timestamp Register 2  
event Flag  
Section 8.7 on page 27  
1
0[1]  
Timestamp Register 1  
event Flag  
Section 8.7 on page 27  
1
[1] Default value.  
The flags are set by their respective function. A full description can be found there. All  
flags behave the same way. They are set by some function of the IC and remain set until  
overwritten by command. It is possible to clear flags individually. To prevent one flag being  
overwritten while clearing another, a logic AND is performed during a write access. All  
flags are combined to generate an event monitoring signal called EMON. EMON is  
described in Section 8.2.3 on page 14 and can be read as the MSB of minutes register.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
56 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.15 Reset register  
Table 61. Reset - software reset control (address 2Fh) bit description  
Bit  
7
6
5
4
3
SR  
2
1
0
Symbol  
Section  
CPR  
0
1
0
1
0
CTS  
Section 8.15.2  
Section 8.15.1  
Section 8.15.3  
For a  
software reset (SR), 00101100 (2Ch) must be sent to register Reset (address 2Fh). A  
software reset also triggers CPR and CTS  
clear prescaler (CPR), 10100100 (A4h) must be sent to register Reset (address 2Fh)  
clear timestamp (CTS),00100101 (25h) must be sent to register Reset (address 2Fh)  
It is possible to combine CPR and CTS by sending 10100101 (A5h).  
Remark: Any other value sent to this register is ignored.  
8.15.1 SR - Software reset  
A reset is automatically generated at power-on. A reset can also be initiated with the  
software reset command.  
VODYHꢂDGGUHVV  
DGGUHVVꢂꢅ)K  
VRIWZDUHꢂUHVHWꢂꢅ&K  
5ꢍ:  
V
$
$
$ 3ꢍ6  
6'$  
6&/  
LQWHUQDO  
UHVHWꢂVLJQDO  
DDDꢀꢁꢂꢁꢃꢇꢅ  
Fig 29. Software reset command  
The PCF85363A resets to:  
Mode — real-time clock, 100th second off  
Time — 00:00:00.00  
Date — 2000.01.01  
Weekday — Saturday  
Battery switch — on, switching on the lower threshold voltage  
Oscillator — CL = 7 pF  
Pins — INTA = 32 kHz output, CLK = 32 kHz output, TS = disabled  
In the reset state, all registers are set according to Table 62.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
57 of 95  
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 62. Registers reset values  
Registers labeled as - remain unchanged.  
Address  
Register name  
Bit  
7
0
1
0
0
0
0
0
0
-
6
0
0
0
0
0
0
0
0
-
5
0
0
0
0
0
0
0
0
-
4
0
0
0
0
0
0
0
0
-
3
0
0
0
0
0
0
0
0
-
2
0
0
0
0
0
1
0
0
-
1
0
0
0
0
0
1
0
0
-
0
0
0
0
0
1
0
1
0
-
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
100TH_seconds  
Seconds  
Minutes  
Hours  
Days  
Weekdays  
Months  
Years  
Second_alarm1  
Second_alm1  
Minute_alarm1  
Minute_alm1  
Hour_alarm1  
Hr_xx_xx_00_alm1  
Day_alarm1  
Hr_xx_00_xx_alm1  
Month_alarm1  
Hr_00_xx_xx_alm1  
Minute_alarm2  
Minute_alm2  
Hour_alarm2  
Hr_xx_00_alm2  
Weekday_alarm2  
Hr_00_xx_alm2  
Alarm enables  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11h to 16h Timestamp 1  
17h to 1Ch Timestamp 2  
1Dh to 22h Timestamp 3  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
Timestamp_mode  
Offset  
Oscillator  
Battery_switch  
Pin_IO  
Function  
INTA_enable  
INTB_enable  
Flags  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
58 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 62. Registers reset values …continued  
Registers labeled as - remain unchanged.  
Address  
Register name  
Bit  
7
6
0
0
0
5
0
0
0
4
0
0
0
3
0
0
0
2
0
0
0
1
0
0
0
0
0
0
0
2Ch  
2Dh  
2Fh  
RAM_byte  
WatchDog  
Reset  
0
0
0
8.15.2 CPR: clear prescaler  
To set the time for RTC mode accurately or to clear the time in stop-watch mode, the clear  
prescaler instruction is needed.  
Before sending this instruction, it is recommended to first set stop either by the STOP bit  
or by the TS pin (see STOPM bit).  
See STOP definition for an explanation on using this instruction.  
8.15.3 CTS: clear timestamp  
The timestamp registers (address 11h to 22h) can be set to all 0 with this instruction.  
8.16 Stop_enable register  
Table 63. Stop_enable - control of STOP bit (address 2Eh)  
Bit  
7 to 1  
0
Symbol  
-
Value  
Description  
not used  
0000000  
STOP  
STOP bit  
0[1]  
1
RTC clock runs  
RTC clock is stopped  
[1] Default value.  
The STOP bit stops the time from counting in both RTC mode and stop-watch mode. For  
RTC mode STOP is useful to set the time accurately. For stop-watch mode it is the  
start/stop control for the watch.  
The counter can also be controlled from the TS pin by configuring STOPM in the Function  
register (Section 8.13 on page 53). The internal stop signal is a combination of STOP and  
the TS pin state.  
Table 64. Counter stop signal  
STOP bit  
TS pin[1][2]  
stop signal  
Counter  
stopped  
stopped  
running  
1
-
-
1
1
0
1
0
0
[1] Requires STOPM and TSPM[1:0] to be configured.  
[2] TSL = 0 (active HIGH) (Pin_IO register, address 27h).  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
59 of 95  
 
 
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
26&,//$725ꢂ6723  
VHWWLQJꢂWKHꢂ26ꢂIODJ  
'(7(&725  
ꢀꢁꢁꢂ+]ꢂWLFN  
ꢀꢂ+]ꢂWLFN  
ꢆꢅꢇꢃꢈꢂ+]  
ꢈꢀꢎꢅꢂ+]  
35(6&$/(5  
5(6(7  
GLYꢂꢄ  
26&,//$725  
&35  
ꢋꢀꢌ  
VWRS  
DDDꢀꢁꢂꢁꢃꢇꢇ  
(1) stop is a combination of STOP register bit and the TS pin when programmed for stop control.  
Fig 30. CPR and STOP bit functional diagram  
The stop signal blocks the 8.192 kHz clock from generating system clocks and freezes the  
time. In this state, the prescaler can be cleared with the CPR command in the Resets  
register (Section 8.15 on page 57).  
Remark: The output of clock frequencies is not affected.  
The time circuits can then be set and do not increment until the STOP bit is released.  
The stop acts on the 8.192 kHz signal. And because the I2C-bus or TS pin input is  
asynchronous to the crystal oscillator, the accuracy of restarting the time circuits is  
between zero and one 8.192 kHz cycle (see Figure 31).  
ꢈꢀꢎꢅꢂ+]  
VWRSꢂUHOHDVHG  
ꢁꢂ—VꢂWRꢂꢀꢅꢅꢂ—V  
DDDꢀꢁꢁꢃꢃꢂꢇ  
Fig 31. STOP release timing  
The first increment of the time circuits is between 0 s and 122 s after STOP is released.  
The flow for accurately setting the time in RTC mode is:  
start an I2C access at register 2Eh  
set STOP bit  
send CPR instruction  
address counter rolls over to address 00h  
set time (100th seconds, seconds to years)  
end I2C access  
wait for external time reference to indicate that time counting should start  
start an I2C access at register 2Eh  
clear STOP bit (time starts counting from now)  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
60 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
end I2C access  
The flow for resetting time in stop-watch mode is:  
start an I2C access at register 2Eh  
set STOP bit  
send CPR instruction  
address counter will roll over to address 00h  
set time to 000000:00:00.00  
end I2C access  
8.17 64 byte RAM  
In addition to the single RAM byte, there is a 64 byte RAM available from address 40h to  
7Fh. The RAM can be written and read when the device is powered from VDD. The RAM  
content is backed-up when the device is powered from VBAT, but cannot be accessed as  
the interface is disabled.  
The address pointer is set during interface initiation and will auto increment after each  
byte access. The pointer will wrap around from address 7Fh to 40h after the last byte is  
accessed, (see Figure 5).  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
61 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
9. I2C-bus interface  
The I2C-bus is for bidirectional, two-line communication between different ICs. The two  
lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines must be  
connected to a positive supply via a pull-up resistor. Data transfer may be initiated only  
when the bus is not busy. Both data and clock lines remain HIGH when the bus is not  
busy. The PCF85363A acts as a slave receiver when being written to and as a slave  
transmitter when being read from.  
Remark: When on VBAT power, the interface is not accessible.  
$
$
$
$
:ULWH  
5HDG  
6
6
VODYHꢂDGGUHVVꢂꢒꢂꢁꢂ  
$
$
ZULWHꢂGDWD  
ZULWHꢂGDWD  
ZULWHꢂGDWD  
$
$
3
3
$&.ꢂIURP  
VODYH  
$&.ꢂIURP  
VODYH  
$&.ꢂIURP  
VODYH  
$&.ꢂIURP  
VODYH  
VODYHꢂDGGUHVVꢂꢒꢂꢀꢂ  
UHDGꢂGDWD  
UHDGꢂGDWD  
UHDGꢂGDWD  
$&.ꢂIURP  
PDVWHU  
$&.ꢂIURP  
VODYH  
$&.ꢂIURP  
VODYH  
$&.ꢂIURP  
PDVWHU  
DDDꢀꢁꢂꢁꢃꢉꢇ  
Fig 32. I2C read and write protocol  
, &ꢂZULWHꢂH[DPSOH  
6&/  
6'$  
ELWꢇ  
ELWꢁ $&. ELWꢇ  
ELWꢁ $&.  
3
6
ꢀVWꢂE\WHꢑꢂVODYHꢂDGGUHVVꢂZLWKꢂ5ꢍ:ꢂ ꢂꢁ  
ZULWHꢂꢅQGꢂE\WH  
67$57  
FRQGLWLRQ  
6723  
FRQGLWLRQ  
$&.ꢂRIꢂꢅQGꢂE\WH  
IURPꢂVODYH  
$&.ꢂRIꢂꢀVWꢂE\WH  
IURPꢂVODYH  
, &ꢂUHDGꢂH[DPSOH  
6&/  
6'$  
ELWꢇ  
UHDGꢂꢅQGꢂE\WH  
ELW  
ELWꢇ  
ELWꢁ $&.  
$&.  
3
6
ꢀVWꢂE\WHꢑꢂVODYHꢂDGGUHVVꢂZLWKꢂ5ꢍ:ꢂ ꢂꢀ  
67$57  
FRQGLWLRQ  
6723  
FRQGLWLRQ  
$&.ꢂRIꢂꢀVWꢂE\WH  
IURPꢂVODYH  
$&.ꢂRIꢂꢅQGꢂE\WH  
IURPꢂVODYH  
DDDꢀꢁꢂꢁꢃꢉꢈ  
Fig 33. I2C read and write signaling  
9.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse, as changes in the data line at this time  
are interpreted as STOP or START conditions.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
62 of 95  
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
9.2 START and STOP conditions  
A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START  
condition - S.  
A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition - P (see Figure 33).  
9.3 Acknowledge  
Each byte of 8 bits is followed by an acknowledge cycle. An acknowledge is defined as  
logic 0. A not-acknowledge is defined as logic 1.  
When written to, the slave will generate an acknowledge after the reception of each byte.  
After the acknowledge, another byte may be transmitted. It is also possible to send a  
STOP or START condition.  
When read from, the master receiver must generate an acknowledge after the reception  
of each byte. When the master receiver no longer requires bytes to be transmitter, it must  
generate a not-acknowledge. After the not-acknowledge, either a STOP or START  
condition must be sent.  
A detailed description of the I2C-bus specification is given in Ref. 10 “UM10204”.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
63 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
10. Interface protocol  
The PCF85363A uses the I2C interface for data transfer. Interpretation of the data is  
determined by the interface protocol.  
10.1 Write protocol  
After the I2C slave address is transmitted, the PCF85363A requires that the register  
address pointer is defined. It can take the value 00h to 2Fh. Values outside of that range  
will result in the transfer being ignored, however the slave will still respond with  
acknowledge pulses.  
After the register address is transmitted, write data is transmitted. The minimum number  
of data write bytes is 0 and the maximum number is unlimited. After each write, the  
address pointer increments by one. After address 2Fh, the address pointer will roll over to  
00h.  
I2C START condition  
I2C slave address + write  
register address  
write data  
write data  
:  
write data  
I2C STOP condition; an I2C RE-START condition is also possible.  
10.2 Read protocol  
When reading the PCF85363A, reading starts at the current position of the address  
pointer. The address pointer for read data should first be defined by a write sequence.  
I2C START condition  
I2C slave address + write  
register address  
I2C STOP condition; an I2C RE-START condition is also possible.  
After setting the address pointer, a read can be executed. After the I2C slave address is  
transmitted, the PCF85363A will immediately output read data. After each read, the  
address pointer increments by one. After address 2Fh, the address pointer will roll over to  
00h.  
I2C START condition  
I2C slave address + read  
read data (master sends acknowledge bit)  
read data (master sends acknowledge bit)  
:  
read data (master sends not-acknowledge bit)  
I2C STOP condition. An I2C RE-START condition is also possible.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
64 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
The master must indicate that the last byte has been read by generating a  
not-acknowledge after the last read byte.  
10.3 Slave addressing  
10.3.1 Slave address  
One I2C-bus slave address (1010001) is reserved for the PCF85363A. The entire I2C-bus  
slave address byte is shown in Table 65.  
Table 65. I2C slave address byte  
Slave address  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
1
0
1
0
0
0
1
After a START condition, the I2C slave address has to be sent to the PCF85363A device.  
Slave address can also be written in a hexadecimal format:  
A2h - Write slave address  
A3h - Read slave address  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
65 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
11. Application design-in information  
In this application, stop-watch mode is used to implement an elapsed time counter. The  
TS pin is used with a mechanical switch to start and stop the time. Each time the time is  
stopped, timestamp2 is loaded with the current time and an interrupt is generated on the  
INTA pin.  
7LPH  
FRXQWHU  
VWRS  
6723  
FRQWURO  
PHFKDQLFDO  
VZLWFKꢂGHWHFWRU  
YGGBLQW  
67230  
VDPSOH  
FORFNꢑꢂꢀꢃꢂ+]  
76/  
765ꢅ  
ORDG  
76ꢂSLQ  
VDPSOH  
LQYHUW  
765ꢅ  
IODJ  
9
66  
,17$  
,17$  
JHQꢊ  
DDDꢀꢁꢂꢁꢆꢄꢁ  
Fig 34. Application example  
The RTC must be configured correctly for this mode of operation. Outlined in Table 66 are  
the settings needed for this mode.  
In addition, the time must be set and any other configurations like battery switch-over,  
quartz oscillator driving mode, etc., which are dependent on the application.  
The sampler circuit shown in Figure 34 will hold invalid data until the mechanical switch  
detector mode is enabled. It then requires a minimum of one sample period to initialize to  
the current TS pin level. It is recommended to enable the mechanical detector mode on  
the TS pin at least 62.5 ms before enabling the TS event mode. Failure to do so can result  
in a false first event.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
66 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 66. Application configuration  
Register  
Section  
Bit(s)  
State  
11  
1
Comment  
Pin_IO  
Pin_IO  
Pin_IO  
Function  
Section 8.12  
Section 8.12  
Section 8.12  
Section 8.13  
TSPM[1:0]  
TSIM  
TS pin in input mode  
select mechanical switch mode  
TS pin input is active LOW  
allow TS pin to control STOP  
allow timestamps to create interrupts  
generate interrupt pulses  
last event mode for timestamp2  
output interrupt on INTA  
TSL  
1
STOPM  
TSRIEA  
ILPA  
1
1
0
TSR_mode Section 8.12  
Pin_IO Section 8.12  
TSR2M[2:0]  
INTAPM[1:0]  
101  
10  
Figure 35 shows the waveforms that can be expected. sample clock, vdd_int and stop are  
internal nodes. vdd_int is supply which operates the IC and will be either VDD or VBAT  
,
depending on the state of the battery switch-over.  
VDPSOHꢂFORFNꢑꢂꢀꢃꢂ+]  
YGGBLQW  
IORDWLQJ  
76ꢂSLQ  
9
66  
76ꢂSLQꢂVDPSOHG  
RSHQ  
RSHQ  
FORVHG  
VZLWFKꢂ6:ꢂꢀ  
VWRS  
VWRSZDWFK  
UXQQLQJ  
VWRSSHG  
765ꢅꢂ ꢂWꢄ  
UXQQLQJ  
765ꢅ  
,17$  
Wꢀ  
Wꢅ  
Wꢆ  
Wꢄ  
Wꢏ Wꢃ  
DDDꢀꢁꢂꢁꢆꢄꢂ  
Fig 35. Application example timing  
At and before t1, SW1 is open (TS pin floating). The TS pin is sampled and the  
internal pull-up resistor will pull the pin HIGH to vdd_int. No actions are taken by the  
IC.  
At t2, SW1 is still open. No action is taken by the IC.  
At t3, SW1 closes. The TS pin is now shorted to VSS. The TS pin has not been  
sampled yet, so no action is taken by the IC.  
At t4, SW1 is closed. The internal pull-up resistor is enabled, but TS pin remains  
LOW. The pin is then sampled and the LOW level detected. As the TSL bit was set for  
active LOW detection, the HIGH-LOW transition of TS pin sampled triggers an event.  
STOPM mode was configured to allow the TS pin to stop the time counting. As the  
TSL bit was set for active LOW, time counting stops when the TS pin is LOW.  
Timestamp register 2 was configured to take a copy of the time on an event of the TS  
pin, hence TSR2 loads the time t4. TSR2F is also set.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
67 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
INTA was configured to generate an interrupt when TSR2 loads a new time, hence an  
interrupt pulse is seen on INTA.  
At t5, SW1 is opened. No action is taken by the IC.  
At t6, SW1 is open. The internal pull-up is active and the TS pin raises to vdd_int  
level. The HIGH level is sampled and causes the stop signal to be released and time  
starts counting again.  
12. Internal circuitry  
3&)ꢀꢁꢂꢃꢂ$  
9''  
,17$  
&/.  
6&/  
6'$  
26&,  
26&2  
9%$7  
76  
966  
DDDꢀꢁꢂꢂꢁꢇꢂ  
Fig 36. Device diode protection diagram of PCF85363A  
13. Safety notes  
CAUTION  
This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling  
electrostatic sensitive devices.  
Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or  
equivalent standards.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
68 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
14. Limiting values  
Table 67. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
IDD  
Parameter  
Conditions  
Min  
0.5  
50  
0.5  
50  
0.5  
0.5  
10  
10  
-
Max  
+6.5  
+50  
Unit  
V
supply voltage  
supply current  
mA  
V
VBAT  
IBAT  
VI  
battery supply voltage  
battery supply current  
input voltage  
+6.5  
+50  
mA  
V
on pins SCL, SDA, OSCI, TS  
+6.5  
+6.5  
+10  
VO  
output voltage  
V
II  
input current  
at any input  
mA  
mA  
mW  
V
IO  
output current  
at any output  
+10  
Ptot  
VESD  
total power dissipation  
300  
[1]  
[2]  
electrostatic  
discharge voltage  
HBM  
-
3500  
CDM  
PCF85363ATL  
PCF85363ATT  
PCF85363ATT1  
-
1750  
1000  
2000  
200  
V
-
V
-
V
[3]  
[4]  
Ilu  
latch-up current  
-
mA  
C  
C  
Tstg  
Tamb  
storage temperature  
65  
40  
+150  
+85  
ambient temperature operating device  
[1] Pass level; Human Body Model (HBM) according to Ref. 6 “JESD22-A114”.  
[2] Pass level; Charged-Device Model (CDM), according to Ref. 7 “JESD22-C101”.  
[3] Pass level; latch-up testing, according to Ref. 8 “JESD78” at maximum ambient temperature (Tamb(max)).  
[4] According to the store and transport requirements (see Ref. 11 “UM10569”) the devices have to be stored at a temperature of +8 C to  
+45 C and a humidity of 25 % to 75 %.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
69 of 95  
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
15. Characteristics  
Table 68. Static characteristics  
VDD = 0.9 V to 5.5 V; VSS = 0 V; Tamb = 40 C to +85 C; fosc = 32.768 kHz; quartz Rs = 60 k; CL = 7 pF; all registers in  
reset state; unless otherwise specified.  
Symbol  
Supplies  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[2]  
[1]  
[3]  
supply voltage  
interface inactive; fSCL = 0 Hz  
interface active; fSCL = 400 kHz  
0.9  
1.8  
0.9  
-
-
-
5.5  
5.5  
5.5  
V
V
V
VBAT  
IDD  
battery supply voltage  
supply current  
CLKOUT disabled;  
V
DD = 3.3 V;  
interface inactive; fSCL = 0 Hz  
battery switch enabled  
Tamb = 25 C  
-
-
-
320  
370  
590  
480  
550  
885  
nA  
nA  
nA  
Tamb = 50 C  
Tamb = 85 C  
[4]  
battery switch disabled  
Tamb = 25 C  
-
-
-
-
280  
330  
550  
10  
420  
500  
825  
-
nA  
nA  
nA  
A  
Tamb = 50 C  
Tamb = 85 C  
CLKOUT disabled;  
VDD = 3.3 V;  
interface active;  
fSCL = 400 kHz  
Reference voltage  
Vth  
threshold voltage  
HIGH falling VDD  
2.4  
2.5  
1.3  
1.37  
-
2.6  
2.8  
2.95  
1.5  
1.6  
-
V
HIGH rising VDD  
2.7  
V
LOW falling VDD  
1.4  
V
LOW rising VDD  
1.47  
50  
V
reference voltage hysteresis  
mV  
Inputs[5]  
VI  
input voltage  
0.5  
0.5  
-
-
+5.5  
V
V
VIL  
LOW-level input  
voltage  
+0.3VDD  
VIH  
ILI  
HIGH-level input  
voltage  
0.7VDD  
-
5.5  
V
input leakage current VI = VSS or VDD  
post ESD event  
-
0
-
A  
A  
pF  
k  
k  
0.5  
-
-
+0.5  
7
[6]  
Ci  
input capacitance  
-
RPU(TS)  
pull-up resistance on 80 kmode  
pin TS  
68  
36  
80  
40  
92  
64  
40 kmode  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
70 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 68. Static characteristics …continued  
VDD = 0.9 V to 5.5 V; VSS = 0 V; Tamb = 40 C to +85 C; fosc = 32.768 kHz; quartz Rs = 60 k; CL = 7 pF; all registers in  
reset state; unless otherwise specified.  
Symbol  
Outputs  
VOH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HIGH-level output  
voltage  
on pin CLK, TS  
0.8VDD  
VSS  
1
-
VDD  
V
VOL  
IOH  
LOW-level output  
voltage  
on pins SDA, INTA, CLK, TS  
-
0.2VDD  
-
V
HIGH-level output  
current  
output source current;  
VOH = 2.9 V;  
3
mA  
V
DD = 3.3 V;  
on pin CLK, TS  
IOL  
LOW-level output  
current  
output sink current; VOL = 0.4 V;  
VDD = 3.3 V  
on pin SDA  
on pin INTA  
on pin CLK  
on pin TS  
3
2
1
1
8.5  
6
-
-
-
-
mA  
mA  
mA  
mA  
3
3
Oscillator  
fosc/fosc  
relative oscillator  
frequency variation  
VDD = 200 mV; Tamb = 25 C  
-
0.075  
-
ppm  
tjit  
jitter time  
LOWJ = 0  
LOWJ = 1  
-
-
50  
25  
-
-
ns  
ns  
[7]  
CL(itg)  
integrated load  
capacitance  
on pins OSCO, OSCI;  
VDD = 3.3 V  
CL = 6 pF  
CL = 7 pF  
4.8  
5.6  
10  
-
6
7.2  
8.4  
15  
pF  
pF  
pF  
k  
7
CL = 12.5 pF  
normal mode  
12.5  
-
Rs  
series resistance  
100  
[1] For reliable oscillator start-up at power-on use VDD greater than 1.2 V. If powered up at 0.9 V the oscillator will start but it might be a bit  
slow, especially if at high temperature. Normally the power supply is not 0.9 V at start-up and only comes at the end of battery  
discharge. VDD min of 0.9 V is specified so that the customer can calculate how large a battery or capacitor they need for their  
application. VDD min of 1.2 V or greater is needed to ensure speedy oscillator start-up time.  
[2] 400 kHz I2C operation is production tested at 1.8 V. Design methodology allows I2C operation at 1.8 V 5 % (1.71 V) which has been  
verified during product characterization on a limited number of devices.  
[3] Measured after reset and CLK disabled, level of inputs is VDD or VSS  
.
[4] Measured after reset, CLK disabled, battery switch disabled and level of inputs is VDD or VSS  
[5] The I2C-bus interface of PCF85363A is 5 V tolerant.  
[6] Implicit by design.  
.
COSCI COSCO  
-------------------------------------------  
.
[7] Integrated load capacitance, CL(itg), is a calculation of COSCI and COSCO in series: CLitg  
=
COSCI + COSCO  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
71 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
DDDꢀꢁꢂꢁꢄꢁꢆ  
ꢆꢁ  
ꢅꢏ  
ꢅꢁ  
ꢀꢏ  
ꢀꢁ  
,
''  
ꢋ—$ꢌ  
ꢀꢁꢁ  
ꢅꢁꢁ  
ꢆꢁꢁ  
ꢄꢁꢁ  
ꢏꢁꢁ  
)
ꢂꢋN+]ꢌ  
6&/  
Tamb = 25 C; CLKOUT disabled.  
VDD = 5.0 V.  
(1)  
(2) VDD = 3.3 V.  
Fig 37. Typical IDD with respect to fSCL  
DDDꢀꢁꢂꢁꢄꢁꢊ  
ꢎꢁꢁ  
,
''  
ꢋQ$ꢌ  
ꢇꢏꢁ  
ꢃꢁꢁ  
ꢄꢏꢁ  
ꢆꢁꢁ  
ꢀꢏꢁ  
ꢋꢀꢌ  
ꢋꢅꢌ  
ꢉꢃꢁ  
ꢉꢄꢁ  
ꢉꢅꢁ  
ꢅꢁ  
ꢄꢁ  
ꢃꢁ  
ꢈꢁ  
ꢂꢋž&ꢌ  
ꢀꢁꢁ  
7
DPE  
CL(itg) = 7 pF; CLKOUT disabled; battery switched on.  
(1) VDD = 5 V.  
(2) DD = 3.3 V.  
V
Fig 38. Typical IDD as a function of temperature  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
72 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
DDDꢀꢁꢂꢁꢄꢁꢅ  
ꢀꢈ  
ꢀꢏ  
ꢀꢅ  
,
''  
ꢋ—$ꢌ  
ꢋꢀꢌ  
ꢋꢅꢌ  
ꢋꢆꢌ  
9
ꢂꢋ9ꢌ  
''  
Tamb = 25 C; fCLKOUT = 32768 Hz.  
(1) 47 pF CLKOUT load.  
(2) 22 pF CLKOUT load.  
(3) 0 pF CLKOUT load.  
DDDꢀꢁꢂꢁꢄꢁꢃ  
ꢃꢁꢁ  
,
''  
ꢋQ$ꢌ  
ꢏꢁꢁ  
ꢄꢁꢁ  
ꢆꢁꢁ  
ꢅꢁꢁ  
ꢀꢁꢁ  
ꢋꢀꢌ  
ꢋꢅꢌ  
ꢋꢆꢌ  
9
ꢂꢋ9ꢌ  
''  
Tamb = 25 C; CLKOUT disabled.  
(1) CL(itg) = 12.5 pF.  
(2) CL(itg) = 7 pF.  
(3)  
CL(itg) = 6 pF.  
Fig 39. Typical IDD with respect to VDD  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
73 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
DDDꢀꢁꢂꢁꢄꢁꢇ  
ꢁꢊꢄ  
ǻI ꢍI  
RVF RVF  
ꢋSSPꢌ  
ꢁꢊꢅ  
ꢋꢀꢌ  
ꢋꢅꢌ  
ꢋꢆꢌ  
ꢉꢁꢊꢅ  
ꢉꢁꢊꢄ  
9
ꢂꢋ9ꢌ  
''  
Tamb = 25 C.  
CL(itg) = 12.5 pF.  
(1)  
(2) CL(itg) = 6 pF.  
(3) CL(itg) = 7 pF.  
Fig 40. Oscillator frequency variation with respect to VDD  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
74 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Table 69. I2C-bus characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; Tamb = 40 C to +85 C; fosc = 32.768 kHz; quartz Rs = 60 k; CL = 7 pF; unless otherwise  
specified. All timing values are valid within the operating supply voltage and temperature range and referenced to VIL and VIH  
[1]  
with an input voltage swing of VSS to VDD  
.
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Cb  
capacitive load for  
each bus line  
-
400  
pF  
[2]  
fSCL  
SCL clock frequency  
0
400  
-
kHz  
tHD;STA  
hold time (repeated)  
START condition  
0.6  
s  
tSU;STA  
set-up time for a  
repeated START  
condition  
0.6  
-
s  
tLOW  
tHIGH  
tr  
LOW period of the  
SCL clock  
1.3  
0.6  
20  
-
s  
s  
ns  
ns  
s  
HIGH period of the  
SCL clock  
-
rise time of both SDA  
and SCL signals  
300  
[3][4]  
tf  
fall time of both SDA  
and SCL signals  
20 (VDD / 5.5 V) 300  
tBUF  
bus free time between  
a STOP and START  
condition  
1.3  
-
tSU;DAT  
tHD;DAT  
tSU;STO  
data set-up time  
data hold time  
100  
0
-
-
-
ns  
ns  
s  
set-up time for STOP  
condition  
0.6  
tVD;DAT  
tVD;ACK  
data valid time  
0
0
0.9  
0.9  
s  
s  
data valid  
acknowledge time  
tSP  
pulse width of spikes  
that must be  
0
50  
ns  
suppressed by the  
input filter  
[1] A detailed description of the I2C-bus specification is given in Ref. 10 “UM10204”.  
[2] I2C-bus access time between two STARTs or between a START and a STOP condition to this device must be less than one second.  
[3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to bridge  
the undefined region of the falling edge of SCL.  
[4] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines  
without exceeding the maximum specified tf.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
75 of 95  
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
67$57ꢂ  
FRQGLWLRQꢂ  
ꢋ6ꢌ  
ELWꢂꢇꢂ  
06%ꢂ  
ꢋ$ꢇꢌ  
6723ꢂ  
FRQGLWLRQꢂ  
ꢋ3ꢌ  
ELWꢂꢃꢂ  
ꢋ$ꢃꢌ  
ELWꢂꢁꢂ DFNQRZOHGJHꢂ  
ꢋ5ꢍ:ꢌ ꢋ$ꢌ  
SURWRFRO  
W
W
W
+,*+  
68ꢓ67$  
/2:  
ꢍI  
6&/  
6&/  
6'$  
W
W
%8)  
I
W
U
W
W
W
W
W
W
+'ꢓ'$7  
9'ꢓ$&.  
9'ꢓ'$7  
68ꢓ672  
ꢋꢁꢂꢅDDDꢃꢂꢇ  
68ꢓ'$7  
+'ꢓ67$  
Fig 41. I2C-bus timing diagram; rise and fall times refer to 30 % and 70 %  
16. Application information  
9
''  
ꢀꢁꢁꢂQ)  
6'$  
6&/  
0$67(5  
75$160,77(5ꢍ  
5(&(,9(5  
ꢀꢁꢁꢂQ)  
9%$7  
&/.  
,17$  
6&/  
9''  
26&,  
9
''  
3&)ꢀꢁꢂꢃꢂ$  
26&2  
6'$  
5
5
5ꢐꢂSXOOꢉXSꢂUHVLVWRU  
966  
76  
W
U
5ꢂ  
&
E
6'$ 6&/  
ꢋ, &ꢉEXVꢌ  
DDDꢀꢁꢂꢂꢁꢇꢉ  
Fig 42. Application diagram for PCF85363A  
The data sheet values were obtained using a crystal with an ESR of 60 k. If a crystal with  
an ESR of 70 kis used then the power consumption would increase by a few nA and the  
start-up time will increase slightly.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
76 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
17. Test information  
17.1 Quality information  
UL Component Recognition  
This (component or material) is Recognized by UL. Representative samples of this  
component have been evaluated by UL and meet applicable UL requirements.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
77 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
18. Package outline  
')1ꢅꢃꢅꢃꢆꢇꢈꢉꢄSODVWLFꢄWKHUPDOꢄHQKDQFHGꢄH[WUHPHO\ꢄWKLQꢄVPDOOꢄRXWOLQHꢄSDFNDJHꢊꢄQRꢄOHDGVꢊ  
ꢇꢈꢄWHUPLQDOVꢊꢄERG\ꢄꢅꢋꢃꢄ[ꢄꢅꢋꢃꢄ[ꢄꢈꢋꢁꢄPP  
627ꢇꢇꢌꢍꢆꢇ  
;
%
$
(
'
$
$
$
WHUPLQDOꢂꢀ  
LQGH[ꢂDUHD  
GHWDLOꢂ;  
H
&
WHUPLQDOꢂꢀ  
LQGH[ꢂDUHD  
%
$
Y
Z
&
&
H
E
\
\
&
/
N
(
K
ꢀꢁ  
'
K
ꢅꢂPP  
VFDOH  
'LPHQVLRQV  
ꢋꢀꢌ  
8QLW  
$
$
$
E
'
'
K
(
(
H
H
N
/
Y
Z
\
\
K
PD[ ꢁꢊꢏ ꢁꢊꢁꢏ  
QRP  
ꢁꢊꢆꢁ ꢅꢊꢇ ꢅꢊꢅꢁ ꢅꢊꢇ ꢀꢊꢆꢁ  
ꢁꢊꢅꢏ ꢅꢊꢃ ꢅꢊꢀꢏ ꢅꢊꢃ ꢀꢊꢅꢏ  
ꢁꢊꢅꢁ ꢅꢊꢏ ꢅꢊꢀꢁ ꢅꢊꢏ ꢀꢊꢅꢁ  
ꢁꢊꢄꢁ  
ꢁꢊꢆꢏ  
ꢁꢊꢆꢁ  
PP  
ꢁꢊꢀꢅꢇ  
ꢁꢊꢏ  
ꢁꢊꢀ ꢁꢊꢁꢏ ꢁꢊꢁꢏ ꢁꢊꢁꢏ  
PLQ  
ꢁꢊꢁꢁ  
ꢁꢊꢅ  
1RWH  
ꢀꢊꢂ3ODVWLFꢂRUꢂPHWDOꢂSURWUXVLRQVꢂRIꢂꢁꢊꢁꢇꢏꢂPPꢂPD[LPXPꢂSHUꢂVLGHꢂDUHꢂQRWꢂLQFOXGHGꢊ  
VRWꢂꢂꢈꢇꢀꢂBSR  
5HIHUHQFHV  
2XWOLQH  
YHUVLRQ  
(XURSHDQ  
SURMHFWLRQ  
,VVXHꢂGDWH  
,(&  
ꢉꢂꢉꢂꢉ  
-('(&  
ꢉꢂꢉꢂꢉ  
-(,7$  
ꢉꢂꢉꢂꢉ  
ꢉꢁꢀꢉꢅꢁ  
ꢀꢅꢉꢁꢎꢉꢀꢃ  
627ꢀꢀꢎꢇꢉꢀ  
Fig 43. Package outline SOT1197-1 (DFN2626-10), PCF85363ATL  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
78 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
76623ꢀꢉꢄSODVWLFꢄWKLQꢄVKULQNꢄVPDOOꢄRXWOLQHꢄSDFNDJHꢊꢄꢀꢄOHDGVꢊꢄERG\ꢄZLGWKꢄꢂꢄPPꢄ  
627ꢁꢈꢁꢆꢇꢄ  
'ꢂ  
(ꢂ  
$ꢂ  
;ꢂ  
Fꢂ  
\ꢂ  
+
Yꢂ 0ꢂ  
$ꢂ  
(ꢂ  
=ꢂ  
ꢏꢂ  
ꢈꢂ  
$
ꢋ$ ꢌꢂ  
ꢅꢂ  
$ꢂ  
$
ꢀꢂ  
SLQꢂꢀꢂLQGH[ꢂ  
șꢂ  
/
Sꢂ  
/ꢂ  
GHWDLOꢂ;ꢂ  
ꢀꢂ  
ꢄꢂ  
Hꢂ  
Zꢂ 0ꢂ  
E
Sꢂ  
ꢁꢂ  
ꢅꢊꢏꢂ  
ꢏꢂPPꢂ  
VFDOHꢂ  
',0(16,216ꢄꢎPPꢄDUHꢄWKHꢄRULJLQDOꢄGLPHQVLRQVꢏꢄ  
$ꢄ  
ꢎꢇꢏꢄ  
ꢎꢅꢏꢄ  
ꢎꢇꢏꢄ  
$
$
$
E
Fꢄ  
'
(
Hꢄ  
+
/ꢄ  
/
81,7ꢄ  
PPꢂ  
Yꢄ  
Zꢄ  
\ꢄ  
=
șꢂ  
ꢇꢄ  
ꢅꢄ  
ꢂꢄ  
Sꢄ  
(ꢄ  
Sꢄ  
PD[ꢋꢄ  
ꢁꢊꢀꢏꢂ ꢁꢊꢎꢏꢂ  
ꢁꢊꢁꢏꢂ ꢁꢊꢈꢁꢂ  
ꢁꢊꢄꢏꢂ ꢁꢊꢅꢈꢂ  
ꢁꢊꢅꢏꢂ ꢁꢊꢀꢏꢂ  
ꢆꢊꢀꢂ  
ꢅꢊꢎꢂ  
ꢆꢊꢀꢂ  
ꢅꢊꢎꢂ  
ꢏꢊꢀꢂ  
ꢄꢊꢇꢂ  
ꢁꢊꢇꢂ  
ꢁꢊꢄꢂ  
ꢁꢊꢇꢁꢂ  
ꢁꢊꢆꢏꢂ  
ꢃƒꢂ  
ꢁƒꢂ  
ꢀꢊꢀꢂ  
ꢁꢊꢃꢏꢂ  
ꢁꢊꢎꢄꢂ  
ꢁꢊꢀꢂ  
ꢁꢊꢀꢂ  
ꢁꢊꢀꢂ  
ꢁꢊꢅꢏꢂ  
1RWHVꢄ  
ꢀꢊꢂ3ODVWLFꢂRUꢂPHWDOꢂSURWUXVLRQVꢂRIꢂꢁꢊꢀꢏꢂPPꢂPD[LPXPꢂSHUꢂVLGHꢂDUHꢂQRWꢂLQFOXGHGꢊꢂ  
ꢅꢊꢂ3ODVWLFꢂRUꢂPHWDOꢂSURWUXVLRQVꢂRIꢂꢁꢊꢅꢏꢂPPꢂPD[LPXPꢂSHUꢂVLGHꢂDUHꢂQRWꢂLQFOXGHGꢊꢂ  
ꢄ5()(5(1&(6ꢄ  
ꢄ-('(&ꢄ ꢄ-(,7$ꢄ  
287/,1(ꢄ  
9(56,21ꢄ  
(8523($1ꢄ  
352-(&7,21ꢄ  
,668(ꢄ'$7(ꢄ  
ꢄ,(&ꢄ  
ꢎꢎꢉꢁꢄꢉꢁꢎꢂ  
ꢁꢆꢉꢁꢅꢉꢀꢈꢂ  
ꢂ627ꢏꢁꢏꢉꢀꢂ  
Fig 44. Package outline SOT505-1 (TSSOP8), PCF85363ATT  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
79 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
76623ꢇꢈꢉꢄSODVWLFꢄWKLQꢄVKULQNꢄVPDOOꢄRXWOLQHꢄSDFNDJHꢊꢄꢇꢈꢄOHDGVꢊꢄERG\ꢄZLGWKꢄꢂꢄPPꢄ  
627ꢁꢁꢅꢆꢇꢄ  
'ꢂ  
(ꢂ  
$ꢂ  
;ꢂ  
Fꢂ  
\ꢂ  
+
Yꢂ 0ꢂ  
$ꢂ  
(ꢂ  
=ꢂ  
ꢃꢂ  
ꢀꢁꢂ  
$
ꢋ$ ꢌꢂ  
ꢅꢂ  
$ꢂ  
$
ꢀꢂ  
SLQꢂꢀꢂLQGH[ꢂ  
șꢂ  
/
Sꢂ  
/ꢂ  
GHWDLOꢂ;ꢂ  
ꢀꢂ  
ꢏꢂ  
Hꢂ  
Zꢂ 0ꢂ  
E
Sꢂ  
ꢁꢂ  
ꢅꢊꢏꢂ  
ꢏꢂPPꢂ  
VFDOHꢂ  
',0(16,216ꢄꢎPPꢄDUHꢄWKHꢄRULJLQDOꢄGLPHQVLRQVꢏꢄ  
$ꢄ  
ꢎꢇꢏꢄ  
ꢎꢅꢏꢄ  
ꢎꢇꢏꢄ  
$
$
$
E
Fꢄ  
'
(
Hꢄ  
+
/ꢄ  
/
81,7ꢄ  
PPꢂ  
Yꢄ  
Zꢄ  
\ꢄ  
=
șꢂ  
ꢇꢄ  
ꢅꢄ  
ꢂꢄ  
Sꢄ  
(ꢄ  
Sꢄ  
PD[ꢋꢄ  
ꢁꢊꢀꢏꢂ ꢁꢊꢎꢏꢂ  
ꢁꢊꢁꢏꢂ ꢁꢊꢈꢁꢂ  
ꢁꢊꢆꢁꢂ ꢁꢊꢅꢆꢂ  
ꢁꢊꢀꢏꢂ ꢁꢊꢀꢏꢂ  
ꢆꢊꢀꢂ  
ꢅꢊꢎꢂ  
ꢆꢊꢀꢂ  
ꢅꢊꢎꢂ  
ꢏꢊꢁꢂ  
ꢄꢊꢈꢂ  
ꢁꢊꢇꢂ  
ꢁꢊꢄꢂ  
ꢁꢊꢃꢇꢂ  
ꢁꢊꢆꢄꢂ  
ꢃƒꢂ  
ꢁƒꢂ  
ꢀꢊꢀꢂ  
ꢁꢊꢏꢂ  
ꢁꢊꢎꢏꢂ  
ꢁꢊꢀꢂ  
ꢁꢊꢀꢂ  
ꢁꢊꢀꢂ  
ꢁꢊꢅꢏꢂ  
1RWHVꢄ  
ꢀꢊꢂ3ODVWLFꢂRUꢂPHWDOꢂSURWUXVLRQVꢂRIꢂꢁꢊꢀꢏꢂPPꢂPD[LPXPꢂSHUꢂVLGHꢂDUHꢂQRWꢂLQFOXGHGꢊꢂ  
ꢅꢊꢂ3ODVWLFꢂRUꢂPHWDOꢂSURWUXVLRQVꢂRIꢂꢁꢊꢅꢏꢂPPꢂPD[LPXPꢂSHUꢂVLGHꢂDUHꢂQRWꢂLQFOXGHGꢊꢂ  
ꢄ5()(5(1&(6ꢄ  
ꢄ-('(&ꢄ ꢄ-(,7$ꢄ  
287/,1(ꢄ  
9(56,21ꢄ  
(8523($1ꢄ  
352-(&7,21ꢄ  
,668(ꢄ'$7(ꢄ  
ꢄ,(&ꢄ  
ꢎꢎꢉꢁꢇꢉꢅꢎꢂ  
ꢁꢆꢉꢁꢅꢉꢀꢈꢂ  
ꢂ627ꢏꢏꢅꢉꢀꢂ  
Fig 45. Package outline SOT552-1 (TSSOP10), PCF85363ATT1  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
80 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
19. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC 61340-5 or equivalent  
standards.  
20. Packing information  
For tape and reel packing information, please see  
Ref. 12 “SOT505-1_118” on page 88  
Ref. 13 “SOT552-1_118” on page 88  
Ref. 14 “SOT1197-1_115” on page 88  
21. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
21.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
21.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
81 of 95  
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
21.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
21.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 46) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 70 and 71  
Table 70. SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 71. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
82 of 95  
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 46.  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 46. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
22. Footprint information  
ꢆꢊꢃꢁꢁ  
ꢅꢊꢎꢏꢁ  
ꢁꢊꢇꢅꢏ  
ꢁꢊꢀꢅꢏ  
ꢁꢊꢀꢅꢏ  
ꢏꢊꢇꢏꢁ ꢆꢊꢃꢁꢁ  
ꢆꢊꢅꢁꢁ ꢏꢊꢏꢁꢁ  
ꢀꢊꢀꢏꢁ  
ꢁꢊꢃꢁꢁ  
ꢁꢊꢄꢏꢁ  
ꢁꢊꢃꢏꢁ  
VRWꢆꢁꢆꢀꢂBIU  
VROGHUꢂODQGV  
RFFXSLHGꢂDUHD  
'LPHQVLRQVꢂLQꢂPP  
Fig 47. Footprint information for reflow soldering of SOT505-1 (TSSOP8), PCF85363ATT  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
83 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
)RRWSULQWꢄLQIRUPDWLRQꢄIRUꢄUHIORZꢄVROGHULQJꢄRIꢄ')1ꢅꢃꢅꢃꢆꢇꢈꢄSDFNDJH  
627ꢇꢇꢌꢍꢆꢇ  
+[  
*[  
'
3
ꢁꢊꢁꢅꢏ  
ꢁꢊꢁꢅꢏ  
+\ $\ *\ %\  
63\  
6/\  
Q63[  
63[  
6/[  
*HQHULFꢂIRRWSULQWꢂSDWWHUQ  
5HIHUꢂWRꢂWKHꢂSDFNDJHꢂRXWOLQHꢂGUDZLQJꢂIRUꢂDFWXDOꢂOD\RXW  
VROGHUꢂODQG  
VROGHUꢂSDVWHꢂGHSRVLW  
VROGHUꢂODQGꢂSOXVꢂVROGHUꢂSDVWH  
RFFXSLHGꢂDUHD  
VROGHUꢂUHVLVW  
',0(16,216ꢂLQꢂPP  
3
$\  
%\  
'
6/[ 6/\ 63[ 63\  
*[  
*\  
+[  
+\  
ꢁꢊꢏ  
ꢆꢊꢁꢏ ꢀꢊꢎ ꢁꢊꢅꢏ ꢅꢊꢅ  
ꢀꢀꢉꢁꢇꢉꢅꢇ  
ꢀꢊꢆ  
ꢁꢊꢈ  
ꢁꢊꢄ  
ꢅꢊꢏ ꢅꢊꢈꢏ ꢅꢊꢈꢏ ꢆꢊꢆ  
,VVXHꢂGDWH  
VRWꢂꢂꢈꢇꢀꢂBIU  
ꢀꢅꢉꢁꢎꢉꢀꢃ  
Fig 48. Footprint information for reflow soldering of SOT1197-1 (DFN2626-10),PCF85363ATL  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
84 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
)RRWSULQWꢄLQIRUPDWLRQꢄIRUꢄUHIORZꢄVROGHULQJꢄRIꢄ76623ꢇꢈꢄSDFNDJH  
627ꢁꢁꢅꢄꢆꢇ  
+[  
3ꢀ  
+\ *\  
VROGHUꢂODQG  
RFFXSLHGꢂDUHD  
'LPHQVLRQVꢂLQꢂPP  
*\  
ꢆꢊꢀ  
+\  
+[  
3ꢀ  
ꢀꢀꢉꢁꢄꢉꢀꢎ  
ꢀꢆꢉꢁꢏꢉꢁꢅ  
ꢏꢊꢁ  
ꢆꢊꢀ  
ꢁꢊꢏ  
,VVXHꢂGDWH  
VRWꢆꢆꢊꢀꢂBIU  
Fig 49. Footprint information for reflow soldering of SOT552-1 (TSSOP10), PCF85363ATT1  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
85 of 95  
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
23. Appendix  
23.1 Real-Time Clock selection  
Table 72. Selection of Real-Time Clocks  
Type name  
Alarm, Timer, Interrupt Interface IDD  
,
Battery Timestamp,  
AEC-Q100 Special features  
Packages  
Watchdog  
output  
typical (nA) backup tamper input compliant  
PCF8563  
X
1
I2C  
250  
-
-
-
-
SO8, TSSOP8,  
HVSON10  
PCF8564A  
PCA8565  
X
X
1
1
I2C  
I2C  
250  
600  
-
-
-
-
-
integrated oscillator caps WLCSP  
grade 1  
high robustness,  
TSSOP8, HVSON10  
Tamb40 C to 125 C  
PCA8565A  
PCF85063  
X
-
1
1
I2C  
I2C  
600  
220  
-
-
-
-
-
-
integrated oscillator caps, WLCSP  
Tamb40 C to 125 C  
basic functions only, no  
alarm  
HXSON8  
PCF85063A  
PCF85063B  
PCF85263A  
X
X
X
1
1
2
I2C  
SPI  
I2C  
220  
220  
230  
-
-
-
-
-
tiny package  
tiny package  
SO8, DFN2626-10  
DFN2626-10  
-
-
X
X
time stamp, battery  
backup, stopwatch 1100  
SO8, TSSOP10,  
TSSOP8,  
s
DFN2626-10  
PCF85263B  
PCF85363A  
X
X
2
2
SPI  
I2C  
230  
230  
X
X
X
X
-
-
time stamp, battery  
TSSOP10,  
DFN2626-10  
backup, stopwatch 1100  
s
time stamp, battery  
backup, stopwatch 1100s, DFN2626-10  
TSSOP10,  
64 Byte RAM  
PCF85363B  
X
2
SPI  
230  
X
X
-
time stamp, battery  
TSSOP10,  
backup, stopwatch 1100s, DFN2626-10  
64 Byte RAM  
PCF8523  
PCF2123  
PCF2127  
X
X
X
2
1
1
I2C  
150  
100  
500  
X
-
-
-
-
-
lowest power 150 nA in  
operation, FM+ 1 MHz  
SO8, HVSON8,  
TSSOP14, WLCSP  
SPI  
-
lowest power 100 nA in  
operation  
TSSOP14, HVQFN16  
I2C and  
SPI  
X
X
temperature  
SO16  
compensated, quartz built  
in, calibrated, 512 Byte  
RAM  
 
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 72. Selection of Real-Time Clocks …continued  
Type name  
Alarm, Timer, Interrupt Interface IDD  
,
Battery Timestamp,  
AEC-Q100 Special features  
Packages  
Watchdog  
output  
typical (nA) backup tamper input compliant  
PCF2127A  
X
1
I2C and  
SPI  
500  
X
X
-
temperature  
SO20  
compensated, quartz built  
in, calibrated, 512 Byte  
RAM  
PCF2129  
PCF2129A  
PCA2129  
PCA21125  
X
X
X
X
1
1
1
1
I2C and  
SPI  
500  
500  
500  
820  
X
X
X
-
X
X
X
-
-
temperature  
compensated, quartz built  
in, calibrated  
SO16  
I2C and  
SPI  
-
temperature  
compensated, quartz built  
in, calibrated  
SO20  
I2C and  
SPI  
grade 3  
grade 1  
temperature  
compensated, quartz built  
in, calibrated  
SO16  
SPI  
high robustness,  
TSSOP14  
Tamb40 C to 125 C  
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
24. Abbreviations  
Table 73. Abbreviations  
Acronym  
Description  
BCD  
CMOS  
ESD  
HBM  
I2C  
Binary Coded Decimal  
Complementary Metal Oxide Semiconductor  
ElectroStatic Discharge  
Human Body Model  
Inter-Integrated Circuit  
Integrated Circuit  
IC  
LSB  
MSB  
MSL  
PCB  
POR  
RTC  
SCL  
SDA  
SMD  
Least Significant Bit  
Most Significant Bit  
Moisture Sensitivity Level  
Printed-Circuit Board  
Power-On Reset  
Real-Time Clock  
Serial CLock line  
Serial DAta line  
Surface Mount Device  
25. References  
[1] AN10365 Surface mount reflow soldering description  
[2] AN10366 HVQFN application information  
[3] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[4] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[5] IPC/JEDEC J-STD-020 — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[6] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[7] JESD22-C101 Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components  
[8] JESD78 IC Latch-Up Test  
[9] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[10] UM10204 I2C-bus specification and user manual  
[11] UM10569 Store and transport requirements  
[12] SOT505-1_118 TSSOP8; Reel pack; SMD, 13", packing information  
[13] SOT552-1_118 TSSOP10; Reel pack; SMD, 13", packing information  
[14] SOT1197-1_115 DFN2626-10; Reel pack; SMD, 7", packing information  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
88 of 95  
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
26. Revision history  
Table 74. Revision history  
Document ID  
PCF85363A v.3  
Modifications:  
Release date  
20151118  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF85363A v.2  
Updated Table 4 “Pin description” Table note 3  
Updated Table 59 “Clock duty cycles” Table note 2  
Table 68 “Static characteristics”:  
Corrected VI min from VSS to 0.5 V  
Corrected VIL min from VSS to 0.5 V  
Corrected VIH max from VDD to 5.5 V  
Corrected Table note 1  
Added Table note 2  
Added text to Section 16 “Application information”  
PCF85363A v.2  
Modifications:  
20150115  
Product data sheet  
-
PCF85363A v.1  
Corrected Figure 34  
Corrected Vth values in Table 68  
PCF85363A v.1  
20140710  
Product data sheet  
-
-
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
89 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
27. Legal information  
27.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
27.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
27.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
90 of 95  
 
 
 
 
 
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
non-automotive qualified products in automotive equipment or applications.  
27.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP Semiconductors N.V.  
28. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
91 of 95  
 
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
29. Tables  
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Ordering options. . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 3. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 4. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Table 5. RTC mode time registers . . . . . . . . . . . . . . . . . .8  
Table 6. Stop-watch mode time registers . . . . . . . . . . .10  
Table 7. Control and function registers overview . . . . . .12  
Table 8. Time and date registers in RTC mode  
(RTCM = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Table 9. BCD coding . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Table 10. Weekday assignments . . . . . . . . . . . . . . . . . . .15  
Table 11. Month assignments in BCD format. . . . . . . . . .15  
Table 12. Time registers in stop-watch mode  
Table 38. BSOFF bit - battery switch control  
(address 26h) bit description . . . . . . . . . . . . . . 43  
Table 39. BSRR bit - battery switch control  
(address 26h) bit description . . . . . . . . . . . . . . 44  
Table 40. BSM[1:0] bits - battery switch control  
(address 26h) bit description . . . . . . . . . . . . . . 44  
Table 41. Battery switch-over modes. . . . . . . . . . . . . . . . 44  
Table 42. BSTH - battery switch control (address 26h)  
bit description. . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 43. Pin_IO- pin input output control register  
(address 27h) bit description . . . . . . . . . . . . . . 49  
Table 44. CLKPM bit - Pin_IO control register  
(address 27h). . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 45. TSPULL bit - Pin_IO control register  
(RTCM = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Table 13. Alarm1 and alarm2 registers in RTC mode  
coded in BCD (RTCM = 0) . . . . . . . . . . . . . . . .19  
Table 14. Alarm_enables- alarm enable control register  
(address 10h) bit description . . . . . . . . . . . . . .19  
Table 15. Alarm1 and alarm2 registers in stop-watch  
mode coded in BCD (RTCM = 1) . . . . . . . . . . .22  
Table 16. Alarm_enables- alarm enable control register  
(address 10h) bit description . . . . . . . . . . . . . .22  
Table 17. WatchDog - WatchDog control and register  
(address 2Dh) bit description . . . . . . . . . . . . . .25  
Table 18. WatchDog durations . . . . . . . . . . . . . . . . . . . . .25  
Table 19. RAM_byte - 8-bit RAM register (address 2Ch)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Table 20. TSR_mode - timestamp mode control register  
(address 23h) bit description . . . . . . . . . . . . . .29  
Table 21. Timestamp registers in RTC mode (RTCM = 0)31  
Table 22. timestamp registers in stop-watch mode  
(RTCM = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Table 23. Offset - offset register (address 24h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Table 24. OFFM bit - oscillator control register  
(address 27h). . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 46. TSL bit - Pin_IO control register (address 27h) 50  
Table 47. TSPM[1:0] bits - Pin_IO control register  
(address 27h). . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 48. TSIM bit - Pin_IO control register  
(address 27h). . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 49. INTAPM[1:0] bits - Pin_IO control register  
(address 27h). . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 50. INTA battery mode. . . . . . . . . . . . . . . . . . . . . . 52  
Table 51. Function - chip function control register  
(address 28h) bit description . . . . . . . . . . . . . . 53  
Table 52. 100TH bit - Function control register  
(address 28h). . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 53. PI[1:0] bits - Function control register  
(address 28h). . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 54. RTCM bit - Function control register  
(address 28h). . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 55. RTC time counting modes . . . . . . . . . . . . . . . . 54  
Table 56. STOPM bit - Function control register  
(address 28h). . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 57. Oscillator stop control when STOPM = 1. . . . . 54  
Table 58. COF[2:0] bits - Function control register  
(address 28h). . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 59. Clock duty cycles . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 60. Flags - Flag status register (address 2Bh)  
bit description. . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 61. Reset - software reset control (address 2Fh)  
bit description. . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 62. Registers reset values . . . . . . . . . . . . . . . . . . 58  
Table 63. Stop_enable - control of STOP bit  
(address 25h) . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Table 25. Offset values . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Table 26. Correction pulses for OFFM = 0 . . . . . . . . . . . .34  
Table 27. Correction pulses for OFFM = 1 . . . . . . . . . . . .35  
Table 28. INTA and INTB interrupt control bits. . . . . . . . .38  
Table 29. Definition of interrupt control bits . . . . . . . . . . .38  
Table 30. Oscillator - oscillator control register  
(address 25h) bit description . . . . . . . . . . . . . .41  
Table 31. CLKIV bit - oscillator control register  
(address 25h) . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 32. 12_24 bit - oscillator control register  
(address 25h) . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 33. LOWJ bit - oscillator control register  
(address 25h) . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 34. OSCD[1:0] bits - oscillator control register  
(address 25h) . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Table 35. CL[1:0] bits - oscillator control register  
(address 25h) . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Table 36. IO pin behavior in battery mode . . . . . . . . . . . .43  
Table 37. Battery_switch - battery switch control  
(address 26h) bit description . . . . . . . . . . . . . .43  
(address 2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 64. Counter stop signal . . . . . . . . . . . . . . . . . . . . . 59  
Table 65. I2C slave address byte. . . . . . . . . . . . . . . . . . . 65  
Table 66. Application configuration . . . . . . . . . . . . . . . . . 67  
Table 67. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 68. Static characteristics . . . . . . . . . . . . . . . . . . . . 70  
Table 69. I2C-bus characteristics. . . . . . . . . . . . . . . . . . . 75  
Table 70. SnPb eutectic process (from J-STD-020D) . . . 82  
Table 71. Lead-free process (from J-STD-020D) . . . . . . 82  
Table 72. Selection of Real-Time Clocks . . . . . . . . . . . . 86  
Table 73. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Table 74. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 89  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
92 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
30. Figures  
Fig 1. Block diagram of PCF85363A . . . . . . . . . . . . . . . .3  
Fig 2. Pin configuration for PCF85363ATL  
SOT505-1 (TSSOP8), PCF85363ATT . . . . . . . . 83  
Fig 48. Footprint information for reflow soldering of  
SOT1197-1 (DFN2626-10),PCF85363ATL . . . . . 84  
Fig 49. Footprint information for reflow soldering of  
SOT552-1 (TSSOP10), PCF85363ATT1 . . . . . . 85  
(DFN2626-10) . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Fig 3. Pin configuration for PCF85363ATT (TSSOP8). . .4  
Fig 4. Pin configuration for PCF85363ATT1 (TSSOP10).4  
Fig 5. Address register incrementing. . . . . . . . . . . . . . . .6  
Fig 6. Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Fig 7. Time mode register set selection. . . . . . . . . . . . . .7  
Fig 8. OS status bit . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Fig 9. Data flow for the time function . . . . . . . . . . . . . . .16  
Fig 10. Data flow for the stop-watch function. . . . . . . . . .18  
Fig 11. Alarm1 and alarm2 function block diagram  
(RTC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Fig 12. Alarm1 and alarm2 function block diagram  
(stop-watch mode) . . . . . . . . . . . . . . . . . . . . . . . .24  
Fig 13. WatchDog repeat mode. . . . . . . . . . . . . . . . . . . .26  
Fig 14. WatchDog single shot mode . . . . . . . . . . . . . . . .27  
Fig 15. Timestamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Fig 16. Example battery switch-over timestamp . . . . . . .30  
Fig 17. Example TS pin driven timestamp . . . . . . . . . . . .30  
Fig 18. Offset calibration calculation workflow. . . . . . . . .36  
Fig 19. Result of offset calibration . . . . . . . . . . . . . . . . . .37  
Fig 20. Interrupt pulse width. . . . . . . . . . . . . . . . . . . . . . .39  
Fig 21. Interrupt selection . . . . . . . . . . . . . . . . . . . . . . . .40  
Fig 22. Threshold voltage switching hysteresis . . . . . . . .45  
Fig 23. Switching at Vth . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Fig 24. Switching at VBAT . . . . . . . . . . . . . . . . . . . . . . . . .46  
Fig 25. Switching at the higher of VBAT or Vth . . . . . . . . .47  
Fig 26. Switching at the lower of VBAT or Vth . . . . . . . . . .48  
Fig 27. TS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Fig 28. INTA pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Fig 29. Software reset command. . . . . . . . . . . . . . . . . . .57  
Fig 30. CPR and STOP bit functional diagram . . . . . . . .60  
Fig 31. STOP release timing . . . . . . . . . . . . . . . . . . . . . .60  
Fig 32. I2C read and write protocol . . . . . . . . . . . . . . . . .62  
Fig 33. I2C read and write signaling. . . . . . . . . . . . . . . . .62  
Fig 34. Application example. . . . . . . . . . . . . . . . . . . . . . .66  
Fig 35. Application example timing . . . . . . . . . . . . . . . . .67  
Fig 36. Device diode protection diagram of PCF85363A.68  
Fig 37. Typical IDD with respect to fSCL . . . . . . . . . . . . . .72  
Fig 38. Typical IDD as a function of temperature . . . . . . .72  
Fig 39. Typical IDD with respect to VDD . . . . . . . . . . . . . .73  
Fig 40. Oscillator frequency variation with respect  
to VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Fig 41. I2C-bus timing diagram; rise and fall times  
refer to 30 % and 70 % . . . . . . . . . . . . . . . . . . . .76  
Fig 42. Application diagram for PCF85363A . . . . . . . . . .77  
Fig 43. Package outline SOT1197-1 (DFN2626-10),  
PCF85363ATL . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Fig 44. Package outline SOT505-1 (TSSOP8),  
PCF85363ATT . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Fig 45. Package outline SOT552-1 (TSSOP10),  
PCF85363ATT1 . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Fig 46. Temperature profiles for large and small  
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Fig 47. Footprint information for reflow soldering of  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
93 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
31. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.7.1  
8.8  
Timestamps interrupts . . . . . . . . . . . . . . . . . . 32  
Offset register . . . . . . . . . . . . . . . . . . . . . . . . 33  
Correction when OFFM = 0 . . . . . . . . . . . . . . 34  
Correction when OFFM = 1 . . . . . . . . . . . . . . 34  
Offset calibration workflow. . . . . . . . . . . . . . . 36  
Offset interrupts . . . . . . . . . . . . . . . . . . . . . . . 37  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
ILPA/ILPB: interrupt level or pulse mode . . . . 38  
Interrupt enable bits . . . . . . . . . . . . . . . . . . . . 39  
Oscillator register. . . . . . . . . . . . . . . . . . . . . . 41  
CLKIV: invert the clock output . . . . . . . . . . . . 41  
OFFM: offset calibration mode. . . . . . . . . . . . 41  
12_24: 12 hour or 24 hour clock . . . . . . . . . . 41  
LOWJ: low jitter mode . . . . . . . . . . . . . . . . . . 41  
OSCD[1:0]: quartz oscillator drive control . . . 42  
CL[1:0]: quartz oscillator load capacitance . . 42  
Battery switch register . . . . . . . . . . . . . . . . . . 43  
BSOFF: battery switch on/off control . . . . . . . 43  
BSRR: battery switch internal refresh rate. . . 44  
BSM[1:0]: battery switch mode . . . . . . . . . . . 44  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
8.8.1  
8.8.2  
8.8.3  
8.8.4  
8.9  
8.9.1  
8.9.2  
8.10  
8.10.1  
8.10.2  
8.10.3  
8.10.4  
8.10.5  
8.10.6  
8.11  
8.11.1  
8.11.2  
8.11.3  
3
4
4.1  
5
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
8.1  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Registers organization overview. . . . . . . . . . . . 7  
Time mode registers. . . . . . . . . . . . . . . . . . . . . 7  
RTC mode time registers overview (RTCM = 0) 8  
Stop-watch mode time registers (RTCM = 1) . 10  
Control registers overview . . . . . . . . . . . . . . . 12  
RTC mode time and date registers. . . . . . . . . 13  
Definition of BCD . . . . . . . . . . . . . . . . . . . . . . 13  
OS: Oscillator stop . . . . . . . . . . . . . . . . . . . . . 14  
EMON: event monitor . . . . . . . . . . . . . . . . . . . 14  
Definition of weekdays . . . . . . . . . . . . . . . . . . 15  
Definition of months . . . . . . . . . . . . . . . . . . . . 15  
Setting and reading the time in RTC mode. . . 16  
Stop-watch mode time registers . . . . . . . . . . . 17  
Setting and reading the time in stop-watch  
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Alarms in RTC mode . . . . . . . . . . . . . . . . . . . 18  
Alarm1 and alarm2 registers in RTC mode . . 18  
Alarm1 and alarm2 control in RTC mode . . . . 19  
Alarm1 and alarm2 function in RTC mode . . . 20  
Alarms in stop-watch mode . . . . . . . . . . . . . . 21  
Alarm1 and alarm2 registers in stop-watch  
8.1.1  
8.1.1.1  
8.1.1.2  
8.1.2  
8.2  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.3  
8.11.3.1 Switching at the Vth level, BSM[1:0] = 00. . . . 45  
8.11.3.2 Switching at the VBAT level, BSM[1:0] = 01 . . 46  
8.11.3.3 Switching at the higher of VBAT or Vth level,  
BSM[1:0] = 10 . . . . . . . . . . . . . . . . . . . . . . . . 47  
8.11.3.4 Switching at the lower of VBAT and Vth level,  
BSM[1:0] = 11 . . . . . . . . . . . . . . . . . . . . . . . . 48  
8.11.4  
8.11.5  
8.12  
8.12.1  
8.12.2  
8.12.3  
8.12.4  
8.12.4.1 TS pin output mode; INTB . . . . . . . . . . . . . . . 50  
8.12.4.2 TS pin output mode; CLK. . . . . . . . . . . . . . . . 51  
8.12.4.3 TS pin disabled . . . . . . . . . . . . . . . . . . . . . . . 51  
8.12.5  
8.12.5.1 TS pin input mode . . . . . . . . . . . . . . . . . . . . . 51  
8.12.6 INTAPM[1:0]: INTA pin mode control . . . . . . . 51  
8.3.1  
BSTH: threshold voltage control . . . . . . . . . . 48  
Battery switch interrupts . . . . . . . . . . . . . . . . 48  
Pin_IO register. . . . . . . . . . . . . . . . . . . . . . . . 49  
CLKPM: CLK pin mode control . . . . . . . . . . . 49  
TSPULL: TS pin pull-up resistor value. . . . . . 49  
TSL: TS pin level sense. . . . . . . . . . . . . . . . . 50  
TSPM[1:0]: TS pin I/O control . . . . . . . . . . . . 50  
8.4  
8.4.1  
8.4.1.1  
8.4.1.2  
8.4.1.3  
8.4.2  
8.4.2.1  
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Alarm1 and alarm2 control in stop-watch  
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Alarm1 and alarm2 function in stop-watch  
8.4.2.2  
8.4.2.3  
TSIM: TS pin input type control . . . . . . . . . . . 51  
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Alarm interrupts . . . . . . . . . . . . . . . . . . . . . . . 24  
WatchDog. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
WatchDog functions . . . . . . . . . . . . . . . . . . . . 25  
WatchDog repeat mode . . . . . . . . . . . . . . . . . 26  
WatchDog single shot mode. . . . . . . . . . . . . . 26  
WatchDog interrupts . . . . . . . . . . . . . . . . . . . 27  
Single RAM byte. . . . . . . . . . . . . . . . . . . . . . . 27  
Timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.12.6.1 INTAPM[1:0]: INTA. . . . . . . . . . . . . . . . . . . . . 52  
8.12.6.2 INTAPM[1:0]: clock data. . . . . . . . . . . . . . . . . 52  
8.12.6.3 INTAPM[1:0]: battery mode indication . . . . . . 52  
8.4.3  
8.5  
8.5.1  
8.5.1.1  
8.5.1.2  
8.5.1.3  
8.6  
8.13  
Function register . . . . . . . . . . . . . . . . . . . . . . 53  
100TH: 100th seconds mode. . . . . . . . . . . . . 53  
PI[1:0]: Periodic interrupt . . . . . . . . . . . . . . . . 53  
RTCM: RTC mode . . . . . . . . . . . . . . . . . . . . . 54  
STOPM: STOP mode control. . . . . . . . . . . . . 54  
COF[2:0]: Clock output frequency . . . . . . . . . 55  
8.13.1  
8.13.2  
8.13.3  
8.13.4  
8.13.5  
8.7  
continued >>  
PCF85363A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2015. All rights reserved.  
Product data sheet  
Rev. 3 — 18 November 2015  
94 of 95  
 
PCF85363A  
NXP Semiconductors  
Tiny RTC with 64 byte RAM, alarm, battery switch-over and I2C-bus  
8.14  
Flags register . . . . . . . . . . . . . . . . . . . . . . . . . 56  
31  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
8.15  
Reset register . . . . . . . . . . . . . . . . . . . . . . . . . 57  
SR - Software reset . . . . . . . . . . . . . . . . . . . . 57  
CPR: clear prescaler . . . . . . . . . . . . . . . . . . . 59  
CTS: clear timestamp . . . . . . . . . . . . . . . . . . 59  
Stop_enable register. . . . . . . . . . . . . . . . . . . . 59  
64 byte RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 61  
8.15.1  
8.15.2  
8.15.3  
8.16  
8.17  
9
I2C-bus interface . . . . . . . . . . . . . . . . . . . . . . . 62  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
START and STOP conditions . . . . . . . . . . . . . 63  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 63  
9.1  
9.2  
9.3  
10  
Interface protocol . . . . . . . . . . . . . . . . . . . . . . 64  
Write protocol . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Read protocol . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Slave addressing . . . . . . . . . . . . . . . . . . . . . . 65  
Slave address. . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.1  
10.2  
10.3  
10.3.1  
11  
Application design-in information . . . . . . . . . 66  
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 68  
Safety notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 69  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 70  
Application information. . . . . . . . . . . . . . . . . . 77  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 77  
Quality information . . . . . . . . . . . . . . . . . . . . . 77  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 78  
Handling information. . . . . . . . . . . . . . . . . . . . 81  
Packing information . . . . . . . . . . . . . . . . . . . . 81  
12  
13  
14  
15  
16  
17  
17.1  
18  
19  
20  
21  
Soldering of SMD packages . . . . . . . . . . . . . . 81  
Introduction to soldering . . . . . . . . . . . . . . . . . 81  
Wave and reflow soldering . . . . . . . . . . . . . . . 81  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 82  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 82  
21.1  
21.2  
21.3  
21.4  
22  
Footprint information . . . . . . . . . . . . . . . . . . . 83  
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Real-Time Clock selection . . . . . . . . . . . . . . . 86  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 88  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 89  
23  
23.1  
24  
25  
26  
27  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 90  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 90  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
27.1  
27.2  
27.3  
27.4  
28  
29  
30  
Contact information. . . . . . . . . . . . . . . . . . . . . 91  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2015.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 18 November 2015  
Document identifier: PCF85363A  

相关型号:

PCF85363ATT/A

Tiny Real-Time Clock/calendar with 64 byte RAM, alarm function, battery switch-over time stamp input, and I2C-bus
NXP

PCF85363ATT/AJ

PCF85363A - Tiny real-time clock/calendar TSSOP 8-Pin
NXP

PCF85363ATT1/A

Tiny Real-Time Clock/calendar with 64 byte RAM, alarm function, battery switch-over time stamp input, and I2C-bus
NXP

PCF85363ATT1/AJ

Tiny Real-Time Clock/calendar with 64 byte RAM, alarm function, battery switch-over time stamp input, and I2C-bus
NXP

PCF85363ATT1/AZ

Tiny Real-Time Clock/calendar with 64 byte RAM, alarm function, battery switch-over time stamp input, and I2C-bus
NXP

PCF85363B

Tiny Real-Time Clock/calendar with alarm function and I2C-bus
NXP

PCF8536AT

I2C/SPI LCD and PWM LED controller for industrial and automotive applications
NXP

PCF8536AT/1

IC LIQUID CRYSTAL DISPLAY DRIVER, PDSO56, 6.10 MM, PLASTIC, MO-153, SOT364-1, TSSOP-56, Display Driver
NXP

PCF8536AT/1,118

PCF8536 - Universal LCD driver for low multiplex rates including a 6 channel PWM generator TSSOP 56-Pin
NXP

PCF8536AT1

I2C/SPI LCD and PWM LED controller for industrial and automotive applications
NXP

PCF8536BT

I2C/SPI LCD and PWM LED controller for industrial and automotive applications
NXP

PCF8536BT/1,118

PCF8536 - Universal LCD driver for low multiplex rates including a 6 channel PWM generator TSSOP 56-Pin
NXP