PCF8563 [NXP]

Real-time clock/calendar; 实时时钟/日历
PCF8563
型号: PCF8563
厂家: NXP    NXP
描述:

Real-time clock/calendar
实时时钟/日历

时钟
文件: 总30页 (文件大小:636K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8563  
Real-time clock/calendar  
16 April 1999  
Product specification  
1. General description  
The PCF8563 is a CMOS real-time clock/calendar optimized for low power  
consumption. A programmable clock output, interrupt output and voltage-low detector  
are also provided. All address and data are transferred serially via a two-line  
bidirectional I2C-bus. Maximum bus speed is 400 kbits/s. The built-in word address  
register is incremented automatically after each written or read data byte.  
2. Features  
Provides year, month, day, weekday, hours, minutes and seconds based on  
32.768 kHz quartz crystal  
Century flag  
Wide operating supply voltage range: 1.0 to 5.5 V  
Low back-up current; typical 0.25 µA at VDD = 3.0 V and Tamb = 25 °C  
400 kHz two-wire I2C-bus interface (at VDD = 1.8 to 5.5 V)  
Programmable clock output for peripheral devices: 32.768 kHz, 1024 Hz,  
32 Hz and 1 Hz  
Alarm and timer functions  
Voltage-low detector  
Integrated oscillator capacitor  
Internal power-on reset  
I2C-bus slave address: read A3H; write A2H  
Open drain interrupt pin.  
3. Applications  
Mobile telephones  
Portable instruments  
Fax machines  
Battery powered products.  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
4. Quick reference data  
Table 1: Quick reference data  
Symbol  
Parameter  
Conditions  
I2C-bus inactive; Tamb = 25 °C  
I2C-bus active; fSCL = 400 kHz;  
Min  
1.0  
1.8  
Max  
5.5  
Unit  
V
VDD  
supply voltage operating mode  
5.5  
V
Tamb = 40 to +85 °C  
IDD  
supply current; timer and CLKOUT  
disabled  
fSCL = 400 kHz  
fSCL = 100 kHz  
fSCL = 0 Hz; Tamb = 25 °C  
VDD = 5 V  
-
-
800  
200  
µA  
µA  
-
550  
450  
+85  
+150  
nA  
nA  
°C  
°C  
VDD = 2 V  
-
Tamb  
Tstg  
operating ambient temperature  
storage temperature  
40  
65  
5. Ordering information  
Table 2: Ordering information  
Type number  
Package  
Name  
DIP8  
Description  
Version  
PCF8563P  
PCF8563T  
PCF8563TS  
plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
SOT96-1  
SOT505-1  
SO8  
plastic small outline package; 8 leads; body width 3.9 mm  
TSSOP8  
plastic thin shrink small outline package; 8 leads; body width 3.0 mm  
6. Block diagram  
CLKOUT  
7
1
2
3
4
8
CONTROL/STATUS 1  
CONTROL/STATUS 2  
SECONDS/VL  
MINUTES  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
OSCI  
OSCO  
INT  
1 Hz  
OSCILLATOR  
32.768 kHz  
DIVIDER  
HOURS  
V
VOLTAGE  
DETECTOR  
DAYS  
SS  
WEEKDAYS  
V
DD  
CONTROL  
LOGIC  
MONTHS/CENTURY  
YEARS  
OSCILLATOR  
MONITOR  
POR  
MINUTE ALARM  
HOUR ALARM  
DAY ALARM  
6
5
SCL  
SDA  
2
I C-BUS  
WEEKDAY ALARM  
CLKOUT CONTROL  
TIMER CONTROL  
TIMER  
ADDRESS  
REGISTER  
INTERFACE  
MGM662  
Fig 1. Block diagram.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
2 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
7. Pinning information  
7.1 Pinning  
handbook, halfpage  
V
OSCI  
OSCO  
INT  
1
2
3
4
8
7
6
5
DD  
PCF8563P  
PCF8563T  
PCF8563TS  
CLKOUT  
SCL  
V
SDA  
SS  
MGR885  
Fig 2. Pin configuration.  
handbook, halfpage  
8
1
V
OSCI  
DD  
7
6
5
2
3
4
CLKOUT  
SCL  
OSCO  
INT  
V
SDA  
SS  
PCF8563  
MGR886  
Fig 3. Device diode protection diagram.  
7.2 Pin description  
Table 3: Pin description  
Symbol  
OSCI  
OSCO  
INT  
Pin  
1
Description  
oscillator input  
oscillator output  
2
3
interrupt output (open-drain; active LOW)  
ground  
VSS  
4
SDA  
5
serial data I/O  
SCL  
6
serial clock input  
CLKOUT  
VDD  
7
clock output (open-drain)  
positive supply  
8
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
3 of 30  
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
8. Functional description  
The PCF8563 contains sixteen 8-bit registers with an auto-incrementing address  
register, an on-chip 32.768 kHz oscillator with an integrated capacitor, a frequency  
divider which provides the source clock for the Real-Time Clock (RTC), a  
programmable clock output, a timer, an alarm, a voltage-low detector and a 400 kHz  
I2C-bus interface.  
All 16 registers are designed as addressable 8-bit parallel registers although not all  
bits are implemented. The first two registers (memory address 00H and 01H) are  
used as control and/or status registers. The memory addresses 02H through 08H are  
used as counters for the clock function (seconds up to year counters). Address  
locations 09H through 0CH contain alarm registers which define the conditions for an  
alarm. Address 0DH controls the CLKOUT output frequency. 0EH and 0FH are the  
timer control and timer registers, respectively.  
The Seconds, Minutes, Hours, Days, Months, Years as well as the Minute alarm,  
Hour alarm and Day alarm registers are all coded in BCD format. The Weekdays and  
Weekday alarm register are not coded in BCD format.  
When one of the RTC registers is read the contents of all counters are frozen.  
Therefore, faulty reading of the clock/calendar during a carry condition is prevented.  
8.1 Alarm function modes  
By clearing the MSB (bit AE = Alarm Enable) of one or more of the alarm registers,  
the corresponding alarm condition(s) will be active. In this way an alarm can be  
generated from once per minute up to once per week. The alarm condition sets the  
alarm flag, AF (bit 3 of Control/Status 2 register). The asserted AF can be used to  
generate an interrupt (INT). Bit AF can only be cleared by software.  
8.2 Timer  
The 8-bit countdown timer (address 0FH) is controlled by the Timer Control register  
(address 0EH; see Table 25). The Timer Control register selects one of 4 source  
clock frequencies for the timer (4096, 64, 1, or 160 Hz), and enables/disables the  
timer. The timer counts down from a software-loaded 8-bit binary value. At the end of  
every countdown, the timer sets the timer flag TF (see Table 7). The timer flag TF can  
only be cleared by software. The asserted timer flag TF can be used to generate an  
interrupt (INT). The interrupt may be generated as a pulsed signal every countdown  
period or as a permanently active signal which follows the condition of TF. TI/TP (see  
Table 7) is used to control this mode selection. When reading the timer, the current  
countdown value is returned.  
8.3 CLKOUT output  
A programmable square wave is available at the CLKOUT pin. Operation is controlled  
by the CLKOUT frequency register (address 0DH; see Table 23). Frequencies of  
32.768 kHz (default), 1024, 32 and 1 Hz can be generated for use as a system clock,  
microcontroller clock, input to a charge pump, or for calibration of the oscillator.  
CLKOUT is an open-drain output and enabled at power-on. If disabled it becomes  
high-impedance.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
4 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
8.4 Reset  
The PCF8563 includes an internal reset circuit which is active whenever the oscillator  
is stopped. In the reset state the I2C-bus logic is initialized and all registers, including  
the address pointer, are cleared with the exception of bits FE, VL, TD1, TD0, TESTC  
and AE which are set to logic 1.  
8.5 Voltage-low detector and clock monitor  
The PCF8563 has an on-chip voltage-low detector. When VDD drops below Vlow the  
VL bit (Voltage Low, bit 7 in the Seconds register) is set to indicate that reliable  
clock/calendar information is no longer guaranteed. The VL flag can only be cleared  
by software.  
The VL bit is intended to detect the situation when VDD is decreasing slowly for  
example under battery operation. Should VDD reach Vlow before power is re-asserted  
then the VL bit will be set. This will indicate that the time may be corrupted.  
MGR887  
handbook, halfpage  
V
DD  
normal power  
operation  
period of battery  
operation  
V
low  
t
VL set  
Fig 4. Voltage-low detection.  
8.6 Register organization  
Table 4: Registers overview  
Bit positions labelled as ‘’are not implemented; those labelled with ‘0’ should always be written with logic 0.  
Address Register name  
Bit 7  
TEST1  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
0
Bit 1  
0
Bit 0  
0
00H  
01H  
0DH  
0EH  
0FH  
Control/Status 1  
Control/Status 2  
CLKOUT frequency  
Timer control  
0
0
STOP  
0
TI/TP  
TESTC  
0
AF  
TF  
AIE  
FD1  
TD1  
TIE  
FD0  
TD0  
FE  
TE  
Timer countdown  
value  
<timer countdown value>  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
5 of 30  
 
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
Table 5: BCD formatted registers overview  
Bit positions labelled as ‘’are not implemented.  
Address Register name BCD format tens nibble  
BCD format units nibble  
Bit 7  
23  
VL  
Bit 6  
22  
Bit 5  
21  
Bit 4  
20  
Bit 3  
23  
Bit 2  
22  
Bit 1  
21  
Bit 0  
20  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
Seconds  
<seconds 00 to 59 coded in BCD>  
<minutes 00 to 59 coded in BCD>  
Minutes  
Hours  
<hours 00 to 23 coded in BCD>  
<days 01 to 31 coded in BCD>  
Days  
Weekdays  
Months/Century  
Years  
<weekdays 0 to 6 > [1]  
C
<months 01 to 12 coded in BCD>  
<years 00 to 99 coded in BCD>  
Minute alarm  
Hour alarm  
Day alarm  
Weekday alarm  
AE  
AE  
AE  
AE  
<minute alarm 00 to 59 coded in BCD>  
<hour alarm 00 to 23 coded in BCD>  
<day alarm 01 to 31 coded in BCD>  
<weekday alarm 0 to 6 >[1]  
[1] Not coded in BCD.  
8.6.1 Control/Status 1 register  
Table 6: Control/Status 1 register bits description (address 00H)  
Bit  
Symbol Description  
7
TEST1 TEST1 = 0; normal mode.  
TEST1 = 1; EXT_CLK test mode; see Section 8.7.  
5
STOP  
STOP = 0; RTC source clock runs.  
STOP = 1; all RTC divider chain flip-flops are asynchronously set  
to logic 0; the RTC clock is stopped (CLKOUT at 32.768 kHz is still  
available).  
3
TESTC TESTC = 0; power-on reset override facility is disabled (set to logic 0  
for normal operation).  
TESTC = 1; power-on reset override is enabled.  
6, 4, 2 to 0  
0
By default set to logic 0.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
6 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
8.6.2 Control/Status 2 register  
Table 7: Description of Control/Status 2 register bits description (address 01H)  
Bit  
7 to 5  
4
Symbol Description  
0
By default set to logic 0.  
TI/TP  
TI/TP = 0: INT is active when TF is active (subject to the status of TIE).  
TI/TP = 1: INT pulses active according to Table 8 (subject to the status  
of TIE). Note that if AF and AIE are active then INT will be permanently  
active.  
3
2
AF  
TF  
When an alarm occurs, AF is set to logic 1. Similarly, at the end of a  
timer countdown, TF is set to logic 1. These bits maintain their value  
until overwritten by software. If both timer and alarm interrupts are  
required in the application, the source of the interrupt can be  
determined by reading these bits. To prevent one flag being  
overwritten while clearing another, a logic AND is performed during a  
write access. See Table 9 for the value descriptions of bits AF and TF.  
1
0
AIE  
TIE  
Bits AIE and TIE activate or deactivate the generation of an interrupt  
when AF or TF is asserted, respectively. The interrupt is the logical OR  
of these two conditions when both AIE and TIE are set.  
AIE = 0: alarm interrupt disabled; AIE = 1: alarm interrupt enabled.  
TIE = 0: timer interrupt disabled; TIE = 1: timer interrupt enabled.  
Table 8: INT operation (bit TI/TP = 1)  
Source clock (Hz)  
INT[1] period (s)  
n[2] = 1  
n > 1  
1
1
4096  
64  
8192  
4096  
1
1
128  
64  
1
1
1
64  
64  
1
1
1
64  
60  
64  
[1] TF and INT become active simultaneously.  
[2] n = loaded countdown timer value. Timer stopped when n = 0.  
Table 9: Value descriptions for bits AF and TF  
R/W Bit: AF  
Value Description  
alarm flag inactive  
alarm flag active  
Bit: TF  
Value Description  
Read  
Write  
0
0
1
0
1
timer flag inactive  
1
timer flag active  
0
1
alarm flag is cleared  
timer flag is cleared  
alarm flag remains unchanged  
timer flag remains unchanged  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
7 of 30  
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
8.6.3 Seconds, Minutes and Hours registers  
Table 10: Seconds/VL register bits description (address 02H)  
Bit  
Symbol  
Description  
7
VL  
VL = 0: reliable clock/calendar information is guaranteed;  
VL = 1: reliable clock/calendar information is no longer  
guaranteed.  
6 to 0  
<seconds> These bits represent the current seconds value coded in BCD  
format; value = 00 to 59.  
Example: <seconds> = 101 1001, represents the value 59 s.  
Table 11: Minutes register bits description (address 03H)  
Bit  
7
Symbol  
Description  
not implemented  
6 to 0  
<minutes> These bits represent the current minutes value coded in BCD  
format; value = 00 to 59.  
Table 12: Hours register bits description (address 04H)  
Bit  
Symbol  
Description  
7 to 6  
5 to 0  
not implemented  
<hours>  
These bits represent the current hours value coded in BCD format;  
value = 00 to 23.  
8.6.4 Days, Weekdays, Months/Century and Years registers  
Table 13: Days register bits description (address 05H)  
Bit  
Symbol  
Description  
7 to 6  
5 to 0  
not implemented  
<days>  
These bits represent the current day value coded in BCD format;  
value = 01 to 31.  
The PCF8563 compensates for leap years by adding a 29th day to  
February if the year counter contains a value which is exactly  
divisible by 4, including the year ‘00’.  
Table 14: Weekdays register bits description (address 06H)  
Bit  
Symbol  
Description  
7 to 3  
2 to 0  
not implemented  
<weekdays> These bits represent the current weekday value 0 to 6;  
see Table 15.  
These bits may be re-assigned by the user.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
8 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
Table 15: Weekday assignments  
Day  
Bit 2  
Bit 1  
Bit 0  
Sunday  
Monday  
Tuesday  
Wednesday  
Thursday  
Friday  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Saturday  
Table 16: Months/Century register bits description (address 07H)  
Bit  
Symbol  
Description  
7
C
Century bit. C = 0; indicates the century is 20xx.  
C = 1; indicates the century is 19xx. ‘xx’ indicates the value held in the  
Years register; see Table 18.  
This bit is toggled when the Years register overflows from 99 to 00.  
These bits may be re-assigned by the user.  
6 to 5  
4 to 0  
not implemented  
<months> These bits represents the current month value coded in BCD format;  
value = 01 to 12; see Table 17.  
Table 17: Month assignments  
Month  
January  
February  
March  
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
1
0
0
0
1
0
0
0
0
1
1
April  
0
0
1
0
0
May  
0
0
1
0
1
June  
0
0
1
1
0
July  
0
0
1
1
1
August  
September  
October  
November  
December  
0
1
0
0
0
0
1
0
0
1
1
0
0
0
0
1
0
0
0
1
1
0
0
1
0
Table 18: Years register bits description (address 08H)  
Bit  
Symbol  
Description  
7 to 0  
<years>  
This register represents the current year value coded in BCD  
format; value = 00 to 99.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
9 of 30  
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
8.6.5 Alarm registers  
When one or more of the alarm registers are loaded with a valid minute, hour, day or  
weekday and its corresponding AE (Alarm Enable) bit is a logic 0, then that  
information will be compared with the current minute, hour, day and weekday. When  
all enabled comparisons first match, the bit AF (Alarm Flag) is set.  
AF will remain set until cleared by software. Once AF has been cleared it will only be  
set again when the time increments to match the alarm condition once more. Alarm  
registers which have their AE bit set at logic 1 will be ignored.  
Table 19: Minute alarm register bits description (address 09H)  
Bit  
Symbol  
Description  
7
AE  
AE = 0; minute alarm is enabled. AE = 1; minute alarm is disabled.  
6 to 0 <minute alarm> These bits represents the minute alarm information coded in BCD  
format; value = 00 to 59.  
Table 20: Hour alarm register bits description (address 0AH)  
Bit  
Symbol  
Description  
7
AE  
AE = 0; hour alarm is enabled. AE = 1; hour alarm is disabled.  
6 to 0 <hour alarm>  
These bits represents the hour alarm information coded in BCD  
format; value = 00 to 23.  
Table 21: Day alarm register bits description (address 0BH)  
Bit  
Symbol  
Description  
7
AE  
AE = 0; day alarm is enabled. AE = 1; day alarm is disabled.  
6 to 0 <day alarm>  
These bits represents the day alarm information coded in BCD  
format; value = 01 to 31.  
Table 22: Weekday alarm register bits description (address 0CH)  
Bit  
Symbol  
Description  
7
AE  
AE = 0; weekday alarm is enabled.  
AE = 1; weekday alarm is disabled.  
6 to 0 <weekday alarm> These bits represents the weekday alarm information  
value 0 to 6.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
10 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
8.6.6 CLKOUT frequency register  
Table 23: CLKOUT frequency register bits description (address 0DH)  
Bit  
Symbol  
Description  
7
FE  
FE = 0; the CLKOUT output is inhibited and the CLKOUT output is  
set to high-impedance. FE = 1; the CLKOUT output is activated.  
6 to 2  
not implemented  
1
0
FD1  
FD0  
These bits control the frequency output (fCLKOUT) on the CLKOUT  
pin; see Table 24.  
Table 24: CLKOUT frequency selection  
FD1  
0
FD0  
0
fCLKOUT  
32.768 kHz  
1024 Hz  
32 Hz  
0
1
1
0
1
1
1 Hz  
8.6.7 Countdown timer registers  
The Timer register is an 8-bit binary countdown timer. It is enabled and disabled via  
the Timer control register bit TE. The source clock for the timer is also selected by the  
Timer control register. Other timer properties, e.g. interrupt generation, are controlled  
via the Control/status 2 register. For accurate read back of the countdown value, the  
I2C-bus clock SCL must be operating at a frequency of at least twice the selected  
timer clock.  
Table 25: Timer control register bits description (address 0EH)  
Bit  
Symbol  
TE  
Description  
7
TE = 0; timer is disabled. TE = 1; timer is enabled.  
not implemented  
6 to 2  
1
0
TD1  
TD0  
Timer source clock frequency selection bits. These bits determine  
the source clock for the countdown timer, see Table 26. When not  
in use, TD1 and TD0 should be set to ‘11’ (160 Hz) for power  
saving.  
Table 26: Timer source clock frequency selection  
TD1  
0
TD0  
0
Timer source clock frequency (Hz)  
4096  
64  
0
1
1
0
1
1
1
1
60  
Table 27: Timer countdown value register bits description (address 0FH)  
Bit  
Symbol  
Description  
7 to 0  
<timer countdown value> This register holds the loaded countdown value ‘n’.  
n
Countdown period =  
---------------------------------------------------------  
Source clock frequency  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
11 of 30  
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
8.7 EXT_CLK test mode  
A test mode is available which allows for on-board testing. In this mode it is possible  
to set up test conditions and control the operation of the RTC.  
The test mode is entered by setting bit TEST1 in the Control/Status1 register. The  
CLKOUT pin then becomes an input. The test mode replaces the internal 64 Hz  
signal with the signal that is applied to the CLKOUT pin. Every 64 positive edges  
applied to CLKOUT will then generate an increment of one second.  
The signal applied to the CLKOUT pin should have a minimum pulse width of 300 ns  
and a minimum period of 1000 ns. The internal 64 Hz clock, now sourced from  
CLKOUT, is divided down to 1 Hz by a 26 divide chain called a pre-scaler. The  
pre-scaler can be set into a known state by using the STOP bit. When the STOP bit is  
set, the pre-scaler is reset to 0. STOP must be cleared before the pre-scaler can  
operate again. From a STOP condition, the first 1 s increment will take place after  
32 positive edges on CLKOUT. Thereafter, every 64 positive edges will cause a 1 s  
increment.  
Remark: Entry into EXT_CLK test mode is not synchronized to the internal 64 Hz  
clock. When entering the test mode, no assumption as to the state of the pre-scaler  
can be made.  
8.7.1 Operation example  
1. Enter the EXT_CLK test mode; set bit 7 of Control/Status 1 register (TEST = 1)  
2. Set bit 5 of Control/Status 1 register (STOP = 1)  
3. Clear bit 5 of Control/Status 1 register (STOP = 0)  
4. Set time registers (Seconds, Minutes, Hours, Days, Weekdays, Months/Century  
and Years) to desired value  
5. Apply 32 clock pulses to CLKOUT  
6. Read time registers to see the first change  
7. Apply 64 clock pulses to CLKOUT  
8. Read time registers to see the second change.  
Repeat steps 7 and 8 for additional increments.  
8.8 Power-On Reset (POR) override mode  
The POR duration is directly related to the crystal oscillator start-up time. Due to the  
long start-up times experienced by these types of circuits, a mechanism has been  
built in to disable the POR and hence speed up on-board test of the device. The  
setting of this mode requires that the I2C-bus pins, SDA and SCL, be toggled in a  
specific order as shown in Figure 5. All timing values are required minimum.  
Once the override mode has been entered, the chip immediately stops being reset  
and normal operation starts i.e. entry into the EXT_CLK test mode via I2C-bus  
access. The override mode is cleared by writing a logic 0 to bit TESTC. Re-entry into  
the override mode is only possible after TESTC is set to logic 1. Setting TESTC to  
logic 0 during normal operation has no effect except to prevent entry into the POR  
override mode.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
12 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
500 ns  
2000 ns  
SDA  
SCL  
8 ms  
power up  
MGM664  
override active  
Fig 5. POR override sequence.  
8.9 Serial interface  
The serial interface of the PCF8563 is the I2C-bus. A detailed description of the  
I2C-bus specification, including applications, is given in the brochure: The I2C-bus  
and how to use it, order no. 9398 393 40011 or I2C Peripherals Data Handbook IC12.  
8.9.1 Characteristics of the I2C-bus  
The I2C-bus is for bidirectional, two-line communication between different ICs or  
modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both  
lines must be connected to a positive supply via a pull-up resistor. Data transfer may  
be initiated only when the bus is not busy.  
The I2C-bus system configuration is shown in Figure 6. A device generating a  
message is a ‘transmitter’, a device receiving a message is the ‘receiver’. The device  
that controls the message is the ‘master’ and the devices which are controlled by the  
master are the ‘slaves’.  
SDA  
SCL  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
TRANSMITTER /  
RECEIVER  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
MBA605  
Fig 6. I2C-bus system configuration.  
8.9.2 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line, while the clock is HIGH is defined as the start condition (S).  
A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the  
stop condition (P); see Figure 7.  
w
SDA  
SCL  
SDA  
SCL  
S
P
STOP condition  
START condition  
MBC622  
Fig 7. START and STOP conditions on the I2C-bus.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
13 of 30  
 
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
8.9.3 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must  
remain stable during the HIGH period of the clock pulse as changes in the data line at  
this time will be interpreted as a control signal; see Figure 8.  
d
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBC621  
Fig 8. Bit transfer on the I2C-bus.  
8.9.4 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an  
acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the  
transmitter during which time the master generates an extra acknowledge related  
clock pulse.  
A slave receiver which is addressed must generate an acknowledge after the  
reception of each byte. Also a master receiver must generate an acknowledge after  
the reception of each byte that has been clocked out of the slave transmitter.  
The device that acknowledges must pull down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be taken into  
consideration).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
w
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
SCL FROM  
MASTER  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
MBC602  
Fig 9. Acknowledge on the I2C-bus.  
16 April 1999  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
14 of 30  
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
8.9.5 I2C-bus protocol  
Addressing: Before any data is transmitted on the I2C-bus, the device which should  
respond is addressed first. The addressing is always carried out with the first byte  
transmitted after the start procedure.  
The PCF8563 acts as a slave receiver or slave transmitter. Therefore the clock signal  
SCL is only an input signal, but the data signal SDA is a bidirectional line.  
The PCF8563 slave address is shown in Figure 10.  
handbook, halfpage  
1
0
1
0
0
0
A0 R/W  
group 2  
MRB016  
group 1  
Fig 10. Slave address.  
Clock/calendar read/write cycles: The I2C-bus configuration for the different  
PCF8563 read and write cycles are shown in Figure 11, 12 and 13. The word  
address is a four bit value that defines which register is to be accessed next. The  
upper four bits of the word address are not used.  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from slave  
w
S
SLAVE ADDRESS  
0
A
WORD ADDRESS  
A
DATA  
A
P
R/W  
n bytes  
auto increment  
memory word address  
MBD822  
Fig 11. Master transmits to slave receiver (write mode).  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
15 of 30  
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from master  
SLAVE ADDRESS  
DATA  
S
SLAVE ADDRESS  
0
A
WORD ADDRESS  
A
S
1
A
A
n bytes  
R/W  
R/W  
at this moment master-transmitter  
becomes master receiver and  
PCF8563 slave-receiver  
auto increment  
memory word address  
becomes slave-transmitter  
no acknowledgement  
from master  
P
DATA  
1
last byte  
auto increment  
memory word address  
MGL409  
Fig 12. Master reads after setting word address (write word address; read data).  
acknowledgement  
from slave  
acknowledgement  
from master  
no acknowledgement  
from master  
1
A
A
DATA  
1
P
S
SLAVE ADDRESS  
DATA  
R/W  
n bytes  
last byte  
auto increment  
word address  
auto increment  
word address  
MGL665  
Fig 13. Master reads slave immediately after first byte (read mode).  
9. Limiting values  
Table 28: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
IDD  
Parameter  
Conditions  
Min  
Max  
+6.5  
+50  
Unit  
V
supply voltage  
0.5  
50  
0.5  
0.5  
0.5  
10  
10  
supply current  
mA  
V
VI  
input voltage on inputs SCL and SDA  
input voltage on input OSCI  
output voltage on outputs CLKOUT and INT  
DC input current at any input  
DC output current at any output  
total power dissipation  
6.5  
VDD + 0.5  
6.5  
V
VO  
II  
V
+10  
mA  
mA  
mW  
°C  
°C  
IO  
+10  
Ptot  
Tamb  
Tstg  
300  
operating ambient temperature  
storage temperature  
40  
65  
+85  
+150  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
16 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
10. Static characteristics  
Table 29: Static characteristics  
VDD = 1.8 to 5.5 V; VSS = 0 V; Tamb = 40 to 85 °C; fOSC = 32.768 kHz; quartz Rs = 40 k; CL = 8 pF; unless otherwise  
specified.  
Symbol  
Supplies  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
I2C-bus inactive; Tamb = 25 °C  
I2C-bus active; fSCL = 400 kHz  
Tamb = 25 °C  
1.0[1]  
1.8[1]  
Vlow  
5.5  
5.5  
5.5  
V
V
V
supply voltage for reliable  
clock/calendar information  
[2]  
[2]  
IDD1  
supply current;  
CLKOUT disabled (FE = 0)  
fSCL = 400 kHz  
fSCL = 100 kHz  
fSCL = 0 Hz; Tamb = 25 °C  
VDD = 5 V  
800  
200  
µA  
µA  
275  
250  
225  
550  
500  
450  
nA  
nA  
nA  
VDD = 3 V  
VDD = 2 V  
[2]  
[2]  
[2]  
fSCL = 0 Hz  
VDD = 5 V  
500  
400  
400  
750  
650  
600  
nA  
nA  
nA  
VDD = 3 V  
VDD = 2 V  
IDD2  
supply current;  
CLKOUTenabled  
(fCLKOUT = 32 kHz; FE = 1)  
fSCL = 0 Hz; Tamb = 25 °C  
VDD = 5 V  
825  
550  
425  
1600  
1000  
800  
nA  
nA  
nA  
VDD = 3 V  
VDD = 2 V  
fSCL = 0 Hz  
VDD = 5 V  
VDD = 3 V  
VDD = 2 V  
950  
650  
500  
1700  
1100  
900  
nA  
nA  
nA  
Inputs  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
input leakage current  
input capacitance  
VSS  
0.7VDD  
1  
0.3VDD  
VDD  
+1  
V
VIH  
V
ILI  
VI = VDD or VSS  
µA  
pF  
[3]  
Ci  
7
Outputs  
IOL(SDA)  
LOW-level output current;  
pin SDA  
VOL = 0.4 V; VDD = 5 V  
3  
1  
1  
mA  
mA  
mA  
IOL(INT)  
LOW-level output current;  
pin INT  
IOL(CLKOUT) LOW-level output current;  
pin CLKOUT  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
17 of 30  
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
Table 29: Static characteristics…continued  
VDD = 1.8 to 5.5 V; VSS = 0 V; Tamb = 40 to 85 °C; fOSC = 32.768 kHz; quartz Rs = 40 k; CL = 8 pF; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IOH(CLKOUT) HIGH-level output current;  
pin CLKOUT  
VOH = 4.6 V; VDD = 5 V  
1
mA  
ILO  
Voltage detector  
Vlow voltage-low detection level  
output leakage current  
VO = VDD or VSS  
1  
+1  
µA  
Tamb = 25 °C  
0.9  
1.0  
V
[1] For reliable oscillator start-up at power-up: VDD(min)power-up = VDD(min) + 0.3 V.  
[2] Timer source clock = 160 Hz; SCL and SDA = VDD.  
[3] Tested on sample basis.  
MGR888  
MGR889  
1
1
handbook, halfpage  
handbook, halfpage  
I
I
DD  
DD  
(µA)  
(µA)  
0.8  
0.8  
0.6  
0.4  
0.2  
0.6  
0.4  
0.2  
0
0
0
0
2
4
6
2
4
6
V
(V)  
V
(V)  
DD  
DD  
Tamb = 25 °C; Timer = 1 minute.  
Tamb = 25 °C; Timer = 1 minute.  
Fig 14. IDD as a function of VDD; CLKOUT disabled.  
Fig 15. IDD as a function of VDD; CLKOUT = 32 kHz.  
MGR890  
MGR891  
1
handbook, halfpage  
handbook, halfpage  
4
I
DD  
(µA)  
frequency  
deviation  
0.8  
(ppm)  
2
0.6  
0.4  
0.2  
0
0
2  
4  
40  
0
40  
80  
120  
0
2
4
6
T (°C)  
V
(V)  
DD  
VDD = 3 V; Timer = 1 minute.  
Tamb = 25 °C; normalized to VDD = 3 V.  
Fig 16. IDD as a function of Tamb; CLKOUT = 32 kHz.  
Fig 17. Frequency deviation as function of VDD.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
18 of 30  
 
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
11. Dynamic characteristics  
Table 30: Dynamic characteristics  
VDD = 1.8 to 5.5 V; VSS = 0 V; Tamb = 40 to +85 °C; fOSC = 32.768 kHz; quartz Rs = 40 k; CL = 8 pF; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Oscillator  
CL(integrated) integrated load capacitance  
15  
25  
35  
pF  
fOSC/fOSC oscillator stability  
VDD = 200 mV; Tamb = 25 °C  
2 × 107  
Quartz crystal parameters (fOSC = 32.768 kHz)  
Rs  
CL  
CT  
series resistance  
5
40  
kΩ  
pF  
pF  
parallel load capacitance  
trimmer capacitance  
10  
25  
CLKOUT output  
[1]  
[3]  
δCLKOUT  
CLKOUT duty factor  
50  
%
I2C-bus timing characteristics[2]  
fSCL  
SCL clock frequency  
400  
kHz  
µs  
tHD;STA  
tSU;STA  
START condition hold time  
0.6  
0.6  
set-up time for a repeated  
START condition  
µs  
tLOW  
tHIGH  
tr  
SCL LOW time  
1.3  
0.6  
µs  
µs  
µs  
µs  
pF  
ns  
ns  
µs  
ns  
SCL HIGH time  
SCL and SDA rise time  
SCL and SDA fall time  
capacitive bus line load  
data set-up time  
0.3  
0.3  
400  
tf  
Cb  
tSU;DAT  
tHD;DAT  
tSU;STO  
tSW  
100  
0
data hold time  
set-up time for STOP condition  
tolerable spike width on bus  
4.0  
50  
[1] Unspecified for fCLKOUT = 32.768 kHz.  
[2] All timing values are valid within the operating supply voltage range at Tamb and referenced to VIL and VIH with an input voltage swing of  
VSS to VDD  
[3] I2C-bus access time between two STARTs or between a START and a STOP condition to this device must be less than one second.  
.
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
19 of 30  
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
o
SDA  
t
t
t
LOW  
f
BUF  
SCL  
t
t
t
SU;DAT  
t
HD;STA  
r
t
HIGH  
HD;DAT  
SDA  
t
SU;STA  
MGA728  
t
SU;STO  
Fig 18. I2C-bus timing waveforms.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
20 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
12. Application information  
V
DD  
SDA  
SCL  
MASTER  
TRANSMITTER/  
RECEIVER  
1 F  
V
DD  
SCL  
SDA  
CLOCK CALENDAR  
OSCI  
OSCO  
PCF8563  
V
DD  
V
SS  
R
R
R: pull-up resistor  
t
r
R =  
C
b
SDA SCL  
MGM665  
2
(I C-bus)  
Fig 19. Application diagram.  
12.1 Quartz crystal frequency adjustment  
Method 1: Fixed OSCI capacitor — By evaluating the average capacitance  
necessary for the application layout a fixed capacitor can be used. The frequency is  
best measured via the 32.768 kHz signal available after power-on at the CLKOUT  
pin. The frequency tolerance depends on the quartz crystal tolerance, the capacitor  
tolerance and the device-to-device tolerance (on average ±5 × 106).  
Average deviations of ±5 minutes per year can be easily achieved.  
Method 2: OSCI trimmer — The oscillator is tuned to the required accuracy by  
adjusting a trimmer capacitor on pin OSCI and measuring the 32.768 kHz signal  
available after power-on at the CLKOUT pin.  
Method 3: OSCO output — Direct output measurement on pin OSCO (accounting  
for test probe capacitance).  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
21 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
13. Package outline  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
D
E
A
X
c
y
H
v
M
A
E
Z
5
8
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
e
w
M
detail X  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
5.0  
4.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.050  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.20  
0.014 0.0075 0.19  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches 0.069  
0.01 0.004  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
97-05-22  
SOT96-1  
076E03S  
MS-012AA  
Fig 20. SOT96-1.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
22 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
DIP8: plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
D
M
E
A
2
A
A
1
L
c
w M  
Z
b
1
e
(e )  
1
M
H
b
b
2
8
5
pin 1 index  
E
1
4
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.14  
0.53  
0.38  
1.07  
0.89  
0.36  
0.23  
9.8  
9.2  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
1.15  
0.068 0.021 0.042 0.014  
0.045 0.015 0.035 0.009  
0.39  
0.36  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.045  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-02-04  
SOT97-1  
050G01  
MO-001AN  
Fig 21. SOT97-1.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
23 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm  
SOT505-1  
D
E
A
X
c
y
H
v
M
A
E
Z
5
8
A
(A )  
2
A
3
A
1
pin 1 index  
θ
L
p
L
1
4
detail X  
e
w M  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
A
A
A
b
c
D
E
e
H
L
L
p
UNIT  
v
w
y
Z
θ
1
2
3
p
E
max.  
0.15  
0.05  
0.95  
0.80  
0.45  
0.25  
0.28  
0.15  
3.10  
2.90  
3.10  
2.90  
5.10  
4.70  
0.70  
0.40  
0.70  
0.35  
6°  
0°  
mm  
1.10  
0.65  
0.25  
0.94  
0.1  
0.1  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
99-04-09  
SOT505-1  
Fig 22. SOT505-1.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
24 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
14. Soldering  
14.1 Introduction  
This text gives a very brief insight to a complex technology. A more in-depth account  
of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit  
Packages (document order number 9398 652 90011).  
There is no soldering method that is ideal for all IC packages. Wave soldering is often  
preferred when through-hole and surface mount components are mixed on one  
printed-circuit board. However, wave soldering is not always suitable for surface  
mount ICs, or for printed-circuit boards with high population densities. In these  
situations reflow soldering is often used.  
14.2 Surface mount packages  
14.2.1 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling  
or pressure-syringe dispensing before package placement.  
Several methods exist for reflowing; for example, infrared/convection heating in a  
conveyor type oven. Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 to 250 °C. The top-surface  
temperature of the packages should preferable be kept below 230 °C.  
14.2.2 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging  
and non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal  
results:  
Use a double-wave soldering method comprising a turbulent wave with high  
upward pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle  
to the transport direction of the printed-circuit board. The footprint must  
incorporate solder thieves downstream and at the side corners.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
25 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the  
need for removal of corrosive residues in most applications.  
14.2.3 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low  
voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time  
must be limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 to 5 seconds between 270 and 320 °C.  
14.3 Through-hole mount packages  
14.3.1 Soldering by dipping or by solder wave  
The maximum permissible temperature of the solder is 260 °C; solder at this  
temperature must not be in contact with the joints for more than 5 seconds. The total  
contact time of successive solder waves must not exceed 5 seconds.  
The device may be mounted up to the seating plane, but the temperature of the  
plastic body must not exceed the specified maximum storage temperature (Tstg(max)).  
If the printed-circuit board has been pre-heated, forced cooling may be necessary  
immediately after soldering to keep the temperature within the permissible limit.  
14.3.2 Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the  
seating plane or not more than 2 mm above it. If the temperature of the soldering iron  
bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit  
temperature is between 300 and 400 °C, contact may be up to 5 seconds.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
26 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
14.4 Package related soldering information  
Table 31: Suitability of IC packages for wave, reflow and dipping soldering methods  
Mounting  
Package  
Soldering method  
Wave  
Reflow[1] Dipping  
Through-hole  
mount  
DBS, DIP, HDIP, SDIP, SIL suitable[2]  
suitable  
Surface mount  
BGA, SQFP  
not suitable  
not suitable[3]  
suitable  
suitable  
HLQFP, HSQFP, HSOP,  
HTSSOP, SMS  
PLCC[4], SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
not recommended[4] [5] suitable  
not recommended[6]  
suitable  
[1] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal  
or external package cracks may occur due to vaporization of the moisture in them (the so called  
popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated  
Circuit Packages; Section: Packing Methods.  
[2] For SDIP packages, the longitudinal axis must be parallel to the transport direction of the  
printed-circuit board.  
[3] These packages are not suitable for wave soldering as a solder joint between the printed-circuit board  
and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top  
version).  
[4] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[5] Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger  
than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[6] Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
15. Revision history  
Rev Date  
CPCN  
-
Description  
01 990416  
This data sheet supersedes the version of 1998 Mar 25 (9397 750 03282):  
The format of this specification has been redesigned to comply with Philips Semiconductors’  
new presentation and information standard  
Added Figure 3 “Device diode protection diagram.on page 3  
Added Figure 4 “Voltage-low detection.on page 5  
Added paragraph in Section 8.5 “Voltage-low detector and clock monitor” on page 5  
Added Figure 14 to 17 on page 18 in Section 10.  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
27 of 30  
 
 
 
 
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
16. Data sheet status  
Datasheet status  
Product status Definition[1]  
Objective specification  
Development  
This data sheet contains the design target or goal specifications for product development. Specification may  
change in any manner without notice.  
Preliminary specification Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to make changes at any time without notice in order to improve design and  
supply the best possible product.  
Product specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any  
time without notice in order to improve design and supply the best possible product.  
[1]  
Please consult the most recently issued data sheet before initiating or completing a design.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
17. Definitions  
Short-form specification The data in  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
a short-form specification is  
Right to make changes Philips Semiconductors reserves the right to  
make changes, without notice, in the products, including circuits, standard  
cells, and/or software, described or contained herein in order to improve  
design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products  
are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
19. Licenses  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
Purchase of Philips I2C components  
Purchase of Philips I2C components conveys a license  
under the Philips’ I2C patent to use the components in the  
I2C system provided the system conforms to the I2C specifi-  
cation defined by Philips. This specification can be ordered  
using the code 9398 393 40011.  
18. Disclaimers  
Life support These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
9397 750 04855  
© Philips Electronics N.V. 1999 All rights reserved.  
Product specification  
16 April 1999  
28 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
Philips Semiconductors - a worldwide company  
Argentina: see South America  
Netherlands: Tel. +31 40 278 2785, Fax. +31 40 278 8399  
Australia: Tel. +61 29 805 4455, Fax. +61 29 805 4466  
Austria: Tel. +43 160 101, Fax. +43 160 101 1210  
Belarus: Tel. +375 17 220 0733, Fax. +375 17 220 0773  
Belgium: see The Netherlands  
New Zealand: Tel. +64 98 49 4160, Fax. +64 98 49 7811  
Norway: Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Philippines: Tel. +63 28 16 6380, Fax. +63 28 17 3474  
Poland: Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Portugal: see Spain  
Brazil: see South America  
Bulgaria: Tel. +359 268 9211, Fax. +359 268 9102  
Canada: Tel. +1 800 234 7381  
Romania: see Italy  
Russia: Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
China/Hong Kong: Tel. +852 2 319 7888, Fax. +852 2 319 7700  
Colombia: see South America  
Czech Republic: see Austria  
Slovenia: see Italy  
Denmark: Tel. +45 3 288 2636, Fax. +45 3 157 0044  
Finland: Tel. +358 961 5800, Fax. +358 96 158 0920  
France: Tel. +33 14 099 6161, Fax. +33 14 099 6427  
Germany: Tel. +49 40 23 5360, Fax. +49 402 353 6300  
Hungary: see Austria  
South Africa: Tel. +27 11 470 5911, Fax. +27 11 470 5494  
South America: Tel. +55 11 821 2333, Fax. +55 11 829 1849  
Spain: Tel. +34 33 01 6312, Fax. +34 33 01 4107  
Sweden: Tel. +46 86 32 2000, Fax. +46 86 32 2745  
Switzerland: Tel. +41 14 88 2686, Fax. +41 14 81 7730  
Taiwan: Tel. +886 22 134 2865, Fax. +886 22 134 2874  
Thailand: Tel. +66 27 45 4090, Fax. +66 23 98 0793  
Turkey: Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Ukraine: Tel. +380 44 264 2776, Fax. +380 44 268 0461  
United Kingdom: Tel. +44 181 730 5000, Fax. +44 181 754 8421  
United States: Tel. +1 800 234 7381  
India: Tel. +91 22 493 8541, Fax. +91 22 493 8722  
Indonesia: see Singapore  
Ireland: Tel. +353 17 64 0000, Fax. +353 17 64 0200  
Israel: Tel. +972 36 45 0444, Fax. +972 36 49 1007  
Italy: Tel. +39 26 752 2531, Fax. +39 26 752 2557  
Japan: Tel. +81 33 740 5130, Fax. +81 33 740 5077  
Korea: Tel. +82 27 09 1412, Fax. +82 27 09 1415  
Malaysia: Tel. +60 37 50 5214, Fax. +60 37 57 4880  
Mexico: Tel. +9-5 800 234 7381  
Uruguay: see South America  
Vietnam: see Singapore  
Yugoslavia: Tel. +381 11 62 5344, Fax. +381 11 63 5777  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors,  
Marketing & Sales Communications,  
Internet:http://www.semiconductors.philips.com  
Building BE, P.O. Box 218, 5600 MD EINDHOVEN,  
The Netherlands, Fax. +31 40 272 4825  
9397 750 04855  
© Philips Electronics N.V. 1999. All rights reserved.  
Product specification  
16 April 1999  
29 of 30  
PCF8563  
Real-time clock/calendar  
Philips Semiconductors  
Contents  
1
2
3
4
5
6
General description. . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications. . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data. . . . . . . . . . . . . . . . . 2  
Ordering information . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . 2  
16  
17  
18  
19  
Data sheet status. . . . . . . . . . . . . . . . . . . 28  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . 28  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . 28  
Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7
7.1  
7.2  
Pinning information . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . 3  
8
Functional description . . . . . . . . . . . . . . . 4  
Alarm function modes. . . . . . . . . . . . . . . . 4  
Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
CLKOUT output . . . . . . . . . . . . . . . . . . . . 4  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Voltage-low detector and clock monitor . . 5  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
Register organization . . . . . . . . . . . . . . . . 5  
Control/Status 1 register . . . . . . . . . . . . . . 6  
Control/Status 2 register . . . . . . . . . . . . . . 7  
Seconds, Minutes and Hours registers . . . . 8  
Days, Weekdays, Months/Century and Years  
registers . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Alarm registers. . . . . . . . . . . . . . . . . . . . 10  
CLKOUT frequency register. . . . . . . . . . . 11  
Countdown timer registers. . . . . . . . . . . . 11  
EXT_CLK test mode. . . . . . . . . . . . . . . . 12  
Operation example . . . . . . . . . . . . . . . . . 12  
Power-On Reset (POR) override mode . 12  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.6.5  
8.6.6  
8.6.7  
8.7  
8.7.1  
8.8  
8.9  
Serial interface . . . . . . . . . . . . . . . . . . . . 13  
Characteristics of the I2C-bus . . . . . . . . . 13  
START and STOP conditions . . . . . . . . . 13  
Bit transfer. . . . . . . . . . . . . . . . . . . . . . . 14  
Acknowledge . . . . . . . . . . . . . . . . . . . . . 14  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . 15  
8.9.1  
8.9.2  
8.9.3  
8.9.4  
8.9.5  
9
Limiting values . . . . . . . . . . . . . . . . . . . . 16  
Static characteristics . . . . . . . . . . . . . . . 17  
Dynamic characteristics. . . . . . . . . . . . . 19  
10  
11  
12  
12.1  
Application information . . . . . . . . . . . . . 21  
Quartz crystal frequency adjustment . . . 21  
13  
Package outline. . . . . . . . . . . . . . . . . . . . 22  
14  
14.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Introduction . . . . . . . . . . . . . . . . . . . . . . 25  
14.2  
Surface mount packages . . . . . . . . . . . . 25  
Reflow soldering. . . . . . . . . . . . . . . . . . . 25  
Wave soldering . . . . . . . . . . . . . . . . . . . 25  
Manual soldering . . . . . . . . . . . . . . . . . . 26  
Through-hole mount packages. . . . . . . . 26  
Soldering by dipping or by solder wave. . . 26  
Manual soldering . . . . . . . . . . . . . . . . . . 26  
Package related soldering information. . 27  
14.2.1  
14.2.2  
14.2.3  
14.3  
14.3.1  
14.3.2  
14.4  
15  
Revision history . . . . . . . . . . . . . . . . . . . 27  
© Philips Electronics N.V. 1999.  
Printed in The Netherlands  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 16 April 1999  
Document order number: 9397 750 04855  

相关型号:

PCF8563BS

Real-time clock/calendar
NXP

PCF8563BS-4

Real-time clock/calendar
NXP

PCF8563BS/4

Real-time clock/calendar
NXP

PCF8563BS/4,118

PCF8563 - Real-time clock/calendar SON 10-Pin
NXP

PCF8563BS/4-T

IC,REAL-TIME CLOCK,CMOS,LLCC,10PIN,PLASTIC
NXP

PCF8563BS4

Real-time clock/calendar
NXP

PCF8563P

Real-time clock/calendar
NXP

PCF8563P-F4

Real-time clock/calendar
NXP

PCF8563P/F4

Real-time clock/calendar
NXP

PCF8563P/F4,112

PCF8563 - Real-time clock/calendar DIP 8-Pin
NXP

PCF8563PF4

Real-time clock/calendar
NXP

PCF8563PN

暂无描述
NXP