PCF8566T [NXP]

Universal LCD driver for low multiplex rates; 低复用率的通用LCD驱动器
PCF8566T
型号: PCF8566T
厂家: NXP    NXP
描述:

Universal LCD driver for low multiplex rates
低复用率的通用LCD驱动器

驱动器 光电二极管 CD
文件: 总40页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCF8566  
Universal LCD driver for low  
multiplex rates  
1998 May 04  
Product specification  
Supersedes data of 1997 Apr 02  
File under Integrated Circuits, IC12  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
CONTENTS  
8
LIMITING VALUES  
HANDLING  
9
1
2
3
4
5
6
FEATURES  
10  
11  
12  
13  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
APPLICATION INFORMATION  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
CHIP DIMENSIONS AND BONDING PAD  
LOCATIONS  
PINNING  
FUNCTIONAL DESCRIPTION  
14  
15  
PACKAGE OUTLINES  
SOLDERING  
6.1  
6.2  
6.3  
6.4  
Power-on reset  
LCD bias generator  
LCD voltage selector  
LCD drive mode waveforms  
Oscillator  
15.1  
15.2  
15.2.1  
15.2.2  
15.3  
Introduction  
DIP  
Soldering by dipping or by wave  
Repairing soldered joints  
SO and VSO  
6.5  
6.6  
Internal clock  
6.7  
External clock  
15.3.1  
15.3.2  
15.3.3  
Reflow soldering  
Wave soldering  
Repairing soldered joints  
6.8  
6.9  
Timing  
Display latch  
Shift register  
Segment outputs  
Backplane outputs  
Display RAM  
6.10  
6.11  
6.12  
6.13  
6.14  
6.15  
6.16  
6.17  
6.18  
16  
17  
18  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
Data pointer  
Subaddress counter  
Output bank selector  
Input bank selector  
Blinker  
7
I2C-BUS DESCRIPTION  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
Bit transfer  
Start and stop conditions  
System configuration  
Acknowledge  
PCF8566 I2C-bus controller  
Input filters  
I2C-bus protocol  
Command decoder  
Display controller  
Cascaded operation  
1998 May 04  
2
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
1
FEATURES  
Single-chip LCD controller/driver  
Selectable backplane drive configuration: static  
or 2, 3 or 4 backplane multiplexing  
Selectable display bias configuration: static, 12 or 13  
Internal LCD bias generation with voltage-follower  
buffers  
2
GENERAL DESCRIPTION  
The PCF8566 is a peripheral device which interfaces to  
almost any Liquid Crystal Display (LCD) having low  
multiplex rates. It generates the drive signals for any static  
or multiplexed LCD containing up to four backplanes and  
up to 24 segments and can easily be cascaded for larger  
LCD applications. The PCF8566 is compatible with most  
microprocessors/microcontrollers and communicates via a  
two-line bidirectional I2C-bus. Communication overheads  
are minimized by a display RAM with auto-incremented  
addressing, by hardware subaddressing and by display  
memory switching (static and duplex drive modes).  
24 segment drives: up to twelve 8-segment numeric  
characters; up to six 15-segment alphanumeric  
characters; or any graphics of up to 96 elements  
24 × 4-bit RAM for display data storage  
Auto-incremented display data loading across device  
subaddress boundaries  
Display memory bank switching in static and duplex  
drive modes  
Versatile blinking modes  
LCD and logic supplies may be separated  
2.5 to 6 V power supply range  
Low power consumption  
Power saving mode for extremely low power  
consumption in battery-operated and telephone  
applications  
I2C-bus interface  
TTL/CMOS compatible  
Compatible with any 4-bit, 8-bit or 16-bit  
microprocessors/microcontrollers  
May be cascaded for large LCD applications  
(up to 1536 segments possible)  
Cascadable with the 40 segment LCD driver PCF8576C  
Optimized pinning for single plane wiring in both single  
and multiple PCF8566 applications  
Space-saving 40 lead plastic very small outline package  
(VSO40; SOT158-1)  
No external components required (even in multiple  
device applications)  
Manufactured in silicon gate CMOS process.  
3
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
plastic dual in-line package; 40 leads (600 mil)  
VERSION  
SOT129-1  
SOT158-1  
PCF8566P  
PCF8566T  
DIP40  
VSO40 plastic very small outline package; 40 leads  
1998 May 04  
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  g
BP0 BP2 BP1 BP3  
13 14 15 16  
S0 to S23  
17 to 40  
5
V
BACKPLANE  
OUTPUTS  
DD  
DISPLAY SEGMENT OUTPUTS  
R
R
R
LCD  
VOLTAGE  
SELECTOR  
DISPLAY LATCH  
LCD BIAS  
GENERATOR  
SHIFT REGISTER  
12  
V
LCD  
CLK  
PCF8566  
4
3
DISPLAY  
RAM  
INPUT  
BANK  
OUTPUT  
BANK  
TIMING  
BLINKER  
SYNC  
24 × 4 BITS  
SELECTOR  
SELECTOR  
DISPLAY  
CONTROLLER  
6
OSC  
OSCILLATOR  
POWER-  
ON  
DATA  
POINTER  
RESET  
COMMAND  
DECODER  
11  
V
SS  
2
1
SUB-  
ADDRESS  
COUNTER  
SCL  
SDA  
2
INPUT  
FILTERS  
I C-BUS  
CONTROLLER  
10  
7
8
9
SA0  
A0 A1 A2  
MGG383  
Fig.1 Block diagram.  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
5
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
handbook, halfpage  
SDA  
SCL  
1
2
3
I2C-bus data input/output  
I2C-bus clock input/output  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
SDA  
SCL  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
SYNC  
cascade synchronization  
input/output  
3
SYNC  
CLK  
4
CLK  
VDD  
OSC  
A0  
4
5
external clock input/output  
positive supply voltage  
oscillator input  
V
5
DD  
6
6
OSC  
A0  
7
7
A1  
8
I2C-bus subaddress inputs  
8
A1  
A2  
9
9
A2  
SA0  
VSS  
VLCD  
BP0  
BP2  
BP1  
BP3  
10  
11  
12  
13  
14  
15  
16  
I2C-bus slave address bit 0 input  
logic ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SA0  
V
PCF8566  
SS  
LCD supply voltage  
V
LCD  
BP0  
BP2  
BP1  
BP3  
S0  
LCD backplane outputs  
S0 to S23 17 to 40 LCD segment outputs  
S8  
S7  
S1  
S6  
S2  
S5  
S3  
S4  
MGG382  
Fig.2 Pin configuration.  
1998 May 04  
5
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
All of the display configurations given in Table 1 can be  
implemented in the typical system shown in Fig.3.  
The host microprocessor/microcontroller maintains the  
two-line I2C-bus communication channel with the  
PCF8566. The internal oscillator is selected by tying OSC  
(pin 6) to VSS. The appropriate biasing voltages for the  
multiplexed LCD waveforms are generated internally.  
The only other connections required to complete the  
system are to the power supplies (VDD, VSS and VLCD) and  
to the LCD panel chosen for the application.  
6
FUNCTIONAL DESCRIPTION  
The PCF8566 is a versatile peripheral device designed to  
interface any microprocessor to a wide variety of LCDs.  
It can directly drive any static or multiplexed LCD  
containing up to 4 backplanes and up to 24 segments.  
The display configurations possible with the PCF8566  
depend on the number of active backplane outputs  
required; a selection of display configurations is given in  
Table 1.  
Table 1 Selection of display configurations  
ACTIVE  
BACKPLANE  
OUTPUTS  
NUMBER OF  
SEGMENTS  
14-SEGMENT  
DOT MATRIX  
7-SEGMENT NUMERIC  
ALPHANUMERIC  
4
3
2
1
96  
12 digits + 12 indicator  
symbols  
6 characters + 12 indicator  
symbols  
96 dots (4 × 24)  
72 dots (3 × 24)  
48 dots (2 × 24)  
24 dots  
72  
48  
24  
9 digits + 9 indicator  
symbols  
4 characters + 16 indicator  
symbols  
6 digits + 6 indicator  
symbols  
3 characters + 6 indicator  
symbols  
3 digits + 3 indicator  
symbols  
1 character + 10 indicator  
symbols  
V
DD  
t
rise  
R ≤  
2 C  
bus  
V
V
DD  
LCD  
5
12  
SDA  
1
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
17 to 40 24 segment drives  
LCD PANEL  
SCL  
PCF8566  
2
6
(up to 96  
elements)  
OSC  
CONTROLLER  
4 backplanes  
13 to 16  
7
8
9
10 11  
MGG385  
A0 A1 A2 SA0 V  
SS  
V
SS  
Fig.3 Typical system configuration.  
1998 May 04  
6
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
6.1  
Power-on reset  
6.3  
LCD voltage selector  
At power-on the PCF8566 resets to a defined starting  
condition as follows:  
The LCD voltage selector coordinates the multiplexing of  
the LCD according to the selected LCD drive  
configuration. The operation of the voltage selector is  
controlled by MODE SET commands from the command  
decoder. The biasing configurations that apply to the  
preferred modes of operation, together with the biasing  
characteristics as functions of Vop = VDD VLCD and the  
resulting discrimination ratios (D), are given in Table 2.  
1. All backplane outputs are set to VDD  
2. All segment outputs are set to VDD  
3. The drive mode ‘1 : 4 multiplex with 13bias’ is selected  
4. Blinking is switched off  
5. Input and output bank selectors are reset (as defined  
in Table 5)  
6. The I2C-bus interface is initialized  
A practical value of Vop is determined by equating Voff(rms)  
with a defined LCD threshold voltage (Vth), typically when  
the LCD exhibits approximately 10% contrast. In the static  
drive mode a suitable choice is Vop 3 Vth. Multiplex drive  
ratios of 1 : 3 and 1 : 4 with 12 bias are possible but the  
discrimination and hence the contrast ratios are smaller  
7. The data pointer and the subaddress counter are  
cleared.  
Data transfers on the I2C-bus should be avoided for 1 ms  
following power-on to allow completion of the reset action.  
( 3 = 1.732 for 1 : 3 multiplex or 21 3 = 1.528 for  
1 : 4 multiplex). The advantage of these modes is a  
reduction of the LCD full scale voltage Vop as follows:  
6.2  
The full-scale LCD voltage (Vop) is obtained from  
DD VLCD. The LCD voltage may be temperature  
LCD bias generator  
1 : 3 multiplex (12bias):  
V
compensated externally through the VLCD supply to pin 12.  
Fractional LCD biasing voltages are obtained from an  
internal voltage divider of three series resistors connected  
between VDD and VLCD. The centre resistor can be  
switched out of circuit to provide a 12bias voltage level for  
the 1 : 2 multiplex configuration.  
Vop  
=
6Vop(mrs) = 2.449Voff (rms)  
1 : 4 multiplex (12bias):  
4
Vop  
=
3 3Voff (rms) = 2.309Voff (rms)  
These compare with Vop = 3 Voff(rms) when 13bias is used.  
Table 2 Preferred LCD drive modes: summary of characteristics  
Voff (rms)  
V on (rms)  
V on (rms)  
LCD BIAS  
CONFIGURATION  
LCD DRIVE MODE  
----------------------  
Vop  
D =  
-----------------------  
Vop  
-----------------------  
Voff (rms)  
Static (1 BP)  
static (2 levels)  
0
1
1 : 2 MUX (2 BP)  
12 (3 levels)  
10 4 = 0.791  
2 4 = 0.354  
13 = 0.333  
5 = 2.236  
5 = 2.236  
1 : 2 MUX (2 BP)  
1 : 3 MUX (3 BP)  
1 : 4 MUX (4 BP)  
13 (4 levels)  
13 (4 levels)  
13 (4 levels)  
5 3 = 0.745  
13 = 0.333  
13 = 0.333  
33 9 = 0.638  
3 3 = 0.577  
33 3 = 1.915  
3 = 1.732  
1998 May 04  
7
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
6.4  
LCD drive mode waveforms  
The static LCD drive mode is used when a single backplane is provided in the LCD. Backplane and segment drive  
waveforms for this mode are shown in Fig.4.  
When two backplanes are provided in the LCD the 1 : 2 multiplex drive mode applies. The PCF8566 allows use of  
12 or 13 bias in this mode as shown in Figs 5 and 6.  
The backplane and segment drive waveforms for the 1 : 3 multiplex drive mode (three LCD backplanes) and for the 1 : 4  
multiplex drive mode (four LCD backplanes) are shown in Figs 7 and 8 respectively.  
T
frame  
LCD segments  
V
DD  
BP0  
V
V
LCD  
DD  
state 1  
(on)  
state 2  
(off)  
S
n
V
V
LCD  
DD  
S
n + 1  
V
V
LCD  
(a) waveforms at driver  
op  
0
state 1  
At any instant (t):  
V
(t) = V (t) V  
(t)  
BP0  
state 1  
S
n
V
= V  
on(rms)  
op  
V  
op  
V
op  
0
V
V
(t) = V  
(t) V  
(t)  
BP0  
state 2  
S
n + 1  
= 0 V  
off(rms)  
state 2  
V  
op  
(b) resultant waveforms  
at LCD segment  
MGG392  
Fig.4 Static drive mode waveforms: Vop = VDD VLCD  
.
1998 May 04  
8
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
T
frame  
V
LCD segments  
DD  
DD  
(V  
V
+ V  
)/2  
)/2  
BP0  
BP1  
LCD  
LCD  
DD  
state 1  
V
(V  
V
state 2  
+ V  
DD  
LCD  
LCD  
V
DD  
S
n
V
V
LCD  
DD  
S
n + 1  
V
LCD  
op  
(a) waveforms at driver  
V
V
At any instant (t):  
/2  
op  
V
V
(t) = V (t) V  
(t)  
BP0  
state 1  
S
n
V
op  
state 1  
0
=
10 = 0.791V  
op  
on(rms)  
4
V /2  
op  
V  
V
V
(t) = V (t) V  
(t)  
BP1  
op  
state 2  
S
n
V
op  
=
2 = 0.354V  
op  
off(rms)  
V
op  
4
V
/2  
op  
state 2  
0
V /2  
op  
V  
op  
(b) resultant waveforms  
at LCD segment  
MGG394  
Fig.5 Waveforms for 1 : 2 multiplex drive mode with 12 bias: Vop = VDD VLCD  
.
1998 May 04  
9
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
T
frame  
h
V
DD  
LCD segments  
V
V /3  
DD  
op  
BP0  
BP1  
V
2V /3  
DD  
op  
V
V
LCD  
state 1  
DD  
DD  
DD  
state 2  
V
V /3  
op  
V
2V /3  
op  
V
LCD  
V
DD  
DD  
DD  
V
V
V
V /3  
op  
S
n
2V /3  
op  
LCD  
V
DD  
DD  
V
V
V /3  
op  
S
n + 1  
2V /3  
DD  
op  
V
LCD  
(a) waveforms at driver  
V
op  
2V /3  
op  
/3  
0
V
op  
state 1  
At any instant (t):  
V /3  
op  
V
V
(t) = V (t) V  
(t)  
BP0  
state 1  
S
n
2V /3  
op  
V
op  
=
5 = 0.745V  
V  
on(rms)  
op  
op  
3
V
op  
V
V
(t) = V (t) V  
(t)  
2V /3  
state 2  
S
n
BP1  
op  
V
V
/3  
op  
op  
=
= 0.333V  
op  
off(rms)  
state 2  
0
3
V /3  
op  
2V /3  
op  
V  
op  
(b) resultant waveforms  
at LCD segment  
MGG393  
Fig.6 Waveforms for 1 : 2 multiplex drive mode with 13 bias: Vop = VDD VLCD  
.
1998 May 04  
10  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
T
frame  
V
LCD segments  
DD  
V
V
V
V /3  
DD  
DD  
op  
BP0  
BP1  
BP2  
2V /3  
op  
LCD  
state 1  
state 2  
V
V
V
V
DD  
V /3  
DD  
DD  
LCD  
op  
2V /3  
op  
V
V
V
V
DD  
V /3  
DD  
DD  
LCD  
op  
2V /3  
op  
V
V
V
V
DD  
V /3  
DD  
DD  
LCD  
op  
S
n
2V /3  
op  
V
DD  
V
V
V
V /3  
op  
DD  
DD  
S
n + 1  
n + 2  
2V /3  
op  
LCD  
V
DD  
V
V
V
V /3  
op  
DD  
DD  
LCD  
S
2V /3  
op  
(a) waveforms at driver  
V
op  
2V /3  
op  
/3  
0
V
op  
state 1  
At any instant (t):  
V /3  
op  
V
V
(t) = V (t) V  
(t)  
state 1  
S
BP0  
n
2V /3  
op  
V
op  
V  
=
33 = 0.638V  
op  
op  
on(rms)  
9
V
op  
V
V
(t) = V (t) V  
(t)  
BP1  
2V /3  
state 2  
S
n
op  
V
V
/3  
op  
op  
=
= 0.333V  
op  
off(rms)  
state 2  
0
3
V /3  
op  
2V /3  
op  
V  
op  
(b) resultant waveforms  
at LCD segment  
MGG395  
Fig.7 Waveforms for 1 : 3 multiplex drive mode: Vop = VDD VLCD  
.
1998 May 04  
11  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
T
frame  
LCD segments  
V
V
V
V
DD  
DD  
DD  
V /3  
op  
BP0  
2V /3  
op  
LCD  
state 1  
state 2  
V
V
V
V
DD  
V /3  
DD  
DD  
LCD  
op  
BP1  
BP2  
BP3  
2V /3  
op  
V
V
V
V
DD  
V /3  
DD  
DD  
LCD  
op  
2V /3  
op  
V
DD  
V
V
V
V /3  
op  
DD  
DD  
LCD  
2V /3  
op  
V
V
V
V
DD  
V /3  
DD  
DD  
LCD  
op  
S
n
2V /3  
op  
V
DD  
V
V
V
V /3  
op  
DD  
DD  
S
n + 1  
2V /3  
op  
LCD  
V
DD  
V
V
V
V /3  
op  
DD  
DD  
Sn + 2  
2V /3  
op  
LCD  
V
V
V
V
DD  
V /3  
DD  
DD  
LCD  
op  
S
n + 3  
2V /3  
op  
(a) waveforms at driver  
V
op  
2V /3  
op  
V
/3  
op  
0
state 1  
At any instant (t):  
V /3  
op  
2V /3  
V
V
(t) = V (t) V  
(t)  
BP0  
op  
state 1  
S
n
V
V  
op  
op  
=
3 = 0.577V  
on(rms)  
op  
3
V
op  
2V /3  
op  
V
V
(t) = V (t) V  
(t)  
state 2  
S
BP1  
n
V
/3  
op  
0
V
op  
=
= 0.333V  
off(rms)  
op  
state 2  
3
V /3  
op  
2V /3  
op  
V  
op  
(b) resultant waveforms  
at LCD segment  
MGG396  
Fig.8 Waveforms for 1 : 4 multiplex drive mode: Vop = VDD VLCD.  
1998 May 04  
12  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
The lower clock frequency has the disadvantage of  
6.5  
Oscillator  
increasing the response time when large amounts of  
display data are transmitted on the I2C-bus. When a  
device is unable to ‘digest’ a display data byte before the  
next one arrives, it holds the SCL line LOW until the first  
display data byte is stored. This slows down the  
The internal logic and the LCD drive signals of the  
PCF8566 or PCF8576 are timed either by the built-in  
oscillator or from an external clock.  
The clock frequency (fCLK) determines the LCD frame  
frequency and the maximum rate for data reception from  
the I2C-bus. To allow I2C-bus transmissions at their  
maximum data rate of 100 kHz, fCLK should be chosen to  
be above 125 kHz.  
transmission rate of the I2C-bus but no data loss occurs.  
6.9  
Display latch  
The display latch holds the display data while the  
corresponding multiplex signals are generated. There is a  
one-to-one relationship between the data in the display  
latch, the LCD segment outputs and one column of the  
display RAM.  
A clock signal must always be supplied to the device;  
removing the clock may freeze the LCD in a DC state.  
6.6  
Internal clock  
When the internal oscillator is used, OSC (pin 6) should be  
tied to VSS. In this case, the output from CLK (pin 4)  
provides the clock signal for cascaded PCF8566s and  
PCF8576s in the system.  
6.10 Shift register  
The shift register serves to transfer display information  
from the display RAM to the display latch while previous  
data are displayed.  
6.7  
External clock  
6.11 Segment outputs  
The condition for external clock is made by tying OSC  
(pin 6) to VDD; CLK (pin 4) then becomes the external  
clock input.  
The LCD drive section includes 24 segment outputs  
S0 to S23 (pins 17 to 40) which should be connected  
directly to the LCD. The segment output signals are  
generated in accordance with the multiplexed backplane  
signals and with the data resident in the display latch.  
When less than 24 segment outputs are required the  
unused segment outputs should be left open-circuit.  
6.8  
Timing  
The timing of the PCF8566 organizes the internal data flow  
of the device. This includes the transfer of display data  
from the display RAM to the display segment outputs.  
In cascaded applications, the synchronization signal  
SYNC maintains the correct timing relationship between  
the PCF8566s in the system. The timing also generates  
the LCD frame frequency which it derives as an integer  
multiple of the clock frequency (Table 3). The frame  
frequency is set by MODE SET commands when internal  
clock is used, or by the frequency applied to pin 4 when  
external clock is used.  
6.12 Backplane outputs  
The LCD drive section includes four backplane outputs  
BP0 to BP3 which should be connected directly to the  
LCD. The backplane output signals are generated in  
accordance with the selected LCD drive mode. If less than  
four backplane outputs are required the unused outputs  
can be left open. In the 1 : 3 multiplex drive mode BP3  
carries the same signal as BP1, therefore these two  
adjacent outputs can be tied together to give enhanced  
drive capabilities. In the 1 : 2 multiplex drive mode  
BP0 and BP2, BP1 and BP3 respectively carry the same  
signals and may also be paired to increase the drive  
capabilities. In the static drive mode the same signal is  
carried by all four backplane outputs and they can be  
connected in parallel for very high drive requirements.  
Table 3 LCD frame frequencies  
NOMINAL  
fframe (Hz)  
PCF8566 MODE  
fframe  
Normal mode  
fCLK/2880  
64  
64  
Power saving mode  
fCLK/480  
The ratio between the clock frequency and the LCD frame  
frequency depends on the mode in which the device is  
operating. In the power saving mode the reduction ratio is  
six times smaller; this allows the clock frequency to be  
reduced by a factor of six. The reduced clock frequency  
results in a significant reduction in power dissipation.  
6.13 Display RAM  
The display RAM is a static 24 × 4-bit RAM which stores  
LCD data. A logic 1 in the RAM bit-map indicates the ‘on’  
state of the corresponding LCD segment; similarly, a  
logic 0 indicates the ‘off’ state.  
1998 May 04  
13  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
There is a one-to-one correspondence between the RAM  
addresses and the segment outputs, and between the  
individual bits of a RAM word and the backplane outputs.  
The first RAM column corresponds to the 24 segments  
operated with respect to backplane BP0 (see Fig.9).  
In multiplexed LCD applications the segment data of the  
second, third and fourth column of the display RAM are  
time-multiplexed with BP1, BP2 and BP3 respectively.  
The sequence commences with the initialization of the  
data pointer by the LOAD DATA POINTER command.  
Following this, an arriving data byte is stored starting at the  
display RAM address indicated by the data pointer thereby  
observing the filling order shown in Fig.10. The data  
pointer is automatically incremented according to the LCD  
configuration chosen. That is, after each byte is stored, the  
contents of the data pointer are incremented by eight  
(static drive mode), by four (1 : 2 multiplex drive mode), by  
three (1 : 3 multiplex drive mode) or by two (1 : 4 multiplex  
drive mode).  
When display data are transmitted to the PCF8566 the  
display bytes received are stored in the display RAM  
according to the selected LCD drive mode. To illustrate the  
filling order, an example of a 7-segment numeric display  
showing all drive modes is given in Fig.10; the RAM filling  
organization depicted applies equally to other LCD types.  
6.15 Subaddress counter  
The storage of display data is conditioned by the contents  
of the subaddress counter. Storage is allowed to take  
place only when the contents of the subaddress counter  
agree with the hardware subaddress applied to  
A0, A1 and A2 (pins 7, 8, and 9). A0, A1 and A2 should  
be tied to VSS or VDD. The subaddress counter value is  
defined by the DEVICE SELECT command. If the contents  
of the subaddress counter and the hardware subaddress  
do not agree then data storage is inhibited but the data  
pointer is incremented as if data storage had taken place.  
The subaddress counter is also incremented when the  
data pointer overflows.  
With reference to Fig.10, in the static drive mode the eight  
transmitted data bits are placed in bit 0 of eight successive  
display RAM addresses. In the 1 : 2 multiplex drive mode  
the eight transmitted data bits are placed in bits 0 and 1 of  
four successive display RAM addresses. In the 1 : 3  
multiplex drive mode these bits are placed in  
bits 0, 1 and 2 of three successive addresses, with bit 2 of  
the third address left unchanged. This last bit may, if  
necessary, be controlled by an additional transfer to this  
address but care should be taken to avoid overriding  
adjacent data because full bytes are always transmitted.  
In the 1 : 4 multiplex drive mode the eight transmitted data  
bits are placed in bits 0, 1, 2 and 3 of two successive  
display RAM addresses.  
The storage arrangements described lead to extremely  
efficient data loading in cascaded applications. When a  
series of display bytes are being sent to the display RAM,  
automatic wrap-over to the next PCF8566 occurs when  
the last RAM address is exceeded. Subaddressing across  
device boundaries is successful even if the change to the  
next device in the cascade occurs within a transmitted  
character.  
6.14 Data pointer  
The addressing mechanism for the display RAM is  
realized using the data pointer. This allows the loading of  
an individual display data byte, or a series of display data  
bytes, into any location of the display RAM.  
display RAM addresses (rows)/segment outputs (S)  
0
1
2
3
4
19 20 21 22 23  
0
1
2
3
display RAM bits  
(columns) /  
backplane outputs  
(BP)  
MGG389  
Fig.9 Display RAM bit-map showing direct relationship between display RAM addresses and segment outputs,  
and between bits in a RAM word and backplane outputs.  
1998 May 04  
14  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
drive mode  
LCD segments  
LCD backplanes  
display RAM filling order  
transmitted display byte  
a
S
2
n
n
1
n
2
n
3
n
4
n
5
n
6
n 7  
n
n
b
BP0  
f
S
1
7
S
3
MSB  
LSB  
DP  
n
n
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
bit/  
BP  
g
4
S
S
S
n
n
x
x
x
x
x
x
c
b
a
f
g e d  
static  
e
S
5
6
c
n
d
DP  
S
n
BP0  
S
n
a
n
n
n
n
1
1
1
n
2
n 3  
b
b
b
1 : 2  
f
S
1
n
MSB  
LSB  
DP  
0
1
2
3
a
b
x
x
f
e
c
x
x
d
bit/  
BP  
g
g
x
x
DP  
x
x
a
b
f
g
e c d  
BP1  
S
S
e
2
3
multiplex  
n
n
c
c
c
d
d
d
DP  
BP0  
BP1  
S
1
a
n
n
n 2  
S
S
2
f
1 : 3  
n
n
MSB  
LSB  
e
0
1
2
3
b
DP  
c
a
d
g
x
f
bit/  
BP  
g
e
x
x
BP2  
b DP  
c
a
d
g
f
e
multiplex  
x
DP  
S
n
a
n
BP2  
BP3  
BP0  
BP1  
f
1 : 4  
0
1
2
3
a
c
f
bit/  
BP  
MSB  
LSB  
d
g
e
g
d
b
DP  
e
multiplex  
a
c
b
DP  
f
e
g
S
1
DP  
n
MBE534  
Fig.10 Relationships between LCD layout, drive mode, display RAM filling order and display data transmitted over the I2C-bus (X = data bit  
unchanged).  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
6.16 Output bank selector  
6.18 Blinker  
This selects one of the four bits per display RAM address  
for transfer to the display latch. The actual bit chosen  
depends on the particular LCD drive mode in operation  
and on the instant in the multiplex sequence. In 1 : 4  
multiplex, all RAM addresses of bit 0 are the first to be  
selected, these are followed by the contents of bit 1, bit 2  
and then bit 3. Similarly in 1 : 3 multiplex, bits 0, 1 and 2  
are selected sequentially. In 1 : 2 multiplex, bits 0 then 1  
are selected and, in the static mode, bit 0 is selected.  
The display blinking capabilities of the PCF8566 are very  
versatile. The whole display can be blinked at frequencies  
selected by the BLINK command. The blinking frequencies  
are integer multiples of the clock frequency; the ratios  
between the clock and blinking frequencies depend on the  
mode in which the device is operating, as shown in  
Table 4.  
An additional feature is for an arbitrary selection of LCD  
segments to be blinked. This applies to the static and 1 : 2  
LCD drive modes and can be implemented without any  
communication overheads. By means of the output bank  
selector, the displayed RAM banks are exchanged with  
alternate RAM banks at the blinking frequency. This mode  
can also be specified by the BLINK command.  
The PCF8566 includes a RAM bank switching feature in  
the static and 1 : 2 multiplex drive modes. In the static  
drive mode, the BANK SELECT command may request  
the contents of bit 2 to be selected for display instead of  
bit 0 contents. In the 1 : 2 drive mode, the contents of  
bits 2 and 3 may be selected instead of bits 0 and 1.  
This gives the provision for preparing display information  
in an alternative bank and to be able to switch to it once it  
is assembled.  
In the 1 : 3 and 1 : 4 multiplex modes, where no alternate  
RAM bank is available, groups of LCD segments can be  
blinked by selectively changing the display RAM data at  
fixed time intervals.  
If the entire display is to be blinked at a frequency other  
than the nominal blinking frequency, this can be effectively  
performed by resetting and setting the display enable bit E  
at the required rate using the MODE SET command.  
6.17 Input bank selector  
The input bank selector loads display data into the display  
RAM according to the selected LCD drive configuration.  
Display data can be loaded in bit 2 in static drive mode or  
in bits 2 and 3 in 1 : 2 drive mode by using the BANK  
SELECT command. The input bank selector functions  
independently of the output bank selector.  
Table 4 Blinking frequencies  
NORMAL OPERATING  
MODE RATIO  
POWER-SAVING  
MODE RATIO  
NOMINAL BLINKING FREQUENCY  
BLINKING MODE  
fblink (Hz)  
Off  
2 Hz  
blinking off  
fCLK/92160  
fCLK/15360  
fCLK/30720  
fCLK/61440  
2
1
1 Hz  
f
f
CLK/184320  
CLK/368640  
0.5 Hz  
0.5  
1998 May 04  
16  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
I2C-BUS DESCRIPTION  
7.4  
Acknowledge  
7
The I2C-bus is for 2-way, 2-line communication between  
different ICs or modules. The two lines are a serial data  
line (SDA) and a serial clock line (SCL). Both lines must be  
connected to a positive supply via a pull-up resistor when  
connected to the output stages of a device. Data transfer  
may be initiated only when the bus is not busy.  
The number of data bytes transferred between the START  
and STOP conditions from transmitter to receiver is not  
limited. Each byte is followed by one acknowledge bit.  
The acknowledge bit is a HIGH level put on the bus by the  
transmitter whereas the master generates an extra  
acknowledge related clock pulse. A slave receiver which is  
addressed must generate an acknowledge after the  
reception of each byte. Also a master must generate an  
acknowledge after the reception of each byte that has  
been clocked out of the slave transmitter. The device that  
acknowledges has to pull down the SDA line during the  
acknowledge clock pulse, so that the SDA line is stable  
LOW during the HIGH period of the acknowledge related  
clock pulse, set up and hold times must be taken into  
account. A master receiver must signal an end of data to  
the transmitter by not generating an acknowledge on the  
last byte that has been clocked out of the slave. In this  
event the transmitter must leave the data line HIGH to  
enable the master to generate a STOP condition.  
7.1  
Bit transfer  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable during the  
HIGH period of the clock pulse as changes in the data line  
at this time will be interpreted as control signals.  
7.2  
Start and stop conditions  
Both data and clock lines remain HIGH when the bus is not  
busy. A HIGH-to-LOW transition of the data line while the  
clock is HIGH is defined as the START condition (S).  
A LOW-to-HIGH transition of the data line while the clock  
is HIGH is defined as the STOP condition (P).  
7.3  
System configuration  
A device generating a message is a ‘transmitter’, a device  
receiving a message is a ‘receiver’. The device that  
controls the message is the ‘master’ and the devices which  
are controlled by the master are the ‘slaves’.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBA607  
Fig.11 Bit transfer.  
1998 May 04  
17  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
SDA  
SDA  
SCL  
SCL  
S
P
STOP condition  
START condition  
MBA608  
Fig.12 Definition of START and STOP conditions.  
SDA  
SCL  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
TRANSMITTER /  
RECEIVER  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
MBA605  
Fig.13 System configuration.  
clock pulse for  
acknowledgement  
START  
condition  
SCL FROM  
MASTER  
2
9
1
8
DATA OUTPUT  
BY TRANSMITTER  
S
DATA OUTPUT  
BY RECEIVER  
MBA606 - 1  
Fig.14 Acknowledgement on the I2C-bus.  
18  
1998 May 04  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
The I2C-bus protocol is shown in Fig.15. The sequence is  
initiated with a START condition (S) from the I2C-bus  
master which is followed by one of the two PCF8566 slave  
addresses available. All PCF8566s with the corresponding  
SA0 level acknowledge in parallel the slave address but all  
PCF8566s with the alternative SA0 level ignore the whole  
I2C-bus transfer. After acknowledgement, one or more  
command bytes (m) follow which define the status of the  
addressed PCF8566s. The last command byte is tagged  
with a cleared most-significant bit, the continuation bit C.  
The command bytes are also acknowledged by all  
addressed PCF8566s on the bus.  
7.5  
PCF8566 I2C-bus controller  
The PCF8566 acts as an I2C-bus slave receiver. It does  
not initiate I2C-bus transfers or transmit data to an I2C-bus  
master receiver. The only data output from the PCF8566  
are the acknowledge signals of the selected devices.  
Device selection depends on the I2C-bus slave address,  
on the transferred command data and on the hardware  
subaddress.  
In single device applications, the hardware subaddress  
inputs A0, A1 and A2 are normally left open-circuit or tied  
to VSS which defines the hardware subaddress 0.  
In multiple device applications A0, A1 and A2 are left  
open-circuit or tied to VSS or VDD according to a binary  
coding scheme such that no two devices with a common  
I2C-bus slave address have the same hardware  
subaddress.  
After the last command byte, a series of display data bytes  
(n) may follow. These display data bytes are stored in the  
display RAM at the address specified by the data pointer  
and the subaddress counter. Both data pointer and  
subaddress counter are automatically updated and the  
data are directed to the intended PCF8566 device.  
The acknowledgement after each byte is made only by the  
(A0, A1, A2) addressed PCF8566. After the last display  
byte, the I2C-bus master issues a STOP condition (P).  
In the power-saving mode it is possible that the PCF8566  
is not able to keep up with the highest transmission rates  
when large amounts of display data are transmitted. If this  
situation occurs, the PCF8566 forces the SCL line LOW  
until its internal operations are completed. This is known  
as the ‘clock synchronization feature’ of the I2C-bus and  
serves to slow down fast transmitters. Data loss does not  
occur.  
7.8  
Command decoder  
The command decoder identifies command bytes that  
arrive on the I2C-bus. All available commands carry a  
continuation bit C in their most-significant bit position  
(see Fig.16). When this bit is set, it indicates that the next  
byte of the transfer to arrive will also represent a  
command.  
7.6  
Input filters  
To enhance noise immunity in electrically adverse  
environments, RC low-pass filters are provided on the  
SDA and SCL lines.  
If the bit is reset, it indicates the last command byte of the  
transfer. Further bytes will be regarded as display data.  
7.7  
I2C-bus protocol  
The five commands available to the PCF8566 are defined  
in Table 5.  
Two I2C-bus slave addresses (0111110 and 0111111) are  
reserved for PCF8566. The least-significant bit of the slave  
address that a PCF8566 will respond to is defined by the  
level tied at its input SA0 (pin 10). Therefore, two types of  
PCF8566 can be distinguished on the same I2C-bus which  
allows:  
1. Up to 16 PCF8566s on the same I2C-bus for very large  
LCD applications  
2. The use of two types of LCD multiplex on the same  
I2C-bus.  
1998 May 04  
19  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
acknowledge  
by A0, A1 and A2  
selected  
acknowledge by  
all addressed  
PCF8566s  
R / W  
PCF8566 only  
slave address  
S
A
0
0
1
1
1
1
1
0
A C  
A
DISPLAY DATA  
A
P
COMMAND  
S
1 byte  
m 1 byte(s)  
n ≥ 0 byte(s)  
update data pointers  
and if necessary,  
subaddress counter  
MGG390  
Fig.15 I2C-bus protocol.  
0 = last command  
1 = commands continue  
MSB  
LSB  
C
REST OF OPCODE  
MGG388  
Fig.16 General format of command byte.  
1998 May 04  
20  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
Table 5 Definition of PCF8566 commands  
COMMAND/OPCODE  
OPTIONS  
DESCRIPTION  
Mode set  
C
1
0
LP  
E
B
M1 M0  
see Table 6  
see Table 7  
see Table 8  
defines LCD drive mode  
defines LCD bias configuration  
defines display status; the possibility to disable  
the display allows implementation of blinking  
under external control  
see Table 9  
defines power dissipation mode  
Load data pointer  
P4 P3 P2 P1 P0  
C
0
0
see Table 10  
five bits of immediate data, bits P4 to P0, are  
transferred to the data pointer to define one of  
twenty-four display RAM addresses  
Device select  
C
1
1
0
1
0
1
A2 A1 A0  
see Table 11  
three bits of immediate data, bits A0 to A2, are  
transferred to the subaddress counter to define  
one of eight hardware subaddresses  
Bank select  
C
1
1
0
I
O
see Table 12  
see Table 13  
defines input bank selection (storage of arriving  
display data)  
defines output bank selection (retrieval of LCD  
display data)  
the BANK SELECT command has no effect in  
1 : 3 and 1 : 4 multiplex drive modes  
Blink  
C
1
1
1
0
A
BF1 BF0  
see Table 14  
see Table 15  
defines the blinking frequency  
selects the blinking mode; normal operation  
with frequency set by bits BF1 and BF0, or  
blinking by alternation of display RAM banks.  
Alternation blinking does not apply in 1 : 3 and  
1 : 4 multiplex drive modes  
Table 6 LCD drive mode  
LCD DRIVE MODE  
BIT M1  
BIT M0  
Static (1 BP)  
0
1
1
0
1
0
1
0
1 : 2 MUX (2 BP)  
1 : 3 MUX (3 BP)  
1 : 4 MUX (4 BP)  
1998 May 04  
21  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
Table 7 LCD bias configuration  
Table 15 Blink mode selection  
LCD BIAS  
BIT B  
BLINK MODE  
BIT A  
13bias  
12bias  
0
1
Normal blinking  
0
1
Alternation blinking  
Table 8 Display status  
7.9  
Display controller  
The display controller executes the commands identified  
by the command decoder. It contains the status registers  
of the PCF8566 and coordinates their effects.  
DISPLAY STATUS  
Disabled (blank)  
Enabled  
BIT E  
0
1
The controller is also responsible for loading display data  
into the display RAM as required by the filling order.  
Table 9 Power dissipation mode  
MODE  
BIT LP  
7.10 Cascaded operation  
Normal mode  
0
1
In large display configurations, up to 16 PCF8566s can be  
distinguished on the same I2C-bus by using the 3-bit  
hardware subaddress (A0, A1 and A2) and the  
Power-saving mode  
programmable I2C-bus slave address (SA0). It is also  
possible to cascade up to 16 PCF8566s. When cascaded,  
several PCF8566s are synchronized so that they can  
share the backplane signals from one of the devices in the  
cascade. Such an arrangement is cost-effective in large  
LCD applications since the outputs of only one device  
need to be through-plated to the backplane electrodes of  
the display. The other PCF8566s of the cascade  
contribute additional segment outputs but their backplane  
outputs are left open-circuit (Fig.17).  
Table 10 Load data pointer  
BITS  
P4  
P3  
P2  
P1  
P0  
A2  
5-bit binary value of 0 to 23  
Table 11 Device select  
BITS  
A0  
A1  
3-bit binary value of 0 to 7  
Table 12 Input bank selection  
The SYNC line is provided to maintain the correct  
synchronization between all cascaded PCF8566s.  
This synchronization is guaranteed after the power-on  
reset. The only time that SYNC is likely to be needed is if  
synchronization is accidentally lost (e.g. by noise in  
adverse electrical environments; or by the definition of a  
multiplex mode when PCF8566s with differing SA0 levels  
are cascaded). SYNC is organized as an input/output pin;  
the output section being realized as an open-drain driver  
with an internal pull-up resistor. A PCF8566 asserts the  
SYNC line at the onset of its last active backplane signal  
and monitors the SYNC line at all other times.  
STATIC  
RAM bit 0  
RAM bit 2  
1 : 2 MUX  
BIT 1  
RAM bits 0, 1  
RAM bits 2, 3  
0
1
Table 13 Output bank selection  
STATIC  
RAM bit 0  
RAM bit 2  
1 : 2 MUX  
RAM bits 0, 1  
RAM bits 2, 3  
BIT 0  
0
1
Should synchronization in the cascade be lost, it will be  
restored by the first PCF8566 to assert SYNC. The timing  
relationships between the backplane waveforms and the  
SYNC signal for the various drive modes of the PCF8576  
are shown in Fig.18. The waveforms are identical with the  
parent device PCF8576. Cascade ability between  
PCF8566s and PCF8576s is possible, giving cost effective  
LCD applications.  
Table 14 Blinking frequency  
BLINK  
FREQUENCY  
BIT BF1  
BIT BF0  
Off  
0
0
1
1
0
1
0
1
2 Hz  
1 Hz  
0.5 Hz  
1998 May 04  
22  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
V
V
LCD  
DD  
5
12  
SDA  
1
24 segment drives  
SCL  
17 to 40  
PCF8566  
2
LCD PANEL  
SYNC  
3
CLK  
(up to 1536  
elements)  
4
13 to 16  
OSC  
6
BP0 to BP3  
(open-circuit)  
7
8
9
10 11  
A0 A1 A2 SA0 V  
SS  
V
LCD  
V
DD  
t
rise  
2 C  
R ≤  
V
V
LCD  
bus  
DD  
5
12  
SDA  
SCL  
HOST  
MICRO-  
1
2
3
4
6
24 segment drives  
17 to 40  
PCF8566  
13 to 16  
PROCESSOR/  
MICRO-  
CONTROLLER  
SYNC  
CLK  
4 backplanes  
BP0 to BP3  
OSC  
7
8
9
10 11  
MGG384  
A0 A1 A2 SA0  
V
SS  
V
SS  
Fig.17 Cascaded PCF8566 configuration.  
1998 May 04  
23  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
1
T
= f  
frame  
frame  
BP0  
SYNC  
(a) static drive mode.  
BP1  
(1/2 bias)  
BP1  
(1/3 bias)  
SYNC  
(b) 1 : 2 multiplex drive mode.  
BP2  
SYNC  
(c) 1 : 3 multiplex drive mode.  
BP3  
SYNC  
MBE535  
(d) 1 : 4 multiplex drive mode.  
Fig.18 Synchronization of the cascade for the various PCF8566 drive modes.  
For single plane wiring of PCF8566s, see Chapter “Application information”.  
1998 May 04  
24  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
8
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL PARAMETER  
VDD  
MIN.  
0.5  
MAX.  
UNIT  
supply voltage  
+7  
V
V
V
V
VLCD  
VI  
LCD supply voltage  
V
V
V
DD 7  
VDD  
input voltage (SCL, SDA, A0 to A2, OSC, CLK, SYNC and SA0)  
output voltage (S0 to S23 and BP0 to BP3)  
DC input current  
SS 0.5  
VDD + 0.5  
VO  
II  
LCD 0.5 VDD + 0.5  
±20  
±25  
±50  
400  
100  
mA  
mA  
mA  
mW  
mW  
°C  
IO  
DC output current  
IDD, ISS, ILCD VDD, VSS or VLCD current  
Ptot  
PO  
Tstg  
power dissipation per package  
power dissipation per output  
storage temperature  
65  
+150  
9
HANDLING  
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is  
advised to take handling precautions appropriate to handling MOS devices (see “Handling MOS devices”).  
1998 May 04  
25  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
10 DC CHARACTERISTICS  
VSS = 0 V; VDD = 2.5 to 6 V; VLCD = VDD 2.5 to VDD 6 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VDD  
VLCD  
IDD  
operating supply voltage  
LCD supply voltage  
2.5  
6
V
VDD 6  
V
DD 2.5 V  
operating supply current  
(normal mode)  
fCLK = 200 kHz; note 1  
30  
90  
µA  
ILP  
power saving mode supply current VDD = 3.5 V; VLCD = 0 V;  
fCLK = 35 kHz; A0,  
15  
40  
µA  
A1 and A2 tied to VSS  
note 1  
;
Logic  
VIL  
LOW level input voltage  
HIGH level input voltage  
LOW level output voltage  
HIGH level output voltage  
VSS  
0.7VDD  
0.3VDD  
VDD  
0.05  
V
VIH  
V
VOL  
VOH  
IOL1  
IO = 0 mA  
V
IO = 0 mA  
VDD 0.05 −  
V
LOW level output current  
(CLK and SYNC)  
VOL = 1 V; VDD = 5 V  
1
mA  
IOH  
HIGH level output current (CLK)  
VOH = 4 V; VDD = 5 V  
1  
mA  
mA  
IOL2  
LOW level output current  
(SDA and SCL)  
VOL = 0.4 V; VDD = 5 V  
3
ILI  
leakage current  
(SA0, CLK, OSC, A0, A1, A2, SCL  
and SDA)  
VI = VSS or VDD  
±1  
µA  
µA  
Ipd  
pull-down current  
VI = 1 V; VDD = 5 V  
15  
50  
150  
(A0, A1, A2 and OSC)  
RpuSYNC  
Vref  
pull-up resistor (SYNC)  
power-on reset level  
tolerable spike width on bus  
input capacitance  
15  
25  
1.3  
60  
2
kΩ  
V
note 2  
note 3  
tsw  
100  
7
ns  
pF  
Ci  
LCD outputs  
VBP  
DC voltage component  
(BP0 to BP3)  
DC voltage component (S0 to S23) CS = 5 nF  
CBP = 35 nF  
±20  
mV  
VS  
±20  
1
5
7
mV  
kΩ  
kΩ  
ZBP  
ZS  
output impedance (BP0 to BP3)  
output impedance (S0 to S23)  
VLCD = VDD 5 V; note 4  
VLCD = VDD 5 V; note 4  
3
Notes  
1. Outputs open; inputs at VSS or VDD; external clock with 50% duty factor; I2C-bus inactive.  
2. Resets all logic when VDD < Vref.  
3. Periodically sampled, not 100% tested.  
4. Outputs measured one at a time.  
1998 May 04  
26  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
11 AC CHARACTERISTICS  
V
SS = 0 V; VDD = 2.5 to 6 V; VLCD = VDD 2.5 to VDD 6 V; Tamb = 40 to +85 °C; unless otherwise specified; note 1.  
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT  
oscillator frequency (normal mode) VDD = 5 V; note 2 125 200 315 kHz  
fCLK  
fCLKLP  
oscillator frequency (power saving  
mode)  
VDD = 3.5 V  
21  
31  
48  
kHz  
tCLKH  
tCLKL  
CLK HIGH time  
1
1
1
µs  
µs  
ns  
µs  
µs  
CLK LOW time  
tPSYNC  
tSYNCL  
tPLCD  
SYNC propagation delay  
SYNC LOW time  
400  
driver delays with test loads  
VLCD = VDD 5 V  
30  
I2C-bus  
tBUF  
bus free time  
4.7  
4
µs  
µs  
µs  
µs  
µs  
tHD; STA  
tLOW  
START condition hold time  
SCL LOW time  
4.7  
4
tHIGH  
SCL HIGH time  
tSU; STA  
START condition set-up time  
(repeated start code only)  
4.7  
tHD; DAT  
tSU; DAT  
tr  
data hold time  
data set-up time  
rise time  
0
µs  
ns  
µs  
ns  
µs  
250  
1
tf  
fall time  
300  
tSU; STO  
STOP condition set-up time  
4.7  
Notes  
1. All timing values referred to VIH and VIL levels with an input voltage swing of VSS to VDD  
.
2. At fCLK < 125 kHz, I2C-bus maximum transmission speed is derated.  
3.3 kΩ  
1.5 kΩ  
CLK  
(pin 4)  
SDA, SCL  
(pins 1, 2)  
0.5V  
V
DD  
DD  
(2%)  
(2%)  
6.8 kΩ  
SYNC  
(pin 3)  
V
DD  
(2%)  
BP0 to BP3  
S0 to S23  
(pins 13 to 16)  
(pins 17 to 40)  
I
25 µA  
I
15 µA  
load  
load  
MGG387  
Fig.19 Test loads.  
27  
1998 May 04  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
1
f
CLK  
t
t
CLKH  
CLKL  
0.7V  
0.3V  
DD  
CLK  
DD  
0.7V  
DD  
SYNC  
0.3V  
DD  
t
PSYNC  
t
SYNCL  
0.5 V  
BP0 to BP3  
S0 to S23  
(V  
= 5 V)  
DD  
0.5 V  
t
MGG391  
PLCD  
Fig.20 Driver timing waveforms.  
SDA  
SCL  
t
t
t
f
BUF  
LOW  
t
t
t
SU;DAT  
t
HD;STA  
r
t
HIGH  
HD;DAT  
SDA  
t
SU;STA  
MGA728  
t
SU;STO  
Fig.21 I2C-bus timing waveforms.  
28  
1998 May 04  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
MGG398  
MGG397  
24  
40  
handbook, halfpage  
handbook, halfpage  
I
DD  
I
DD  
(µA)  
(µA)  
40 °C  
40 °C  
30  
16  
+85 °C  
+85 °C  
20  
8
10  
0
0
0
0
2
4
6
8
2
4
6
8
V
(V)  
V
(V)  
DD  
DD  
a. Normal mode; VLCD = 0 V;  
external clock = 200 kHz.  
b. Low power mode; VLCD = 0 V;  
external clock = 35 kHz.  
Fig.22 Typical supply current characteristics.  
MGG400  
MGG399  
6
12  
handbook, halfpage  
handbook, halfpage  
R
R
S
BP  
(k)  
(k)  
4
8
40 °C  
2
4
+25 °C  
+85 °C  
0
0
0
2
4
6
8
0
2
4
6
8
V
(V)  
V
(V)  
DD  
DD  
a. Backplane output impedance BP0 to BP3  
(RBP); VDD = 5 V; Tamb = 40 to +85 °C.  
b. Segment output impedance S0 to S23 (RS);  
VDD = 5 V.  
Fig.23 Typical characteristics of LCD outputs.  
1998 May 04  
29  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SDA  
SCL  
SYNC  
CLK  
V
V
V
DD  
SS  
LCD  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
SDA  
SCL  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
S47  
S46  
S45  
S44  
S43  
S42  
S41  
S40  
S39  
S38  
S37  
S36  
S35  
S34  
S33  
S32  
S31  
S30  
S29  
S28  
3
3
SYNC  
CLK  
4
4
V
5
5
DD  
6
6
OSC  
A0  
7
7
8
8
A1  
9
9
A2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SA0  
V
SS  
V
LCD  
BP0  
BP2  
BP1  
BP3  
S0  
BP0  
BP2  
BP1  
BP3  
S24  
S25  
S26  
S27  
PCF8566  
PCF8566  
open-circuit  
S8  
S7  
S1  
S6  
S2  
S5  
S3  
S4  
S0  
S23  
S24  
S47  
MGG386  
SEGMENTS  
BACKPLANES  
Fig.24 Single plane wiring of package PCF8566s.  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
13 CHIP DIMENSIONS AND BONDING PAD LOCATIONS  
(1)  
2.5 mm  
y
25 24 23 22 21  
20 19 18 17 16  
15  
BP1  
BP2  
BP0  
V
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
S9  
S10  
S11  
14  
13  
12  
LCD  
S12  
(1)  
2.91  
11  
10  
9
x
S13  
S14  
S15  
S16  
S17  
0
mm  
V
0
SS  
SA0  
A2  
PCF8566  
8
A1  
7
A0  
6
OSC  
S18  
36 37 38 39 40  
1
2
3
4
5
MBH783  
(1) Typical value.  
Pad size: 120 × 120 µm  
Chip area: 7.27 mm.  
The numbers given in the small squares refer to the pad numbers.  
Fig.25 Bonding pad locations.  
31  
1998 May 04  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
Table 16 Bonding pad locations (dimensions in mm)  
All x/y coordinates are referenced to centre of chip, (see Fig.25).  
PAD NUMBER  
SYMBOL  
x
y
PIN  
1
SDA  
SCL  
SYNC  
CLK  
VDD  
OSC  
A0  
200  
400  
1235  
1235  
1235  
1235  
1235  
1025  
825  
625  
425  
225  
25  
1
2
2
3
605  
3
4
856  
4
5
1062  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1074  
874  
5
6
6
7
7
8
A1  
8
9
A2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
SA0  
VSS  
VLCD  
BP0  
BP2  
BP1  
BP3  
S0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
347  
547  
747  
947  
1235  
1235  
1235  
1235  
1235  
1235  
1235  
1235  
1235  
1235  
765  
S1  
674  
S2  
474  
S3  
274  
S4  
274  
474  
674  
874  
1074  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1056  
830  
630  
430  
230  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
565  
365  
165  
35  
235  
435  
635  
835  
1035  
1235  
1235  
1235  
1235  
1235  
1998 May 04  
32  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
14 PACKAGE OUTLINES  
DIP40: plastic dual in-line package; 40 leads (600 mil)  
SOT129-1  
D
M
E
A
2
A
L
A
1
c
e
w M  
Z
b
1
(e )  
1
b
M
H
40  
21  
pin 1 index  
E
1
20  
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
(1)  
(1)  
Z
1
2
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
1
1
E
H
max.  
min.  
max.  
max.  
1.70  
1.14  
0.53  
0.38  
0.36  
0.23  
52.50  
51.50  
14.1  
13.7  
3.60  
3.05  
15.80  
15.24  
17.42  
15.90  
4.7  
0.51  
4.0  
2.54  
0.10  
15.24  
0.60  
0.254  
0.01  
2.25  
0.067  
0.045  
0.021  
0.015  
0.014  
0.009  
2.067  
2.028  
0.56  
0.54  
0.14  
0.12  
0.62  
0.60  
0.69  
0.63  
inches  
0.19  
0.020  
0.16  
0.089  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-14  
SOT129-1  
051G08  
MO-015AJ  
1998 May 04  
33  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
VSO40: plastic very small outline package; 40 leads  
SOT158-1  
D
E
A
X
c
y
H
v
M
A
E
Z
40  
21  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
detail X  
1
20  
w
M
b
p
e
0
5
scale  
10 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(2)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
0.3  
0.1  
2.45  
2.25  
0.42  
0.30  
0.22  
0.14  
15.6  
15.2  
7.6  
7.5  
12.3  
11.8  
1.7  
1.5  
1.15  
1.05  
0.6  
0.3  
2.70  
0.11  
0.25  
0.762  
0.03  
2.25  
0.089  
0.2  
0.1  
0.1  
7o  
0o  
0.012 0.096  
0.004 0.089  
0.017 0.0087 0.61  
0.012 0.0055 0.60  
0.30  
0.29  
0.48  
0.46  
0.067 0.045  
0.059 0.041  
0.024  
0.012  
inches  
0.010  
0.008 0.004 0.004  
Notes  
1. Plastic or metal protrusions of 0.4 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-24  
SOT158-1  
1998 May 04  
34  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
Several techniques exist for reflowing; for example,  
15 SOLDERING  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
15.1 Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
15.3.2 WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(order code 9398 652 90011).  
Wave soldering techniques can be used for all SO and  
VSO packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
15.2 DIP  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
15.2.1 SOLDERING BY DIPPING OR BY WAVE  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
15.2.2 REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
15.3.3 REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
15.3 SO and VSO  
15.3.1 REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO and  
VSO packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
1998 May 04  
35  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
16 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
17 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
18 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1998 May 04  
36  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
NOTES  
1998 May 04  
37  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
NOTES  
1998 May 04  
38  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8566  
NOTES  
1998 May 04  
39  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Middle East: see Italy  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Fax. +43 160 101 1210  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
Norway: Box 1, Manglerud 0612, OSLO,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belgium: see The Netherlands  
Brazil: see South America  
Pakistan: see Singapore  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Portugal: see Spain  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Colombia: see South America  
Czech Republic: see Austria  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Tel. +65 350 2538, Fax. +65 251 6500  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
Slovakia: see Austria  
Slovenia: see Italy  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1998  
SCA59  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
415106/1200/06/pp40  
Date of release: 1998 May 04  
Document order number: 9397 750 03725  

相关型号:

PCF8566T,112

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP

PCF8566T,118

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP

PCF8566T-T

暂无描述
NXP

PCF8566T/1

IC,LCD DISPLAY DRIVER,24-SEG,4-BP,CMOS,SOP,40PIN,PLASTIC
NXP

PCF8566T/1,112

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP

PCF8566T/1,118

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP

PCF8566T/S420/1,11

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP

PCF8566T/S480/1,11

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP

PCF8566TD

LCD Display Driver
ETC

PCF8566TD-T

LCD Display Driver
ETC

PCF8566TS

Universal LCD driver for low multiplex rates
NXP

PCF8566TS/1

IC,LCD DISPLAY DRIVER,24-SEG,4-BP,CMOS,SOP,40PIN,PLASTIC
NXP