PCF8576CTT/1,118 [NXP]

PCF8576C - Universal LCD driver for low multiplex rates TSSOP 56-Pin;
PCF8576CTT/1,118
型号: PCF8576CTT/1,118
厂家: NXP    NXP
描述:

PCF8576C - Universal LCD driver for low multiplex rates TSSOP 56-Pin

PC 驱动 CD 光电二极管 接口集成电路
文件: 总56页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8576C  
Universal LCD driver for low multiplex rates  
Rev. 09 — 9 July 2009  
Product data sheet  
1. General description  
The PCF8576C is a peripheral device which interfaces to almost any Liquid Crystal  
Display (LCD)1 with low multiplex rates. It generates the drive signals for any static or  
multiplexed LCD containing up to four backplanes and up to 40 segments and can easily  
be cascaded for larger LCD applications. The PCF8576C is compatible with most  
microprocessors or microcontrollers and communicates via a two-line bidirectional  
I2C-bus. Communication overheads are minimized by a display RAM with  
auto-incremented addressing, by hardware subaddressing.  
2. Features  
I Single-chip LCD controller and driver  
I 40 segment drives:  
N Up to twenty 7-segment numeric characters  
N Up to ten 14-segment alphanumeric characters  
N Any graphics of up to 160 elements  
I Versatile blinking modes  
I No external components required (even in multiple device applications)  
I Selectable backplane drive configuration: static or 2, 3, 4 backplane multiplexing  
I Selectable display bias configuration: static, 12 or 13  
I Internal LCD bias generation with voltage-follower buffers  
I 40 × 4-bit RAM for display data storage  
I Auto-incremented display data loading across device subaddress boundaries  
I Display memory bank switching in static and duplex drive modes  
I Wide logic LCD supply range:  
N From 2 V for low-threshold LCDs  
N Up to 6 V for guest-host LCDs and high-threshold twisted nematic LCDs  
I Low power consumption  
I May be cascaded for large LCD applications (up to 2560 segments possible)  
I Cascadable with 24-segment LCD driver PCF8566  
I No external components  
I Compatible with chip-on-glass technology  
I Separate or combined LCD and logic supplies  
I Optimized pinning for plane wiring in both and multiple PCF8576C applications  
I Power-saving mode for extremely low power consumption in battery-operated and  
telephone applications  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 19.  
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
PCF8576CH  
LQFP64  
plastic low profile quad flat package;  
SOT314-2  
64 leads; body 10 × 10 × 1.4 mm  
PCF8576CT  
VSO56  
plastic very small outline package, 56 leads  
SOT190-1  
PCF8576CTT  
HTSSOP56  
plastic thermal enhanced thin shrink small outline package, 56 leads; SOT793-1  
body width 6.1 mm; exposed die pad  
PCF8576CU/10 PCF8576CU/10 wire bond die; 56 bonding pads; 3.0 × 2.82 × 0.38 mm[1]  
PCF8576CU PCF8576CU  
wire bond die; 56 bonding pads; 3.0 × 2.82 × 0.38 mm[2]  
PCF8576CU/10  
PCF8576CU  
PCF8576CU/2 PCF8576CU/2 bare die; 56 bumps; 3.0 × 2.82 × 0.40 mm[2]  
PCF8576CU/2  
[1] Delivery form: chip on FFC.  
[2] Delivery form: chip in tray.  
4. Marking  
Table 2.  
Marking codes  
Type number  
PCF8576CH  
PCF8576CT  
Marking code  
PCF8576CH  
PCF8576CT  
PCF8576CTT  
PC8576C-1  
PC8576C-1  
PC8576C-2  
PCF8576CTT  
PCF8576CU/10  
PCF8576CU  
PCF8576CU/2  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
2 of 56  
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
5. Block diagram  
BP0 BP2 BP1 BP3  
S0 to S39  
40  
V
DD  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT OUTPUTS  
DISPLAY LATCH  
LCD  
VOLTAGE  
SELECTOR  
LCD BIAS  
GENERATOR  
SHIFT REGISTER  
V
LCD  
PCF8576C  
CLK  
INPUT  
BANK  
SELECTOR  
DISPLAY  
RAM  
40 × 4 BITS  
OUTPUT  
BANK  
SELECTOR  
TIMING  
BLINKER  
SYNC  
DISPLAY  
CONTROLLER  
OSC  
OSCILLATOR  
POWER-  
ON  
RESET  
DATA  
POINTER  
COMMAND  
DECODER  
V
SS  
SUB-  
ADDRESS  
COUNTER  
SCL  
SDA  
2
INPUT  
FILTERS  
I C-BUS  
CONTROLLER  
SA0  
A0 A1 A2  
013aaa094  
Fig 1. Block diagram of PCF8576C  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
3 of 56  
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6. Pinning information  
6.1 Pinning  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
n.c.  
S34  
S35  
S36  
S37  
S38  
S39  
n.c.  
n.c.  
S17  
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
3
4
5
6
7
8
PCF8576CH  
9
n.c.  
10  
11  
12  
13  
14  
15  
16  
SDA  
SCL  
S8  
SYNC  
CLK  
S7  
S6  
V
DD  
S5  
OSC  
A0  
S4  
n.c.  
001aag241  
Top view. For mechanical details, see Figure 32.  
Fig 2. Pin configuration of PCF8576CH (LQFP64)  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
4 of 56  
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
SDA  
SCL  
S39  
S38  
S37  
S36  
S35  
S34  
S33  
S32  
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
2
3
SYNC  
CLK  
4
5
V
DD  
6
OSC  
A0  
7
8
A1  
9
A2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
SA0  
V
SS  
V
LCD  
BP0  
BP2  
BP1  
BP3  
S0  
PCF8576CT  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
001aag240  
Top view. For mechanical details, see Figure 33.  
Fig 3. Pin configuration of PCF8576CT (VSO56)  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
5 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
SDA  
SCL  
S39  
S38  
S37  
S36  
S35  
S34  
S33  
S32  
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
2
3
SYNC  
CLK  
4
5
V
DD  
6
OSC  
A0  
7
8
A1  
9
A2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
SA0  
V
SS  
V
LCD  
BP0  
BP2  
BP1  
BP3  
S0  
PCF8576CTT  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
013aaa095  
Top view. For mechanical details, see Figure 34.  
Fig 4. Pin configuration of PCF8576CTT (HTSSOP56)  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
6 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
34 33 32 31 30 29 28 27 26 25 24 23 22 21  
S18 35  
S19 36  
S20 37  
S21 38  
S22 39  
S23 40  
S24 41  
S25 42  
S26 43  
S27 44  
S28 45  
S29 46  
S30 47  
S31 48  
S32 49  
S33 50  
20 S3  
19 S2  
18 S1  
17 S0  
16 BP3  
15 BP1  
14 BP2  
13 BP0  
PCF8576CU  
V
V
12  
11  
LCD  
SS  
10 SA0  
9
8
A2  
A1  
51 52 53 54 55 56  
1
2
3
4
5
6
7
013aaa096  
Top view. For mechanical details, see Figure 35, Figure 36 and Figure 37.  
Fig 5. Pin locations of PCF8576CU  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
7 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.2 Pin description  
Table 3.  
Symbol  
Pin description  
Pin  
Description  
PCF8576CH  
PCF8576CT  
PCF8576CU  
PCF8576CTT  
SDA  
SCL  
10  
1
1
I2C-bus serial data input and output  
I2C-bus serial clock input  
cascade synchronization input and output  
external clock input/output  
supply voltage  
11  
2
2
SYNC  
CLK  
12  
3
3
13  
4
4
5[1]  
VDD  
14  
5
OSC  
A0 to A2  
SA0  
15  
6
6
internal oscillator enable input  
16 to 18  
19  
7 to 9  
10  
7 to 9  
10  
subaddress inputs  
I2C-bus address input; bit 0  
logic ground  
VSS  
20  
11  
11  
VLCD  
21  
12  
12  
LCD supply voltage  
BP0, BP2, 25 to 28  
BP1, BP3  
13 to 16  
13 to 16  
LCD backplane outputs  
S0 to S39 2 to 7, 29 to 32,  
34 to 47, 49 to 64  
17 to 56  
17 to 56  
-
LCD segment outputs  
not connected  
n.c.  
1, 8, 9, 22 to 24, 33, 48 -  
[1] The substrate (rear side of the die) is wired to VDD but should not be electrically connected.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
8 of 56  
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7. Functional description  
The PCF8576C is a versatile peripheral device designed to interface any  
microprocessor or microcontroller to a wide variety of LCDs. It can directly drive any static  
or multiplexed LCD containing up to 4 backplanes and up to 40 segments.  
The display configurations possible with the PCF8576C depend on the number of active  
backplane outputs required. Display configuration selection is shown in Table 4. All of the  
display configurations given in Table 4 can be implemented in the typical system shown in  
Figure 6.  
Table 4.  
Display configurations  
7 segment numeric  
Number of:  
14-segment numeric  
Dot matrix  
Backplanes Elements  
Digits  
Indicator  
symbols  
Characters Indicator  
symbols  
4
3
2
1
160  
120  
80  
20  
15  
10  
5
20  
15  
10  
5
10  
8
20  
8
160 (4 × 40)  
120 (3 × 40)  
80 (2 × 40)  
40 (1 × 40)  
5
10  
12  
40  
2
V
DD  
t
r
R≤  
2C  
B
V
V
DD  
LCD  
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
CONTROLLER  
40 segment drives  
4 backplanes  
LCD PANEL  
PCF8576C  
(up to 160  
elements)  
OSC  
013aaa098  
A0 A1 A2 SA0 V  
SS  
V
SS  
Fig 6. Typical system configuration  
The host microprocessor or microcontroller maintains the 2-line I2C-bus communication  
channel with the PCF8576C.  
Biasing voltages for the multiplexed LCD waveforms are generated internally, removing  
the need for an external bias generator. The internal oscillator is selected by connecting  
pin OSC to VSS. The only other connections required to complete the system are the  
power supplies (pins VDD, VSS and VLCD) and the LCD panel selected for the application.  
7.1 Power-on-reset  
At power-on the PCF8576C resets to the following starting conditions:  
All backplane and segment outputs are set to VDD  
The selected drive mode is 1:4 multiplex with 13 bias  
Blinking is switched off  
Input and output bank selectors are reset (as defined in Table 8)  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
9 of 56  
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
The I2C-bus interface is initialized  
The data pointer and the subaddress counter are cleared  
Remark: Do not transfer data on the I2C-bus for at least 1 ms after a power-on to allow the  
reset action to complete.  
7.2 LCD bias generator  
The full-scale LCD voltage (Voper) is obtained from VDD VLCD. The LCD voltage may be  
temperature compensated externally through the VLCD supply to pin VLCD  
.
Fractional LCD biasing voltages are obtained from an internal voltage divider comprising  
three series resistors connected between VDD and VLCD. The center resistor can be  
switched out of the circuit to provide a 12 bias voltage level for the 1:2 multiplex  
configuration.  
7.3 LCD voltage selector  
The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the  
selected LCD drive configuration. The operation of the voltage selector is controlled by the  
mode-set command from the command decoder. The biasing configurations that apply to  
the preferred modes of operation, together with the biasing characteristics as functions of  
VLCD and the resulting discrimination ratios (D), are given in Table 5.  
Table 5.  
Preferred LCD drive modes: summary of characteristics  
LCD drive  
mode  
Number of:  
LCD bias  
configuration  
V off (RMS)  
V on(RMS)  
V on(RMS)  
--------------------------  
V LCD  
D = --------------------------  
V off (RMS)  
------------------------  
V LCD  
Backplanes Bias levels  
static  
1
2
3
4
4
4
static  
0
1
1
1:2 multiplex 2  
1:2 multiplex 2  
1:3 multiplex 3  
1:4 multiplex 4  
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.236  
2.236  
1.915  
1.732  
2
1
3
1
3
1
3
A practical value for VLCD is determined by equating Voff(RMS) with a defined LCD  
threshold voltage (Vth), typically when the LCD exhibits approximately 10 % contrast. In  
the static drive mode a suitable choice is VLCD < 3 × Vth.  
Multiplex drive modes of 1:3 and 1:4 with 12 bias are possible but the discrimination and  
hence the contrast ratios are smaller.  
1
Bias is calculated by ------------ , where the values for a are  
1 + a  
a = 1 for 12 bias  
a = 2 for 13 bias  
The RMS on-state voltage (Von(RMS)) for the LCD is calculated with Equation 1  
2
1
(n 1)  
----------------  
n
1
V
Von(RMS)  
=
-- +  
n
×
(1)  
------------  
1 + a  
LCD  
where VLCD is the resultant voltage at the LCD segment and where the values for n are  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
10 of 56  
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
n = 1 for static mode  
n = 2 for 1:2 multiplex  
n = 3 for 1:3 multiplex  
n = 4 for 1:4 multiplex  
The RMS off-state voltage (Voff(RMS)) for the LCD is calculated with Equation 2:  
a2 2a + n  
n × (1 + a)2  
Voff (RMS) = V  
-----------------------------  
(2)  
(3)  
LCD  
Discrimination is the ratio of Von(RMS) to Voff(RMS) and is determined from Equation 3:  
(a + 1)2 + (n 1)  
V on(RMS)  
D =  
=
-------------------------------------------  
------------------------  
(a 1)2 + (n 1)  
V off (RMS)  
Using Equation 3, the discrimination for an LCD drive mode of 1:3 multiplex with  
12 bias is 3 = 1.732 and the discrimination for an LCD drive mode of 1:4 multiplex with  
21  
12 bias is ---------- = 1.528 .  
3
The advantage of these LCD drive modes is a reduction of the LCD full scale voltage VLCD  
as follows:  
1:3 multiplex (12 bias): V LCD  
=
6 × V off (RMS) = 2.449V off (RMS)  
(4 × 3)  
1:4 multiplex (12 bias): V LCD  
=
= 2.309V off (RMS)  
---------------------  
3
These compare with V LCD = 3V off (RMS) when 13 bias is used.  
It should be noted that VLCD is sometimes referred as the LCD operating voltage.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
11 of 56  
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4 LCD drive mode waveforms  
7.4.1 Static drive mode  
The static LCD drive mode is used when a single backplane is provided in the LCD.  
Backplane and segment drive waveforms for this mode are shown in Figure 7.  
T
fr  
LCD segments  
V
LCD  
BP0  
Sn  
V
SS  
state 1  
(on)  
state 2  
(off)  
V
LCD  
V
SS  
V
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
LCD  
state 1  
0 V  
V  
LCD  
V
LCD  
state 2  
0 V  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl745  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = VLCD  
.
Vstate2(t) = VSn+1(t) VBP0(t).  
Voff(RMS) = 0 V.  
Fig 7. Static drive mode waveforms  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
12 of 56  
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.2 1:2 Multiplex drive mode  
When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The  
PCF8576C allows the use of 12 bias or 13 bias (see Figure 8 and Figure 9).  
T
fr  
V
LCD  
LCD segments  
V
V
/ 2  
/ 2  
BP0  
BP1  
Sn  
LCD  
SS  
state 1  
state 2  
V
LCD  
V
V
LCD  
SS  
V
LCD  
V
V
SS  
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
V
LCD  
/ 2  
LCD  
0 V  
V  
state 1  
/ 2  
LCD  
V  
LCD  
V
V
LCD  
/ 2  
LCD  
0 V  
state 2  
V  
/ 2  
LCD  
LCD  
V  
(b) Resultant waveforms  
at LCD segment.  
mgl746  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.791VLCD  
.
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.354VLCD  
Fig 8. Waveforms for the 1:2 multiplex drive mode with 12 bias  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
13 of 56  
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
T
fr  
V
LCD  
2V  
LCD segments  
/ 3  
LCD  
/ 3  
BP0  
BP1  
Sn  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
V
LCD  
2V  
/ 3  
/ 3  
LCD  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl747  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.745VLCD  
Vstate2(t) = VSn(t) VBP1(t)  
Voff(RMS) = 0.333VLCD.  
Fig 9. Waveforms for the 1:2 multiplex drive mode with 13 bias  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
14 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.3 1:3 Multiplex drive mode  
When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies as  
shown in Figure 10.  
T
fr  
V
LCD  
2V  
LCD segments  
/ 3  
LCD  
/ 3  
BP0  
BP1  
BP2  
Sn  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+2  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
V
LCD  
2V  
/ 3  
/ 3  
LCD  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl748  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.638VLCD  
.
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD.  
Fig 10. Waveforms for the 1:3 multiplex drive mode with 13 bias  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
15 of 56  
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.4 1:4 multiplex drive mode  
When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies, as  
shown in Figure 11.  
T
fr  
V
LCD segments  
LCD  
2V  
/ 3  
LCD  
/ 3  
BP0  
BP1  
BP2  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
BP3  
Sn  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+2  
Sn+3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
V
LCD  
2V  
/ 3  
/ 3  
LCD  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl749  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.577VLCD  
.
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD.  
Fig 11. Waveforms for the 1:4 multiplex mode with 13 bias  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
16 of 56  
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.5 Oscillator  
The internal logic and the LCD drive signals of the PCF8576C are timed by the frequency  
fclk, which equals either the built-in oscillator frequency fosc or the external clock frequency  
fclk(ext)  
.
The clock frequency (fclk) determines the LCD frame frequency (ffr) and the maximum rate  
for data reception from the I2C-bus. To allow I2C-bus transmissions at their maximum data  
rate of 100 kHz, fclk should be chosen to be above 125 kHz.  
7.5.1 Internal clock  
The internal oscillator is enabled by connecting pin OSC to pin VSS. In this case, the  
output from pin CLK is the clock signal for any cascaded PCF8576s or PCF8566s in the  
system.  
Remark: The PCF8576C is backwards compatible with the PCF8576 (Voper up to 9 V).  
Where resistor Rext (on pin OSC) to VSS is present, the internal oscillator is selected.  
7.5.2 External clock  
Connecting pin OSC to VDD enables an external clock source. Pin CLK then becomes the  
external clock input.  
Remark: A clock signal must always be supplied to the device. Removing the clock,  
freezes the LCD in a DC state, which is not suitable for the liquid crystal.  
7.6 Timing  
The timing of the PCF8576C sequences the internal data flow of the device. This includes  
the transfer of display data from the display RAM to the display segment outputs. In  
cascaded applications, the synchronization signal (SYNC) maintains the correct timing  
relationship between the PCF8576Cs in the system. The timing also generates the LCD  
frame frequency which is derived as an integer division of the clock frequency (see  
Table 6). The frame frequency is set by the mode set commands when an internal clock is  
used or by the frequency applied to the pin CLK when an external clock is used.  
Table 6.  
LCD frame frequencies [1]  
PCF8576C mode  
Frame frequency  
Nominal frame frequency (Hz)  
Normal mode  
69 [2]  
f clk  
f fr  
=
=
------------  
2880  
Power saving mode  
65 [3]  
f clk  
f fr  
---------  
480  
[1] The possible values for fclk see Table 20.  
[2] For fclk = 200 kHz.  
[3] For fclk = 31 kHz.  
The ratio between the clock frequency and the LCD frame frequency depends on the  
mode in which the device is operating. In the power-saving mode the reduction ratio is six  
times smaller; this allows the clock frequency to be reduced by a factor of six. The  
reduced clock frequency results in a significant reduction in power consumption.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
17 of 56  
 
 
 
 
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
The lower clock frequency has the disadvantage of increasing the response time when  
large amounts of display data are transmitted on the I2C-bus. When a device is unable to  
process a display data byte before the next one arrives, it holds the SCL line LOW until the  
first display data byte is stored. This slows down the transmission rate of the I2C-bus but  
no data loss occurs.  
7.7 Display register  
The display register holds the display data while the corresponding multiplex signals are  
generated. There is a one-to-one relationship between the data in the display register, the  
LCD segment outputs and one column of the display RAM.  
7.8 Shift register  
The shift register transfers display information from the display RAM to the display register  
while previous data is displayed.  
7.9 Segment outputs  
The LCD drive section includes 40 segment outputs, S0 to S39, which must be connected  
directly to the LCD. The segment output signals are generated based on the multiplexed  
backplane signals and with data residing in the display register. When less than  
40 segment outputs are required, the unused segment outputs should be left open-circuit.  
7.10 Backplane outputs  
The LCD drive section includes four backplane outputs: BP0 to BP3. The backplane  
output signals are generated based on the selected LCD drive mode.  
In 1:4 multiplex drive mode: BP0 to BP3 must be connected directly to the LCD.  
If less than four backplane outputs are required the unused outputs can be left as an  
open-circuit.  
In 1:3 multiplex drive mode: BP3 carries the same signal as BP1, therefore these two  
adjacent outputs can be tied together to give enhanced drive capabilities.  
In 1:2 multiplex drive mode: BP0 and BP2, BP1 and BP3 respectively carry the same  
signals and can also be paired to increase the drive capabilities.  
In static drive mode: the same signal is carried by all four backplane outputs and they  
can be connected in parallel for very high drive requirements.  
7.11 Display RAM  
The display RAM is a static 40 × 4-bit RAM which stores LCD data. A logic 1 in the RAM  
bitmap indicates the on-state of the corresponding LCD element; similarly, a logic 0  
indicates the off-state. There is a direct relationship between the RAM addresses and the  
segment outputs, and between the individual bits of a RAM word and the backplane  
outputs. The display RAM bit map Figure 12 shows the rows 0 to 3 which correspond with  
the backplane outputs BP0 to BP3, and the columns 0 to 39 which correspond with the  
segment outputs S0 to S39. In multiplexed LCD applications the segment data of the first,  
second, third and fourth row of the display RAM are time-multiplexed with BP0, BP1, BP2  
and BP3 respectively.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
18 of 56  
 
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
display RAM addresses (columns)/segment outputs (S)  
0
1
2
3
4
35 36 37 38 39  
0
1
2
3
display RAM bits  
(rows)/  
backplane outputs  
(BP)  
mbe525  
Display RAM bit map showing direct relationship between RAM addresses and segment outputs;  
also between bits in a RAM word and the backplane outputs.  
Fig 12. Display RAM bit map  
When display data is transmitted to the PCF8576C, the display bytes received are stored  
in the display RAM in accordance with the selected LCD drive mode. The data is stored as  
it arrives and does not wait for an acknowledge cycle as with the commands. Depending  
on the current multiplex drive mode, data is stored singularly, in pairs, triplets or  
quadruplets. To illustrate the filling order, an example of a 7-segment numeric display  
showing all drive modes is given in Figure 13; the RAM filling organization depicted  
applies equally to other LCD types.  
The following applies to Figure 13:  
In the static drive mode, the eight transmitted data bits are placed in row 0 of eight  
successive 4-bit RAM words.  
In the 1:2 multiplex mode, the eight transmitted data bits are placed in pairs into  
row 0 and 1 of four successive 4-bit RAM words.  
In the 1:3 multiplex mode, the eight bits are placed in triples into row 0, 1 and 2 to  
three successive 4-bit RAM words, with bit 3 of the third address left unchanged. It is  
not recommended to use this bit in a display because of the difficult addressing. This  
last bit may, if necessary, be controlled by an additional transfer to this address but  
care should be taken to avoid overwriting adjacent data because always full bytes are  
transmitted.  
In the 1:4 multiplex mode, the eight transmitted data bits are placed in quadruples into  
row 0, 1, 2 and 3 of two successive 4-bit RAM words.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
19 of 56  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
drive mode  
LCD segments  
LCD backplanes  
display RAM filling order  
transmitted display byte  
display RAM addresses (columns)/segment outputs (S)  
byte1  
S
S
S
S
S
a
n+2  
n+3  
n+4  
n+5  
n+6  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b
BP0  
S
f
n+1  
display RAM  
bits (rows)/  
backplane  
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
x
static  
MSB  
LSB  
g
x
x
x
S
S
n
e
x
n+7  
c
b
a
f
g
e
d
DP  
c
outputs (BP)  
x
d
DP  
display RAM addresses (columns)/segment outputs (S)  
byte1  
byte2  
BP0  
a
S
S
n
n
n + 1 n + 2 n + 3  
1:2  
b
f
n+1  
display RAM  
bits (rows)/  
backplane  
0
1
2
3
a
b
x
x
f
e
c
x
x
d
DP  
x
MSB  
LSB  
DP  
g
g
x
x
multiplex  
BP1  
a
b
f
g
e c d  
e
S
S
n+2  
n+3  
c
outputs (BP)  
x
d
DP  
display RAM addresses (columns)/segment outputs (S)  
byte1 byte2 byte3  
BP0  
BP1  
S
S
n+1  
n+2  
a
n
n + 1 n + 2  
1:3  
b
S
f
n
MSB  
LSB  
e
display RAM  
bits (rows)/  
backplane  
0
1
2
3
b
DP  
c
a
d
g
x
f
g
e
x
x
multiplex  
b
DP  
c
a
d
g
f
BP2  
e
c
outputs (BP)  
x
d
DP  
display RAM addresses (columns)/segment outputs (S)  
byte1 byte2 byte3 byte4 byte5  
a
S
S
n
n
n + 1  
1:4  
b
BP2  
BP3  
BP0  
BP1  
f
display RAM  
bits (rows)/  
backplane  
0
1
2
3
a
c
f
g
MSB  
LSB  
d
e
g
d
multiplex  
e
b
c
outputs (BP)  
a
c
b
DP  
f
e
g
DP  
d
DP  
n+1  
001aaj646  
x = data bit unchanged.  
Fig 13. Relationship between LCD layout, drive mode, display RAM filling order and display data transmitted over the I2C-bus  
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.12 Data pointer  
The addressing mechanism for the display RAM is realized using the data pointer. This  
allows the loading of an individual display data byte or a series of display data bytes, into  
any location of the display RAM. The sequence commences with the initialization of the  
data pointer by the load data pointer command (see Table 13). After this, the data byte is  
stored starting at the display RAM address indicated by the data pointer (see Figure 13).  
Once each byte is stored, the data pointer is automatically incremented based on the  
selected LCD configuration.  
The contents of the data pointer are incremented as follows:  
In static drive mode by eight.  
In 1:2 multiplex drive mode by four.  
In 1:3 multiplex drive mode by three.  
In 1:4 multiplex drive mode by two.  
If an I2C-bus data access terminates early, the state of the data pointer is unknown.  
Consequently, the data pointer must be rewritten prior to further RAM accesses.  
7.13 Sub-address counter  
The storage of display data is conditioned by the contents of the subaddress counter.  
Storage is allowed to take place only when the contents of the subaddress counter match  
with the hardware subaddress applied to A0, A1 and A2. The subaddress counter value is  
defined by the device select command (see Table 14). If the contents of the subaddress  
counter and the hardware subaddress do not match then data storage is blocked but the  
data pointer will be incremented as if data storage had taken place. The subaddress  
counter is also incremented when the data pointer overflows.  
The storage arrangements described lead to extremely efficient data loading in cascaded  
applications. When a series of display bytes are sent to the display RAM, automatic  
wrap-over to the next PCF8576C occurs when the last RAM address is exceeded.  
Subaddressing across device boundaries is successful even if the change to the next  
device in the cascade occurs within a transmitted character (such as during the 14th  
display data byte transmitted in 1:3 multiplex mode).  
7.14 Bank selector  
7.14.1 Output bank selector  
The output bank selector (see Table 15), selects one of the four bits per display RAM  
address for transfer to the display register. The actual bit selected depends on the LCD  
drive mode in operation and on the instant in the multiplex sequence.  
In 1:4 multiplex mode: all RAM addresses of bit 0 are selected, followed sequentially  
by the contents of bit 1, bit 2 and then bit 3.  
In 1:3 multiplex mode: bits 0, 1 and 2 are selected sequentially.  
In 1:2 multiplex mode: bits 0 and 1 are selected.  
In the static mode: bit 0 is selected.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
21 of 56  
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
The PCF8576C includes a RAM bank switching feature in the static and 1:2 multiplex  
drive modes. In the static drive mode, the bank select command may request the contents  
of bit 2 to be selected for display instead of the contents of bit 0. In 1:2 multiplex drive  
mode, the contents of bits 2 and 3 may be selected instead of bits 0 and 1. This enables  
preparation of display information in an alternative bank and the ability to switch to it once  
it has been assembled.  
7.14.2 Input bank selector  
The input bank selector (see Table 15) loads display data into the display RAM based on  
the selected LCD drive configuration. Using the bank select command, display data can  
be loaded in bit 2 into static drive mode or in bits 2 and 3 into 1:2 multiplex drive mode.  
The input bank selector functions independently of the output bank selector.  
7.15 Blinker  
The display blinking capabilities of the PCF8576C are very versatile. The whole display  
can be blinked at frequencies selected by the blink command. The blinking frequencies  
are integer fractions of the clock frequency; the ratios between the clock and blinking  
frequencies depend on the mode in which the device is operating (see Table 7).  
Table 7.  
Blink frequencies  
Blinking mode  
Normal operating  
mode ratio  
Power saving mode  
ratio  
Blink frequency  
off  
1
-
-
blinking off  
2 Hz  
f clk  
f clk  
f blink  
f blink  
f blink  
=
=
=
f blink  
f blink  
f blink  
=
=
=
----------------  
92160  
----------------  
15360  
2
3
1 Hz  
f clk  
f clk  
-------------------  
184320  
----------------  
30720  
0.5 Hz  
f clk  
f clk  
-------------------  
368640  
----------------  
61440  
An additional feature is for an arbitrary selection of LCD segments to be blinked. This  
applies to the static and 1:2 multiplex drive modes and can be implemented without any  
communication overheads. Using the output bank selector, the displayed RAM banks are  
exchanged with alternate RAM banks at the blinking frequency. This mode can also be  
specified by the blink command (see Table 16).  
In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of  
LCD segments can be blinked by selectively changing the display RAM data at fixed time  
intervals.  
If the entire display needs to be blinked at a frequency other than the nominal blink  
frequency, this can be done using the mode set command to set and reset the display  
enable bit E at the required rate (see Table 9).  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
22 of 56  
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8. Basic architecture  
8.1 Characteristics of the I2C-bus  
The I2C-bus provides bidirectional, two-line communication between different IC or  
modules. The two lines are a Serial Data line (SDA) and a Serial Clock Line (SCL). When  
connected to the output stages of a device, both lines must be connected to a positive  
supply via a pull-up resistor. Data transfer is initiated only when the bus is not busy.  
8.1.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse. Changes in the data line at this time will  
be interpreted as a control signal. Bit transfer is illustrated in Figure 14.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 14. Bit transfer  
8.1.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW change  
of the data line, while the clock is HIGH, is defined as the START condition (S).  
A LOW-to-HIGH change of the data line, while the clock is HIGH, is defined as the STOP  
condition (P). The START and STOP conditions are illustrated in Figure 15.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 15. Definition of START and STOP conditions  
8.1.2 System configuration  
A device generating a message is a transmitter and a device receiving a message is the  
receiver. The device that controls the message is the master and the devices which are  
controlled by the master are the slaves. The system configuration is illustrated in  
Figure 16.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
23 of 56  
 
 
 
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
mga807  
Fig 16. System configuration  
8.1.3 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during  
which time the master generates an extra acknowledge related clock pulse.  
Acknowledgement on the I2C-bus is illustrated in Figure 17.  
A slave receiver which is addressed must generate an acknowledge after the  
reception of each byte.  
A master receiver must generate an acknowledge after the reception of each byte that  
has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be taken into  
consideration).  
A master receiver must signal an end-of-data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
master receiver must leave the data line HIGH during the 9th pulse to not  
acknowledge. The master will now generate a STOP condition.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 17. Acknowledgement on the I2C-bus  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
24 of 56  
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8.1.4 PCF8576C I2C-bus controller  
The PCF8576C acts as an I2C-bus slave receiver. It does not initiate I2C-bus transfers or  
transmit data to an I2C-bus master receiver. The only data output from the PCF8576C are  
the acknowledge signals of the selected devices. Device selection depends on the  
I2C-bus slave address, the transferred command data and the hardware subaddress.  
In single device application, the hardware subaddress inputs A0, A1 and A2 are normally  
tied to VSS which defines the hardware subaddress 0. In multiple device applications  
A0, A1 and A2 are tied to VSS or VDD using a binary coding scheme so that no two  
devices with a common I2C-bus slave address have the same hardware subaddress.  
In the power-saving mode it is possible that the PCF8576C is not able to keep up with the  
highest transmission rates when large amounts of display data are transmitted. If this  
situation occurs, the PCF8576C forces the SCL line LOW until its internal operations are  
completed. This is known as the clock synchronization feature of the I2C-bus and serves  
to slow down fast transmitters. Data loss does not occur.  
8.1.5 Input filter  
To enhance noise immunity in electrically adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
8.2 I2C-bus protocol  
Two I2C-bus slave addresses (0111000 and 0111001) are reserved for the PCF8576C.  
The least significant bit of the slave address that a PCF8576C responds to is defined by  
the level tied at its input SA0. Therefore, two types of PCF8576C can be distinguished on  
the same I2C-bus which allows:  
Up to 16 PCF8576Cs on the same I2C-bus for very large LCD applications.  
The use of two types of LCD multiplex on the same I2C-bus.  
The I2C-bus protocol is shown in Figure 18. The sequence is initiated with a START  
condition (S) from the I2C-bus master which is followed by one of the two PCF8576C  
slave addresses available. All PCF8576Cs with the corresponding SA0 level acknowledge  
in parallel with the slave address but all PCF8576Cs with the alternative SA0 level ignore  
the whole I2C-bus transfer.  
After acknowledgement, one or more command bytes (m) follow which define the status of  
the addressed PCF8576Cs.  
The last command byte is tagged with a cleared most significant bit, the continuation bit C.  
The command bytes are also acknowledged by all addressed PCF8576Cs on the bus.  
After the last command byte, a series of display data bytes (n) may follow. These display  
bytes are stored in the display RAM at the address specified by the data pointer and the  
subaddress counter. Both data pointer and subaddress counter are automatically updated  
and the data is directed to the intended PCF8576C device. The acknowledgement after  
each byte is made only by the (A0, A1 and A2) addressed PCF8576C. After the last  
display byte, the I2C-bus master issues a STOP condition (P).  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
25 of 56  
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
acknowledge  
by A0, A1 and A2  
selected  
acknowledge by  
all addressed  
PCF8576Cs  
R/W  
0
PCF8576C only  
slave address  
S
A
0
0
1
1
1
0
0
A C  
A
DISPLAY DATA  
A
P
COMMAND  
S
n 1 byte(s)  
n 0 byte(s)  
1 byte  
update data pointers  
and if necessary,  
subaddress counter  
mbe538  
Fig 18. I2C-bus protocol  
8.3 Command decoder  
The command decoder identifies command bytes that arrive on the I2C-bus. All available  
commands carry a continuation bit C in their most significant bit position as shown in  
Figure 19. When this bit is set, it indicates that the next byte of the transfer to arrive will  
also represent a command. If this bit is reset, it indicates that the command byte is the last  
in the transfer. Further bytes will be regarded as display data.  
The five commands available to the PCF8576C are defined in Table 8.  
MSB  
LSB  
C
REST OF OPCODE  
msa833  
(1) C = 0; last command  
(2) C = 1; commands continue  
Fig 19. General format of byte command  
Table 8.  
Definition of PCF8576C commands  
Command  
OPCODE  
Reference  
Description  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
mode set  
C
1
0
LP  
E
B
M1  
M0  
Section 8.3.1 defines LCD drive mode, LCD bias  
configuration, display status and power  
dissipation mode  
load data  
pointer  
C
C
C
0
1
1
P5  
1
P4  
0
P3  
0
P2  
A2  
0
P1  
A1  
I
P0  
A0  
O
Section 8.3.2 data pointer to define one of 40 display  
RAM addresses  
device select  
Section 8.3.3 define one of eight hardware  
subaddresses  
bank select  
1
1
1
Section 8.3.4 bit I: defines input bank selection  
(storage of arriving display data);  
bit O: defines output bank selection  
(retrieval of LCD display data)  
blink  
C
1
1
1
0
A
BF1 BF0 Section 8.3.5 defines the blink frequency and blink  
mode  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
26 of 56  
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8.3.1 Mode set command  
Table 9.  
LCD drive mode command bit description  
LCD drive mode  
Bit  
M1  
0
Drive mode  
Backplane  
BP0  
M0  
1
static  
1:2  
BP0, BP1  
1
0
1:3  
BP0, BP1, BP2  
BP0, BP1, BP2, BP3  
1
1
1:4  
0
0
Table 10. LCD bias configuration command bit description  
LCD bias  
13 bias  
12 bias  
Bit B  
0
1
Table 11. Display status command bit description[1]  
Display status  
disabled (blank)  
enabled  
Bit E  
0
1
[1] The possibility to disable the display allows implementation of blinking under external control.  
Table 12. Power dissipation mode command bit description  
Display status  
normal mode  
Bit LP  
0
1
power saving mode  
8.3.2 Load data pointer command  
Table 13. Load data pointer command bit description  
Description  
Bits  
6 bit binary value, 0 to 39  
P5  
P4  
P3  
A1  
P2  
P1  
A0  
P0  
8.3.3 Device select command  
Table 14. Device select command bit description  
Description  
Bits  
3 bit binary value, 0 to 7  
A2  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
27 of 56  
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8.3.4 Bank select command  
Table 15. Bank select command[1]  
Bank  
Mode  
Static  
Bit  
I
Value  
1:2 multiplex drive mode  
Input bank  
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
Output bank  
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
O
0
1
[1] The bank select command has no effect in 1:3 or 1:4 multiplex drive modes.  
8.3.5 Blink command  
Table 16. Blink frequency command bit description  
Blink frequency  
Bit  
BF1  
0
BF0  
0
off  
1
0
1
2
1
0
3
1
1
Table 17. Blink mode command bit description  
Blink mode  
Bit A  
normal blinking  
0
1
alternate RAM bank blinking  
8.4 Display controller  
The display controller executes the commands identified by the command decoder. It  
contains the status registers of the PCF8576C and coordinates their effects. The  
controller is also responsible for loading display data into the display RAM as required by  
the filling order.  
9. Internal circuitry  
V
LCD  
V
SS  
BP0 to BP3,  
S0 to S39  
SDA, SCL  
CLK, OSC, A0 to A2,  
SA0,  
SYNC  
V
DD  
013aaa109  
Fig 20. Device protection diagram  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
28 of 56  
 
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
10. Limiting values  
CAUTION  
Static voltages across the liquid crystal display can build up when the LCD supply voltage  
(VLCD) is on while the IC supply voltage (VDD) is off, or vice versa. This may cause unwanted  
display artifacts. To avoid such artifacts, VLCD and VDD must be applied or removed together.  
Table 18. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
V
VDD  
VLCD  
VI  
supply voltage  
LCD supply voltage  
input voltage  
0.5  
8.0  
[1]  
VDD 8.0 VDD  
V
on each of the pins SCL, SDA, 0.5  
8.0  
V
CLK, SYNC, SA0, OSC and  
A0 to A2  
[1]  
VO  
output voltage  
on each of the pins  
0.5  
8.0  
V
S0 to S39 and BP0 to BP3  
II  
input current  
20  
25  
50  
50  
50  
-
+20  
mA  
mA  
mA  
mA  
mA  
mW  
mW  
°C  
IO  
output current  
+25  
IDD  
ISS  
supply current  
+50  
ground supply current  
+50  
IDD(LCD) LCD supply current  
+50  
Ptot  
Po  
total power dissipation  
output power  
400  
-
100  
[2]  
[3]  
[4]  
[5]  
Tstg  
VESD  
storage temperature  
65  
-
+150  
±4000  
±200  
100  
electrostatic discharge  
voltage  
HBM  
MM  
V
-
V
Ilu  
latch-up current  
-
mA  
[1] Values with respect to VDD  
.
[2] According to the NXP store and transport conditions (document SNW-SQ-623) the devices have to be  
stored at a temperature of +5 °C to +45 °C and a humidity of 25 % to 75 %.  
[3] Pass level; Human Body Model (HBM) according to JESD22-A114.  
[4] Pass level; Machine Model (MM), according to JESD22-A115.  
[5] Pass level; latch-up testing, according to JESD78.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
29 of 56  
 
 
 
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
11. Static characteristics  
Table 19. Static characteristics  
VDD = 2.0 V to 6.0 V; VSS = 0 V; VLCD = VDD 6.0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Supplies  
Conditions  
Min  
Typ  
Max  
Unit  
VDD  
supply voltage  
2.0  
-
-
-
-
6.0  
V
[1]  
[2]  
VLCD  
IDD  
LCD supply voltage  
supply current:  
VDD 6.0  
VDD 2.0 V  
fclk = 200 kHz  
-
120  
60  
µA  
µA  
IDD(lp)  
low-power mode supply  
current  
VDD = 3.5 V; VLCD = 0 V; fclk = 35 kHz;  
A0, A1 and A2 connected to VSS  
-
Logic  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
on pins CLK, SYNC, OSC,  
A0 to A2 and SA0  
VSS  
-
-
-
0.3VDD  
VDD  
V
V
VIH  
on pins CLK, SYNC, OSC,  
A0 to A2 and SA0  
0.7VDD  
-
VOL  
VOH  
IOL  
LOW-level output voltage  
HIGH-level output voltage  
LOW-level output current  
IOL = 0 mA  
IOH = 0 mA  
0.05  
V
VDD 0.05 -  
-
-
V
VOL = 1.0 V; VDD = 5.0 V;  
on pins CLK and SYNC  
1
-
mA  
IL  
leakage current  
VI = VDD or VSS; on pins  
1  
-
+1  
µA  
CLK, SCL, SDA, A0 to A2 and SA0  
IL(OSC)  
Ipd  
leakage current on pin OSC  
pull-down current  
VI = VDD  
1  
-
+1  
µA  
µA  
VI = 1.0 V; VDD = 5.0 V;  
15  
50  
150  
on pins A0 to A2 and OSC  
RSYNC_N SYNC resistance  
20  
-
50  
1.0  
-
150  
1.6  
7
kΩ  
V
[3]  
[4]  
VPOR  
CI  
power-on reset voltage  
input capacitance  
-
pF  
I2C-bus; pins SDA and SCL  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
VSS  
-
-
-
0.3VDD  
V
VIH  
0.7VDD  
1  
6.0  
-
V
IOH(CLK)  
HIGH-level output current on  
pin CLK  
VOH = 4.0 V; VDD = 5.0 V  
VOL = 0.4 V; VDD = 5.0 V  
mA  
IOL(SDA)  
LOW-level output current on  
pin SDA  
3
-
-
mA  
LCD outputs  
VBP  
VS  
voltage on pin BP  
Cbpl = 35 nF; on pins BP0 to BP3  
Csgm = 5 nF; on pins S0 to S39  
20  
-
-
-
-
+20  
+20  
5
mV  
mV  
kΩ  
kΩ  
voltage on pin S  
20  
[5]  
[5]  
RBP  
RS  
resistance on pin BP  
resistance on pin S  
VLCD = VDD 5 V; on pins BP0 to BP3  
VLCD = VDD 5 V; on pins S0 to S39  
-
-
7.5  
[1]  
V
LCD VDD 3 V for 13 bias.  
[2] LCD outputs are open-circuit; inputs at VSS or VDD; external clock with 50 % duty factor; I2C-bus inactive.  
[3] Resets all logic when VDD < VPOR  
.
[4] Periodically sampled, not 100 % tested.  
[5] Outputs measured one at a time.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
30 of 56  
 
 
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
11.1 Typical supply current characteristics  
mbe530  
mbe529  
50  
50  
I
I  
DD(LCD)  
SS  
(µA)  
(µA)  
normal  
mode  
40  
40  
30  
20  
30  
20  
power-saving  
mode  
10  
0
10  
0
0
100  
200  
0
100  
200  
f
(Hz)  
f (Hz)  
fr  
fr  
VDD = 5 V; VLCD = 0 V; Tamb = 25 °C  
VDD = 5 V; VLCD = 0 V; Tamb = 25 °C  
Fig 21. ISS as a function of ffr  
Fig 22. IDD(LCD) as a function of ffr  
mbe527  
mbe528  
50  
50  
I
SS  
I  
DD(LCD)  
(µA)  
(µA)  
40  
40  
normal mode  
= 200 kHz  
f
85 °C  
clk  
30  
20  
30  
20  
25 °C  
40 °C  
power-saving mode  
= 35 kHz  
10  
0
10  
0
f
clk  
0
5
10  
0
5
10  
V
(V)  
V
DD  
(V)  
DD  
VLCD = 0 V; external clock; Tamb = 25 °C  
VLCD = 0 V; external clock; Tamb = 25 °C  
Fig 23. ISS as a function of VDD  
Fig 24. IDD(LCD) as a function of VDD  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
31 of 56  
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
11.2 Typical LCD output characteristics  
mbe532  
mbe526  
2.5  
10  
R
S
R
O(max)  
(k)  
R
O(max)  
2.0  
(k)  
R
S
1.5  
1.0  
R
BP  
1
R
BP  
0.5  
0
1  
10  
0
3
6
40  
0
40  
80  
120  
(°C)  
V
DD  
(V)  
T
amb  
VLCD = 0 V; Tamb = 25 °C  
VDD = 5 V; VLCD = 0 V  
Fig 25. RO(max) as a function of VDD  
Fig 26. RO(max) as a function of Tamb  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
32 of 56  
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
12. Dynamic characteristics  
Table 20. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Timing characteristics: driver timing waveforms (see Figure 27)  
[1]  
fclk  
clock frequency  
normal mode; VDD = 5 V 125  
200  
31  
315  
48  
kHz  
kHz  
power saving mode;  
VDD = 3 V  
21  
tclk(H)  
tclk(L)  
clock HIGH time  
clock LOW time  
1
1
-
-
-
-
-
-
-
µs  
µs  
ns  
µs  
µs  
-
tPD(SYNC_N) SYNC propagation delay  
400  
-
tSYNC_NL  
SYNC LOW time  
1
-
tPD(drv)  
driver propagation delay  
VLCD = VDD 5 V  
30  
[2]  
Timing characteristics: I2C-bus (see Figure 28)  
tBUF  
bus free time between a STOP and START  
condition  
4.7  
-
-
µs  
tHD;STA  
tSU;STA  
tLOW  
tHIGH  
tr  
hold time (repeated) START condition  
set-up time for a repeated START condition  
LOW period of the SCL clock  
HIGH period of the SCL clock  
rise time of both SDA and SCL signals  
fall time of both SDA and SCL signals  
capacitive load for each bus line  
data set-up time  
4.0  
4.7  
4.7  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
µs  
µs  
µs  
µs  
µs  
µs  
pF  
ns  
ns  
µs  
-
-
-
1
tf  
-
0.3  
Cb  
-
400  
tSU;DAT  
tHD;DAT  
tSU;STO  
250  
0
-
-
-
data hold time  
set-up time for STOP condition  
4.0  
[1]  
[2] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to VIL and VIH with an  
input voltage swing of VSS to VDD  
f
clk < 125 kHz, I2C-bus maximum transmission speed is derated.  
.
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
33 of 56  
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1/f  
CLK  
t
t
clk(L)  
clk(H)  
0.7V  
0.3V  
DD  
DD  
CLK  
0.7V  
0.3V  
DD  
DD  
SYNC  
t
t
PD(SYNC_N)  
PD(SYNC_N)  
t
SYNC_NL  
0.5 V  
(V = 5 V)  
BP0 to BP3,  
and S0 to S39  
DD  
0.5 V  
t
PD(drv)  
mce424  
Fig 27. Driver timing waveforms  
SDA  
t
t
t
f
BUF  
LOW  
SCL  
SDA  
t
HD;STA  
t
t
t
SU;DAT  
r
HD;DAT  
t
HIGH  
t
SU;STA  
t
SU;STO  
mga728  
Fig 28. I2C-bus timing waveforms  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
34 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
13. Application information  
13.1 Cascaded operation  
In large display configurations, up to 16 PCF8576Cs can be recognized on the same  
I2C-bus by using the 3-bit hardware subaddress (A0, A1 and A2) and the programmable  
I2C-bus slave address (SA0).  
Table 21. Addressing cascaded PCF8576C  
Cluster  
Bit SA0  
Pin A2  
Pin A1  
Pin A0  
Device  
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
2
1
8
9
10  
11  
12  
13  
14  
15  
Cascaded PCF8576Cs are synchronized. They can share the backplane signals from one  
of the devices in the cascade. Such an arrangement is cost-effective in large LCD  
applications since the backplane outputs of only one device need to be through-plated to  
the backplane electrodes of the display. The other PCF8576Cs of the cascade contribute  
additional segment outputs but their backplane outputs are left open-circuit (see  
Figure 29).  
The PCF8576C can also be cascaded with the PCF8566. The connections are identical to  
the PCF8576C cascade.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
35 of 56  
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
V
DD  
V
LCD  
SDA  
SCL  
1
2
5
12  
40 segment drives  
17 to 56  
LCD PANEL  
SYNC  
CLK  
3
4
6
PCF8576CT  
(up to 2560  
elements)  
13,15,  
14,16  
BP0 to BP3  
(open-circuit)  
OSC  
A0 A1 A2 SAO V  
SS  
V
LCD  
V
DD  
t
r
R ≤  
2C  
V
DD  
V
LCD  
B
5
12  
SDA  
1
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
CONTROLLER  
40 segment drives  
17 to 56  
SCL  
2
PCF8576CT  
SYNC  
3
4
6
13,15,  
14,16  
4 backplanes  
BP0 to BP3  
CLK  
OSC  
mbe533  
7
8
9
10 11  
A0 A1 A2 SA0 V  
SS  
V
SS  
Fig 29. Cascaded PCF8576C configuration  
The SYNC line is provided to maintain the correct synchronization between all cascaded  
PCF8576Cs. This synchronization is guaranteed after the power-on reset. The only time  
that SYNC is likely to be needed is if synchronization is accidentally lost (e.g. by noise in  
adverse electrical environments; or by the defining a multiplex mode when PCF8576Cs  
with differing SA0 levels are cascaded).  
SYNC is organized as an input/output pin; the output selection being realized as an  
open-drain driver with an internal pull-up resistor. A PCF8576C asserts the SYNC line  
and monitors the SYNC line at all other times. If synchronization in the cascade is lost, it is  
restored by the first PCF8576C to assert SYNC. The timing relationship between the  
backplane waveforms and the SYNC signal for the various drive modes of the PCF8576C  
are shown in Figure 30.  
For single plane wiring of packaged PCF8576Cs and chip-on-glass cascading, see  
Figure 31.  
.
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
36 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1
T
=
fr  
f
fr  
BP0  
SYNC  
(a) static drive mode.  
BP0  
(1/2 bias)  
BP0  
(1/3 bias)  
SYNC  
(b) 1:2 multiplex drive mode.  
BP0  
(1/3 bias)  
SYNC  
(c) 1:3 multiplex drive mode.  
BP0  
(1/3 bias)  
SYNC  
(d) 1:4 multiplex drive mode.  
mgl755  
Excessive capacitive coupling between SCL or CLK and SYNC will cause erroneous  
synchronization. If this is a problem you can increase the capacitance of the SYNC line (e.g. by an  
external capacitor between SYNC and VDD.) Degradation of the positive edge of the SYNC pulse  
can be countered by an external pull-up resistor.  
Fig 30. Synchronization of the cascade for the various PCF8576C drive modes  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
37 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
SDA  
SCL  
SYNC  
CLK  
V
DD  
V
SS  
V
LCD  
SDA  
SCL  
1
2
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
S39  
S38  
S37  
S36  
S35  
S34  
S33  
S32  
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
S22  
S21  
1
2
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
S79  
S78  
S77  
S76  
S75  
S74  
S73  
S72  
S71  
S70  
S69  
S68  
S67  
S66  
S65  
S64  
S63  
S62  
S61  
SYNC  
CLK  
3
3
4
4
V
5
5
DD  
OSC  
A0  
6
6
7
7
A1  
8
8
A2  
9
9
SA0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
SS  
V
LCD  
BP0  
BP0  
BP2  
BP1  
BP3  
S40  
S41  
S42  
S43  
BP2  
BP1  
BP3  
S0  
open  
PCF8576CT  
PCF8576CT  
S1  
S2  
S3  
34  
33  
32  
31  
30  
29  
S17  
S16  
S15  
34  
33  
32  
31  
30  
29  
S57  
S56  
S55  
S7  
S8  
24  
25  
26  
27  
28  
S47  
S48  
S49  
S50  
S51  
24  
25  
26  
27  
28  
S9  
S14  
S13  
S12  
S54  
S53  
S52  
S10  
S11  
S0  
S10  
S11  
S12  
S13  
S39  
S40  
S50  
S51  
S52  
S53  
S79  
segments  
backplanes  
mbe537  
Fig 31. Single plane wiring of packaged PCF8576CTs  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
38 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
14. Package outline  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
D
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT314-2  
136E10  
MS-026  
Fig 32. Package outline SOT314-2 (LQFP64) of PCF8576CH  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
39 of 56  
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
VSO56: plastic very small outline package; 56 leads  
SOT190-1  
D
E
A
X
c
y
H
v M  
A
E
Z
56  
29  
Q
p
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
L
detail X  
1
28  
w
M
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(2)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
0.3  
0.1  
3.0  
2.8  
0.42  
0.30  
0.22 21.65 11.1  
0.14 21.35 11.0  
15.8  
15.2  
1.6  
1.4  
1.45  
1.30  
0.90  
0.55  
3.3  
0.25  
0.01  
0.75  
2.25  
0.2  
0.1  
0.1  
7o  
0o  
0.012 0.12  
0.004 0.11  
0.017 0.0087 0.85  
0.012 0.0055 0.84  
0.44  
0.43  
0.62  
0.60  
0.063 0.057  
0.055 0.051  
0.035  
0.022  
inches  
0.0295  
0.089  
0.008 0.004 0.004  
0.13  
Notes  
1. Plastic or metal protrusions of 0.3 mm (0.012 inch) maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
97-08-11  
03-02-19  
SOT190-1  
Fig 33. Package outline SOT190-1 (VSO56) of PCF8576CT  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
40 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
HTSSOP56: plastic thermal enhanced thin shrink small outline package; 56 leads;  
body width 6.1 mm; exposed die pad  
SOT793-1  
D
E
A
X
c
y
exposed die pad  
H
v M  
A
E
D
h
Z
56  
29  
(A )  
3
A
A
2
E
h
θ
A
pin 1 index  
1
L
p
L
detail X  
1
28  
w M  
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
Z
UNIT  
A
A
A
b
c
D
D
E
E
e
H
L
L
v
w
y
θ
p
p
1
2
3
h
h
E
max.  
8o  
0o  
0.15 1.05  
0.05 0.80  
0.27 0.20 14.1  
0.17 0.09 13.9  
4.3  
4.1  
6.2  
6.0  
4.3  
4.1  
8.3  
7.9  
0.8  
0.4  
0.4  
0.1  
mm  
1.2  
0.25  
0.5  
1
0.2  
0.08  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-03-04  
SOT793-1  
143E36T  
MO-153  
Fig 34. Package outline SOT793-1 (HTSSOP56) of PCF8576CTT  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
41 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
15. Bare die outline  
Wire bond die; 56 bonding pads; 3.0 x 2.82 x 0.38 mm  
PCF8576CU/10  
D
A
34  
21  
C1  
35  
20  
e
X
x
0
0
E
y
(4)  
50  
8
C2  
51  
56  
1
7
F
P
P
3
4
P
P
2
1
detail X  
0
0.5  
1 mm  
scale  
Dimensions  
(3)  
(1)  
(2)  
(1)  
(2)  
Unit  
max  
A
D
E
e
P
P
P
P
4
1
2
3
0.610  
0.096  
mm nom 0.38 2.82 3.00  
min  
0.110 0.097 0.110 0.097  
Note  
1. Pad size  
2. Passivation opening  
3. Dimension not drawn to scale  
4. Marking code: PC8576C-1  
pcf8576cu_10_do  
Issue date  
References  
JEDEC  
Outline  
European  
projection  
version  
IEC  
JEITA  
PCF8576CU/10  
09-06-02  
Fig 35. Bare die outline of PCF8576CU/10  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
42 of 56  
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Wire bond die; 56 bonding pads; 3.0 x 2.82 x 0.38 mm  
PCF8576CU  
D
A
34  
21  
C1  
35  
20  
e
X
x
0
0
E
y
(4)  
50  
8
C2  
51  
56  
1
7
F
P
P
3
4
P
P
2
1
detail X  
0
0.5  
1 mm  
scale  
Dimensions  
(3)  
(1)  
(2)  
(1)  
(2)  
Unit  
max  
A
D
E
e
P
P
P
P
4
1
2
3
0.610  
0.096  
mm nom 0.38 2.82 3.00  
min  
0.110 0.097 0.110 0.097  
Note  
1. Pad size  
2. Passivation opening  
3. Dimension not drawn to scale  
4. Marking code: PC8576C-1  
pcf8576cu_do  
References  
JEDEC  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEITA  
PCF8576CU  
29-06-02  
Fig 36. Bare die outline of PCF8576CU  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
43 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Bare die; 56 bumps; 3.0 x 2.82 x 0.40 mm  
PCF8576CU/2  
D
34  
21  
C1  
35  
20  
e
X
x
E
0
0
y
(2)  
50  
8
C2  
51  
56  
1
7
F
Y
L
A
2
A
A
1
b
detail X  
1 mm  
detail Y  
0
0.5  
scale  
Dimensions  
(1)  
Unit  
max  
A
A
A
b
D
E
e
L
1
2
0.610  
0.096  
mm nom 0.398 0.0175 0.380 0.094 2.82 3.00  
min  
0.094  
Note  
1. Dimension not drawn to scale  
2. Marking code: PC8576C-2  
pcf8576cu_2_do  
Issue date  
References  
Outline  
European  
projection  
version  
IEC  
JEDEC  
JEITA  
PCF8576CU/2  
09-06-02  
Fig 37. Bare die outline of PCF8576CU/2  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
44 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 22. Pad and bump description for PCF8576CU  
All x/y coordinates represent the position of the center of each pad with respect to the center  
(x/y = 0) of the chip.  
Symbol  
SDA  
SCL  
SYNC  
CLK  
VDD  
OSC  
A0  
Pad  
1
X (µm)  
74  
Y (µm)  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1284  
1116  
945  
751  
485  
125  
Description  
I2C-bus serial data input/output  
I2C-bus serial clock input  
cascade synchronization input/output  
external clock input/output  
supply voltage  
2
148  
3
355  
4
534  
5
742  
6
913  
internal oscillator enable input  
subaddress input  
7
1087  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1074  
914  
A1  
8
subaddress input  
A2  
9
subaddress input  
SA0  
VSS  
VLCD  
BP0  
BP2  
BP1  
BP3  
S0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
subaddress input  
logic ground  
LCD supply voltage  
LCD backplane output  
LCD backplane output  
LCD backplane output  
LCD backplane output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
285  
458  
618  
791  
S1  
951  
S2  
1124  
1284  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1243  
1083  
910  
S3  
S4  
S5  
S6  
741  
S7  
581  
S8  
408  
S9  
248  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
75  
85  
258  
418  
591  
751  
924  
1084  
1290  
1290  
1290  
1290  
1290  
750  
577  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
45 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 22. Pad and bump description for PCF8576CU  
All x/y coordinates represent the position of the center of each pad with respect to the center  
(x/y = 0) of the chip.  
Symbol  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
Pad  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
X (µm)  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1083  
923  
Y (µm)  
417  
Description  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
244  
84  
89  
249  
422  
582  
755  
915  
1088  
1248  
1380  
1380  
1380  
1380  
1380  
1380  
750  
590  
417  
257  
Table 23. Alignment marks  
Symbol  
X (µm)  
1290  
1295  
1305  
Y (µm)  
1385  
C1  
C2  
F
1385  
1405  
16. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC 61340-5 or equivalent  
standards.  
17. Packing information  
17.1 Tray information  
Tray information for the PCF8576CU and PCF8576CU/2 is shown in Figure 38, Figure 39  
and Table 24.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
46 of 56  
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
G
A
C
H
D
B
F
E
001aai237  
Fig 38. Tray details  
001aaj619  
Fig 39. Tray alignment  
Table 24. Tray dimensions  
Symbol  
Description  
Value  
A
B
C
D
pocket pitch; x direction  
pocket pitch; y direction  
pocket width; x direction  
pocket width; y direction  
5.59 mm  
6.35 mm  
3.22 mm  
3.50 mm  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
47 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 24. Tray dimensions  
Symbol  
Description  
Value  
E
F
G
H
J
tray width; x direction  
tray width; y direction  
50.67 mm  
50.67 mm  
cut corner to pocket 1,1 center  
cut corner to pocket 1,1 center  
tray thickness  
5.78 mm  
6.29 mm  
3.94 mm  
1.76 mm  
2.46 mm  
0.89 mm  
8
K
L
tray cross section  
tray cross section  
M
x
pocket depth  
number of pockets; x direction  
number of pockets; y direction  
y
7
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
48 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
17.2 Film frame carrier information  
100  
m
Saw lane  
200  
m
detail X  
Marking code  
Straight edge  
of the wafer  
X
013aaa112  
Fig 40. Layout of wafer on film frame carrier of PCF8576CU/10  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
49 of 56  
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
18. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
18.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
18.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
18.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
50 of 56  
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
18.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 41) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 25 and 26  
Table 25. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 26. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 41.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
51 of 56  
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 41. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
52 of 56  
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
19. Abbreviations  
Table 27. Abbreviations  
Acronym  
DC  
Description  
Direct Current  
FFC  
HBM  
I2C  
Film Frame Carrier  
Human Body Model  
Inter-Integrated Circuit  
Integrated Circuit  
IC  
LCD  
LSB  
MM  
Liquid Crystal Display  
Least Significant Bit  
Machine Model  
MOS  
MSB  
MSL  
PCB  
POR  
RC  
Metal Oxide Semiconductor  
Most Significant Bit  
Moisture Sensitivity Level  
Printed-Circuit Board  
Power-On Reset  
Resistance-Capacitance  
Random Access Memory  
Root Mean Square  
Serial Clock Line  
RAM  
RMS  
SCL  
SDA  
SMD  
Serial Data Line  
Surface Mount Device  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
53 of 56  
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
20. Revision history  
Table 28. Revision history  
Document ID  
PCF8576C_9  
Modifications:  
Release date  
20090709  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF8576C_8  
The format of this data sheet has been redesigned to comply with the new identity guidelines  
of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Symbols updated and checked with NXP Symbols Library  
Changed values in limiting values table (see Table 18) from relative to absolute values  
Added TT type  
Added bare die outline drawings  
Added FFC information  
Rewritten chapter 7.3 (see Section 7.3)  
PCF8576C_8  
PCF8576C_7  
PCF8576C_6  
PCF8576C_5  
PCF8576C_4  
PCF8576C_3  
PCF8576C_2  
PCF8576C_1  
20041122  
20011002  
19980730  
19971114  
19970402  
19970203  
19961209  
19950630  
Product specification  
Product specification  
Product specification  
Product specification  
Product specification  
Product specification  
Product specification  
Product specification  
-
-
-
-
-
-
-
-
PCF8576C_7  
PCF8576C_6  
PCF8576C_5  
PCF8576C_4  
PCF8576C_3  
PCF8576C_2  
PCF8576C_1  
-
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
54 of 56  
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
21. Legal information  
21.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Limiting values — Stress above one or more limiting values (as defined in  
21.2 Definitions  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
21.3 Disclaimers  
Bare die — All die are tested on compliance with their related technical  
specifications as stated in this data sheet up to the point of wafer sawing and  
are handled in accordance with the NXP Semiconductors storage and  
transportation conditions. If there are data sheet limits not guaranteed, these  
will be separately indicated in the data sheet. There are no post-packing tests  
performed on individual die or wafers.  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
NXP Semiconductors has no control of third party procedures in the sawing,  
handling, packing or assembly of the die. Accordingly, NXP Semiconductors  
assumes no liability for device functionality or performance of the die or  
systems after third party sawing, handling, packing or assembly of the die. It  
is the responsibility of the customer to test and qualify their application in  
which the die is used.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
All die sales are conditioned upon and subject to the customer entering into a  
written die sale agreement with NXP Semiconductors through its legal  
department.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
21.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
I2C-bus — logo is a trademark of NXP B.V.  
22. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF8576C_9  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 09 — 9 July 2009  
55 of 56  
 
 
 
 
 
 
PCF8576C  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
23. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
8.3.5  
8.4  
Blink command. . . . . . . . . . . . . . . . . . . . . . . . 28  
Display controller . . . . . . . . . . . . . . . . . . . . . . 28  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
9
Internal circuitry . . . . . . . . . . . . . . . . . . . . . . . 28  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 29  
10  
11  
11.1  
11.2  
Static characteristics . . . . . . . . . . . . . . . . . . . 30  
Typical supply current characteristics. . . . . . . 31  
Typical LCD output characteristics. . . . . . . . . 32  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8  
12  
Dynamic characteristics. . . . . . . . . . . . . . . . . 33  
Application information . . . . . . . . . . . . . . . . . 35  
Cascaded operation. . . . . . . . . . . . . . . . . . . . 35  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 39  
Bare die outline . . . . . . . . . . . . . . . . . . . . . . . . 42  
Handling information . . . . . . . . . . . . . . . . . . . 46  
13  
13.1  
14  
7
7.1  
7.2  
7.3  
Functional description . . . . . . . . . . . . . . . . . . . 9  
Power-on-reset . . . . . . . . . . . . . . . . . . . . . . . . . 9  
LCD bias generator. . . . . . . . . . . . . . . . . . . . . 10  
LCD voltage selector . . . . . . . . . . . . . . . . . . . 10  
LCD drive mode waveforms . . . . . . . . . . . . . . 12  
Static drive mode . . . . . . . . . . . . . . . . . . . . . . 12  
1:2 Multiplex drive mode. . . . . . . . . . . . . . . . . 13  
1:3 Multiplex drive mode. . . . . . . . . . . . . . . . . 15  
1:4 multiplex drive mode. . . . . . . . . . . . . . . . . 16  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Internal clock. . . . . . . . . . . . . . . . . . . . . . . . . . 17  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 18  
Shift register . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 18  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 18  
Display RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Sub-address counter . . . . . . . . . . . . . . . . . . . 21  
Bank selector . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Output bank selector. . . . . . . . . . . . . . . . . . . . 21  
Input bank selector . . . . . . . . . . . . . . . . . . . . . 22  
Blinker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
15  
7.4  
16  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.5  
7.5.1  
7.5.2  
7.6  
17  
17.1  
17.2  
Packing information . . . . . . . . . . . . . . . . . . . . 46  
Tray information . . . . . . . . . . . . . . . . . . . . . . . 46  
Film frame carrier information . . . . . . . . . . . . 49  
18  
Soldering of SMD packages . . . . . . . . . . . . . . 50  
Introduction to soldering. . . . . . . . . . . . . . . . . 50  
Wave and reflow soldering . . . . . . . . . . . . . . . 50  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 50  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 51  
18.1  
18.2  
18.3  
18.4  
7.7  
7.8  
7.9  
19  
20  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 54  
7.10  
7.11  
7.12  
7.13  
7.14  
7.14.1  
7.14.2  
7.15  
21  
Legal information . . . . . . . . . . . . . . . . . . . . . . 55  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 55  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
21.1  
21.2  
21.3  
21.4  
22  
23  
Contact information . . . . . . . . . . . . . . . . . . . . 55  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
8
8.1  
Basic architecture . . . . . . . . . . . . . . . . . . . . . . 23  
Characteristics of the I2C-bus. . . . . . . . . . . . . 23  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
START and STOP conditions . . . . . . . . . . . . . 23  
System configuration . . . . . . . . . . . . . . . . . . . 23  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 24  
PCF8576C I2C-bus controller . . . . . . . . . . . . . 25  
Input filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 25  
Command decoder . . . . . . . . . . . . . . . . . . . . . 26  
Mode set command . . . . . . . . . . . . . . . . . . . . 27  
Load data pointer command. . . . . . . . . . . . . . 27  
Device select command . . . . . . . . . . . . . . . . . 27  
Bank select command . . . . . . . . . . . . . . . . . . 28  
8.1.1  
8.1.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.2  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 9 July 2009  
Document identifier: PCF8576C_9  
 

相关型号:

PCF8576CU

Universal LCD driver for low multiplex rates
NXP

PCF8576CU-2-F2

Universal LCD driver for low multiplex rates
NXP

PCF8576CU-F1

Universal LCD driver for low multiplex rates
NXP

PCF8576CU/10

Universal LCD driver for low multiplex rates
NXP

PCF8576CU/10/F1

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC56, DIE-56, Display Driver
NXP

PCF8576CU/10/F1,00

PCF8576C - Universal LCD driver for low multiplex rates DIE 56-Pin
NXP

PCF8576CU/12

Universal LCD driver for low multiplex rates
NXP

PCF8576CU/12E/2

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC56, DIE-56, Display Driver
NXP

PCF8576CU/12E/2,00

PCF8576C - Universal LCD driver for low multiplex rates DIE 56-Pin
NXP

PCF8576CU/2

Universal LCD driver for low multiplex rates
NXP

PCF8576CU/2/F2

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC56, DIE-56, Display Driver
NXP

PCF8576CU/5

Universal LCD driver for low multiplex rates
NXP