PNX8511 [NXP]

Analog companion chip; 模拟配套芯片
PNX8511
型号: PNX8511
厂家: NXP    NXP
描述:

Analog companion chip
模拟配套芯片

文件: 总92页 (文件大小:2676K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PNX8510; PNX8511  
Analog companion chip  
Rev. 04 – 12 January 2004  
Product data  
1. General description  
The PNX8510; PNX8511 is an analog backend companion chip to digital ICs  
processing video and audio signals.  
The primary difference between the PNX8510 and the PNX8511 is:  
PNX8510 includes the Macrovision™ pay-per-view copy protection system  
PNX8511 does not include Macrovision™  
PNX8510/11 provides two video encoders through two standardized D1 interfaces.  
The encoders can be bypassed to get direct access to the video DACs for higher  
resolution displays. PNX8510/11 also contains a sophisticated sync raster engine  
which can be utilized to generate various synchronization patterns for interlaced and  
non-interlaced image formats. The sync raster engine together with an up-sampling  
filter and a sync insertion unit compose a complete HDTV-capable data path  
including tri-level sync generation.  
PNX8510/11 also provides two independent pairs of stereo audio DACs with two  
corresponding I2S-bus interfaces.  
Figure 1 shows the PNX8510/11 with a typical source decoder.  
2. Features  
2.1 PNX8510  
Six 10-bit video DACs running at up to 135 MHz 1LSB DNL  
Four audio DACs arranged as two stereo pairs  
Two built-in digital video encoders  
PAL B/G, NTSC-M and SECAM encoding  
Two 10-bit D1 inputs with embedded VBI data  
Two I2S-bus independent audio input ports  
I2C-bus programmable (slave interface)  
Support for high resolution video out up to 81 MHz interface clock rate  
Support for input modes 2xD1, RGB, 1x 2D1 muxed, 24/30-bit RGB, DD1  
Programmable generation of embedded analog and external digital sync signals  
compliant to VESA and SMPTE 274 standards  
VBI encoding for standard definition video out  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Teletext insertion for PAL-WST, NTSC-WST, NABTS  
VPS video programming service encoding  
Closed caption encoding  
CGMS copy generation management system according to CPR-1204  
Internal color bar generator for standard definition video out  
JTAG-controlled test signals on video and audio converters  
Macrovision™ pay-per-view copy protection system, rev. 7.1 (SCART support with  
Macrovision™ copy protection on the RGB lines)  
2.2 PNX8511  
PNX8511 has all the features of PNX8510 with the exception of Macrovision™  
3. Applications  
Digital Television  
Set-top Box  
Multimedia Applications  
4. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
PNX8510HW/B1 HTQFP100 Plastic thermal enhanced thin quad flat package; 100 leads, body 14 x 14 x 1 SOT638-1  
mm, exposed die pad  
PNX8511HW/B1 HTQFP100 Plastic thermal enhanced thin quad flat package; 100 leads, body 14 x 14 x 1 SOT638-1  
mm, exposed die pad  
5. Block diagram  
3
RGB or Y/C  
10  
DV1_OUT  
CVBS  
10  
DV2_OUT  
2
Y
I S-bus  
A1 out  
A2 out  
2
C (CVBS)  
A1 R/L  
I S-bus  
SOURCE  
DECODER  
IC  
2
PNX8510/11  
2
2
I C  
I C-bus  
2
5
A2 R/L  
GPIO  
HSYNC  
VSYNC  
BLANK  
HSYNC  
VSYNC  
MDB636  
Fig 1. System level diagram  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
2 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
6. Pinning information  
V
1
2
3
4
5
6
7
8
9
75 DV4_IN2  
74 DV5_IN2  
73 DV6_IN2  
72 DV7_IN2  
71 DV8_IN2  
70 DV9_IN2  
69 DV_CLK2  
DD(ADAC)  
V
SS(ADAC)  
JTAG_RST  
RESET_N  
V
SS(AUD)  
V
SS(AUD)  
V
DDD(ADAC)  
V
68  
67  
V
V
SS  
DD  
SS  
TEST1  
TEST2 10  
TEST3 11  
TEST4 12  
66 DV0_IN1  
65 DV1_IN1  
64 DV2_IN1  
63 DV3_IN1  
62 DV4_IN1  
61 DV5_IN1  
60 DV6_IN1  
59 DV7_IN1  
58 DV8_IN1  
57 DV9_IN1  
56 DV_CLK1  
PNX8510HW/B1  
PNX8511HW/B1  
V
V
13  
14  
SS  
DD  
I2S_IN2_SCK 15  
I2S_IN2_WS 16  
I2S_IN2_SD 17  
V
18  
SS  
I2S_AOS2_CLK 19  
I2S_IN1_SCK 20  
I2S_IN1_WS 21  
I2S_IN1_SD 22  
55  
54  
53  
V
V
V
DD  
SS  
I2S_AOS1_CLK 23  
SSA(VDAC)  
V
V
24  
25  
52 n.c.  
SS  
51 RSET_DAC1  
DD  
MDB793  
Fig 2. Pin configuration  
6.1 Pin description  
Table 2:  
Symbol  
VDD(ADAC)  
VSS(ADAC)  
JTAG_RST  
RESET_N  
VSS(AUD)  
VSS(AUD)  
VDDD(ADAC)  
VSS  
Pin description  
Pin  
1
Type Description  
-
Audio DAC analog supply  
2
-
Audio DAC analog ground  
JTAG reset  
3
-
4
-
Chip reset in signal (low active)  
Audio digital ground  
5
-
6
-
Audio digital ground  
7
-
Audio DAC digital supply  
Digital ground  
8
-
TEST1  
9
I
JTAG controller test data input  
JTAG controller test data output  
TEST2  
10  
O
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
3 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 2:  
Pin description …continued  
Symbol  
TEST3  
Pin  
11  
12  
13  
14  
15  
16  
17  
18  
Type Description  
I
JTAG controller test clock input  
TEST4  
I
JTAG controller test mode select input  
Digital ground  
VSS  
-
VDD  
-
Digital supply  
I2S_IN2_SCK  
I2S_IN2_WS  
I2S_IN2_SD  
VSS  
I/O  
Bit clock IO for secondary audio channel  
Word select IO for secondary audio channel  
Serial data in for secondary audio channel  
Digital ground  
I/O  
I
-
I2S_AOS2_CLK 19  
I
Oversampling clock input for secondary audio channel  
Bit clock IO for primary audio channel  
Word select IO for primary audio channel  
Serial data in for primary audio channel  
Oversampling clock input for primary audio channel  
Digital ground  
I2S_IN1_SCK  
I2S_IN1_WS  
I2S_IN1_SD  
20  
21  
22  
I/O  
I/O  
I
I2S_AOS1_CLK 23  
I
VSS  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
-
VDD  
-
Digital supply  
I2C data line (bi-directional)  
I2C clock line (input)  
I2C_SDA  
I2C_SCL  
VSYNC_IN  
HSYNC_IN  
BLANK_IN  
VSS  
I/O  
I
I
Vertical sync input for primary video interface  
Horizontal sync input for primary video interface  
Blanking input signal for primary video pipeline  
Digital ground  
I
I
-
VSYNC_OUT  
HSYNC_OUT  
VDD  
O
O
-
Vertical sync output for primary video pipeline  
Horizontal sync output for primary video pipeline  
Digital supply  
VSS  
-
Digital ground  
VDD  
-
Digital supply  
VDDA(VDAC)  
VOUT5  
-
Analog supply for video DACs  
O
-
Video output for secondary channel, Y/CVBS-DAC  
Current return path for C-DAC and CVBS/Y-DAC  
Video output for secondary channel, C-DAC  
Current setting resistor for secondary channel DACs  
Analog ground for video DACs  
IRTN2  
VOUT6  
O
-
RESET2  
VSSA(VDAC)  
VDDA(VDAC)  
VOUT1  
-
-
Analog supply for video DACs  
O
-
Video output for primary video DAC 1 (CVBS/Y)  
Analog supply for video DACs  
VDDA(VDAC)  
VOUT4  
O
O
-
Video output for primary video DAC 4 (Blue)  
Video output for primary video DAC 3 (Y/Green)  
Current return path for all primary channel DACs  
Video output for primary video DAC 2 (C/red)  
Analog supply for video DACs  
VOUT3  
IRTN1  
VOUT2  
O
-
VDDA(VDAC)  
RSET_DAC1  
-
Current setting resistor for primary channel DACs  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
4 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 2:  
Pin description …continued  
Type Description  
Symbol  
n.c.  
Pin  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
-
No connection (leave floating)  
Analog ground for video DACs  
Digital ground  
VSSA(VDAC)  
VSS  
-
-
VDD  
-
Digital supply  
DV_CLK1  
DV9_IN1  
DV8_IN1  
DV7_IN1  
DV6_IN1  
DV5_IN1  
DV4_IN1  
DV3_IN1  
DV2_IN1  
DV1_IN1  
DV0_IN1  
VSS  
-
Primary video interface clock  
Primary video D1 input  
Primary video D1 input  
Primary video D1 input  
Primary video D1 input  
Primary video D1 input  
Primary video D1 input  
Primary video D1 input  
Primary video D1 input  
Primary video D1 input  
Primary video D1 input  
Digital ground  
I
I
I
I
I
I
I
I
I
I
-
VDD  
-
Digital supply  
DV_CLK2  
DV9_IN2  
DV8_IN2  
DV7_IN2  
DV6_IN2  
DV5_IN2  
DV4_IN2  
DV3_IN2  
DV2_IN2  
DV1_IN2  
DV0_IN2  
VSS  
-
Secondary video interface clock  
Secondary video D1 input  
Secondary video D1 input  
Secondary video D1 input  
Secondary video D1 input  
Secondary video D1 input  
Secondary video D1 input  
Secondary video D1 input  
Secondary video D1 input  
Secondary video D1 input  
Secondary video D1 input  
Digital ground  
I
I
I
I
I
I
I
I
I
I
-
VDD  
-
Digital supply  
VSS  
-
Digital ground  
VDD  
-
Digital supply  
GPIO1  
I/O  
I/O  
I/O  
I/O  
I/O  
-
General purpose input/output  
General purpose input/output  
General purpose input/output  
General purpose input/output  
General purpose input/output  
Audio DAC output buffer supply  
Audio DAC supply  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
VSS02(ADAC)  
VDD2(ADAC)  
AOUT_R2  
VSS2(ADAC)  
-
O
-
Audio output for right secondary audio channel  
Audio DAC ground  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
5 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 2:  
Pin description …continued  
Symbol  
Pin  
93  
94  
95  
96  
97  
98  
99  
100  
Type Description  
VREF2(AUD)  
VDD02(ADAC)  
AOUT_L2  
AOUT_R1  
VREF1(AUD)  
VDDO1(ADAC)  
VSS1(ADAC)  
AOUT_L1  
-
Audio DAC reference  
-
Audio DAC output buffer supply  
O
O
-
Audio output for left secondary audio channel  
Audio output for right primary audio channel  
Audio DAC reference  
-
Audio DAC output buffer supply  
Audio DAC ground  
-
O
Audio output for left primary audio channel  
7. Functional description  
7.1 Video pipeline  
The video pipeline contains two independent video channels. The primary channel is  
used to display graphic or video content on a standard television, CRT monitor or an  
HDTV system. The secondary video channel may connect to a VCR or a second  
standard TV for recording or secondary display purposes. No high definition or RGB  
output is available through the second video channel.  
VOUT2  
VOUT3  
VOUT4  
VOUT1  
R/V/C-DAC  
G/Y-DAC  
RGB  
BYPASS  
B/U-DAC  
CCIR656-DEMUX  
VBI-EXTRACT  
DE-INTERLEAVE  
PRIMARY  
DENC  
Y/CVBS-DAC  
VOUT5  
VOUT6  
Y/CVBS-DAC  
SECONDARY  
DENC  
C-DAC  
MDB637  
Fig 3. Video path block diagram  
The two video pipelines are driven by two standard D1 interfaces, which can operate  
in various modes in 8 or 10-bit precision. The video modes are described below.  
7.1.1 Video modes  
The video interfaces and sync raster engines are designed in a generic way. The only  
limiting factor is the data rate of the received video streams. All formats with a total  
interface speed requirement below 81 MHz can be displayed by the PNX8510/11.  
Table 3:  
Primary video channel standard interface modes  
Interface modes  
Mode  
Interface speed  
up to 81 MHz  
up to 81 MHz  
4:4:4 RGB or YUV or YCrCb or YPrPb  
4:2:2 YUV or YCrCb or YPrPb  
4:4:4 Muxed Components 10/8-bit  
4:2:2 Muxed components 10/8-bit  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
6 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 4:  
Primary video channel standard display modes  
Display modes  
Mode  
Interface Used data path  
speed  
PAL/NTSC/SECAM 4:2:2 YUV  
i.e. PAL:  
4:2:2 Muxed components  
10/8-bit  
27 MHz  
SD-CVBS-data  
path  
864 pixel/line x 312.5 lines/field x 50Hz = 13.5 MHz/Y  
samples  
6.75 MHz/U samples 6.75 MHz/V samples  
PAL/NTSC/SECAM RGB/YUV  
i.e. PAL:  
4:2:2 Muxed components  
10/8-bit  
27 MHz  
SD-CVBS and  
RGB/YUV  
data paths  
864 pixel/line x 312.5 lines/field x 50 Hz = 13.5 MHz/Y  
samples  
6.75 MHz/U samples 6.75 MHz/V samples  
2FH PAL/NTSC/SECAM 4:4:4  
RGB/YUV/YCrCb/YPrPb  
4:4:4 Muxed Components  
10/8-bit  
81 MHz  
81 MHz  
HD-data path  
i.e. PAL:  
864 pixel/line x 312.5 lines/field x 50 Hz x2 =  
27 MHz/component  
480P PAL/NTSC/SECAM 4:4:4  
RGB/YUV/YCrCb/YPrPb  
4:4:4 Muxed Components  
10/8-bit  
HD-data path  
HD-data path  
i.e. PAL:  
864 pixel/line x 625 lines/field x 50 Hz =  
27 MHz/component  
Generic D1 mode; the interface clock can run up to 81 4:4:4 Muxed components/  
up to  
MHz, the components can have either 4:2:2 or 4:4:4  
color resolution, but must be in the correct color  
space.  
81 MHz  
4:2:2 Muxed components (use of  
both D1 interfaces required)  
10/8-bit  
Table 5:  
Interface modes  
4:2:2 YUV or YCrCb or YPrPb 4:2:2 Muxed components 10/8-bit 27 MHz  
Secondary video channel standard interface modes  
Mode  
Interface speed  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
7 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 6:  
24/30-Bit RGB/YUV mode  
Both D1 interfaces and the secondary audio channel are combined to provide high-speed  
direct access to video DACs  
Display/interface mode  
Mode  
Interface  
speed  
Pin assignment 24-bit mode Pin assignment 30-bit mode  
24/30-bit RGB/YUV[1]  
24-bit direct up to 81  
RGB/YUV  
8/10-bit  
MHz  
red[7] - I2S_IN2_SD  
red[6] - I2S_IN2_WS  
red[5] - I2S_IN2_SCK  
red[4] - I2S_AOS2_CLK  
red[3] - DV_IN1[9]  
red[2] - DV_IN1[8]  
red[1] - DV_IN1[7]  
red[0] - DV_IN1[6]  
red[9] - I2S_IN2_SD  
red[8] - I2S_IN2_WS  
red[7] - I2S_IN2_SCK  
red[6] - I2S_AOS2_CLK  
red[5] - DV_IN1[9]  
red[4] - DV_IN1[8]  
red[3] - DV_IN1[7]  
red[2] - DV_IN1[6]  
red[1] - GPIO[5]  
green[7] - DV_IN1[5]  
green[6] - DV_IN1[4]  
green[5] - DV_IN1[3]  
green[4] - DV_IN1[2]  
green[3] - DV_IN1[1]  
green[2] - DV_IN1[0]  
green[1] - DV_IN2[9]  
green[0] - DV_IN2[8]  
red[0] - GPIO[4]  
green[9] - DV_IN1[5]  
green[8] - DV_IN1[4]  
green[7] - DV_IN1[3]  
green[6] - DV_IN1[2]  
green[5] - DV_IN1[1]  
green[4] - DV_IN1[0]  
green[3] - DV_IN2[9]  
green[2] - DV_IN2[8]  
green[1] - GPIO[3]  
green[0] - GPIO[2]  
blue[7] - DV_IN2[7]  
blue[6] - DV_IN2[6]  
blue[5] - DV_IN2[5]  
blue[4] - DV_IN2[4]  
blue[3] - DV_IN2[3]  
blue[2] - DV_IN2[2]  
blue[1] - DV_IN2[1]  
blue[0] - DV_IN2[0]  
blue[9] - DV_IN2[7]  
blue[8] - DV_IN2[6]  
blue[7] - DV_IN2[5]  
blue[6] - DV_IN2[4]  
blue[5] - DV_IN2[3]  
blue[4] - DV_IN2[2]  
blue[3] - DV_IN2[1]  
blue[2] - DV_IN2[0]  
blue[1] - GPIO[1]  
blue[0] - DV_CLK2  
[1] In case of the 24/30-bit full parallel input, no secondary audio channel is available.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
8 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 7:  
Single interface mode 2 (D1)  
Display/interface mode  
Mode  
2x muxed 4:2:2  
Interface  
speed  
Single Interface Mode 2 (D1)  
54 MHz  
Accommodates 2 synchronous multiplexed D1 streams single D1  
for low cost applications (both streams are extracted).  
8/10-bit  
Table 8:  
Interleaved interface mode  
Display/interface mode  
Mode  
Interface  
speed  
Interleaved interface mode  
2x muxed 4:2:2  
single D1 or 2x  
muxed 4:4:4  
RGB/YUV 8/10-bit edge 27 MHz  
(SAA7128  
54 MHz or  
81 MHz or  
pos-neg  
Same formats as in single interface mode 1 and 2 but  
only one of the two interleaved video streams is  
extracted per interface.  
Selection of the extracted slice is possible by software,  
compliant)  
Usage of two PNX8510/11 chips possible to support up  
to 4 display/record devices  
Table 9:  
Combined double D1 mode  
Display/interface mode  
Mode  
Interface  
speed  
Combined double D1 mode:[1] the two D1 interfaces are 2 combined D1  
up to 81 MHz  
per D1  
combined to carry a single HDTV stream in 4:2:2 YUV or  
8/10-bit  
4:2:2 YPrPb format  
primary D1: Y channel  
secondary D1: muxed UV or PrPb channel  
i.e.: 1920x1080 60 Hz interlaced  
2200 pixel/line x 562.5 lines/field x 60 Hz = 74.25 MHz/Y  
samples  
37.125 MHz/Cr/Pr samples  
37.125 MHz/Cb/Pb samples  
[1] In case of the combined double D1 mode, no secondary display channel is available  
The PNX8510/11 supports color space conversion only in the primary RGB standard  
definition data path. For the high definition part of the primary video data path and for  
the secondary video data path no color space conversion is available. Hence the  
video data has to be provided in the display destination color space.  
Aside from built-in video encoders, which generate all necessary timing and filtering  
for an appropriate sync raster for PAL, NTSC and SECAM, the PNX8510/11 contains  
a separate raster-generation engine which also supports but is not limited to the  
HD-formats, such as the SMPTE 274M. The PNX8510/11 also contains an  
up-sampling filter to convert 4:2:2 formats (other than standard definition formats) to  
4:4:4.  
In the case of combined double D1 mode, no secondary display channel is available.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
9 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
If the interface is operated in D1 mode, the data stream presented to the interface has  
to be D1 compliant i.e., the maximum and minimum codes (8-bit 0x00 0xFF, 10-bit  
0x000 0x3FF) must not occur during active video.  
A detailed description of video input data formats can be found in Section 7.1.2. The  
video modes listed correspond to the settings of the DEMUX_MODE bits in the  
register 0x95 VMUXCTL Section 8.1. If the video interface clock frequency is not  
equivalent to the processing and the video DAC operation frequency the appropriate  
divider registers in the audio/clock register section have to be programmed. As a  
general rule the settings in Table 10 should be used:  
Table 10: Clock frequency settings  
Mode  
Interface  
clock  
Processing  
clock  
DAC clock  
4:2:2 YUV SD Single Interface Mode  
4:4:4 RGB 2FH Single Interface Mode  
4:2:2 YUV 1080i Double Interface Mode  
27 MHz  
27 MHz  
27 MHz  
81 MHz  
27 MHz  
27 MHz  
74.25 MHz  
74.25 MHz  
74.25 MHz  
7.1.2 Video input modes  
The PNX8510/11 video interface supports a wide variety of video formats. The video  
interface is designed in a generic fashion. It is de-coupled from the actual video data  
paths in the system and imposes only a few restrictions on the video data streams  
provided to the chip.  
This section explains the possible video stream formats and provides details on  
synchronizing the PNX8510/11 with respect to a particular video data format.  
The PNX8510/11 accepts the video formats shown in Figure 4 to Figure 10 on a  
single interface with up to 81 MHz interface clock:  
YUV 4:2:2  
FF 00 00 EAV 80 10 80 10  
FF 00 00 SAV U1 Y1 V1 Y2 U3 Y3  
MDB638  
Fig 4. YUV 4:2:2  
This is the CCIR-656 compliant format and will mainly be used at an interface speed  
of 27 MHz to feed the video encoder modules in the chip.  
This is the standard interface format for the secondary video encoder pipeline unless  
the chip is used in High Definition (HD) mode.  
The YUV 4:2:2 format can also be used to feed the HD data path as long as the pixel  
clock rate stays below 81 MHz. To operate the HD data path with 4:2:2 source  
material the 4:2:2 to 4:4:4 filter should be enabled to achieve the best video quality.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
10 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
RGB 4:4:4  
FF 00 00 EAV 80 10 80 10  
FF 00 00 SAV R1 G1 B1 R2 G2 B2  
MDB639  
Fig 5. RGB 4:4:4  
This mode is only useful if the HD data path in the PNX8510/11 is in operation. The  
RGB 4:4:4 interface mode is not applicable to the standard definition RGB path  
operation due to the implicit clocking requirements. The data rate for standard  
definition RGB 4:4:4 data would be 13.5 MHz per component resulting in an interface  
speed of 40.5 MHz. Because the chip does not contain any PLLs, it is not possible to  
extract 27 MHz out of the interface clock.  
YUV 4:4:4  
FF 00 00 EAV 80 10 80 10  
FF 00 00 SAV Y1 U1 V1 Y2 U2 V2  
MDB640  
Fig 6. YUV 4:4:4  
This mode is useful only if the HD data path in the PNX8510/11 is in operation.  
YUV 4:2:2 Interleaved  
FF FF 00 00 00 00 EAV EAV 80 80 10 10  
U1 U1 Y1 Y1 V1 V1 Y2 Y2  
FF FF 00 00 00 00 SAV SAV  
a
b
a
b
a
b
a
b
MDB641  
Fig 7. YUV 4:2:2 Interleaved  
This mode supports two video data streams through one physical video interface. It  
can be used to utilize both video encoder channels in the chip with one interface only  
or to hook up two PNX8510/11 devices to one source providing an interleaved data  
stream. Each chip extracts one slice from the interleaved stream. This video format is  
useful for the encoder standard definition data path only.  
RGB 4:4:4 Interleaved  
FF FF 00 00 00 00 EAV EAV 80 80 10 10  
R1 R1 G1 G1 B1 B1 R2 R2  
FF FF 00 00 00 00 SAV SAV  
a
b
a
b
a
b
a
b
MDB642  
Fig 8. RGB 4:4:4 Interleaved  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
11 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
This mode supports two video data streams through one physical video interface. It  
can be used to utilize both video encoder channels in the chip with one interface only  
or to hook up two PNX8510/11 devices to one source providing an interleaved data  
stream. Each chip extracts one slice from the interleaved stream. This video format is  
useful for the standard definition RGB data path as well as for the HD data path.  
YUV 4:4:4 Interleaved  
FF FF 00 00 00 00 EAV EAV 80 80 10 10  
Y1 Y1 U1 U1 V1 V1 Y2 Y2  
FF FF 00 00 00 00 SAV SAV  
a
b
a
b
a
b
a
b
MDB643  
Fig 9. YUV 4:4:4 Interleaved  
This mode supports two video data streams through one physical video interface. It  
can be used to utilize both video encoder channels with one interface only or to hook  
up two PNX8510/11 devices to one source providing an interleaved data stream.  
Each chip extracts one slice from the interleaved stream. This video format is useful  
for the HD data path only.  
There are two modes defined for interleaved data streams. One is to run the interface  
at twice the speed and provide a qualifier on the HSYNC input to qualify a certain  
slice. The qualifier is essentially the interface clock divided by two.  
The other interleaved interface format works on both clock edges of the interface  
clock, so one slice is latched at the positive edge and the other slice is latched at the  
negative edge of the interface clock.  
YUV 4:2:2 HD two-channel format  
FF 00 00 EAV 80 10 80 10  
FF 00 00 EAV 80 10 80 10  
FF 00 00 SAV Y1 Y2 Y3 Y4 U5 Y6  
FF 00 00 SAV U1 V2 U3 V3 U5 V5  
MDB644  
Fig 10. YUV 4:2:2 HD two-channel format  
This format is used only for high definition video modes that exceed interface clock  
requirements of 81 MHz. For this video interface mode, both physical interfaces of the  
chip are utilized. The primary interface gets a D1-like data stream, which only  
contains the luminance information, while the secondary D1 interface carries the  
chrominance information.  
7.1.3 Video input module  
The video input module is responsible for accommodating all supported video data  
formats. It delivers a de-multiplexed and de-sliced data stream to the video  
processing modules.  
As depicted in Figure 11, the IC has two video input ports which can accommodate 8  
or 10-bit wide video data streams.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
12 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
The normal mode of operation is that the DV1 interface is routed to the primary video  
data paths and the DV2 interface is routed to the secondary video data paths. The IC  
however accepts also so called sliced data formats. A sliced data format contains two  
single video data streams multiplexed together on a component basis. A more  
detailed description of the arrangement of the components can be found in  
Section 7.1.2. To enable sliced data formats the SLICE_MODE bit of the register  
VMUXCTL (register offset 0x95) has to be set.  
The De-Slice module essentially takes the two data streams apart by simply two to  
one de-multiplexing. The routing of the resulting two video data streams is  
determined by setting the SEL register bits in the primary and secondary video data  
path apertures appropriately. Sliced data formats come in two different flavors: double  
edge and qualified.  
The double edge slice format has data changes on the positive and the negative  
clock edge where as the qualified mode qualifies one data stream of the two  
multiplexed ones with an active high on the HSYNC signal. To use this mode the  
USE_QUALIFIER bit in the register INPCTL (offset 0x3A) must be set. The order of  
the slice qualification can be changed by setting the QUAL_INVERT bit of the same  
register (offset 0x3A).  
Since each of the video input interfaces can accept sliced data formats a total of four  
video data streams could be routed into the IC and two of them can be selected to be  
forwarded to the primary and the secondary video display pipeline.  
The structure of the video input module is shown in Figure 11.  
RST SYNC  
PRIMARY  
RST SYNC  
SECONDARY  
REGISTER ARRAY PRIMARY  
VBI DATA SLICER  
REGISTER ARRAY SECONDARY  
TTX data port  
DEMUX_MODE  
8/10-bit mode  
R/Y/Y  
data 1  
input  
SAV-EAV  
DETECTION  
OUTPUT  
FORMATTER  
OUT-  
SEL  
DE-SLICE  
G/U/U-V  
B/V  
O_E  
SEL1  
SLICE_MODE  
SLICE_DIR  
DEMUX_MODE  
8/10-bit mode  
Y
D1-IN  
secondary  
SAV-EAV  
DETECTION  
OUTPUT  
FORMATTER  
OUT-  
SEL  
DE-SLICE  
U - V  
O_E  
SLICE_MODE  
SLICE_DIR  
SEL2  
VBI DATA SLICER  
TTX data port  
MDB645  
Fig 11. Block diagram - video input module  
Rev. 04 – 12 January 2004  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
13 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
7.1.4 Video DAC control  
The PNX8510/11 contains six video DACs, four dedicated to the primary video  
pipeline and two to the secondary video processing path.  
The first DAC of the primary video channel (VOUT1) is always assigned to the  
primary standard definition data path. The output of the DAC can be changed from  
CVBS to Y by resetting the CVBSEN bit of the register DACCTRL (offset 0x2D) to  
zero.  
The second DAC of the primary video channel (VOUT2) is assigned to either the  
standard definition (SD) data path or High Definition (HD) data path. In the SD mode,  
it carries the chrominance, C (Y/C operation) if the CEN bit in the DACCTRL (offset  
0x2D) is set or the Red/V channel (RGB/Component mode operation) if the CEN bit  
of the DACCTRL (offset 0x2D) is reset. In HD mode (SD_HD bit of INPCTL register,  
offset 0x3A is set to zero) this DAC carries either the Red channel or the Y channel  
depending on whether the HD path is operated in RGB or YUV mode. Note that the  
CEN bit must be reset for HD operation.  
The third DAC of the primary video channel (VOUT3) is also assigned to either the  
standard definition (SD) data path or High Definition (HD) data path. In SD mode, it  
carries the luminance channel if the VBSEN bit in the DACCTRL (offset 0x2D) is set  
or the Green/Y channel if the VBSEN bit is reset (RGB/Component mode operation).  
If the high definition data path is operational (SD_HD=1’b0) this DAC carries the  
Green or U channel depending on whether the HD path is operated in YUV or RGB  
mode.  
The configuration of the fourth DAC in the primary video data path (VOUT4) can not  
be changed with a programming register. This DAC carries the Blue or U channel in  
standard definition mode and the Blue or V channel if the high definition data path is  
active.  
The configuration of the DACs for the secondary video data path is limited to the  
CVBS/Y DAC (VOUT5). If the CVBSEN bit in the DACCTRL register (offset 0x2D) is  
set, this DAC carries the CVBS signal. Resetting the bit results in the Y signal being  
assigned to this DAC.  
The second DAC of the secondary video pipeline (VDAC6) always carries the  
chrominance signal.  
7.1.5 VBI data  
VBI data extraction from a D1 data stream is only supported for standard definition  
formats. The extraction follows the concept of Philips video decoders, such as the  
SAA7114. Both video interfaces can carry VBI data information. The content of the  
VBI data is entirely determined by the source decoder chip software driver.  
The PNX8510/11 supports two VBI data streams. The limitation to two VBI data  
streams implies certain limitations when using multiple PNX8510/11 chips in a  
system. In this case one PNX8510/11 gets either one or two (all) VBI data streams.  
The other PNX8510/11 IC would get one or none.  
Only the ANC/SAV-EAV header style VBI data encoding mode is supported in the  
PNX8510/11. According to these standards VBI data is always inserted in the  
horizontal blanking interval of a line. The data is preceded by an ANC header which is  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
14 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
programmable. An internal header following the ANC contains a programmable sliced  
data identifier with the number of data bytes transmitted and two internal identification  
tokens containing data type, field type and line number. Figure 12 illustrates how the  
data is encoded in the horizontal blanking interval.  
Remark: In standard definition mode, only 8 of the 10 available signal lines of the D1  
interface are used. The two LSB lines are fixed to zero.  
FF 00 00 EAV FF FF 00 DID SDID BC IDI1 IDI2 D1 D2  
DDC1 DDC  
FF 00 00 SAV  
timing reference  
code  
timing reference  
code  
end active video  
ANC header  
internal header  
sliced data  
start active video  
horizontal line blanking interval  
MDB646  
See Table 11 to Table 16for code description  
Fig 12. ANC VBI data insertion in D1  
Table 11: VBI header/data codes  
Name  
SAV  
Function  
start of active video  
DID  
data identifier: ignored, has to be set to 0x11h  
SDID  
BC  
sliced data identification: ignored, has to be set to 0x11h  
byte count describes the number of succeeding decoded data bytes  
internal data identification 1: OP, FID, LineNumber[8:3]  
internal data identification 2: OP, LineNumber[2:0], Data Type  
data bytes  
IDI1  
IDI2  
D1-Ddc  
EAV  
end of active video  
Table 12: VBI data header format  
LN = Line Number, BC = Byte Count, DT = Data Type  
Code  
SDID  
DID  
D9  
1
1
-
D8  
D7  
1
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
1
1
1
1
1
1
1
1
BC  
-
BC5  
LN8  
BC4  
LN7  
BC3  
LN6  
BC2  
LN5  
BC1  
LN4  
BC0  
LN3  
IDI1  
-
field ID  
0=field 1  
1=field 2  
LN2  
IDI2  
-
LN1  
LN0  
DT3  
DT2  
DT1  
DT0  
Table 13: SAV/EAV codes NTSC  
Line Number  
1-3  
F
1
0
0
V
1
1
0
H (EAV)  
H (SAV)  
1
0
0
0
4-19  
1
1
20-263  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
15 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 13: SAV/EAV codes NTSC…continued  
Line Number  
F
0
1
1
V
1
1
0
H (EAV)  
H (SAV)  
264-265  
266-282  
283-525  
1
1
1
0
0
0
Table 14: SAV/EAV codes PAL  
Line Number  
1-22  
F
0
0
0
1
1
1
V
1
0
1
1
0
1
H (EAV)  
H (SAV)  
1
1
1
1
1
1
0
0
0
0
0
0
23-310  
311-312  
313-335  
336-623  
624-625  
Table 15: SAV/EAV sequence  
SAV/EAV  
D9  
1
D8  
1
D7  
1
D6  
1
D5  
1
D4  
D3  
1
D2  
1
D1  
1
D0  
1
preamble  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
status word  
1
F
V
H
P3  
P2  
P1  
P0  
0
0
[1] P0 to P3 are protection bits and calculated in the following way:  
P3=V^H, P2=F^H, P1=F^V, P0=F^V^H  
Table 16: Supported data types  
Data Type  
0000  
Standard  
Teletext EuroWST  
VPS video programming service  
WSS wide screen signalling  
closed caption  
0010  
0011  
0100  
1100  
US NABTS  
1111  
Programming (SubAddr1-Data1-SubAddr2-Data2...)  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
16 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
7.1.6 Primary video channel  
Figure 13 illustrates the different modes of operation for the primary video channel.  
VIDEO ENCODER  
10  
CVBS/Y-DAC  
10  
Y-PROCESSING  
INPUT  
INTERFACE  
MIXER  
(1)  
UV-PROCESSING  
10  
SYNC  
EXTRACT  
SYNC  
MACROVISION  
RGB-  
mode  
R/C-DAC  
BLANKING  
MACROVISION  
INSERTION  
RGB-PIPE  
COLOR  
SPACE  
MATRIX  
10/8  
D1  
DELAY  
COMP  
24 16  
8
G/C /Y-DAC  
R
(1)  
B/C -DAC  
B
CLK input  
CLK-DIVIDER  
system CLK  
MDB647  
Standard definition operating mode  
Fig 13. Primary display pipe  
PNX8510/11 supports color space conversion only in the primary RGB Standard  
definition data path. The fixed coefficients of this color space matrix are as follows:  
R = Y + 1.371 x Cr  
G = Y - (0.336 x Cb + 0.698 x Cr)  
B = Y + 1.732 x Cb  
7.1.7 Secondary video channel  
The secondary display consists of the Y and UV processing data path of a video  
encoder only. The synchronization information will be extracted from the incoming D1  
data stream. The structure of the secondary display pipe is shown in Figure 14.  
VIDEO ENCODER  
10  
Y-PROCESSING  
CVBS/Y-DAC  
C-DAC  
10/8  
INPUT  
INTERFACE  
D1  
MIXER  
10  
UV-PROCESSING  
(1)  
SYNC  
MACROVISION  
MDB648  
Standard definition operating mode  
Fig 14. Secondary display pipe  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
17 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
D1-INTERFACE  
secondary  
SYNC  
D1  
(1)  
EXTRACT  
Y/R-DAC  
DEMUX  
BYPASS  
SYNC-INSERT  
LEVEL-SHIFT  
SYNC-SHAPER  
D1-INTERFACE  
primary  
SYNC  
D1  
GAIN CONTROL  
U/C /P /G-DAC  
UP-SAMPLE  
B
B
EXTRACT  
BYPASS  
V/C /B-DAC  
R
V/O_E  
SYNC-RASTER  
GENERATOR  
CBLANK  
V/O_E  
H
H
V
MDB649  
HD operation mode  
Fig 15. Primary display pipe  
7.1.8 PAL/NTSC/SECAM encoder  
The PAL/NTSC/SECAM encoder accepts the YUV data and encodes it into an NTSC,  
PAL or SECAM video signal. From Y, U and V data, the encoder generates  
luminance, chrominance and subcarrier output signals, suitable for use as CVBS or  
separate Y and C signals.  
Luminance is modified in gain and in offset (offset is programmable to enable different  
black level setups). In order to enable easy analog post filtering, luminance is  
interpolated from a 13.5 MHz data rate to a 27 MHz data rate, providing luminance in  
10-bit resolution. This filter is also used to define smoothed transients for  
synchronization pulses and the blanking period. Chrominance is modified in gain  
(programmable separately for U and V). The standard dependent burst is inserted  
before baseband color signals are interpolated from a 6.75 MHz data rate to a  
27 MHz data rate.  
One of the interpolation stages can be bypassed providing a higher color bandwidth,  
which can be used for Y and C output. The register bits FSC0 to FSC3 set the  
subcarrier frequency. To make sure the subcarrier is locked to the line frequency, as  
the standards require, the sync generator is able to reset the subcarrier generation  
periodically. This feature is controlled by the PHRES (register MULTICTL, offset  
0x6E) programming bits. These features are available to generate a standard  
interlaced signal; they will not work in non-interlaced mode.  
A crystal-stable master clock of 27 MHz, which is twice the CCIR line-locked pixel  
clock of 13.5 MHz, is received from the interface clock pins. The encoder synthesizes  
all necessary internal signals, color subcarrier frequency, and synchronization signals  
from that clock.  
For ease of analog post filtering, the signals are twice oversampled with respect to  
the pixel clock before digital-to-analog conversion.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
18 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Programming flexibility includes NTSC-M, PAL-B, SECAM main standards as well as  
other variations. A number of possibilities are provided for setting different video  
parameters, such as:  
Black and blanking level control  
Color subcarrier frequency  
Variable burst amplitude  
The sync generator generates all the signals required to control the signal  
processing, provide the composite sync signal, insert the color burst, etc.  
The encoder includes a cross-color reduction filter to reduce cross talk between the  
luminance and chrominance channels. In the CVBS signal, the signal amplitude is  
reduced by 15/16 to avoid overflow.  
7.1.9 Luminance and Chrominance Processing  
The Y processing provides a high performance 5 MHz lowpass filter. It adjusts the  
level range according to the standard and inserts the sync and blanking pulses. The  
insertion stage generates the correct pulse shapes. No further processing is  
necessary of the D/A converters for this purpose.  
Chroma processing operates on the baseband signals as long as possible. At first,  
the signal amplitudes are adjusted and the burst is inserted. Afterwards the signals  
are passed through a 1.4 MHz lowpass filter. This filter can be switched to a higher  
cut-off frequency to allow more chroma bandwidth with S-Video. The quadrature  
modulator uses a DTO (Discrete Time Oscillator) with 32-bit resolution for the  
subcarrier generation. Even with this high resolution, the DTO cannot generate the  
carrier locked to the line frequency as the standards require without further means.  
So the sync generator is able to reset the DTO periodically. This feature is controlled  
by the PHRES programming bits. These modes may only be switched on if the  
encoder is programmed to generate a standard signal; they will not work in  
non-interlaced mode.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
19 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
MGD672  
6
G
v
(dB)  
(4)  
0
(2)  
(3)  
6  
12  
18  
(1)  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig 16. Luminance transfer characteristic 1  
MBE736  
handbook, halfpage  
1
G
v
(dB)  
(1)  
0
1  
2  
3  
4  
5  
0
2
4
6
f (MHz)  
Fig 17. Luminance transfer characteristic 2  
Table 17: Luminance transfer characteristics  
Register CCRS, offset 0x5f defines the luminance transfer characteristics  
CCRS  
01  
Luminance Transfer Characteristics  
(1)  
(2)  
(3)  
(4)  
10  
11  
00  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
20 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
MBE737  
6
G
v
(dB)  
0
6  
12  
18  
24  
(1)  
(2)  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig 18. Chrominance transfer characteristic 1  
MBE735  
handbook, halfpage  
2
G
v
(dB)  
0
(1)  
(2)  
2  
4  
6  
0
0.4  
0.8  
1.2  
1.6  
f (MHz)  
Fig 19. Chrominance transfer characteristic 2  
Table 18: Chrominance transfer characteristics  
Register SCBW, offset 0x61 defines the chrominance transfer characteristics  
SCBW  
Chrominance Transfer Characteristics  
1
0
(1)  
(2)  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
21 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
MGB708  
6
G
v
(dB)  
0
6  
12  
18  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig 20. Luminance transfer characteristic in RGB  
MGB706  
6
G
v
(dB)  
0
6  
12  
18  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig 21. Color difference transfer characteristic in RGB  
7.1.10 Sync generator  
The sync generator is the timing master of the encoder. It generates all the signals  
required to control the signal processing, provide the composite sync signal, insert  
the color burst, etc. Via the FISE control bit (register STDCTL, offset 0x61), the circuit  
can be set to generate 50 Hz patterns for e.g., PAL B or 60 Hz patterns (NTSC M). It  
is possible to modify the number of lines per field by ±0.5 lines to generate a  
non-interlaced output signal. The sync generator also provides HS (Horizontal Sync),  
VS (Vertical Sync) and O_E (Odd/Even) signals to control the rest of the encoder.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
22 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
7.1.11 Macrovision™ - PNX8510  
The encoder supports MacrovisionAnti-Taping for both NTSC and PAL. There is no  
Macrovision™ insertion for SECAM defined, however for AGC Pseudo Sync and BP  
pulses the same settings used for PAL could be used for SECAM. The different steps  
of this process can be programmed separately. The Macrovision™ control block  
provides all necessary timing and level information for inserting the correct pulses in  
the CVBS/Y/C/RGB/YUV data stream. Furthermore it provides the signals used to  
modify the subcarrier generator according to the Macrovision™ Burst Inversion  
requirements.  
The encoder uses a blanking level during the vertical blanking interval that is defined  
by the value of BLNVB, thus providing two different programmable blanking levels.  
Outside vertical blanking, value of BLNNL is effective, which should be reduced  
according to Macrovision™ requirements. The copy protection means can be  
activated independently by the respective control bits. The Macrovision™ registers  
and definition of each of these registers are defined in a separate Macrovision™  
Supplement document.  
Remark: Macrovision™ is not available in PNX8511.  
7.2 HD data path  
The high definition data path of the PNX8510/11 IC features an up-sampling filter,  
gain control and a universal sync insertion engine.  
Input formats supported by the high definition data path are:  
Double D1 mode:16/20 bit 422 (8/10 bit for Y and 8/10 bit for U/V);  
DEMUX_MODE of Register VMUXCTL, offset 0x95 is set to 3’b011  
Single interface HD 422 mode (UYVY 422 D1 format); DEMUX_MODE of Register  
VMUXCTL, offset 0x95 is set to 3’b100  
Single interface 444 (RGB/YUV 444 format); DEMUX_MODE of Register  
VMUXCTL, offset 0x95 is set to 3’b001  
Full 24/30 bit parallel input mode (YUV/RGB 444 formats); VMODE of Register  
MISCCTRL, offset 0xA5 is set to zero  
RGB and YUV data types are accepted. However, there is no color space conversion  
in the HD data path so the input data type has to match the display data type.  
The up-sampling filter can be applied to convert incoming 422 data formats to 444.  
The data path also provides individual gain control for RGB/YUV which allows a  
+/-0.5x amplitude change (HD_GAIN_RY, HD_GAIN_GU, HD_GAIN_BV control  
registers).  
The HD sync insertion module following the filter and gain control circuits provides  
flexible insertion of synchronization signals into the Y, Y and V or R, G and B data  
paths. The insertion can be chosen on a component basis (Y/R_SYNC_INS_EN,  
U/G_SYNC_INS_EN, V/B_SYNC_INS_EN control registers) and the sync generator  
provides individual tables for the components. A more detailed description of the sync  
generator can be found in the next paragraph.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
23 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
7.2.1 HD-sync generator module  
This section describes the operation and programming of the high definition (HD)  
video data path sync unit.  
The module’s purpose is to provide the video data path that bypasses the digital  
video encoders with the appropriate synchronization pattern. The module design  
provides maximum flexibility in terms of raster generation for all interlaced and  
non-interlaced ATSC formats. The sync engine is capable of providing a combination  
of event-value pairs which can be used to insert certain values at specified times in  
the outgoing data stream. It can also be used to generate digital signals associated  
with time events. They can be used as digital Horizontal and Vertical synchronization  
signals.  
The sync raster generation is fully programmable to accommodate different  
requirements. The raster generation can be either progressive or interlaced. Digital  
sync signal generation (Horizontal, Vertical and Blank) as well as analog embedded  
sync generation are supported. The picture position is adjustable through the  
programmable relation between the sync pulses and the video contents.  
The generation of embedded analog sync pulses is bound to a number of events  
which can be defined for a line. Several of these line-timing definitions can exist in  
parallel. For the final sync raster composition a certain sequence of lines with  
different sync event properties has to be defined. The sequence specifies a series of  
line types and the number of occurrences of this specific line type.  
After the sequence has completed, it restarts from the beginning. In this way, the sync  
raster generation is generic and can be adopted to different standards (different sync  
shapes, various H-timing, interlaced, progressive...). However, to generate a stable  
picture, it is important that the sequence fits precisely to the incoming data stream in  
terms of the total number of pixels per frame.  
The sync engine’s flexibility is achieved by using a sequence of linked lists carrying  
the properties for the image, the lines as well as fractions of lines. The list  
dependencies are illustrated in Figure 22.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
24 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
4-bit line type index  
10-bit line count  
Line_Count_Array  
16 entries  
Line_Count_Ptr  
3
3
3
3
3
3
3
3
3
3
3
3
3
Line_Type_Ptr  
Pattern_Ptr  
Line_Type_Array  
15 entries  
3
3
3
Event_Type_Ptr  
10-bit value  
R/Y-Vallue_Array  
8 entries  
10-bit duration  
1-bit select  
10-bit duration  
1-bit select  
10-bit duration  
1-bit select  
10-bit duration  
1-bit select  
10-bit value  
3-bit value index 3-bit value index 3-bit value index 3-bit value index  
G/U-Vallue_Array  
8 entries  
Line_Pattern_Array  
7 entries  
10-bit value  
B/V-Vallue_Array  
8 entries  
Line_Pattern_Ptr  
MDB650  
Fig 22. Sync engine list dependencies  
The first table is called “Line_Count_Array” and serves as an array to hold the correct  
sequence of lines composing the synchronization raster. It can contain up to 16  
entries. Each entry holds a 4-bit index (counted from 1 through 16)) and a 10-bit  
counter value.  
The 4-bit index is a pointer to a line in the next table called “Line_Type_Array.” A 10-bit  
counter value specifies how often this particular line is repeated. If the necessary line  
count for a particular line exceeds the 10 bits, it has to use two table entries. This  
table has to be terminated with a dummy entry containing a ‘0’ index and ‘0’ line  
count.  
The second table, “Line_Type_Array” holds up to 15 entries (counted from 1 through  
15). Each entry can contain up to eight index pointers which point to another table  
called, “Line_Pattern_Array.” These pointers represent parts of a line raster. A line  
may be split up into a sync, a blank and an active portion followed by another blank  
portion, which would require four index pointers in one entry of the table. It is possible  
to have less than eight index pointers in any entry, in which case those index pointers  
should be filled with ‘0.  
The third table is called “Line_Pattern_Array” and it can contain a maximum of seven  
entries (counted from 1 though 7). The entries are used to define portions of a line  
representing a certain value for a certain number of clock cycles. Each of these seven  
entries can store up to four groups of “duration, select and value index.It is possible  
to have less than four groups in any entry, in which case those groups should be filled  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
25 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
with 0. ”Duration” is a 10-bit value representing the number of clock cycles. “Select”  
indicates whether the value is actually inserted into the video data stream or not.  
“Value index” is a 3-bit index into the next table in the linked list called “Value array.”  
Certain bits of the “value index” can also be used to generate a digital sync raster  
provided at the H- and V-sync outputs of the PNX8510/11.  
“Value array” can hold up to 8 values (counted from 0 though 7) which are 10-bit  
signed 2’s complement.  
7.2.2 Trigger generation  
To ease the trigger setup for the sync generation module, a set of registers is  
provided to set up the screen raster defined as width and height. A trigger position  
can be specified as an x, y coordinate within the overall dimensions of the screen  
raster. If the x, y counter matches the specified coordinates, a trigger pulse is  
generated which pre-loads the tables with their initial values. Refer to the 1080i  
example for the trigger programming.  
Important Notes  
The “duration” in the “Line_Pattern_Array” that needs to be programmed should be  
1 cycle less than the actual duration required.  
For the registers LCNT_ARRAY_ADR (offset 0x82), LTYPE_ARRAY_ADR (offset  
0x86), LPATT_ARRAY_ADR (offset 0x8E), “addr+1” should be written to finish  
writing the data meant for “addr,” for example:  
For the registers LCNT_ARRAY_ADR (offset 0x82), LTYPE_ARRAY_ADR (offset  
0x86), LPATT_ARRAY_ADR (offset 0x8E), “addr+1” should be written to finish writing  
the data meant for “addr,” for example:  
LTYPE_ARRAY_LINE1 = 0x14  
LTYPE_ARRAY_LINE2 = 0x05  
LTYPE_ARRAY_LINE3 = 0x00  
LTYPE_ARRAY_LINE_ADR = 0x01  
Note the next address, 0x02, is written to finish writing to the previous address 0x01.  
LTYPE_ARRAY_LINE_ADR = 0x02  
LTYPE_ARRAY_LINE1 = 0x14  
LTYPE_ARRAY_LINE2 = 0x03  
LTYPE_ARRAY_LINE3 = 0x00  
LTYPE_ARRAY_LINE_ADR = 0x02  
Note the write to next address, 0x03  
LTYPE_ARRAY_LINE_ADR = 0x03  
LTYPE_ARRAY_LINE1 = 0x0C  
LTYPE_ARRAY_LINE2 = 0x03  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
26 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
LTYPE_ARRAY_LINE3 = 0x00  
LTYPE_ARRAY_LINE_ADR = 0x03  
Note the write to next address, 0x04  
LTYPE_ARRAY_LINE_ADR = 0x04  
The HD Sync Generator inserts a definable sync pattern (that normally includes  
blanking) into the video line. This includes a ’Select’ bit [in the Line_Pattern_Array]  
which determines whether the current portion of the line should display video or  
generated sync. Each portion of the line has a color value defined, which will be  
displayed if Select=1. There is a 1 pixel path difference between ’Select’ and  
’Value’, resulting in the momentary display of the color value for 1 pixel width until  
the Select bit switches active video to the output display.  
The work around for the above problem is to ensure that the Value array entry for the  
’active’ portion of the line is set the same as the previous portion of the line. This will  
normally mean setting the value to blanking level. This will ensure that during the 1  
clock path difference, the color value output will be the same as for the previous  
portion of the line. This will remove the observed spike.  
The listing below outlines an example on how to set up the sync tables for a 1080i HD  
raster:  
// hd-sync config file for 1080i  
#line_count_array  
//index //line_count  
------------------  
25//5 lines vsync  
41//1 line sync-black-sync-black  
614//14 lines blank  
1537//537 lines active video  
65//5 lines blank  
51//1 line sync-black-sync-blank  
24//4 lines sync  
31//1 line sync blank sync black  
615//15 lines blank  
1537//537 lines active video  
65//5 lines blank  
00//dummy lines  
00//dummy lines  
00//dummy lines  
00//dummy lines  
00//dummy lines  
#line_type_array  
//p8p7p6p5p4p3p2p1  
---------------  
00000034 //sync-full active line  
00002424 //sync-half blank-sync-half blank  
00001424 //sync-half blank-sync-half black  
00001414 //sync-half black-sync-half black  
00002414 //sync-half black-sync-half blank  
00000054 //sync-full line black  
00000000  
00000000  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
27 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
#line_pattern_array  
//d=duration s=select v=value  
//d4s4v4d3s3v3d2s2v2d1s1v1  
-------------------  
000000431387913 //half line black  
000000431387910 //half line blank  
431395906959065913 //full active line  
000871343124311 //sync pulse  
431395913959135913 //full line black  
000000000000  
000000000000  
#value_array  
//signed values  
// YUV  
--------------  
-51200//broad pulse level  
-512-432-432//lower sync tip  
102432432//upper sync tip  
-20400//black/blank level org  
000  
000  
000  
000  
#other  
//trigger_line  
// preload of the line count in  
//addr 0x9a-0x99 -hex values  
99 3  
9a 00  
//trigger_duration  
// preload of duration of the line pattern array  
//addr 0x9c-0x9b -hex values  
9c 0  
9b 2  
//trigger pointer  
9d 0x11  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
28 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
// bit 1:0 loads the counter value of line count array  
// bit 7:4 loads the counter value of the line pattern array  
//sync raster  
//sync height  
ae 0x64  
af 0x04  
//sync width  
b0 0x97  
b1 0x08  
//sync trigger pos  
//trigger pos x  
b4 0x15  
b5 0x00  
//trigger pos y  
b2 0x15  
b3 0x00  
A complete example of register settings for 1080i is given in Section 9.  
The listing below outlines an example on how to set up the sync tables for a 720p  
raster:  
// hd-syn config file for 720p  
#line_count_array  
//index line_count  
-----------------------------------  
25//5 lines vsync  
320//20 lines blank  
1360//360 lines active video  
1360//360 lines active video  
35//5 lines blank  
00//dummy lines  
00//dummy lines  
00//dummy lines  
00//dummy lines  
00  
#line_type_array  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
29 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
//p8p7p6p5p4p3p2p1  
-------------------------------------  
00000034 //sync-full line active  
00000024 //sync-full line blank (vsync)  
00000054 //sync-full line black (v-blanking)  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
#line_pattern_array  
//dur4sel4val4dur3sel3val3dur2sel2val2dur1sel1val 1  
-------------------------------------------------------  
000000000000 //empty  
00069137141071410 //full line blank  
6913639006390014913 //full line active  
000691339123911 //sync pulse  
6913639136391314913 //full line black  
000000000000  
000000000000  
#value_array Y  
//signed values  
YUV  
------------------------  
-51200//broad pulse level  
-512-432-432//lower sync tip  
102432432//black/blank level org  
000  
000  
000  
000  
7.2.3 Signature analysis  
PNX8510/11 allows the signature analysis to be done on both primary and the  
secondary video channels and read the two signatures separately. The signature  
analysis is done on the upper 8 bits of the interface. The video channel select for the  
signature analysis is defined by the “SIG_SELECT” of the SIGCTRL (offset 0xBA)  
register.  
The signature is calculated as per the following CRC algorithm:  
// * This is a simple table based CRC-16 that computes the CRC  
// * four bits at a time. This requires a small (16 entry) lookup table.  
// * lookup table for non-reversed parallel CRC algorithms  
// unsigned int crc16_table[16]={  
//  
0x0000, 0x8005, 0x800f, 0x000a,  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
30 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
//  
//  
//  
0x801b, 0x001e, 0x0014, 0x8011,  
0x8033, 0x0036, 0x003c, 0x8039,  
0x0028, 0x802d, 0x8027, 0x0022  
// };  
//  
// * Unlike the serial method, this algorithm does not require any additional  
// * operations to finish the CRC after the message is processed  
// * This routine uses crc1 to hold the crc.  
// */  
//  
// void parallel_crc1(c)  
// int c;  
// {  
//  
int r1 ;  
//  
//  
/* calculate CRC using the 4 bit LUT method */  
/* upper 4 bits */  
//  
//  
r1 = crc16_table[((crc1>>12) & 0xF) ^ ((c & 0xf0) >> 4)];  
crc1 = ((crc1 << 4) & 0xFFF0) ^ r1;  
//  
//  
//  
/* lower 4 bits */  
//  
r1 = crc16_table[((crc1>>12) & 0xF) ^ (c & 0x0f)];  
crc1 = ((crc1 << 4) & 0xFFF0) ^ r1;  
//  
// }  
7.2.4 Limitations of the video pipe  
In all HD modes, the video encoder will be switched off. Either a separate sync signal  
or the embedded syncs of the D1 input can be used to generate the sync raster  
driving the display device.  
7.3 Audio pipeline  
The PNX8510/11 has two independent stereo channels, each connected to a  
separate audio interface. The primary audio channel is usually associated with the  
primary video channel and carries the accompanying sound information. The  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
31 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
secondary audio channel usually carries the audio belonging to the record  
(secondary) video channel. Because they might originate from different sources, the  
two interfaces are operated by independent clocks.  
Mute on/off is programmable by a register setting. Table 19 describes the expected  
audio performance.  
Table 19: Audio performance  
Parameter  
QFP100  
85dB  
Dynamic range  
S/(N+Disto.)  
>85dB  
The audio path has three general blocks: input, interpolation, and DAC.  
The input is, by default, a 24-bit I2S interface. However, it can be programmed to  
accept other formats.  
The interpolator scales, filters and oversamples the incoming data by 64 x its  
sampling frequency. The result goes to a Noise Shaper, which shifts in-band noise  
to frequencies well above the audio spectrum. This provides a very high  
signal-to-noise ratio.  
Finite Impulse Response DACs convert the 1-bit data stream to analog output  
voltage.  
FIR-DAC-L  
Σ∆  
NOISE  
PRIMARY  
I S-BUS  
INTERPOLATOR  
LEFT/RIGHT  
2
SHAPER  
FIR-DAC-R  
FIR-DAC-L  
Σ∆  
SECONDARY  
I S-BUS  
INTERPOLATOR  
LEFT/RIGHT  
NOISE  
SHAPER  
2
FIR-DAC-R  
MDB651  
Fig 23. Audio path block diagram  
7.3.1 Audio interface operation  
The audio interfaces can be operated in either slave or master mode:  
In slave mode, all required clocks (System CLK, SCK and WS) must be generated  
externally and must be synchronous with each other.  
In master mode, the PNX8510/11 only gets the System CLK and generates SCK  
and WS clocks synchronously to the applied System CLK. In this mode, System  
CLK is equal to 128 x Fs where Fs is the audio sampling frequency.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
32 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Audio input timing  
Figure 24 and Figure 25 illustrate the different modes of operation for the I2S interface  
used in the PNX8510/11.  
SCK  
SD  
MSB first / MSB justified format (MSB)  
MSB  
WS  
WS  
LSB  
2
MSB  
LSB  
MSB first / LSB justified format (Japanese 1 S-bus, 16, 18, 20, 24 bit)  
MSB  
LSB  
MSB  
LSB  
: position fixed  
: position may vary with wordsize  
MDB652  
Justification bit is not delayed.  
Fig 24. Input formats  
SCK  
SD  
2
MSB first / MSB justified format (Philips I S-bus)  
WS  
MSB  
LSB  
MSB  
LSB  
: position fixed  
MDB653  
: position may vary with wordsize  
Justification bit is one bit clock delayed.  
Fig 25. Input format  
Table 20: I2S signals  
Port  
SCK  
SD  
Description  
Bit clock  
PCM data  
WS  
Word Select; left and right clock is equal to the sample rate.  
7.3.2 Mute modes  
The audio modules of the PNX8510/11 have several mute functions. The mute  
operation is controlled via the bits “quickmute, and mutemode” of the programming  
register, INTERPOLATOR_REG2(offset 0x00FD).  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
33 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Quick mute  
This is an overriding quickmute on the master channel, which mutes the interpolator  
output signal in 32 samples using the cosine roll-off coefficients instead of 32x32  
samples to mute the output. This means whenever the quickmute register is set to  
one, independent of what the mute setting of the micro controller is, the output is  
muted.  
Mute mode  
This register sets the mute mode for the MASTER MUTE to either soft mute (setting  
is ‘0’) or to quick mute (setting = ‘1’). For the master channel the quickmute function  
and the micro controller mute function are OR’d.  
Table 21: Mute mode control  
Quick mute Micro controller mute Function  
0
0
0
1
No mute  
1 micro controller mute...mute mode depends on  
the ‘mutemode’ setting.  
1
X
Overriding quick mute function  
Table 22: Mute Mode Function  
While in Mute Mode, releasing the ‘mute’ bit applies a graduated cosine startup  
Mute mode  
Function  
0
1
Mute function via micro controller interface is set to “soft mute.”  
Mute function via micro controller interface is set to “quick-mute.”  
Figure 26 shows the signal flow for the mute control.  
conditional shift  
when mixing  
channel 1  
master channel  
mute1  
BASS  
BOOST  
(1)  
+
TREBLE  
+
HB  
VOLUME  
MUTE  
mute1  
DE-EMPHASIS  
DE-EMPHASIS  
VOLUME  
MUTE  
VM1  
0.25 dB steps  
channel 2  
double speed  
input  
mute2  
mutemix  
VOLUME  
MUTE  
VM2  
MDB654  
0.25 dB steps  
Fig 26. Mixing possibilities in interpolator 4v0  
7.4 Programming interface  
The configuration of the various interface modes and the digital video encoder setup  
can be controlled via an I2C interface or a special VBI data packet sent during the  
horizontal blanking interval. With the VBI programming interface, a reliable real-time  
programming for the PNX8510/11 video blocks can be accomplished. For instance,  
this mode makes it very easy to carry the necessary programming data over to the  
digital encoder to encode a certain teletext packet in a specific scanline without  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
34 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
extensive buffering. The format for programming registers in the PNX8510/11 via the  
VBI interface can be found in Section 7.1.5. Note that reprogramming clocks and  
audio registers are not possible via the VBI interface.  
The PNX8510/11 is an I2C slave device only. It uses four dedicated slave addresses  
to address the primary, secondary, audio and remaining control registers. The I2C  
address set can be configured during reset with a pull-up or pull-down combination of  
GPIO pins.  
Table 23 shows the register sets and the relationship with the ‘xy’ bits in the address  
structure.  
Table 23: Relation of ‘xy’ with register sets  
Address= GPIO5-GPIO4-XY-GPIO3-GPIO2-GPIO1-R/W  
Register Set  
x
0
0
1
1
y
0
1
0
1
VIDEO 1  
VIDEO 2  
AUDIO 1 / VIDEO 1 and AUDIO 1 clocks  
AUDIO 2/ VIDEO 2 and AUDIO 2 clocks  
Table 24 shows an example of how the I2C device addresses are determined.  
Table 24: I2C Address determination  
Register Set  
VIDEO 1  
Selection Example  
IIC address selection example:  
VIDEO 2  
GPIO5-2 are set to logic one and GPIO1 is set to zero during the  
PNX8510/11rest.  
AUDIO 1 / VIDEO 1 and  
AUDIO 1 clocks  
Address = GPIO5-GPIO4-XY-GPIO3-GPIO2-GPIO1-R/W  
Address = 1-1-XY-1-1-0-R/W  
AUDIO 2/ VIDEO 2 and  
AUDIO 2 clocks  
VIDEO1 = 1-1-0-0-1-1-0-R/W = 0xCC(write), 0xCD(read)  
VIDEO2 = 1-1-0-1-1-1-0-R/W = 0xDC (write), 0xDD(read)  
AUDIO1 = 1-1-1-0-1-1-0-R/W = 0xEC(write), 0xED(read)  
AUDIO2 = 1-1-1-1-1-1-0-R/W = 0xFC(write), 0xFD(read)  
A detailed description of all programming registers can be found in Section 8.  
7.5 GPIO block  
GPIOs are multi-purpose pins. They may be programmed as input/output and used to  
carry signals into the IC or to monitor the status of the IC. The selection of these I/O  
pins is controlled through programmable registers. The GPIO module can be  
programmed via subaddress 90-95 of the primary video pipe.  
The GPIO pins operate in two basic modes; Bootstrap mode and GPIO mode. During  
chip reset the GPIOs are in bootstrap mode. The status of all GPIO pins is monitored  
and used to determine the set of I2C device addresses the IC responds to.  
After the chip reset is released, the GPIO pins may be used in GPIO mode. In output  
mode each GPIO pin can be set to logic one or zero by programming the appropriate  
register. In input mode the status of each GPIO can be monitored by reading the  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
35 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
appropriate status register. In addition to the register-driven I/O mode, some of the  
GPIO pins are used to reflect the status of internal signals. Some GPIO pins are also  
used as additional inputs to functional units if operated in input mode.  
7.5.1 Operation  
GPIO set during reset  
During reset the GPIO output is disabled. GPIO_in is stored as gpio_in_stored and  
retains its value until the next reset. This stored value determines the I2C device  
addresses. After reset, GPIO pins can be programmed for output with the OEN and  
OUT_SEL bits.  
Checking/setting the GPIO status  
Each GPIO pin is multiplexed four times to increase usability. Figure 27 outlines the  
internal structure of one GPIO pin. In output mode the selection of the signal routed  
out to a GPIO pin is performed with the OUT_SEL register bits. The OEN bit is low  
active and enables the GPIO output mode. If OUT_SEL is set to 2’b11 and the OEN  
bit is set to zero, the GPIO pin can be set or reset by writing a one or zero into the  
STATUS location of the GPIO register. All other OUT_SEL settings are listed in  
Table 29.  
To read the external status of a GPIO pin, the OEN needs to be set to one to avoid  
conflicts with signals routed out of the chip. If GPIO_IN_EN4 is set to one, the status  
of the GPIO pin can be monitored by reading the STATUS bit of the appropriate GPIO  
register. The function of all relevant GPIO_IN/OUT signals are listed in Figure 27 and  
Table 25.  
OUT_SEL  
OEN  
GPIO_OUT1  
GPIO_OUT2  
GPIO_OUT3  
GPIO_OUT4  
GPIO_OUT  
GPIO  
GPIO_IN1  
GPIO_IN2  
GPIO_IN_EN1  
GPIO_IN_EN2  
GPIO_IN_EN3  
GPIO_IN_EN4  
GPIO_IN  
GPIO_IN3  
GPIO_IN4  
MDB655  
GPIO_IN_STORED  
Fig 27. Operation modes for one GPIO in the PNX8510/11  
Table 25: Specific GPIO assignments  
Signal  
Description  
gpio5_out1  
gpio5_out2  
gpio5_in3  
Composite sync secondary encoder  
Vertical sync primary encoder  
30-bit parallel video input mode: bit[1] = red channel  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
36 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 25: Specific GPIO assignments…continued  
Signal  
Description  
gpio4_out1  
gpio4_out2  
gpio4_in3  
gpio3_out1  
gpio3_out2  
gpio3_in1  
gpio3_in2  
gpio3_in3  
gpio2_out1  
gpio2_out2  
gpio2_in3  
gpio1_out1  
gpio_in3  
Data request secondary encoder  
Composite sync primary encoder  
30-bit parallel video input mode: bit[0] = red channel  
Enable y secondary encoder (1/2 of the encoder operation frequency)  
Odd/even signal primary encoder  
Real time control input primary encoder  
Real time control input secondary encoder  
30-bit parallel video input mode: bit[1] = green channel  
Odd/even signal secondary encoder  
Data request primary encoder  
30-bit parallel video input mode: bit[0] = green channel  
Vertical sync secondary encoder  
30-bit parallel video input mode: bit[0] = blue channel  
All other settings are reserved for future use  
7.6 Clock module  
All of the PNX8510/11 modules receive their input clocks from the clocks module. The  
top level structure of the clocks module is Figure 28.  
2
I C-BUS DECODER  
MODULE  
clk_dv1_if  
CLOCKS_VIDEO_SUB_1  
dv_clk1  
clk_dv1_proc  
clk_dv2_if  
CLOCKS_VIDEO_SUB_2  
dv_clk2  
clk_dv2_proc  
sclk_a1  
ws_a1  
CLOCKS_AUDIO_SUB_1  
i2s_aos1_clk  
sclk_a2  
ws_a2  
CLOCKS_AUDIO_SUB_2  
i2s_aos2_clk  
MDB656  
Fig 28. Clocks module  
The PNX8510/11 in normal operation mode receives four external clocks. Two clocks  
dv_clk1 and dv_clk2 are the clocks used for the primary and secondary video data  
paths. The other two clocks assemble the audio over-sampling clocks for the primary  
and secondary audio channel.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
37 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
The PNX8510/11 video clocks are used to create two internal clocks: one for  
operating the video input interface (clk_dv1_if, clk_dv2_if), and one for operating the  
main video processing pipeline (clk_dv1_proc, clk_dv2_proc).  
The audio interface normally operates in slave mode (over-sampling clock, word  
select and bit clock are provided from the externally connected I2S master). However  
the PNX8510/11 can be operated in master mode. This mode only requires the  
over-sampling clock to be provided. The bit clock and the word select signals are  
subdivided from the over-sampling clock and provided to the chip pins.  
Remark: Both video clocks (DV_CLK1 and DV_CLK2) and an audio clock  
(I2S_AOS1_CLK) have to be connected to the device for proper functioning of the I2C  
programming interface. These clocks must be provided before the reset line  
(RESET_N) is pulled high to ensure correct initialization of the device. For more  
information refer to Section 10.4.  
If the two video pipelines are sourced by only one video input interface operating in  
sliced mode, both video pipelines must receive the same input clock originating from  
the same sliced data source.  
7.6.1 Clocks video submodule  
The generation of the various clock signals needed for video pipelines takes place in  
the clocks video module. Figure 29 shows a block diagram of this module. The  
configuration registers for the clocks module can be found in Section 8.2.  
clocks_sel  
div by 1, 2, 3 or 4  
dv_clk  
CLOCK DIVIDER  
clk_dv_if_out  
&
dv_clk  
DE-GILITCHER  
sel_v  
test  
test  
clocks_sel  
div by 1, 2, 3 or 4  
CLOCK DIVIDER  
&
DE-GILITCHER  
clk_dv_proc_out  
dv_clk  
MDB657  
Fig 29. Clocks video submodule  
7.6.2 Clocks audio submodule  
The input clocks for the audio block are generated in the clocks audio submodule.  
Figure 30 shows a block diagram for this submodule  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
38 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
i2s_aos_clk  
sel_a  
clk_a  
4-BIT DIVIDER  
9-BIT DIVIDER  
sclk_a  
sck_in  
ws_a  
ws_in  
test_a  
MDB658  
Fig 30. Clocks audio submodule  
7.7 Test mode  
This section describes how the analog test modes are implemented in the  
PNX8510/11. Note that these test modes are intended for production test only. The  
chip needs to be brought into analog test mode via the JTAG boundary scan  
controller. Once the chip is in analog test mode the different test modes can be  
enabled via the GPIO pins. The data input for the video DACs is provided via the DV1  
interface for DACs 1 through 4 and via the DV2 interface for DACs 5 and 6  
respectively. The “main switch” for the test mode is controlled by the JTAG boundary  
scan controller. Once the chip is in analog test mode, the GPIO pins can be used to  
select certain combinations outlined in the tables.  
Table 26: Video DAC test modes  
GPIO2  
GPIO3  
Test  
0
0
1
1
0
1
0
1
VDAC1 and VDAC5 active  
VDAC2 and VDAC6 active  
VDAC3 and VDAC5 active  
VDAC4 and VDAC6 active  
For the video DACs 1 to 4, the primary 10-bit D1 interface (DV1_IN[9:0]) provides the  
10-bit input. Video DACs 5 and 6 are stimulated through the secondary D1 interface  
(DV2_IN[9:0])  
Table 27: Audio DAC test modes  
GPIO4  
GPIO5  
Test  
0
0
1
1
0
1
0
1
ADAC1/2 and ADAC3/4 stereo pair first and second channel off  
ADAC1/2 stereo pair first channel active  
ADAC3/4 stereo pair second channel active  
ADAC1/2 and ADAC3/4 stereo pair first and second channel active  
The serial audio data streams for the first stereo pair are provided through the  
I2S_IN1_SD and the I2S_IN1_WS pins. The audio DAC pair 3 and 4 get their serial  
data through pins I2S_IN2_SD and I2S_IN2_WS.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
39 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
VDAC1  
VDAC2  
VDAC3  
VDAC4  
DV1_IN[9:0]  
DV2_IN[9:0]  
10  
10  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
TEST  
DECODER  
VIDEO  
VDAC5  
VDAC6  
I2S_IN1_SD  
I2S_IN1_WS  
I2S_IN2_SD  
I2S_IN2_WS  
TEST  
DECODER  
AUDIO  
ADAC1  
ADAC2  
ADAC3  
ADAC4  
MDB659  
Fig 31. Audio and video DAC test modes  
8. Register descriptions  
The PNX8510/11 register space is divided into four different spaces. Each of them is  
addressed by a different I2C device address. The first address space is dedicated to  
the primary video channel, the second space belongs to the secondary video  
channel. The third I2C address space accommodates the registers that control the  
first audio channel. The fourth I2C space is used to address the secondary audio  
channel.  
The video channel registers are only listed once. Because the secondary video  
channel does not support high definition or RGB output, its registers have some  
minor differences, which are noted in Table 28 and Table 29 as “Not present in  
secondary video channel.”  
The slave addresses are selectable during boot. The registers for the primary and  
secondary audio and video modules are identical, except as noted in the register  
definitions. Table 28 and Table 29 provide the offset– the base address is dependent  
on the module.  
The actual address spaces are determined at boot time according to the GPIO  
settings. For more information refer to Section 7.4.  
Table 28: PNX8510/11 register summary  
Descriptions with * have different meaning, or are not present in secondary video address space. See Table 29 for more  
details.  
Address  
Name  
Description  
Video address space  
0x00  
0x1A  
STATUS  
MSMT  
Status register  
Monitor sense mode threshold  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
40 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 28: PNX8510/11 register summary…continued  
Descriptions with * have different meaning, or are not present in secondary video address space. See Table 29 for more  
details.  
Address  
0x1B  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x38  
0x39  
0x3A  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x61  
0x62  
0x63– 66  
0x67  
0x68  
0x69  
0x6A  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
Name  
Description  
MSMS  
Monitor sense mode status  
Wide screen signaling data  
Wide screen signaling enable  
Burst control  
WSS1  
WSS2  
BCTL  
BCTL2  
CGD1  
Burst control  
Copy guard  
CGD2  
Copy guard  
CGD  
Copy guard enable  
DACCTL  
GAIN_Y  
GAIN_UV  
INPCTL  
VPS1  
DAC control *  
Gain adjust for Y component (SD RGB/YUV data path)*  
Gain adjust for UV component (SD RGB/YUV data path)*  
Input control register *  
Video programming system  
Video programming system  
Video programming system  
Video programming system  
Video programming system  
Video programming system  
Color subcarrier phase  
VPS2  
VPS3  
VPS4  
VPS5  
VPS6  
CHPS  
GAINU  
GAINV  
BLCKL  
BLNNL  
BLNVB/CCR  
STDCTL  
BSTA  
Gain adjust for U component  
Gain adjust for V component  
Black level adjust  
Blank level adjust  
Cross color reduction / blank level (during vertical blank)  
Video standard control  
Burst amplitude control  
Color subcarrier frequency control  
Closed captioning odd field  
Closed captioning odd field  
Closed captioning even field  
Closed captioning even field  
SD trigger control  
FSC0-FSC3  
L21O0  
L21O1  
L21E0  
L21E1  
TRGCTL1  
TRGCTL2  
MULTICTL  
TTXCTL  
ADWHS  
ADWHE  
ADWHS/E  
TTXHS  
SD trigger control  
Sync and blank control  
VBI insertion control  
Active display window start  
Active display window end  
Active display window - MSB  
TTX control  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
41 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 28: PNX8510/11 register summary…continued  
Descriptions with * have different meaning, or are not present in secondary video address space. See Table 29 for more  
details.  
Address  
0x74  
Name  
Description  
TTXHL/TTXHD  
CSYNCA  
TTX control  
0x75  
Composite sync control  
TTX insertion control odd field  
TTX insertion control odd field  
TTX insertion control even field  
TTX insertion control even field  
First active line  
0x76  
TTXOVS  
0x77  
TTXOVE  
0x78  
TTXEVS  
0x79  
TTXEVE  
0x7A  
FAL  
0x7B  
LAL  
Last active line  
0x7C  
TTXCTRL  
TTX format control  
0x7E  
DTTXL  
TTX mask  
0x7F  
DTTXL2  
TTX mask  
0x80  
LCNT_ARRAY_LINE  
LCNT_ARRAY_LINE  
LCNT_ARRAY_ADR  
LTYPE_ARRAY_LINE  
LTYPE_ARRAY_ADR  
LPATT_ARRAY_LINE  
LPATT_ARRAY_ADR  
GPIO5-GPIO1  
VMUXCTL  
HD sync generator control *  
HD sync generator control *  
HD sync generator control *  
HD sync generator control *  
HD sync generator control *  
HD sync generator control *  
HD sync generator control *  
GPIO control *  
0x81  
0x82  
0x83– 0x85  
0x86  
0x87– 0x8D  
0x8E  
0x90– 0x94  
0x95  
Video input mode control *  
HD sync generator control *  
0x96– 0x97  
0x98  
VALUE_ARRAY_LINE  
VALUE_ARRAY_ADR/EVENT HD sync generator control *  
_TYPE_PTR  
0x99– 0x9A  
0x9B– 0x9C  
0x9D  
TRIGGER_LINE  
TRIGGER_DURATION  
TRIGGER_PTR  
BLANK_Y  
HD sync generator control *  
HD sync generator control *  
HD sync generator control *  
0x9E  
Programmable blank level for Y (SD RGB/YUV data path) *  
Programmable blank level for UV (SD RGB/YUV data path) *  
Color space matrix bypass enable *  
Border color  
0x9F  
BLANK_UV  
0xA0  
RGB_CTRL  
0xA2  
BORDER_Y  
BORDER_U  
BORDER_V  
MISCCTRL  
0xA3  
Border color  
0xA4  
Border color  
0xA5  
DAC and trigger control *  
0xA6  
HDCTRL  
HD video path control *  
0xA7  
SYNC_DELAY  
BLANK_R/Y  
BLANK_G/U  
BLANK_B/V  
Sync and VBI programming control  
Blank offset control HD video path *  
Blank offset control HD video path *  
Blank offset control HD video path *  
HD sync generator screen height *  
0xA8  
0xA9  
0xAA  
0xAE  
SYNC_HEIGHT1  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
42 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 28: PNX8510/11 register summary…continued  
Descriptions with * have different meaning, or are not present in secondary video address space. See Table 29 for more  
details.  
Address  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBC  
0xBE  
0xBF  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
0xC7  
0xC8  
0xC9  
Name  
Description  
SYNC_HEIGHT2  
SYNC_WIDTH1  
SYNC_WIDTH2  
SYNC_TRIGPOS_Y1  
SYNC_TRIGPOS_Y2  
SYNC_TRIGPOS_X1  
SYNC_TRIGPOS_X2  
SIG1  
HD sync generator screen height *  
HD sync generator screen width *  
HD sync generator screen width *  
HD sync generator vertical position control1 *  
HD sync generator vertical position control2 *  
HD sync generator horizontal position control1 *  
HD sync generator horizontal position control2 *  
Video signature *  
SIG2  
Video signature *  
SIG3  
Video signature *  
SIG4  
Video signature *  
SIGCTRL  
Video signature analyzer control *  
Blank offset control *  
BLANK_MSBs  
R/Y Value Array Line  
B/U Value Array Line  
G/V Value Array Line  
Value Array Line MSBs  
DAC1 ADJ  
R/Y value array data *  
B/U value array data *  
G/V value array data *  
Value array data MSBs *  
Coarse current control DAC1 *  
Coarse current control DAC2 *  
Coarse current control DAC3 *  
Coarse current control DAC4 *  
Common current fine adjust for DACs 1-4 *  
Gain adjust HD path *  
DAC2 ADJ  
DAC3 ADJ  
DAC4 ADJ  
DACC ADJ  
HD_Gain R/Y  
HD_Gain G/U  
HD_Gain B/V  
Gain adjust HD path *  
Gain adjust HD path *  
Audio/clock address space  
0x0000  
0x0001  
0x0002  
0x0003  
0x00F4  
CLK_AUDIO  
CLK_IF  
Audio clock control  
Video interface clock control  
Video processing clock control  
Video DAC clock control  
Audio interface control  
Audio feature control  
CLK_PROC_DIV  
CLK_DAC_DIV  
I2S_SET_REG  
0x00F5– 00FB FEATURE_REG  
0x00FC  
0x00FD  
0x00FE  
INTERPOLATOR_REG1  
INTERPOLATOR_REG2  
Audio feature control  
Audio feature control  
Audio DAC power on register Audio DAC control  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
43 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
8.1 Video address space  
Table 29: PNX8510/11 video registers  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
Offset 0x00 STATUS  
7
6
5
4
3
2
1
VER2  
R
R
R
R
R
0
0
1
-
Version ID bit 2  
Version ID bit 1  
Version ID bit 0  
VER1  
VER0  
CCRDO  
CCRDE  
Unused  
FSEQ  
Closed caption encoding done for odd field  
Closed caption encoding done for even field  
-
-
R
-
Field Sequence  
1 = During first field of a sequence  
0 = Not the first field of a sequence  
0
O_E  
R
-
Status of the ODD/EVEN flag in the encoder  
Registers 0x01 through 0x10 must be initialized to zero.  
Offset 0x1A MSMT  
7:0  
MSMT  
R/W  
R/W  
-
Monitor sense mode threshold for DACs comparator  
Offset 0x1B MSMS  
7
MSM  
0
Monitor sense mode  
0 = Off  
1 = On  
6:4  
3
Unused  
-
-
MSMS4*  
R
R
R
R
Monitor sense status DAC4  
0 = Comparator is inactive.  
1 = Comparator is active.  
2
1
0
MSMS3*  
MSMS2  
MSMS1  
-
-
-
Monitor sense status DAC3  
0 = Comparator is inactive.  
1 = Comparator is active.  
Monitor sense status DAC2  
0 = Comparator is inactive.  
1 = Comparator is active.  
Monitor sense status DAC1  
0 = Comparator is inactive.  
1 = Comparator is active.  
Registers 0x1C through 0x25 must be initialized to zero.  
Offset 0x26 - WSS1  
7:0  
WSSD[7:0]  
R/W  
-
Wide screen signalling data  
bits 3:0 = Aspect ratio encoding  
bits 7:4 = Enhanced services  
Offset 0x27 - WSS2  
7
WSSON  
R/W  
0
-
Wide screen signalling enable  
0 = wss switched off  
1 = wss switched on  
6
Unused  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
44 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
5:0  
WSSD[13:8]  
R/W  
-
Wide screen signalling data  
bits 13:11 = Reserved  
bits 10:8 = Subtitles  
Offset 0x28 - RTC1/BCTL1  
7
DECFIS  
R/W  
R/W  
0
0
Field sequence detection via RTC  
0 = Field sequence as FISE in address 61  
1 = Field sequence detection via RTC interface  
6
DECCOL  
Color detection via RTC interface  
0 = Color detection via RTC disabled  
1 = Color detection via RTC enabled  
Note: The RTCE bit must be set to 1 to enable this feature.  
Starting point of color burst in clk cycles from Hsync  
5:0  
BS  
R/W  
0x21  
PAL=0x21  
NTSC=0x25  
Offset 0x29 - BCTL2  
7:6  
5:0  
Unused  
BE  
-
R/W  
R/W  
0x1d  
Color burst end point in clk cycles from Hsync  
PAL = 0x1D  
NTSC = 0x1D  
Offset 0x2A - CGD1  
7:0 CG  
-
Copy guard information bits 7:0  
Note: The 14 LSBs of the byte carry the information encoded after  
the run-in. The 6 MSBs have to carry the CRCC bits in accordance  
with the definition of the CGMS encoding format.  
Offset 0x2B - CGD2  
7:0 CG  
R/W  
-
Copy guard information bits 15:8  
Note: The 14 LSBs of the byte carry the information encoded after  
the run-in. The 6 MSBs have to carry the CRCC bits in accordance  
with the definition of the CGMS encoding format.  
Offset 0x2C - CGD  
7
CGEN  
R/W  
R/W  
0
Copy guard enable  
0 = Disabled  
1 = Enabled  
6:4  
3:0  
Unused  
CG  
-
-
Copy guard information bits 19:16  
Note: The 14 LSBs of the byte carry the information encoded after  
the run-in. The 6 MSBs have to carry the CRCC bits in accordance  
with the definition of the CGMS encoding format.  
Offset 0x2D - DACCTL Video data path  
VBSEN* R/W  
7
1
DAC3 control  
0 = Video dac 3 carries the green channel.  
1 = Video dac 3 carries the luminance channel.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
45 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
6
CVBSEN  
R/W  
1
1
-
DAC1 control  
0 = Video dac 1carries the luminance channel.  
1 = Video dac 1 carries the CVBS channel.  
5
CEN*  
R/W  
DAC2 control  
0 = Video dac 2 carries the red channel.  
1 = Video dac 2 carries the chroma channel.  
4:0  
Unused  
Registers 0x2E– 0x37 must be initialized to zero.  
Offset 0x38 - GAIN_Y *  
7:5  
4:0  
Unused  
-
GAIN_Y*  
R/W  
0x1A  
Gain adjust for Y component in SD-RGB/YUV data path, two’s  
complement number to adjust the gain from -50% to +50%  
Yout=Yin x (1+ GAIN_Y/32)  
Offset 0x39 - GAIN_UV*  
7:5  
4:0  
Unused  
-
GAIN_UV*  
R/W  
R/W  
0x1A  
Gain adjust for U/V components in SD-RGB/YUV data path, two’s  
complement number to adjust the gain from -50% to +50%  
UVout=UVin x (1+ GAIN_UV/32)  
Offset 0x3A - INPCTL  
7
CBENB  
0
Color bar generator  
0 = Color bar generation switched off  
1 = Color bar generation enabled (SD-CVBS/YC and SD-RGB/YUV  
modes only)  
6
5
QUALINVERT*  
USE_QUAL*  
R/W  
R/W  
1
0
0 = Leave the pixel qualifier untouched.  
1 = Invert the incoming pixel qualifier.  
Use qualifier enable  
0 = No qualifier is used, QUALINVERT should be set.  
1 = The HSYNC input is used as slice qualifier in interleaved mode.  
4
DEDGE  
R/W  
0
Double edge mode  
0 = Double edge mode off; either the interface is running at 2x  
speed to get interleaved data in or only non-interleaved data  
streams are accepted.  
1 = Input data is latched at positive and negative edge. The  
SLICE_DIR register determines which data slice goes in which  
channel.  
3
SD_HD*  
R/W  
1
Video mode switch  
0 = HD data path in operation; encoder runs idle.  
1 = SD data path in operation; encoder is in CVBS/YC or RGB  
mode.  
2
1
U2C  
M2C  
R/W  
R/W  
1
1
0 = Y/R data channel coming from the D1 interface left unchanged  
1 = Y/R MSB of data coming from the D1 interface is inverted.  
0 = U/G data channel coming from the D1 interface left unchanged  
1 = U/G MSB of data coming from the D1 interface is inverted.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
46 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
0
L2C*  
R/W  
1
0 = V/B data channel coming from the D1 interface left unchanged  
1 = V/B MSB of data coming from the D1 interface is inverted.  
Registers 0x3B through 0x53 must be initialized to zero.  
Offset 0x54 - VPS1  
7
VPSEN  
R/W  
0
-
0 = Video programming system data insertion disabled  
1 = Video programming system data insertion enabled  
6:0  
Unused  
Offset 0x55 - VPS2  
7:0 VPSB5  
Offset 0x56 - VPS3  
7:0 VPSB11  
Offset 0x57 - VPS4  
7:0 VPSB12  
Offset 0x58 - VPS5  
7:0 VPSB13  
Offset 0x59 - VPS6  
7:0 VPSB14  
Offset 0x5A - CHPS  
7:0 CHPS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
Fifth byte of video programming system data  
11th byte of video programming system data  
12th byte of video programming system data  
13th byte of video programming system data  
14th byte of video programming system data  
-
-
-
-
0x0  
Phase of encoded color subcarrier (including burst) relative to  
horizontal sync. Can be adjusted in steps of 360/256 degrees.  
Offset 0x5B, 0x5D(MSB) - GAINU  
7:0 GAINU  
R/W  
0x7d  
Variable gain for Cb signal; input representation is in accordance  
with CCIR656. This is the digital gain for SD-Data path  
White to black = 92.5 IRE  
GAINU can be adjusted in a range from -2.17 x nominal  
to 2.16 x nominal  
GAINU=0 (output subcarrier contribution of U = 0)  
GAINU=0x76 (output subcarrier contribution of U = nominal)  
White to black = 100 IRE  
GAINU can be adjusted in a range from -2.05 x nominal  
to 2.04 x nominal  
GAINU=0 (output subcarrier contribution of U = 0)  
GAINU=0x7D (output subcarrier contribution of U = nominal)  
GAINU=0x6A (nominal Gain for Secam encoding)  
Offset 0x5C, 0x5E(MSB) - GAINV  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
47 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
7:0  
GAINV  
R/W  
0xaf  
Variable gain for Cr signal; input representation is in accordance  
with CCIR656.  
White to black = 92.5 IRE  
GAINV can be adjusted in a range from -1.55 x nominal  
to 1.55 x nominal  
GAINV=0 (output subcarrier contribution of V = 0)  
GAINV=0xA5 (output subcarrier contribution of V = nominal)  
White to black = 100 IRE  
GAINV can be adjusted in a range from -1.46 x nominal  
to 1.46 x nominal  
GAINV=0 (output subcarrier contribution of V = 0)  
GAINV=0xAF (output subcarrier contribution of V = nominal)  
GAINV=0x7F (nominal Gain for Secam encoding)  
Offset 0x5D - BLCKL  
7
6
GAINU  
R/W  
R/W  
0
0
Bit 8 of register 0x5B  
DECOE  
Odd/even field control via RTC interface  
0 = Disabled  
1 = Enabled  
5:0  
BLCKL  
R/W  
0x33  
Variable black level; input representation is in accordance with  
CCIR656.  
White to sync = 140 IRE  
recommended BLCKL=0x3A  
BLCKL=0 (output black level = 29 IRE)  
BLCKL=0x3F (output black level = 49 IRE)  
output black level/IRE=BLCKL x 2/6.29+28.9  
White to sync = 143 IRE  
recommended BLCKL=0x33  
BLCKL=0 (output black level = 27 IRE)  
BLCKL=0x3F (output black level = 47 IRE)  
output black level/IRE=BLCKL x 2/6.18+26.5  
Offset 0x5E - BLNNL  
7
6
GAINV  
R/W  
R/W  
0
0
Bit 8 of register 0x5C  
DECPH  
Subcarrier phase reset control via RTC interface  
0 = Disabled  
1 = Enabled  
5:0  
BLNNL  
R/W  
0x35  
Variable blanking level  
White to sync = 140 IRE  
recommended BLCKL=0x2E  
BLNNL=0 (output black level = 26 IRE)  
BLNNL=0x3F (output black level = 46 IRE)  
output black level/IRE=BLCKL x 2/6.29+25.4  
White to sync = 143 IRE  
recommended BLCKL=0x35  
BLNNL=0 (output black level = 26 IRE)  
BLNNL=0x3F (output black level = 46 IRE)  
output black level/IRE=BLCKL x 2/6.18+25.9  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
48 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
Offset 0x5F - BLNVB/CCR  
7:6  
5:0  
CCRS  
R/W  
0x0  
Cross-color reduction filter settings for luminance path  
00 = Cross color reduction filter off  
01 = Filter is active; transfer characteristic 1  
10 = Filter is active; transfer characteristic 2  
11 = Filter is active; transfer characteristic 3  
BLNVB  
R/W  
0x35  
Variable blanking level during vertical blanking interval is typically  
identical to the value of BLNNL.  
Offset 0x60 - Must be initialized to zero  
Offset 0x61 - STDCTL  
7:6  
5
Unused  
INPI  
-
R/W  
R/W  
R/W  
0
0 = PAL switch phase is nominal.  
1 = PAL switch phase is inverted compared to nominal if RTC is  
enabled.  
4
3
YGS  
0
0
0 = Luminance gain for white - black 100 IRE for PAL  
1 = Luminance gain for white - black 92.5 IRE (for NTSC) including  
7.5 IRE set-up of black  
SECAM  
SECAM enable  
0 = Secam encoding switched off  
1 = Secam encoding switched on (PAL has to be 0)  
2
1
0
SCBW  
PAL  
R/W  
R/W  
R/W  
1
1
0
0 = Enlarged bandwidth for chrominance encoding  
1 = Standard bandwidth for chrominance encoding  
0 = NTSC encoding (non alternating V component)  
1 = PAL encoding (alternating V component)  
FISE  
0 = 864 total pixel per line for PAL  
1 = 858 total pixel per line for NTSC  
Offset 0x62 - RTCCTL/BSTA  
7
RTCE  
R/W  
R/W  
0
0 = No real time control of generated subcarrier frequency  
1 = Real time control of generated subcarrier frequency  
6:0  
BSTA  
0x2f  
Amplitude of color burst; input representation is in accordance with  
CCIR 601  
White to black = 92.5 IRE, burst = 40 IRE, NTSC encoding  
BSTA 0 to 2.02 x nominal  
recommended value BSTA = 0x3F  
White to black = 92.5 IRE, burst = 40 IRE, PAL encoding  
BSTA 0 to 2.82 x nominal  
recommended value BSTA = 0x2D  
White to black = 100 IRE, burst = 40 IRE, NTSC encoding  
BSTA 0 to 1.90 x nominal  
recommended value BSTA = 0x43  
White to black = 92.5 IRE, burst = 40 IRE, PAL encoding  
BSTA 0 to 3.02 x nominal  
recommended value BSTA = 0x2F  
fixed burst amplitude for SECAM encoding  
Offset 0x63– 0x66 - FSC0-FSC3  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
49 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
7:0  
0x63=FSC0  
0x64=FSC1  
0x65=FSC2  
0x66=FSC3  
R/W  
0x2A0 ffsc: subcarrier frequency (in multiples of line frequency)  
98ACB fllc: clock frequency (in multiples of line frequency)  
FSC = round ((ffsc/fllc)x2^32)  
FSC3 most significant byte  
FSC0 least significant byte  
NTSC-M: ffsc 227.5, fllc 1716 -> FSC = 21F07C1F  
PAL-B/G: ffsc 283.7516, fllc 1728 -> FSC = 2A098ACB  
SECAM: ffsc 274.304, fllc 1728 -> FSC = 28A33BB2  
Offset 0x67 - L21O0  
7:0 L21O0  
Offset 0x68 - L21O1  
7:0 L21O1  
Offset 0x69 - L21E0  
7:0 L21E0  
Offset 0x6A - L21E1  
7:0 L21E1  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
First byte of closed captioning data, odd field  
Second byte of closed captioning data, odd field  
First byte of closed captioning data, even field  
Second byte of closed captioning data, even field  
Offset 0x6B - Must be initialized to zero.  
Offset 0x6C - TRGCTL1*  
7:0  
HTRIG  
R/W  
0x01  
Sets horizontal trigger phase related to encoder input.  
Values above 1715 (FISE=1) or 1727 (FISE=0) are not allowed.  
Increasing HTRIG decreases delay as of all internally generated  
timing signals. This register is for the SD path.  
Reference mark: analog output horizontal sync (leading slope)  
coincides with active edge of RCV used for triggering at  
HTRIG=0x398.  
Offset 0x6D - TRGCTL2*  
7:5  
HTRIG  
R/W  
R/W  
0x1  
0x0  
Sets horizontal trigger phase related to encoder input.This register  
is for the SD path.  
4:0  
VTRIG  
Increasing VTRIG decreases delays of all internally generated  
timing signals measured in half lines.  
Variation range of VTRIG = 0 to 0x1F  
Offset 0x6E - MULTICTL  
7
6
Unused  
-
BLCKON  
R/W  
R/W  
0
0 = Encoder in normal operation mode  
1 = Output signal is forced to blanking level. This doesn’t shutdown  
the sync and leaves it running.  
5:4  
PHRES  
0x2  
Selects the phase reset mode of the color subcarrier.  
00 = No phase reset or reset via RTC  
01 = Phase reset every two lines  
10 = Reset every eight fields  
11 = Reset every four fields  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
50 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
3:2  
LDEL  
R/W  
0x0  
Selects the luminance delay in reference to the chrominance  
00 = No luma delay  
01 = 1LLC luma delay  
10 = 2LLC luma delay  
11 = 3LLC luma delay  
1:0  
FLC  
R/W  
0x0  
This register is to control the sync. generator  
Field length control  
00 = Interlaced 312.5 lines/field at 50Hz, 262.5 lines/field at 60Hz  
01 = Non interlaced 312 lines @50Hz, 262 lines @60Hz  
10 = Non interlaced 313 lines @50Hz, 263 lines @60Hz  
11 = Non interlaced 313 lines @50Hz, 263 lines @60Hz  
Offset 0x6F - TTXCTL  
7:6  
CCEN  
R/W  
0x00  
Closed caption enable  
00 = Line 21 encoding off  
01 = Enables encoding in field 1 (odd).  
10 = Enables encoding in field 2 (even).  
11 = Enables encoding in both fields.  
5
TTXEN  
SCCLN  
R/W  
R/W  
0
0 = Disables teletext insertion.  
1 = Enables teletext insertion.  
4:0  
0x11  
Selects the actual line where closed caption or extended data are  
encoded.  
line = (SCCLN + 4) for M-systems  
line = (SCCLN +1) for other systems  
Offset 0x70 - ADWHS (Horizontal)  
7:0 ADWHS7:0  
R/W  
R/W  
0x5a  
0x5a  
Active Display Window Horizontal Start bits 7 to 0  
Defines the start of the active TV display portion after the border  
color. Values above 1715 (FISE=1) or 1727 (FISE=0) are not  
allowed.  
Offset 0x71 - ADWHE (Horizontal)  
7:0 ADWHE7:0  
Active Display Window Horizontal End bits 7 to 0  
Defines the start of the active TV display portion after the border  
color. Values above 1715 (FISE=1) or 1727 (FISE=0) are not  
allowed.  
Offset 0x72 - ADWHS/E  
7
Unused  
-
6:4  
ADWHE10:8  
R/W  
R/W  
R/W  
0x6  
Active Display Window Horizontal End bits 10 to 8.  
Defines the start of the active TV display portion after the border  
color. Values above 1715 (FISE=1) or 1727 (FISE=0) are not  
allowed.  
3
Unused  
-
2:0  
ADWHS10:8  
0x1  
Active Display Window Horizontal Start bits 10 to 8  
Defines the start of the active TV display portion after the border  
color. Values above 1715 (FISE=1) or 1727 (FISE=0) are not  
allowed.  
Offset 0x73 - TTXHS  
7:0 TTXHS  
0x42  
Start of teletext signal with respect to Horizontal Sync  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
51 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
Offset 0x74 - TTXHL/TTXHD  
7:4  
3:0  
TTXHL  
TTXHD  
R/W  
R/W  
0x5  
0x2  
Length of TTXRQ window; only active at old TTX protocol  
Note: bit TTXO = 1  
Indicates the delay in clock cycles between rising edge of TTXRQ  
output and valid data at pin TTX.  
Offset 0x75 - CSYNCA  
7:3  
CSYNCA  
R/W  
R/W  
0x0  
-
Advances composite sync against RGB output, adjustable from 0  
XTAL clocks to 31 XTAL clocks  
2:0  
Unused  
Offset 0x76 - TTXOVS  
7:0 TTXOVS  
0x5  
First line of occurrence of Teletext data in odd field  
line = (TTXOVS + 4) for M-systems  
line = (TTXOVE +1) for other systems  
PAL: TTXOVS = 0x05  
NTSC: TTXOVS = 0x06  
Offset 0x77 - TTXOVE  
7:0 TTXOVE  
R/W  
R/W  
R/W  
0x16  
Last line of occurrence of Teletext data in odd field  
line = (TTXOVS + 3) for M-systems  
line = TTXOVE for other systems  
PAL: TTXOVS = 0x16  
NTSC: TTXOVS = 0x10  
Offset 0x78 - TTXEVS  
7:0 TTXEVS  
0x4  
First line of occurrence of Teletext data in even field  
line = (TTXOVS + 4) for M-systems  
line = (TTXOVE + 1) for other systems  
PAL: TTXOVS = 0x04  
NTSC: TTXOVS = 0x05  
Offset 0x79 - TTXEVE  
7:0 TTXEVE  
0x16  
Last line of occurrence of Teletext data in even field  
line = (TTXOVS + 3) for M-systems  
line = TTXOVE for other systems  
PAL: TTXOVS = 0x16  
NTSC: TTXOVS = 0x10  
Offset 0x7A - FAL (Vertical Active Size Adjustment)  
7:0 FAL R/W 0x24  
Defines the video vertical position w.r.t vsync.  
First active line = FAL+4 for M-systems and = FAL+1 for other  
systems. Measured in lines, FAL = 0 coincides with the first field  
sync pulse.  
Offset 0x7B - LAL (Vertical Active Size Adjustment)  
7:0  
LAL  
R/W  
0x29  
Last active line = LAL+3 for M-systems and = FAL for other  
systems. Measured in lines, LAL = 0 coincides with the first field  
sync pulse.  
Offset 0x7C - TTXCTRL  
TTX60  
7
R/W  
0
0 = Enables NABTS (FISE=1) or European TTX (FISE=0).  
1 = Enables World Standard Teletext 60Hz (FISE=1).  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
52 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
6
Symbol  
LAL8  
Access Value Description  
R/W  
R/W  
1
0
Bit 8 of LAL  
5
TTXO  
0 =New TTX protocol selected. At each rising edge of TTXRQ a  
single TTX bit is requested.  
1 = Old TTX protocol selected. The encoder provides a window of  
TTXRQ. The length of the window depends on the chosen TTX  
standard.  
4
3
2
1
0
FAL8  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
Bit 8 of FAL  
TTXEVE8  
TTXOVE8  
TTXEVS8  
TTXOVS8  
Bit 8 of TTXEVE  
Bit 8 of TTXOVE  
Bit 8 of TTXEVS  
Bit 8 of TTXOVS  
Offset 0x7D - Must be initialized to zero.  
Offset 0x7E - DTTXL  
7:0  
DTTXL  
R/W  
0x00  
0x00  
-
Individual lines in both fields (PAL counting) can be disabled for  
insertion of teletext by the respective bits.  
Disabled line =LINExx(50Hz field rate).  
Bit 7 = Line 12; Bit 0 = Line 5  
The mask is only effective if the lines are enabled via  
TTXOVS/TTXOVE and TTXEVS/TTXEVE.  
Offset 0x7F - DTTXL2  
7:0 DTTXL  
R/W  
Individual lines in both fields (PAL counting) can be disabled for  
insertion of teletext by the respective bits.  
Disabled line = LINExx(50Hz field rate)  
Bit 7 = Line 20; Bit 0 = Line 13  
The mask is only effective if the lines are enabled via  
TTXOVS/TTXOVE and TTXEVS/TTXEVE.  
Offset 0x80 - LCNT_ARRAY_LINE*  
7:0 LCNT_ARRAY_LINE  
Offset 0x81 - LCNT_ARRAY_LINE*  
R/W  
R/W  
R/W  
Line count array programming data lower 8 bits  
Line count array programming data upper 6 bit  
7:6  
5:0  
Unused  
-
-
LCNT_ARRAY_LINE  
Offset 0x82 - LCNT_ARRAY_ADR*  
7:4  
3:0  
Unused  
-
-
LCNT_ARRAY_ADR  
Line count array programming address  
Writing to this address initiates the transfer of the data previously  
written into locations 80 and 81 into an internal register array.  
Offset 0x83– 0x85 - LTYPE_ARRAY_LINE*  
7:0  
LTYPE_ARRAY_LINE  
0x83 -> LSBs  
0x85 -> MSBs  
R/W  
-
-
Line type array programming data  
2:0 = first index  
...  
23:21 = last index  
Offset 0x86 - LTYPE_ARRAY_ADR*  
7:4 Unused  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
53 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
3:0  
LTYPE_ARRAY_ADR  
R/W  
-
Line type array programming address  
Writing to this address initiates the transfer of the data previously  
written into locations 83 through 85 into an internal register array.  
Offset 0x87– 0x8D - LPATT_ARRAY_LINE*  
7:0  
LPATT_ARRAY_LINE  
0x87 -> LSBs  
0x8D -> MSBs  
R/W  
-
Line pattern array programming data  
13:4 = first duration 3:0 = first select, 2:0 = first value index  
...  
55:46 = last duration 45 = last select, 44:42 = last value index  
Offset 0x8E - LPATT_ARRAY_ADR*  
7:3  
2:0  
Unused  
-
-
LTYPE_ARRAY_ADR  
R/W  
Line pattern array programming address  
Writing to this address initiates the transfer of the data previously  
written into locations 87 through 8D into an internal register array.  
Offset 0x8F - Must be initialized to zero.  
Offset 0x90– 0x94 - GPIO5-GPIO1 (0x90=GPIO1 ... 0x94=GPIO5)*  
7
6
5
4
3
2
GPIO_IN_EN4  
GPIO_IN_EN3  
GPIO_IN_EN2  
GPIO_IN_EN1  
OEN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
1
0
GPIO input enable 4  
GPIO input enable 3  
GPIO input enable 2  
GPIO input enable 1  
Output enable (Active Low)  
Write to register sets the GPIO pin if output select is set to 2’b11.  
STATUS  
Read to register returns the status of the GPIO pin if GPIO_IN_EN4  
is set, otherwise it returns 0.  
1:0  
OUT_SEL  
R/W  
0
Output selection bits  
00 = Selects gpio_out1  
01 = Selects gpio_out2  
10 = Selects gpio_out3  
11 = Selects gpio_out4.  
Offset 0x95 - VMUXCTL  
7
6
5
8/10-BIT  
R/W  
R/W  
R/W  
1
1
0
0 = 8-bit mode  
1 =10-bit mode  
SLICE_MODE  
SLICE_DIR  
0 = Incoming data stream contains a single D1 stream.  
1 = Incoming data stream is in sliced mode.  
De-slicer control determines where the extracted slice goes.  
0:  
incoming slice 1 == outgoing slice 1  
incoming slice 2 == outgoing slice 2  
1:  
incoming slice 1 == outgoing slice 2  
incoming slice 2 == outgoing slice 1  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
54 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
4:3  
SEL  
R/W  
0x0  
Data slice select mode  
Primary video channel:  
00 = Slice 1 primary interface  
01 = Slice 2 primary interface  
10 = Slice 1 secondary interface  
11 = Slice 2 secondary interface  
Secondary video channel:  
00 = Slice 1 secondary interface  
01 = Slice 2 secondary interface  
10 = Slice 1 primary interface  
11 = Slice 2 primary interface  
2:0  
DEMUX_MODE  
R/W  
0x0  
Output demultiplex mode  
000 = yuv422  
001 = yuv444 / RGB444  
010 = Reserved  
011 = yuvhd (double interface mode)  
100 = yuv422hd (single interface mode)  
All other modes are reserved.  
Offset 0x96– 0x97 - Must be initialized to zero.  
Offset 0x98 - VALUE_ARRAY_ADR/EVENT_TYPE_PTR*  
7
Unused  
-
-
-
-
6:4  
3
EVENT_TYPE_PTR  
Unused  
R/W  
R/W  
HD SYNC generator event type pointer; trigger load value  
2:0  
VALUE_ARRAY_ADR  
Value array programming address  
Writing to this address initiates the transfer of the data previously  
written into locations 0xBE through 0xC1 into an internal register  
array.  
Offset 0x99– 0x9A - TRIGGER_LINE*  
7:0 TRIGGER_LINE R/W  
-
-
This value is used as a line count after trigger.  
register 0x99 bits 7:0  
register 0x9A bits 9:8  
Offset 0x9B– 0x9C - TRIGGER_DURATION*  
7:0  
TRIGGER_DURATION  
R/W  
This value is used as the duration for a certain value after trigger.  
register 0x9B bits 7:0  
register 0x9C bits 9:8  
Offset 0x9D - TRIGGER_PTR*  
7:4  
3:2  
1:0  
LCNT_PTR_TRIGGER  
Unused  
R/W  
R/W  
R/W  
R/W  
-
-
-
This value is used as the line count pointer after trigger.  
This value is used as the line pattern pointer after trigger.  
Programmable blank level for the R\Y SD-RGB/YUV channel  
Programmable blank level for the UV SD-RGB/YUV channel  
LPATT_PTR_TRIGGER  
Offset 0x9E - BLANK_Y*  
7:0 BLANK_Y  
Offset 0x9F - BLANK_UV*  
7:0 BLANK_UV  
0x90  
0
Offset 0xA0 - RGB_CTRL*  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
55 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
7:2  
1
Symbol  
Unused  
DEMOFF  
Access Value Description  
-
R/W  
0
YUV to RGB matrix bypass  
0 = matrix enabled  
1= matrix bypassed  
0
Reserved  
-
Register 0xA1 must be initialized to zero  
Offset 0xA2 - BORDER_Y  
7:0  
BORDER_Y  
R/W  
R/W  
R/W  
0x80  
0x80  
0x80  
Border color Y component for encoder operation mode. This value  
is R in RGB mode  
Offset 0xA3 - BORDER_U  
7:0 BORDER_U  
Border color U component for encoder operation mode. This value  
is G in RGB mode  
Offset 0xA4 - BORDER_V  
7:0 BORDER_V  
Border color V component for encoder operation mode. This value  
is B in RGB mode  
Offset 0xA5 - MISCCTRL  
7
6
Unused  
M24/30*  
-
W
0
Parallel video input mode select  
0 =30 bit parallel video input mode  
1 =24 bit parallel video input mode  
For details about which pins are used in 24 and 30-bit parallel  
modes, please refer to section 2 table 5.  
Always reads back ‘0’.  
5
4
TRIGGER_MODE*  
VMODE*  
R/W  
R/W  
1
1
External/embedded trigger selection  
0 = External VSYNC/O_E signal triggers the HD-SYNC generator  
1 = D1 embedded O_E signal used to trigger the HD-SYNC  
generator.  
HD video data path enable  
0 = Video demultiplexer bypassed for incoming 24/30-bit full parallel  
video streams (DEMUX_MODE settings ignored)  
1 = Video demultiplexer enabled for HD signals (DEMUX_MODE  
settings apply)  
3
2
Unused  
SLEEP  
-
R/W  
R/W  
0
Video DAC sleep mode powers off all analog circuitry but the band  
gap reference.  
primary video channel: DAC1-4  
secondary video channel: DAC5-6  
1
0
Unused  
PD  
-
0
Power down mode for DACs; powers all analog circuitry  
primary video channel: DAC1-4  
secondary video channel: DAC5-6  
Offset 0xA6 - HDCTRL  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
56 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
Y Two’s complement <-> binary offset conversion  
7
Y_TOCO  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0 = Data at the output of the HD-data path are left unchanged  
1 = MSB of data output of the HD-data path is inverted  
6
5
4
3
2
1
U_TOCO  
U Two’s complement <-> binary offset conversion  
0 = Data at the output of the HD-data path are left unchanged.  
1 = MSB of data output of the HD-data path is inverted.  
V_TOCO  
V Two’s complement <-> binary offset conversion  
0 = Data at the output of the HD-data path are left unchanged.  
1 = MSB of data output of the HD-data path is inverted.  
Y/R_SYNC_INS_EN  
U/G_SYNC_INS_EN  
V/B_SYNC_INS_EN  
SYNC_SIG_EN  
Enables insertion of R/Y sync signals into the component signals.  
0 = Embedded sync is disabled.  
1 = Embedded sync is enabled.  
Enables insertion of G/U sync signals into the component signals.  
0 = Embedded sync is disabled.  
1 = Embedded sync is enabled.  
Enables insertion of B/V sync signals into the component signals.  
0 = Embedded sync is disabled.  
1 = Embedded sync is enabled.  
Sync signal insertion enable  
0 = No insertion of HD sync module generated sync signals - the  
external signals are forwarded to the sync ports.  
1 = The insertion of HD sync module generated H-sync, V-sync and  
Blank signals is enabled. (Note: This disables external sync  
signals.)  
H-sync is derived from sync value[0].  
V-sync is derived from sync value[1].  
C-blank is derived from sync value[2].  
0
UPSAMPLE_EN  
R/W  
0
Enable 422 to 444 up-sampling filter  
0 = Filter switched into bypass mode  
1 = Filter is active.  
Offset 0xA6 - DAC6_ADJ*  
7:5  
4:0  
Unused  
-
DAC6_ADJ  
R/W  
R/W  
R/W  
0
DAC6 output level coarse adjustment  
DAC5 output level coarse adjustment  
DAC5 and 6 output level fine adjustment  
Offset 0xA7 - DAC5_ADJ*  
7:5  
4:0  
Unused  
-
DAC5_ADJ  
0
Offset 0xA8 - DACC_ADJ*  
7:4  
3:0  
Unused  
-
DACC_ADJ  
0
Offset 0xA7 - SYNC_DELAY  
7
VBIPROG  
0
-
0 = Programming via VBI disabled (use this mode for 24-bit parallel  
mode and any other mode containing non-656 compliant data).  
1 = Programming via VBI enabled  
6:3  
Unused  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
57 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
2:0  
SYNC_DELAY*  
1
Determines the sync-data delay for the incoming data stream and  
the associated H/V sync and Blank signals.  
Offset 0xA8 - BLANK_R/Y - (HD Data Path only)*  
7:0 BLANK_R/Y 0x0  
Offset 0xA9 - BLANK_G/U - (HD Data Path only)*  
7:0 BLANK_G/U 0x0  
Offset 0xAA - BLANK_B/V - (HD Data Path only)*  
Blank offset for the R/Y LSBs  
Blank offset for the G/U LSBs  
Blank offset for the B/V LSBs  
Sync raster height bits 7:0  
7:0  
Offset 0xAE - SYNC_HEIGHT1*  
7:0 SYNC_HEIGHT1  
Offset 0xAF - SYNC_HEIGHT2*  
7:0 SYNC_HEIGHT2  
Offset 0xB0 - SYNC_WIDTH1*  
7:0 SYNC_WIDTH1  
Offset 0xB1 - SYNC_WIDTH2*  
7:0 SYNC_WIDTH2  
Offset 0xB2 - SYNC_TRIGPOS_Y1*  
7:0 SYNC_TRIGPOS_Y1 R/W  
Offset 0xB3 - SYNC_TRIGPOS_Y2*  
7:0 SYNC_TRIGPOS_Y2 R/W  
Offset 0xB4 - SYNC_TRIGPOS_X1*  
7:0 SYNC_TRIGPOS_X1 R/W  
Offset 0xB5 - SYNC_TRIGPOS_X2*  
7:0 SYNC_TRIGPOS_X2  
Offset 0xB6 - SIG1*  
7:0 SIG1  
Offset 0xB7 - SIG2*  
7:0 SIG2  
Offset 0xB8 - SIG3*  
7:0 SIG3  
Offset 0xB9 - SIG4*  
7:0 SIG4  
Offset 0xBA - SIGCTRL*  
BLANK_B/V  
0x0  
-
-
-
-
-
-
-
-
-
-
-
R/W  
R/W  
R/W  
Sync raster height bits 15:8  
Sync raster width bits 7:0  
Sync raster width bits 15:8  
y trigger position bits 7:0  
y trigger position bits 15:8  
x trigger position bits 7:0  
R/W  
R
x trigger position bits 15:8  
Bit 7:0 primary video path signature  
Bit 15:8 primary video path signature  
Bit 7:0 secondary video path signature  
Bit 15:8 secondary video path signature  
Number of syncs needed to trigger signature analysis [-1]  
R
R
R
7:4  
3
SYNC_CTRL  
SIG_DONE  
R/W  
R
0x7  
-
AND combination of signature done for primary and secondary  
channel  
2
SIG_ENABLE  
R/W  
0
Signature analyzer enable signal  
0 = Signature analyzer disabled  
1 = Signature analyzer enabled  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
58 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Symbol  
Access Value Description  
1:0  
SIG_SELECT  
R/W  
0x0  
Video channel select for signature analysis  
00 = Video dac 1 and video dac 5  
01 = Video dac 2 and video dac 5  
10 = Video dac 3 and video dac 6  
11 = Video dac 4 and video dac 6  
Offset 0xBC - BLANK_MSBs*  
7:6  
5:4  
3:2  
1:0  
Unused  
-
-
-
-
BLANK_R/Y  
BLANK_G/U  
BLANK_B/V  
R/W  
R/W  
R/W  
Blank offset for the HD-R/Y channel MSBs  
Blank offset for the HD-G/U channel MSBs  
Blank offset for the HD-B/V channel MSBs  
Offset 0xBE - R/Y VALUE_ARRAY_LINE*  
7:0 R/Y-VALUE_ARRAY_LINE R/W  
-
-
-
R/Y Value array programming data  
register 0xBE bits 7:0  
register 0xC1 bits 9:8  
Offset 0xBF - G/U VALUE_ARRAY_LINE*  
7:0 G/U-VALUE_ARRAY_LINE R/W  
G/U Value array programming data  
register 0xBF bits 7:0  
register 0xC1 bits 9:8  
Offset 0xC0 - B/V VALUE_ARRAY_LINE*  
7:0 B/V-VALUE_ARRAY_LINE R/W  
B/V Value array programming data  
register 0xC0 bits 7:0  
register 0xC1 bits 9:8  
Offset 0xC1 - VALUE_ARRAY_LINE-MSBs*  
7:6  
5:4  
3:2  
1:0  
Unused  
-
-
-
-
R/Y-VALUE_ARRAY_LINE R/W  
G/U-VALUE_ARRAY_LINE R/W  
B/V-VALUE_ARRAY_LINE R/W  
R/Y Value array programming data MSBs  
G/U Value array programming data MSBs  
B/V Value array programming data MSBs  
Offset 0xC2 - DAC1_ADJ*  
7:5  
4:0  
Unused  
-
DAC1_ADJ  
R/W  
R/W  
R/W  
R/W  
R/W  
0
DAC1 output level coarse adjustment  
DAC2 output level coarse adjustment  
DAC3 output level coarse adjustment  
DAC4 output level coarse adjustment  
DAC1 to 4 output level fine adjustment  
Offset 0xC3 - DAC2_ADJ*  
7:5  
4:0  
Unused  
-
DAC2_ADJ  
0
Offset 0xC4 - DAC3_ADJ*  
7:5  
4:0  
Unused  
-
DAC3_ADJ  
0
Offset 0xC5 - DAC4_ADJ*.  
7:5  
4:0  
Unused  
-
DAC4_ADJ  
0
Offset 0xC6 - DACC_ADJ*  
7:4  
3:0  
Unused  
-
DACC_ADJ  
0
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
59 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 29: PNX8510/11 video registers…continued  
* indicates not present in secondary video channel  
Bit  
Offset 0xC7 - HD_GAIN_RY(HD Data Path)*  
7:0 HD_GAIN_R/Y R/W  
Symbol  
Access Value Description  
0x00  
0x00  
0x00  
Gain adjust for R/Y component in HD-RGB/YUV data path, two’s  
complement number to adjust the gain from 1-0.5 to 1+-0.5  
out=in x (1+ GAIN/256)  
Offset 0xC8 - HD_GAIN_GU(HD Data Path)*  
7:0 HD_GAIN_G/U R/W  
Gain adjust for G/U component in HD-RGB/YUV data path, two’s  
complement number to adjust the gain from 1-0.5 to 1+-0.5  
out=in x (1+ GAIN/256)  
Offset 0xC9 - HD_GAIN_BV(HD Data Path)*  
7:0 HD_GAIN_B/V R/W  
Gain adjust for B/V component in HD-RGB/YUV data path, two’s  
complement number to adjust the gain from 1-0.5 to 1+-0.5  
out=in x (1+ GAIN/256)  
8.2 Audio/Clock Address Space  
Table 30: PNX8510/11 Audio/Clock Registers  
Bit  
Symbol  
Access Value  
Description  
Offset 0000 - CLK_AUDIO  
7:1  
0
Unused  
-
CLK_AUDIO  
R/W  
0
0 = I2S is in slave mode.  
1 = I2S is in master mode.  
Offset 0001 - CLK_IF Video Interface Clock  
7:5  
4
Unused  
-
CLK_IF_DIV8  
R/W  
R/W  
R/W  
0
0 = default (divide by 4).  
1 = divide by 8.  
3
CLK_IF_DIV6  
CLK_IF_DIV  
0
0 = default (divide by 3).  
1 = divide by 6.  
2:1  
0x0  
00 = clk_if is input video clock divide by 1 (feed through).  
01 = clk_if is input video clock divide by 2.  
10 = clk_if is input video clock divide by 3/6.  
11 = clk_if is input video clock divide by 4/8.  
0
CLK_IF_EN  
R/W  
0
0 = Normal functional mode  
1 = Set the clock to zero.  
Offset 0002 - CLK_PROC_DIV Video Processing Clock  
7:5  
4
Unused  
-
CLK_PROC_DIV8  
R/W  
R/W  
R/W  
0
0 = Divide by 4.  
1 = Divide by 8.  
3
CLK_PROC_DIV6  
CLK_PROC_DIV  
0
0 = Default (div.ide by 3).  
1 = Divide by 6  
2:1  
0x0  
00 = clk_proc is input video clock divide by 1 (feed through).  
01 = clk_proc is input video clock divide by 2.  
10 = clk_proc is input video clock divide by 3/6.  
11 = clk_proc is input video clock divide by 4/8.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
60 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 30: PNX8510/11 Audio/Clock Registers…continued  
Bit  
Symbol  
Access Value  
Description  
0
CLK_PROC_EN  
R/W  
0
0 = Normal functional mode  
1 = Set the clock to zero.  
Offset 00F4 - I2S_SET_REG  
7:4  
3:0  
Unused  
-
I2S_FORMAT  
R/W  
0
0000 / Philips I2S  
0001 / LSB justified 16 bits  
0010 / LSB justified 18 bits  
0011 / LSB justified 20 bits  
0100 / MSB  
1000 / LSB justified 24 bits  
All other combinations are reserved for future use.  
Offset 00F5(LSBs)– 00FB(MSBs) - FEATURE_REG  
54:47 Unused  
46:39 Unused  
38:36 Unused  
35:33 DE-EMPH_1  
-
-
-
R/W  
0
De-emphasis  
Enable the digital de-emphasis filter for this channel.  
000 = Other  
001 = 32 kHz  
010 = 44.1 kHz  
011 = 48 kHz  
100 = 96 kHz  
32  
31  
Unused  
MT1  
-
R/W  
R/W  
0
Mute for channel1 and channel2 inside the interpolator  
0 = Mute off  
1 = Mute on  
30:29 SOUND_FEATURE  
0
0
Controls the mode of the sound processing filters of Bass Boost  
and Treble.  
00 = Flat  
01 = Min  
10 = Min  
11 = Max  
28:21 MASTER_VOL_RIGHT  
R/W  
Master volume control for right channel.  
Two times this 8-bit value to control the volume attenuation.  
The range is 0 dB to dB in steps of 0.25 dB.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
61 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 30: PNX8510/11 Audio/Clock Registers…continued  
Bit  
Symbol  
Access Value  
R/W 0  
Description  
20:17 BBOOST_RIGHT  
Bass-boost for right channel  
Result is dependent on the sound_feature setting [30:29].  
20:17  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Flat  
Min  
Max  
0 dB  
2 dB  
4 dB  
6 dB  
8 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
2 dB  
4 dB  
6 dB  
8 dB  
10 dB 10 dB  
12 dB 12 dB  
14 dB 14 dB  
16 dB 16 dB  
18 dB 18 dB  
18 dB 20 dB  
18 dB 22 dB  
18 dB 24 dB  
18 dB 24 dB  
18 dB 24 dB  
18 dB 24 dB  
16:15 TREBLE_RIGHT  
R/W  
0
Treble for right channel.  
Result is dependent on the sound_feature setting [30:29].  
16:15  
00  
01  
10  
11  
Flat  
Min  
Max  
0 dB  
2 dB  
4 dB  
6 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
2 dB  
4 dB  
6 dB  
14:7  
6:3  
MASTER_VOL_LEFT  
BBOOST_LEFT  
R/W  
R/W  
R/W  
0
0
0
Master volume control for left channel.  
Two times this 8-bit value to control the volume attenuation.  
The range is 0 dB to dB in steps of 0.25 dB.  
Bass-boost for left channel  
Result is dependent on the sound_feature setting [30:29].  
(Refer to bboost_right [20:17] above.)  
2:1  
TREBLE_LEFT  
Treble for left channel.  
Result is dependent on the sound_feature setting [30:29].  
16:15  
00  
01  
10  
11  
Flat  
Min  
Max  
0 dB  
2 dB  
4 dB  
6 dB  
0 dB  
0 dB  
0 dB  
0 dB  
0 dB  
2 dB  
4 dB  
6 dB  
0
MTM  
R/W  
0
0
Final Master Mute for the whole interpolator  
0 = Mute off  
1 = Mute on  
Offset 00FC - INTERPLATOR_REG1  
7
SDET_ON  
R/W  
Silence detect enable  
0 = Silence detection circuit disabled  
1 = Silence detection circuit enabled  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
62 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 30: PNX8510/11 Audio/Clock Registers…continued  
Bit  
Symbol  
Access Value  
Description  
6
SILENCE_OVERRIDE  
R/W  
R/W  
R/W  
0
0
0
Silence override  
0 = No override. Audio DAC silence switch setting depends on the  
silence detector circuit and or on the master_mute status.  
1 = Override. The Audio DAC silence switch is activated.  
5
4
FILTER_COMP  
DA_POL_INV  
Switch between ‘flat’ (for the Digital Amplifier) or ‘compensate’  
correction filter curve (for the Audio DAC).  
0 = Curve for Audio DAC  
1 = Curve for Digital Power Amp  
Select the polarity of the DATA to the Audio DAC = a means to  
control the output signal polarity. The DC and AC dither which  
must be added to the noise-shaper input will NOT be inverted  
when inverting the audio data.  
0 = Non inverting data out  
1 = Inverting data out  
3:2  
SD_VALUE  
R/W  
0
The number of ‘zero’ samples counted before the silence detector  
signals whether there has been digital silence:  
00 = 3200 samples  
01 = 4800 samples  
10 = 9600 samples  
11 = 19200 samples  
1
0
Unused  
Unused  
-
-
Offset 00FD - INTERPOLATOR_REG2  
7:6  
5:4  
3
Unused  
-
Unused  
-
QUICKMUTE  
R/W  
R/W  
0
This is an overriding quickmute on the master channel which  
mutes the interpolator output signal in 32 samples, using the  
cosine roll-off coefficients.This overrides the soft mute.  
0 = Quick mute is off  
1 = Quick mute on  
2
MUTEMODE  
0
Mute function via micro controller interface:  
0 = Soft mute mode which takes 32x32 samples to mute  
1 = Quick mute mode  
1
0
Unused  
Unused  
-
-
Offset 00FE - Audio DAC Power On  
7:1  
0
Unused  
PON  
-
R/W  
0
1 = Power on for audio DAC  
0 = Power off for audio DAC  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
63 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
9. Video programming examples  
Table 31 to Table 44 provide programming examples for setting up a video channel  
into PAL, NTSC and SECAM modes.  
[PNX8510/11_VIDEO] has to be substituted with the appropriate I2C base address  
for the primary or secondary video channel.  
[PNX8510/11_AUDIO] has to be substituted with the appropriate I2C base address  
for the primary or secondary audio channel.  
Remark: The RGB and 1080i examples are applicable to the primary video channel.  
9.1 NTSC Mode (CVBS/YC 27 MHz YUV422 Interface Mode)  
Table 31: PNX8510/11_VIDEO  
Offset  
Value  
0x0  
bit 7 of 0x27  
bit 7 of 0x54  
bit 6 of 0x2D  
0x3A  
0x0  
0xE0  
0x48  
0x0  
bit 7 and 6 of 0x5F  
bit 7 of 0x62  
bit 7 of 0x2C  
bit 7, 6, 5 of 0x6F  
0x95  
0x0  
0x0  
0x0  
0x80  
0x25  
0x1C  
0x88  
0x86  
0xBA  
0x2A  
0x2E  
0x2E  
0x11  
0x45  
0x21F07C1F  
0x10  
0x000  
0x101  
0x102  
0x68C  
0x0FA  
0x0  
0x28  
0x29  
0x5A  
bit 7 of 0x5D & 0x5B  
bit 7 of 0x5E & 0x5C  
bits [5:0] of 0x5D  
bits [5:0] of 0x5E  
bits [5:0] of 0x5F  
0x61  
0x62  
0x63-0x66  
0x6E  
bit 4 of 0x7C & 0x7A  
bit 6 of 0x7C & 0x7B  
bits[2:0] of 0x72 & 0x70  
bits [6:4] of 0x72 & 0x71  
bits [7:5] of 0x6D & 0x6C  
bits [4:0] 0x6D  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
64 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 32: PNX8510/11_AUDIO  
Offset  
0x01  
Value  
0x0  
0x02  
0x0  
9.2 PAL Mode (CVBS/YC 27 MHz YUV422 Interface Mode)  
Table 33: PNX8510/11_VIDEO  
Offset  
Value  
0x0  
bit 7 of 0x27  
bit 7 of 0x54  
bit 6 of 0x2D  
0x3A  
0x0  
0xE0  
0x48  
0x0  
bit7and 6 of 0x5F  
bit 7 of 0x62  
bit 7 of 0x2C  
bit 7, 6, 5 of 0x6F  
0x95  
0x0  
0x0  
0x0  
0x80  
0x21  
0x1D  
0x0  
0x28  
0x29  
0x5A  
bit 7 of 0x5D & 0x5B  
bit 7 of 0x5E & 0x5C  
bits [5:0] of 0x5D  
bits [5:0] of 0x5E  
bits [5:0] of 0x5F  
0x61  
0x7D  
0xAF  
0x23  
0x35  
0x35  
0x02  
0x2F  
0x2A098ACB  
0x20  
0x1B  
0x130  
0x160  
0x65A  
0x107  
0x0  
0x62  
0x63-0x66  
0x6E  
bit 4 of 0x7C & 0x7A  
bit 6 of 0x7C & 0x7B  
bits[2:0] of 0x72 & 0x70  
bits [6:4] of 0x72 & 0x71  
bits [7:5] of 0x6D & 0x6C  
bits [4:0] 0x6D  
Table 34: PNX8510/11_AUDIO  
Offset  
0x01  
Value  
0x0  
0x02  
0x0  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
65 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
9.3 SECAM (CVBS/YC 27 MHz YUV422 Interface Mode)  
Table 35: PNX8510/11_VIDEO  
Offset  
Value  
0x0  
bit 7 of 0x27  
bit 7 of 0x54  
0x0  
bit 6 of 0x2D  
0xE0  
0x48  
0x0  
0x3A  
bit 7 and 6 of 0x5F  
bit 7 of 0x62  
0x0  
bit 7 of 0x2C  
0x0  
bit 7, 6, 5 of 0x6F  
0x95  
0x0  
0x80  
0x21  
0x1D  
0x0  
0x28  
0x29  
0x5A  
bit 7 of 0x5D & 0x5B  
bit 7 of 0x5E & 0x5C  
bits [5:0] of 0x5D  
bits [5:0] of 0x5E  
bits [5:0] of 0x5F  
0x61  
0x6A  
0x7F  
0x23  
0x35  
0x35  
0x0C  
0x2F  
0x28A33BB2  
0x10  
0x1B  
0x130  
0x160  
0x65A  
0x107  
0x0  
0x62  
0x63-0x66  
0x6E  
bit 4 of 0x7C & 0x7A  
bit 6 of 0x7C & 0x7B  
bits[2:0] of 0x72 & 0x70  
bits [6:4] of 0x72 & 0x71  
bits [7:5] of 0x6D & 0x6C  
bits [4:0] 0x6D  
Table 36: PNX8510/11_AUDIO  
Offset  
0x01  
Value  
0x0  
0x02  
0x0  
9.4 NTSC (RGB 27 MHz YUV422 Interface Mode  
Table 37: PNX8510/11_VIDEO  
Offset  
0x27  
Value  
0x0  
0x54  
0x0  
0x2D  
0x00  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
66 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 37: PNX8510/11_VIDEO…continued  
Offset  
Value  
0x49  
0x3A  
0x2C  
0x0  
0x6F  
0x0  
0x95  
0x80  
0x28  
0x1D  
0x25  
0x29  
0x5A  
0x88  
bit 7 of 0x5D & 0x5B  
bit 7 of 0x5E & 0x5C  
bits [5:0] of 0x5D  
bits [5:0] of 0x5E  
bits [5:0] of 0x5F  
0x61  
0x86  
0xBA  
0x2A  
0x2E  
0x2E  
0x11  
0x62  
0x45  
0x63-0x66  
0x21F07C1F  
0x90  
0x6E  
bit 4 of 0x7C & 0x7A  
bit 6 of 0x7C & 0x7B  
bits[2:0] of 0x72 & 0x70  
bits [6:4] of 0x72 & 0x71  
bits [7:5] of 0x6D & 0x6C  
bits [4:0] 0x6D  
0x000  
0x101  
0x102  
0x68C  
0x0FA  
0x0  
Table 38: PNX8510/11_AUDIO  
Offset  
0x01  
Value  
0x0  
0x02  
0x0  
9.5 PAL (RGB 27 MHz YUV422 Interface Mode  
Table 39: PNX8510/11_VIDEO  
Offset  
0x27  
0x54  
0x2D  
0x3A  
0x2C  
0x6F  
0x95  
0x28  
0x29  
0x5A  
Value  
0x0  
0x0  
0x00  
0x49  
0x0  
0x0  
0x80  
0x1D  
0x21  
0x0  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
67 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 39: PNX8510/11_VIDEO…continued  
Offset  
Value  
0x7D  
bit 7 of 0x5D & 0x5B  
bit 7 of 0x5E & 0x5C  
bits [5:0] of 0x5D  
bits [5:0] of 0x5E  
bits [5:0] of 0x5F  
0x61  
0xAF  
0x23  
0x35  
0x35  
0x02  
0x62  
0x2F  
0x63-0x66  
0x2A098ACB  
0xA0  
0x6E  
bit 4 of 0x7C & 0x7A  
bit 6 of 0x7C & 0x7B  
bits[2:0] of 0x72 & 0x70  
bits [6:4] of 0x72 & 0x71  
bits [7:5] of 0x6D & 0x6C  
bits [4:0] 0x6D  
0x1B  
0x130  
0x160  
0x65A  
0x107  
0x0  
Table 40: PNX8510/11_AUDIO  
Offset  
0x01  
Value  
0x0  
0x02  
0x0  
9.6 1080i (74.25 MHz Two Interface 422YUV Mode)  
Table 41: PNX8510/11_VIDEO  
Offset  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
Value  
0x05  
0x08  
0x00  
0x01  
0x01  
0x10  
0x01  
0x02  
0x0E  
0x18  
0x02  
0x03  
0x19  
0x06  
0x03  
0x04  
0x05  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
68 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 41: PNX8510/11_VIDEO…continued  
Offset  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
Value  
0x18  
0x04  
0x05  
0x01  
0x14  
0x05  
0x06  
0x04  
0x08  
0x06  
0x07  
0x01  
0x0C  
0x07  
0x08  
0x0F  
0x18  
0x08  
0x09  
0x19  
0x06  
0x09  
0x0A  
0x05  
0x18  
0x0A  
0x0B  
0x00  
0x00  
0x0B  
0x0C  
0x00  
0x00  
0x0C  
0x0D  
0x00  
0x00  
0x0D  
0x0E  
0x00  
0x00  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
69 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 41: PNX8510/11_VIDEO…continued  
Offset  
0x82  
0x82  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
Value  
0x0E  
0x0F  
0x1C  
0x00  
0x00  
0x00  
0x01  
0x14  
0x05  
0x00  
0x01  
0x02  
0x14  
0x03  
0x00  
0x02  
0x03  
0x0C  
0x03  
0x00  
0x03  
0x04  
0x0C  
0x05  
0x00  
0x04  
0x05  
0x2C  
0x00  
0x00  
0x05  
0x06  
0x00  
0x00  
0x00  
0x06  
0x07  
0x00  
0x00  
0x00  
0x07  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
70 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 41: PNX8510/11_VIDEO…continued  
Offset  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0x87  
Value  
0x08  
0x00  
0x00  
0x00  
0x08  
0x09  
0x00  
0x00  
0x00  
0x09  
0x0A  
0x00  
0x00  
0x00  
0x0A  
0x0B  
0x00  
0x00  
0x00  
0x0B  
0x0C  
0x00  
0x00  
0x00  
0x0C  
0x0D  
0x00  
0x00  
0x00  
0x0D  
0x0E  
0xFB  
0xF6  
0xAE  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0xF8  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
71 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 41: PNX8510/11_VIDEO…continued  
Offset  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
Value  
0xF6  
0xAE  
0x00  
0x00  
0x00  
0x00  
0x01  
0x02  
0xBB  
0x83  
0xFD  
0x6E  
0xBF  
0xEF  
0x0A  
0x02  
0x03  
0xB9  
0x82  
0xAE  
0xB0  
0x57  
0x00  
0x00  
0x03  
0x04  
0xBB  
0xC3  
0xFE  
0xBE  
0xBF  
0xEF  
0x0A  
0x04  
0x05  
0x00  
0x9C  
0x6A  
0x2F  
0x00  
0x01  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
72 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 41: PNX8510/11_VIDEO…continued  
Offset  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0x99  
0x9A  
0x9C  
0x9B  
0x9D  
Value  
0x00  
0x9C  
0x6A  
0x2F  
0x01  
0x02  
0x66  
0x64  
0x78  
0x00  
0x02  
0x03  
0x33  
0xD4  
0xC0  
0x3A  
0x03  
0x04  
0x00  
0x00  
0x00  
0x00  
0x04  
0x05  
0x00  
0x00  
0x00  
0x00  
0x05  
0x06  
0xF6  
0x14  
0x23  
0x30  
0x06  
0x07  
0x03  
0x00  
0x00  
0x02  
0x11  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
73 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 41: PNX8510/11_VIDEO…continued  
Offset  
0xAE  
0xAF  
0xB0  
0xB1  
0xB4  
0xB5  
0xB2  
0xB3  
Value  
0x64  
0x04  
0x97  
0x08  
0x15  
0x00  
0x15  
0x00  
Table 42: PNX8510/11_AUDIO  
Offset  
0x01  
Value  
0x0  
0x02  
0x0  
9.7 720p (74.25 MHz Two Interface 422YUV Mode)  
Table 43: PNX8510/11_VIDEO  
Offset  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
Value  
0x05  
0x08  
0x00  
0x01  
0x14  
0x0C  
0x01  
0x02  
0x68  
0x05  
0x02  
0x03  
0x68  
0x05  
0x03  
0x04  
0x05  
0x0C  
0x04  
0x05  
0x00  
0x00  
0x05  
0x06  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
74 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 43: PNX8510/11_VIDEO…continued  
Offset  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x80  
0x81  
0x82  
0x82  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
Value  
0x00  
0x00  
0x06  
0x07  
0x00  
0x00  
0x07  
0x08  
0x00  
0x00  
0x08  
0x09  
0x00  
0x00  
0x09  
0x0A  
0x1C  
0x00  
0x00  
0x00  
0x01  
0x14  
0x00  
0x00  
0x01  
0x02  
0x2C  
0x00  
0x00  
0x02  
0x03  
0x00  
0x00  
0x00  
0x03  
0x04  
0x00  
0x00  
0x00  
0x04  
0x05  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
75 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 43: PNX8510/11_VIDEO…continued  
Offset  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
0x84  
0x85  
0x86  
0x86  
0x83  
Value  
0x00  
0x00  
0x00  
0x05  
0x06  
0x00  
0x00  
0x00  
0x06  
0x07  
0x00  
0x00  
0x00  
0x07  
0x08  
0x00  
0x00  
0x00  
0x08  
0x09  
0x00  
0x00  
0x00  
0x09  
0x0A  
0x00  
0x00  
0x00  
0x0A  
0x0B  
0x00  
0x00  
0x00  
0x0B  
0x0C  
0x00  
0x00  
0x00  
0x0C  
0x0D  
0x00  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
76 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 43: PNX8510/11_VIDEO…continued  
Offset  
0x84  
0x85  
0x86  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0x87  
Value  
0x00  
0x00  
0x0D  
0x0E  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0xA8  
0x2C  
0x2A  
0xBB  
0x45  
0x00  
0x00  
0x01  
0x02  
0x5B  
0x09  
0xFC  
0x09  
0x7F  
0x6E  
0x11  
0x02  
0x03  
0x79  
0x82  
0x9E  
0xB0  
0x45  
0x00  
0x00  
0x03  
0x04  
0x5B  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
77 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 43: PNX8510/11_VIDEO…continued  
Offset  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8E  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0xBE  
0xBF  
0xC0  
Value  
0xC9  
0xFE  
0xB9  
0x7F  
0x6E  
0x11  
0x04  
0x05  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x05  
0x06  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x06  
0x07  
0x00  
0x00  
0x00  
0x20  
0x00  
0x01  
0x00  
0x00  
0x00  
0x20  
0x01  
0x02  
0xFF  
0x00  
0x00  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
78 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 43: PNX8510/11_VIDEO…continued  
Offset  
0xC1  
0x98  
0x98  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0xBE  
0xBF  
0xC0  
0xC1  
0x98  
0x98  
0x99  
0x9A  
0x9C  
0x9B  
0x9D  
0xA8  
0xA9  
0xAA  
0xAE  
0xAF  
0xB0  
0xB1  
0xB4  
Value  
0x10  
0x02  
0x03  
0x56  
0x00  
0x00  
0x30  
0x03  
0x04  
0x00  
0x00  
0x00  
0x00  
0x04  
0x05  
0x00  
0x00  
0x00  
0x00  
0x05  
0x06  
0x00  
0x00  
0x00  
0x00  
0x06  
0x07  
0x03  
0x00  
0x00  
0x02  
0x11  
0x80  
0x00  
0x00  
0xED  
0x02  
0x71  
0x06  
0x20  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
79 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 43: PNX8510/11_VIDEO…continued  
Offset  
0xB5  
0xB  
Value  
0x70  
0x10  
0x70  
0xB3  
Table 44: PNX8510/11_AUDIO  
Offset  
0x01  
Value  
0x0  
0x02  
0x0  
10. Application information  
10.1 Audio DAC  
p-dac  
V
V
V
DDA  
DDA  
DDA  
V
ref  
1
:
7
:
:
12  
12  
V
Rconv  
L
OUT  
V
OUT  
V
ref  
7
R
ref  
V
V
SSA  
SS  
SS  
n-dac  
MDB660  
12αRconv  
---------------------------  
vout(rms)=  
vref  
1.41Rreg  
α: max. dig. i/p level  
v6.0: Rconv = 247Ω  
Rref = 18000Ω  
α: -5.67 dB = 0.521  
=> vout(rms) = 0.607 vref  
Fig 32. Simplified schematic of audio DAC  
From the simplified schematic Figure 32, it can be seen that the output voltage swing  
depends upon:  
the maximum digital input level at low frequencies (α)  
the current mirror gain (ideally 12)  
the ratio of the I/V conversion resistance (Rconv) and the reference resistance  
(Rref)  
This relationship is:  
Vout(rms) = 12 ⋅ α/√2 ⋅ Rconv/Rref Vref  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
80 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
The reference resistor is dimensioned to be 18 k. Since the reference voltage Vref  
is nominally half the supply voltage, the I/V conversion resistor must be dimensioned  
by:  
Rconv = Vout(rms)/Vref ⋅ √2/(12 ⋅ α) Rref  
For an rms output voltage of 1000 mV rms, a reference voltage of 1.65 V, a reference  
resistance of 18 kand a maximum digital input level of 0.521 (-5.67 dB), the I/V  
conversion resistor should be 2470 .  
10.2 DAC reconstruction filter  
Figure 33 shows the circuitry for the reconstruction filter of the video D/A converters.  
C40  
120 pF  
L3  
L4  
J6  
CVBS2  
LUMA1  
VOUT6  
RCA jack  
2.7 µH  
2.7 µH  
RV5  
75 Ω  
CV3  
390 pF  
CV4  
560 pF  
C41  
120 pF  
L5  
L6  
2.7 µH  
LUMA1_OUT  
2.7 µH  
RV6  
75 Ω  
CV5  
390 pF  
CV6  
560 pF  
J7  
S-video  
C42  
4
2
3
1
CHROMA1_OUT  
120 pF  
L7  
L8  
2.7 µH  
2.7 µH  
7
6
5
RV7  
75 Ω  
CV7  
390 pF  
CV8  
560 pF  
MDB661  
Fig 33. DAC reconstruction filter  
10.3 Video DACs of primary and secondary video channels  
The video DACs used in both the primary and secondary video channels employ  
segmented current mode architecture. The programming feature of DACs is valid for  
both the primary and secondary video channels.  
The primary video channel has in its path four DACs: R, G, B and CVBS. The  
programming option “Fine Adjust” – via the common four bits of I2C [3:0] – can  
simultaneously adjust the central output level of all four DACs in a range of ± 7% in  
1% increments. Please note the four bits are signed values. Table 45 shows the  
programming values.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
81 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 45: Common I2C bits for all DAC devices  
(Output Level: Fine Adjustment in 1% Increments)  
Bits  
Vout  
3210  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0%  
+1%  
+2%  
+3%  
+4%  
+5%  
+6%  
+7%  
0%  
-1%  
-2%  
-3%  
-4%  
-5%  
-6%  
-7%  
The programming option “Coarse Adjust” uses five separate bits [14:10] of I2C to  
independently adjust the output level of each R, G, B and CVBS DAC between 0.58 V  
and 1.23 V (in increments of 21 mV, assuming an effective load of 75 / 75 = 37.5  
). Note that these five bits are not signed.  
Table 46: Separate I2C bits 31x21mV  
(Output Level: Coarse Adjustment for each DAC)  
Bits  
Vout  
11111  
43210  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
+0%  
+3.6%  
+7.2%  
+10.7%  
+14.3%  
+17.9%  
+21.5%  
+25.0%  
+28.6%  
+32.2%  
+35.8%  
+39.4%  
+42.9%  
+46.5%  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
82 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 46: Separate I2C bits 31x21mV…continued  
(Output Level: Coarse Adjustment for each DAC)  
Bits  
Vout  
11111  
43210  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
+50.1%  
+53.7%  
+57.3%  
+60.8%  
+64.4%  
+68%  
+71.6%  
+75.1%  
+78.7%  
+82.3%  
+85.9%  
+89.5%  
+93.0%  
+96.6%  
+100.2%  
+103.8%  
+107.4%  
+110.9%  
10.3.1 Programming example  
Assuming an effective load of 75 / 75 = 37.5 , Rset = 1 k, the coarse bits are  
set to 0 0 0 0 and the fine adjust bits are set to 0 0 0 0 0. The output will be sitting at  
the minimum level of  
Vout = 0.579 V.  
For example, if Vout is set to 1 V, then the fine adjust bits should be set to 0 0 0 0 0  
and the coarse adjust bits set to 1 0 1 0 0.  
Figure 34 provides an example for calculating the RSet for the video DACs from  
given output voltage and termination.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
83 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
10-bit current DAC with programmable output level  
adjustments of fine and coarse  
M = 7 to +7  
fine  
adjust  
N = 0 to 31  
coarse  
adjust  
D = 0 to 1023  
digital  
10-bit  
4-bit  
5-bit  
inputs  
R
= R / 2  
O
L
IOUT  
DAC10  
ICOMP1  
COMP  
6
PCOMP  
PCOMP  
IDUMP  
R
=
2 x 75 Ω  
O
I
separate output level coarse adjust for each DAC  
ref  
V
V
SSA  
SSA  
R
=
DUMP  
0.1 or 2 Ω  
V
V
MDB662  
SSA  
SSA  
RSsetnom = 1 kfor RL = 37.5 (double termination) RSetmax = 2 kfor RL = 75 Ω  
ICOMPn = reference currents for up to 6 DACs.  
IOUT + IDUMP = 1023I1 = constant, IDUMP = (1023 - D) I1, VDUMP = IOUT x RL, VOUT =  
IOUT x RL.  
VOUTmin = 15.57 mA x 37.5 = 0.584 V (full-scale, fine adjust = 0%)  
VOUTmin = 32.80 mA x 37.5 = 1230 V (full-scale, fine adjust = 0%)  
VBG 16.4  
100 + M  
M
28 + N  
-------------------- -------- -----------------  
× D  
------------ ---------  
IOUT =  
×
× 1 +  
×
RS  
100  
100 100 23 × 16  
I1= LSBcurrent  
Fig 34. Video channel DAC programming  
10.3.2 Sleep and power down modes  
Sleep mode occurs when all current output switches are disabled asynchronously so  
that no current flows in either Iout or Idump pins i.e., IOUT = IDUMP = 0. Sleep mode  
allows a rapid recovery from a low power consumption state. Each DAC can be put  
into sleep mode asynchronously where IOUT = IDUMP = 0, yet still supply current  
flows to power the bandgap, opmap, and other analog DAC components, including  
the digital logic.  
Powerdown mode occurs when each DAC can be asynchronously put into zero state  
current so that all current output switches are disabled. This includes current to all  
analog and digital components of the DAC such as bandgap reference, opmaps, etc.  
In this mode IDDD = IDDA = 0.  
10.4 Device initialization  
The PNX8510/11 must be synchronously reset by providing a video clock to both  
clock inputs (DV_CLK1 and DV_CLK2) before the reset line (RESET_N) is pulled  
high. This will ensure correct initialization. Failure to follow this sequence may result  
in no video output from the PNX8510/11, or similar symptoms.  
The I2C bus of the PNX8510/11 is disabled during the reset of the device and the  
I2C_SDA pin is only released after the reset sequence is complete. This release  
requires that an audio clock is applied to the I2S_AOS1_CLK, in addition to the video  
clock applied to DV_CLK1. Therefore, even in applications which do not make use of  
the audio functionality of the PNX8510/11, it is still necessary to apply a clock to  
I2S_AOS1_CLK.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
84 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
11. Limiting values  
Table 47: Absolute maximum ratings  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD(ADAC)  
VDD(VDAC)  
VDDA(VDAC)  
VDDA(ADAC)  
VIL  
Parameter  
Conditions  
Min  
3.15  
3.15  
3.15  
3.15  
-0.5  
2.0  
Max  
3.45  
3.45  
3.45  
3.45  
0.8  
-
Unit  
V
Digital supply audio  
Digital supply video  
Analog supply video  
Analog supply audio  
Low level input voltage  
High level input voltage  
Input leakage current  
Low level input voltage  
High level input voltage  
V
V
V
V
VIH  
V
ILI  
-
1
uA  
V
2
VIL  
-0.5  
0.3 VDD(I C)  
2
2
VIH  
0.7 VDD(I C) VDD(I C)+0.3  
V
12. Characteristics  
Table 48: Electrical characteristics  
Range: VDD = 3.0 to 3.6 V; Tamb = 0 to +70°C. In the following table VDD = 3.3; Tamb = 25°C, unless otherwise stated  
Symbol  
Power Consumption  
SD  
Parameter  
Conditions  
Min  
Typical  
Max  
Unit  
RGB/Y-C  
YPrPb  
1.02  
1.09  
1.58  
1.15  
1.26  
1.97  
W
W
W
Half HD  
Full HD  
Supply  
VDD(ADAC)  
VDD(VDAC)  
VDDA(VDAC)  
VDDA(ADAC)  
Inputs  
YPrPb  
Digital supply audio  
Digital supply video  
Analog supply video  
Analog supply audio  
3.15  
3.15  
3.15  
3.15  
3.3  
3.3  
3.3  
3.3  
3.45  
3.45  
3.45  
3.45  
V
V
V
V
VIL  
Low level input voltage  
High level input voltage  
Input leakage current  
Input capacitance  
-0.5  
2.0  
-
0.8  
V
VIH  
V
ILI  
1
uA  
pF  
pF  
pF  
Ci  
clocks  
data  
10  
8
I/Os at high  
impedance  
8
Outputs  
VOL  
Low level output voltage IOL=2mA  
High level output voltage IOH=2mA  
-
0.4  
-
V
V
VOH  
2.4  
I2S bus: SDA, SCL  
2
VIL  
Low level input voltage  
High level input voltage  
-0.5  
0.3VDD(I C)  
V
V
2
2
VIH  
0.7VDD(I C)  
VDD(I C)+0.3  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
85 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Table 48: Electrical characteristics…continued  
Range: VDD = 3.0 to 3.6 V; Tamb = 0 to +70°C. In the following table VDD = 3.3; Tamb = 25°C, unless otherwise stated  
Symbol  
Parameter  
Conditions  
Min  
Typical  
Max  
Unit  
VOL  
Low level output voltage Iol=3mA  
(SDA)  
-
0.4  
V
Io  
Output current  
during ACK  
3
-
mA  
Input Timing  
tsu  
thd  
Input data setup time  
Input data hold time  
0
ns  
ns  
4.5  
Data and Reference Signal Output Timing  
GPIOs are for static use only.  
HSYNC out and VSYNC out are aligned to the analog video data.  
Audio DAC Outputs  
Vout  
Full scale output voltage  
1.0  
Vrms  
V
[1]  
Vcom  
Common mode output  
voltage [2]  
1.65  
Rload  
Load resistance  
4
kΩ  
kΩ  
Rout, Vref  
Equivalent AC resistance  
seen at VREF terminal  
25  
S/(THD+N)  
S/N  
(THD+N)/S @ 0dB, 1 kHz  
SNR at digital silence  
88  
92  
95  
dB  
dB(A)  
DC Offset Characteristics  
Voffset  
DC-offset compensation  
-43  
mV  
Video DAC Outputs  
INL  
DN  
tr  
Integral nonlinearity  
Static  
±0.6  
±0.5  
lsb  
lsb  
ns  
Output rise time  
Output fall time  
Clock frequency  
Load 37.5 //15pF 2.3  
Load 37.5 //15pF 2.3  
tf  
ns  
fclk  
Iout  
100  
100  
MHz  
Output current  
programming  
See Section 10 for application information.  
1.23  
Vref  
tdet  
V
Detection threshold  
(comparator)  
ns  
tdos  
tdop  
Operating to sleep delay  
200  
200  
ns  
ns  
Operating to power down  
delay  
tdsp  
Sleep to power down  
delay  
200  
ns  
tdso  
tdpo  
Sleep to operating  
200  
200  
ns  
ns  
Power down to operating  
delay  
tdps  
Power down to sleep  
delay  
200  
ns  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
86 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
[1] Full scale output voltage is directly proportional to DC voltage at VREF pin (VDDA/2) and maximum digital signal level at low  
frequencies. Relation: Vout(rms) = α * 1.645 * vref/1.41, α = maximum digital input level at low frequencies.  
[2] Common mode output voltage equals VREF=VDDA/2/  
13. Package outline  
HTQFP100: plastic thermal enhanced thin quad flat package; 100 leads;  
body 14 x 14 x 1 mm; exposed die pad  
SOT638-1  
c
y
exposed die pad side  
X
D
h
A
75  
51  
50  
76  
Z
E
e
H
E
E
E
(A )  
A
h
3
2
A
A
1
w
p
M
θ
b
L
p
pin 1 index  
L
detail X  
26  
100  
1
25  
w
M
Z
v
M
A
B
D
b
p
e
D
B
H
v
M
D
0
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
D
E
E
e
H
H
L
L
p
v
w
y
Z
Z
E
θ
1
2
3
p
h
h
D
E
D
max.  
0.15 1.05  
0.05 0.95  
0.27 0.20 14.1 7.1 14.1 7.1  
0.17 0.09 13.9 6.1 13.9 6.1  
16.15 16.15  
15.85 15.85  
0.75  
0.45  
1.15 1.15  
0.85 0.85  
7°  
0°  
mm  
1.2  
0.25  
0.5  
1
0.2 0.08 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-03-30  
03-04-07  
SOT638-1  
Fig 35. HTQFP package outline.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
87 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
14. Soldering  
14.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account  
of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit  
Packages (document order number 9398 652 90011).  
There is no soldering method that is ideal for all IC packages. Wave soldering can still  
be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In  
these situations reflow soldering is recommended. In these situations reflow soldering  
is recommended.  
14.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling  
or pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 to 270 °C depending on solder  
paste material. The top-surface temperature of the packages should preferably be  
kept:  
below 220 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA and SSOP-T packages  
for packages with a thickness Š 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 235 °C (SnPb process) or below 260 °C (Pb-free process) for packages with  
a thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all  
times.  
14.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging  
and non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal  
results:  
Use a double-wave soldering method comprising a turbulent wave with high  
upward pressure followed by a smooth laminar wave.  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
9397 750 12612  
Product data  
Rev. 04 – 12 January 2004  
88 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle  
to the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at 250 °C or  
265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in  
most applications.  
14.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low  
voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time  
must be limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 to 5 seconds between 270 and 320 °C.  
14.5 Package related soldering information  
Table 49: Suitability of surface mount IC packages for wave and reflow soldering  
methods  
Package[1]  
Soldering method  
Wave  
Reflow[2]  
BGA, LBGA, LFBGA, SQFP, SSOP-T[3],  
TFBGA, VFBGA  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSQFP,  
HSOP, HTQFP, HTSSOP, HVQFN, HVSON,  
SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO, VSSOP  
PMFP[8]  
suitable  
suitable  
not recommended[5][6]  
not recommended[7]  
not suitable  
suitable  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note  
(AN01026); order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal  
or external package cracks may occur due to vaporization of the moisture in them (the so called  
popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated  
Circuit Packages; Section: Packing Methods.  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
89 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must  
on no account be processed through more than one soldering cycle or subjected to infrared reflow  
soldering with peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow  
oven. The package body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side,  
the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the  
heatsink on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it  
is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Hot bar or manual soldering is suitable for PMFP packages.  
15. Revision history  
Table 50: Revision history  
Rev Date CPCN  
Description  
04  
20040112  
Upgraded to Product data (9397 750 12612)  
Modifcations to:  
Section 7.6: Remark amended  
Section 10.4: added  
03  
02  
01  
20030926  
Preliminary data (9397 750 09223). Major updates to docs by Hari Tadepalli of VLSI  
IC Engineering as requested format upgrade to DVP template. More detail added to:  
Luminance and Chrominance Processing, Macrovision™ and Programming Interface.  
20011008 853-2300 27221 Supersedes initial version of 27 August 2001 (9397 750 08495). The format of this  
document has been redesigned to comply with Philips Semiconductors’ new  
presentation and information standard.  
20010827  
Preliminary release posted on BHS (DVI) Intranet web site  
9397 750 12612  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
90 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
16. Data sheet status  
Level  
Data sheet  
status[1]  
Product  
status[2][3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published at a  
later date. Philips Semiconductors reserves the right to change the specification without notice, in order to  
improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the right to  
make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be  
communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a  
design.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
The product status of the device(s) described in this data sheet may have changed  
since this data sheet was published. The latest information is available on the  
Internet at URL http://www.semiconductors.philips.com.  
Right to make changes – Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products  
are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status  
determines the data sheet status  
17. Definitions  
Short-form specification – The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition – Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
19. Licenses  
Purchase of Philips I2C components  
Purchase of Philips I2C components conveys a license  
under the Philips’ I2C patent to use the components in the  
I2C system provided the system conforms to the I2C  
specification defined by Philips. This specification can be  
ordered using the code 9398 393 40011.  
Application information – Applications that are described herein for any of  
these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
18. Disclaimers  
20. Trademarks  
Life support – These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
Nexperia – is a trademark of Koninklijke Philips Electronics N.V.  
Macrovision – is a trademark of the Macrovision Corperation  
21. Contact information  
For additional information, please visit http://www.semiconductors.philips.com.  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com.  
9397 750 12612  
© Philips Electronics N.V. 2004 All rights reserved.  
Product data  
Rev. 04 – 12 January 2004  
91 of 92  
PNX8510/11  
Analog companion chip  
Philips Semiconductors  
Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
10.3  
Video DACs of primary and secondary video  
channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Programming example. . . . . . . . . . . . . . . . . . 83  
Sleep and power down modes. . . . . . . . . . . . 84  
Device initialization. . . . . . . . . . . . . . . . . . . . . 84  
2
2.1  
2.2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
PNX8510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
PNX8511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
10.3.1  
10.3.2  
10.4  
3
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
11  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 85  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 85  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 87  
4
12  
5
13  
6
6.1  
14  
14.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Introduction to soldering surface mount packages  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 88  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 88  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 89  
Package related soldering information. . . . . . 89  
7
7.1  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Video pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Video modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Video input modes . . . . . . . . . . . . . . . . . . . . . 10  
Video input module. . . . . . . . . . . . . . . . . . . . . 12  
Video DAC control . . . . . . . . . . . . . . . . . . . . . 14  
VBI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Primary video channel . . . . . . . . . . . . . . . . . . 17  
Secondary video channel . . . . . . . . . . . . . . . . 17  
PAL/NTSC/SECAM encoder. . . . . . . . . . . . . . 18  
Luminance and Chrominance Processing . . . 19  
Sync generator . . . . . . . . . . . . . . . . . . . . . . . . 22  
Macrovision™ - PNX8510 . . . . . . . . . . . . . . . 23  
HD data path . . . . . . . . . . . . . . . . . . . . . . . . . 23  
HD-sync generator module. . . . . . . . . . . . . . . 24  
Trigger generation. . . . . . . . . . . . . . . . . . . . . . 26  
Signature analysis . . . . . . . . . . . . . . . . . . . . . 30  
Limitations of the video pipe. . . . . . . . . . . . . . 31  
Audio pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Audio interface operation . . . . . . . . . . . . . . . . 32  
Mute modes . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Programming interface . . . . . . . . . . . . . . . . . . 34  
GPIO block . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Clock module . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Clocks video submodule. . . . . . . . . . . . . . . . . 38  
Clocks audio submodule. . . . . . . . . . . . . . . . . 38  
Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
14.2  
14.3  
14.4  
14.5  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
7.1.6  
7.1.7  
7.1.8  
7.1.9  
7.1.10  
7.1.11  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.3  
7.3.1  
7.3.2  
7.4  
7.5  
7.5.1  
7.6  
7.6.1  
7.6.2  
7.7  
15  
16  
17  
18  
19  
20  
21  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 90  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 91  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Licenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Contact information . . . . . . . . . . . . . . . . . . . . 91  
8
8.1  
8.2  
Register descriptions . . . . . . . . . . . . . . . . . . . 40  
Video address space . . . . . . . . . . . . . . . . . . . 44  
Audio/Clock Address Space . . . . . . . . . . . . . . 60  
9
9.1  
Video programming examples . . . . . . . . . . . . 64  
NTSC Mode (CVBS/YC 27 MHz YUV422  
Interface Mode). . . . . . . . . . . . . . . . . . . . . . . . 64  
PAL Mode (CVBS/YC 27 MHz YUV422 Interface  
Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
9.2  
10  
10.1  
10.2  
Application information. . . . . . . . . . . . . . . . . . 80  
Audio DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
DAC reconstruction filter. . . . . . . . . . . . . . . . . 81  
© Koninklijke Philips Electronics N.V. 2004.  
Printed in Netherlands  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 12 January 2004  
Document order number: 9397 750 12612  

相关型号:

PNX8511HW/B1

Analog companion chip
NXP

PNX8526

Programmable source decoder with integrated peripherals
NXP

PNX8526EH

Programmable source decoder with integrated peripherals
NXP

PNX8526EH/M0

IC SPECIALTY CONSUMER CIRCUIT, PBGA456, 35 X 35 MM, 1.8 MM HEIGHT, PLASTIC, MS-034, SOT610-1, HBGA-456, Consumer IC:Other
NXP

PNX8526EH/M0/G

IC SPECIALTY CONSUMER CIRCUIT, PBGA456, 35 X 35 MM, 1.8 MM HEIGHT, LEAD FREE, PLASTIC, MS-034, SOT610-1, HBGA-456, Consumer IC:Other
NXP

PNX9520EN1

Connected Media Processor
NXP

PNX9520EN1N

Connected Media Processor
NXP

PNX9525EN1

Connected Media Processor
NXP

PNY-05015

OFF-LINE SWITCH MODE TINY SWITCH TRANSFORMERS
PMI

PNY-07006

OFF-LINE SWITCH MODE TINY SWITCH TRANSFORMERS
PMI

PNY-12206

OFF-LINE SWITCH MODE TINY SWITCH TRANSFORMERS
PMI

PNY-12238

OFF-LINE SWITCH MODE TINY SWITCH TRANSFORMERS
PMI