SA5211 [NXP]

Transimpedance amplifier 180MHz; 跨阻放大器的180MHz
SA5211
型号: SA5211
厂家: NXP    NXP
描述:

Transimpedance amplifier 180MHz
跨阻放大器的180MHz

放大器
文件: 总20页 (文件大小:176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
SA5211  
Transimpedance amplifier (180MHz)  
Product specification  
1998 Oct 07  
Replaces datasheet NE/SA5211 of 1995 Apr 26  
IC19 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
DESCRIPTION  
PIN CONFIGURATION  
The SA5211 is a 28ktransimpedance, wide-band, low noise  
amplifier with differential outputs, particularly suitable for signal  
recovery in fiber optic receivers. The part is ideally suited for many  
other RF applications as a general purpose gain block.  
D Package  
1
2
3
4
5
6
7
14 OUT (–)  
GND  
GND  
2
2
13  
12  
11  
10  
9
GND  
2
NC  
OUT (+)  
FEATURES  
Ǹ
GND  
1
1.8pA ń Hz  
Extremely low noise:  
I
IN  
NC  
GND  
1
Single 5V supply  
V
V
Large bandwidth: 180MHz  
Differential outputs  
GND  
1
CC1  
CC2  
8
GND  
1
Low input/output impedances  
High power supply rejection ratio  
28kdifferential transresistance  
TOP VIEW  
SD00318  
Figure 1. Pin Configuration  
Medical and scientific Instrumentation  
APPLICATIONS  
Sensor preamplifiers  
Fiber optic receivers, analog and digital  
Single-ended to differential conversion  
Low noise RF amplifiers  
RF signal processing  
Current-to-voltage converters  
Wide-band gain block  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
ORDER CODE  
SA5211D  
DWG #  
14-Pin Plastic Small Outline (SO) Package  
-40 to +85°C  
SOT108-1  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
6
UNIT  
V
V
CC  
Power supply  
T
Operating ambient temperature range  
Operating junction temperature range  
-40 to +85  
°C  
A
T
-55 to +150  
°C  
J
T
STG  
Storage temperature range  
-65 to +150  
°C  
1
P
Power dissipation, T =25°C (still-air)  
1.0  
5
W
D MAX  
IN MAX  
A
2
I
Maximum input current  
mA  
°C/W  
θ
Thermal resistance  
125  
JA  
NOTES:  
1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance:  
=125°C/W  
θ
JA  
2. The use of a pull-up resistor to V , for the PIN diode is recommended.  
CC  
2
1998 Oct 07  
853-1799 20142  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
RATING  
4.5 to 5.5  
-40 to +85  
-40 to +105  
UNIT  
V
V
CC  
Supply voltage  
T
A
Ambient temperature range  
Junction temperature range  
°C  
T
J
°C  
DC ELECTRICAL CHARACTERISTICS  
Min and Max limits apply over operating temperature range at V =5V, unless otherwise specified. Typical data apply at V =5V and T =25°C.  
CC  
CC  
A
SYMBOL  
PARAMETER  
Input bias voltage  
TEST CONDITIONS  
Min  
0.55  
2.7  
Typ  
0.8  
3.4  
0
Max  
1.00  
3.7  
UNIT  
V
V
V
V
IN  
Output bias voltage  
Output offset voltage  
Supply current  
V
±
O
130  
31  
mV  
mA  
mA  
OS  
I
I
20  
3
26  
4
CC  
1
Output sink/source current  
OMAX  
IN  
Input current  
(2% linearity)  
Test Circuit 8,  
Procedure 2  
I
I
±20  
±30  
±40  
±60  
µA  
µA  
Maximum input current  
overload threshold  
Test Circuit 8,  
Procedure 4  
IN MAX  
NOTES:  
1. Test condition: output quiescent voltage variation is less than 100mV for 3mA load current.  
3
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
AC ELECTRICAL CHARACTERISTICS  
Typical data and Min and Max limits apply at V =5V and T =25°C  
CC  
A
SYMBOL  
PARAMETER  
TEST CONDITIONS  
Min  
Typ  
28  
Max  
UNIT  
kΩ  
DC tested R = ∞  
L
R
Transresistance (differential output)  
Output resistance (differential output)  
Transresistance (single-ended output)  
Output resistance (single-ended output)  
Bandwidth (-3dB)  
21  
36  
T
O
Test Circuit 8, Procedure 1  
R
R
R
DC tested  
30  
DC tested  
R = ∞  
L
10.5  
14  
18.0  
kΩ  
T
DC tested  
15  
O
T = 25°C  
A
f
180  
MHz  
3dB  
Test circuit 1  
R
C
Input resistance  
200  
4
IN  
IN  
Input capacitance  
pF  
R/V  
R/T  
Transresistance power supply sensitivity  
V
= 5±0.5V  
3.7  
%/V  
%/°C  
CC  
Transresistance ambient temperature sensitivity  
T = T  
A
-T  
0.025  
A MAX A MIN  
Test Circuit 2  
f = 10MHz  
T = 25°C  
A
RMS noise current spectral density (referred to  
input)  
I
1.8  
pA/Hz  
N
T
T = 25°C  
A
Integrated RMS noise current over the bandwidth  
(referred to input)  
I
Test Circuit 2  
f = 50MHz  
f = 100MHz  
f = 200MHz  
f = 50MHz  
f = 100MHz  
f = 200MHz  
13  
20  
35  
13  
21  
41  
1
C =0  
S
nA  
nA  
C =1pF  
S
DC tested, V = 0.1V  
CC  
2
2
Power supply rejection ratio  
PSRR  
PSRR  
Equivalent AC  
Test Circuit 3  
23  
23  
45  
32  
32  
65  
dB  
dB  
(V  
CC1  
= V  
)
CC2  
DC tested, V = 0.1V  
CC  
Power supply rejection ratio (V  
)
)
Equivalent AC  
Test Circuit 4  
CC1  
CC2  
DC tested, V = 0.1V  
CC  
2
PSRR  
PSRR  
Power supply rejection ratio (V  
Equivalent AC  
Test Circuit 5  
dB  
dB  
f = 0.1MHz  
Test Circuit 6  
2
Power supply rejection ratio (ECL configuration)  
23  
R = ∞  
Test Circuit 8, Procedure 3  
L
V
V
Maximum differential output voltage swing  
1.7  
3.2  
V
P-P  
OMAX  
Maximum input amplitude for output duty cycle of  
Test Circuit 7  
160  
mV  
P-P  
IN MAX  
3
50±5%  
4
t
R
Rise time for 50mV output signal  
Test Circuit 7  
0.8  
1.8  
ns  
NOTES:  
1. Package parasitic capacitance amounts to about 0.2pF  
2. PSRR is output referenced and is circuit board layout dependent at higher frequencies. For best performance use RF filter in V lines.  
CC  
3. Guaranteed by linearity and overload tests.  
4. t defined as 20-80% rise time. It is guaranteed by -3dB bandwidth test.  
R
4
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
TEST CIRCUITS  
SINGLE-ENDED  
DIFFERENTIAL  
NETWORK ANALYZER  
V
V
OUT  
OUT  
R
R
[
R
+
2 @ S21 @ R  
R
+
T
R + 4 @ S21 @ R  
T
V
V
IN  
IN  
S-PARAMETER TEST SET  
1
1
)
*
S22  
S22  
1 ) S22  
Ť
Ť *  
Ť
Ť *  
[ Z  
33  
R
+
2Z  
O
1
66  
O
O
O
* S22  
PORT 1  
PORT 2  
5V  
V
V
CC2  
CC1  
0.1µF  
0.1µF  
Z
= 50  
= 50  
33  
O
OUT  
OUT  
0.1µF  
R = 1k  
Z
= 50  
O
IN DUT  
33  
R
50  
L
GND  
GND  
1
2
Test Circuit 1  
SPECTRUM ANALYZER  
5V  
A
= 60DB  
V
V
V
CC2  
CC1  
0.1µF  
0.1µF  
Z
= 50  
= 50  
O
33  
OUT  
OUT  
IN DUT  
NC  
33  
R
L
GND  
GND  
1
2
Test Circuit 2  
SD00319  
Figure 2. Test Circuits 1 and 2  
5
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
TEST CIRCUITS (Continued)  
NETWORK ANALYZER  
5V  
S-PARAMETER TEST SET  
10µF  
10µF  
0.1µF  
PORT 1  
PORT 2  
CURRENT PROBE  
1mV/mA  
0.1µF  
16  
CAL  
V
V
CC1  
CC2  
0.1µF  
0.1µF  
33  
33  
OUT  
50  
TEST  
100  
BAL.  
IN  
TRANSFORMER  
NH0300HB  
UNBAL.  
OUT  
GND  
GND  
2
1
Test Circuit 3  
NETWORK ANALYZER  
5V  
S-PARAMETER TEST SET  
10µF  
0.1µF  
PORT 1  
PORT 2  
CURRENT PROBE  
1mV/mA  
10µF  
10µF  
0.1µF  
16  
CAL  
5V  
V
V
CC2  
CC1  
0.1µF  
0.1µF  
33  
33  
OUT  
50  
0.1µF  
IN  
TEST  
100  
BAL.  
TRANSFORMER  
NH0300HB  
UNBAL.  
OUT  
GND  
GND  
2
1
Test Circuit 4  
SD00320  
Figure 3. Test Circuits 3 and 4  
6
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
TEST CIRCUITS (Continued)  
NETWORK ANALYZER  
5V  
S-PARAMETER TEST SET  
10µF  
0.1µF  
PORT 1  
PORT 2  
CURRENT PROBE  
1mV/mA  
10µF  
10µF  
0.1µF  
16  
CAL  
5V  
V
V
CC1  
CC2  
0.1µF  
0.1µF  
33  
33  
OUT  
50  
0.1µF  
IN  
TEST  
100  
BAL.  
TRANSFORMER  
NH0300HB  
UNBAL.  
OUT  
GND  
GND  
2
1
Test Circuit 5  
NETWORK ANALYZER  
S-PARAMETER TEST SET  
GND  
PORT 1  
PORT 2  
CURRENT PROBE  
1mV/mA  
10µF  
0.1µF  
16  
CAL  
GND  
GND  
1
2
0.1µF  
0.1µF  
33  
33  
OUT  
50  
TEST  
100  
BAL.  
IN  
TRANSFORMER  
NH0300HB  
UNBAL.  
OUT  
V
V
CC1  
CC2  
5.2V  
10µF  
0.1µF  
Test Circuit 6  
SD00321  
Figure 4. Test Circuits 5 and 6  
7
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
TEST CIRCUITS (Continued)  
PULSE GEN.  
V
V
CC2  
CC1  
0.1µF  
0.1µF  
33  
33  
OUT  
OUT  
A
B
Z
= 50Ω  
0.1µF  
IN  
O
1k  
DUT  
OSCILLOSCOPE  
= 50Ω  
Z
O
50  
Measurement done using  
differential wave forms  
GND  
GND  
2
1
Test Circuit 7  
SD00322  
Figure 5. Test Circuit 7  
8
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
TEST CIRCUITS (Continued)  
Typical Differential Output Voltage  
vs Current Input  
5V  
+
OUT +  
V
(V)  
OUT  
IN  
DUT  
OUT –  
I
(µA)  
IN  
GND  
GND  
2
1
2.00  
1.60  
1.20  
0.80  
0.40  
0.00  
–0.40  
–0.80  
–1.20  
–1.60  
–2.00  
–100  
–80  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
CURRENT INPUT (µA)  
NE5211 TEST CONDITIONS  
Procedure 1  
R
R
measured at 15µA  
T
T
= (V  
O1  
– V )/(+15µA – (–15µA))  
O2  
Where: V  
Measured at I = +15µA  
O1  
IN  
V
Measured at I = –15µA  
O2  
IN  
Procedure 2  
Linearity = 1 – ABS((V  
– V  
OB  
) / (V  
O3  
– V ))  
O4  
OA  
Where: V  
Measured at I = +30µA  
O3  
IN  
V
Measured at I = –30µA  
O4  
IN  
V
+ R @ () 30mA) ) V  
OA  
T
OB  
V
+ R @ (* 30mA) ) V  
OB  
= V  
T
OB  
Procedure 3  
Procedure 4  
V
– V  
OMAX  
Where: V  
O7  
O8  
Measured at I = +65µA  
O7  
IN  
V
Measured at I = –65µA  
O8  
IN  
I
Test Pass Conditions:  
IN  
V
– V  
O5  
> 20mV and V – V > 50mV  
06 O5  
O7  
Where: V  
Measured at I = +40µA  
O5  
IN  
V
Measured at I = –400µA  
O6  
O7  
O8  
IN  
V
Measured at I = +65µA  
IN  
V
Measured at I = –65µA  
IN  
SD00331  
Test Circuit 8  
Figure 6. Test Circuit 8  
9
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
TYPICAL PERFORMANCE CHARACTERISTICS  
NE5211 Supply Current  
vs Temperature  
NE5211 Output Bias Voltage  
NE5211 Output Voltage  
vs Temperature  
vs Input Current  
2.0  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
30  
28  
26  
24  
22  
20  
18  
+125°C  
–55°C  
+85°C  
V
= 5.0V  
CC  
5.5V  
+25°C  
PIN 14  
PIN 12  
5.0V  
4.5V  
0
–55°C  
+25°C  
+85°C  
+125°C  
–2.0  
–100.0  
–60–40 –20  
0
20 40 60 80 100 120 140  
–6040 –20  
0
20 40 60 80 100 120 140  
0
+100.0  
AMBIENT TEMPERATURE (°C)  
INPUT CURRENT (µA)  
AMBIENT TEMPERATURE (°C)  
NE5211 Input Bias Voltage  
vs Temperature  
NE5211 Output Bias Voltage  
vs Temperature  
NE5211 Differential Output Voltage  
vs Input Current  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.0  
950  
5.0V  
5.5V  
4.5V  
PIN 14  
5.5V  
900  
850  
800  
750  
700  
650  
5.5V  
5.0V  
4.5V  
0
4.5V  
4.5V  
5.0V  
0
5.5V  
–2.0  
–100.0  
+100.0  
–60–40 –20  
0
20 40 60 80 100 120 140  
–60–40 –20  
0
20 40 60 80 100 120 140  
INPUT CURRENT (µA)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
NE5211 Output Voltage  
vs Input Current  
NE5211 Differential Output Swing  
vs Temperature  
NE5211 Output Offset Voltage  
vs Temperature  
40  
4.0  
3.8  
+125°C  
4.5  
+125°C  
+25°C  
+85°C  
+25°C  
V
= V  
OUT12  
– V  
OUT14  
DC TESTED  
OS  
20  
0
+85°C  
–55°C  
R
= ∞  
L
3.6  
–55°C  
4.5V  
5.0V  
5.5V  
5.5V  
3.4  
3.2  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
5.0V  
3.0  
2.8  
2.6  
+125°C  
+85°C  
4.5V  
2.4  
2.2  
+25°C  
+100.0  
–55°C  
2.5  
–100.0  
0
–60–40 –20  
0
20 40 60 80 100 120 140  
–60–40 –20  
0
20 40 60 80 100 120 140  
INPUT CURRENT (µA)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
SD00332  
Figure 7. Typical Performance Characteristics  
10  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
NE5211 Differential Transresistance  
vs Temperature  
NE5211 Gain vs Frequency  
NE5211 Gain vs Frequency  
17  
16  
15  
14  
13  
12  
11  
10  
9
17  
16  
15  
14  
13  
12  
11  
10  
9
33  
5.5V  
5.5V  
DC TESTED  
= ∞  
32  
31  
30  
29  
28  
27  
R
L
5.0V  
5.0V  
4.5V  
PIN 14  
= 25°C  
PIN 12  
T
R
T
R
= 25°C  
= 50Ω  
A
A
L
= 50Ω  
4.5V  
L
5.5V  
8
0.1  
8
0.1  
5.0V  
4.5V  
1
10  
100  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
–60 –40 –20  
0
20 40 60 80 100 120 140  
AMBIENT TEMPERATURE (°C)  
NE5211 Typical  
Bandwidth Distribution  
(70 Parts from 3 Wafer Lots)  
NE5211 Gain vs Frequency  
NE5211 Gain vs Frequency  
17  
16  
15  
14  
13  
12  
11  
10  
9
17  
60  
50  
40  
30  
20  
PIN 12  
SINGLE-ENDED  
–55°C  
–55°C  
V
T
= 5.0V  
16  
15  
14  
13  
12  
11  
10  
9
CC  
= 25°C  
A
R
= 50Ω  
L
125°C  
125°C  
PIN 12  
= 5V  
PIN 14  
V = 5V  
CC  
85°C  
25°C  
85°C  
25°C  
V
CC  
10  
0
8
0.1  
8
0.1  
1
10  
100  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
143  
155  
167  
179  
191  
203  
FREQUENCY (MHz)  
NE5211 Bandwidth  
vs Temperature  
NE5211 Gain and Phase  
Shift vs Frequency  
NE5211 Gain and Phase  
Shift vs Frequency  
17  
16  
15  
14  
13  
12  
11  
10  
9
17  
16  
15  
14  
13  
12  
11  
10  
9
120  
220  
PIN 12  
SINGLE-ENDED  
60  
5.5V  
200  
180  
160  
140  
120  
100  
R
= 50Ω  
L
5.0V  
4.5V  
120  
0
PIN 14  
PIN 12  
V
T
= 5V  
–60  
–120  
CC  
V
T
= 5V  
270  
= 25°C  
CC  
A
= 25°C  
A
8
0.1  
8
0.1  
1
10  
100  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
–60 –40 –20  
0
20 40 60 80 100 120 140  
AMBIENT TEMPERATURE (°C)  
SD00333  
Figure 8. Typical Performance Characteristics (cont.)  
11  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
NE5211 Output Resistance  
vs Temperature  
NE5211 Output Resistance  
vs Temperature  
NE5211 Output Resistance  
vs Temperature  
18  
17  
16  
15  
14  
13  
18  
17  
16  
15  
14  
13  
19  
18  
17  
16  
15  
14  
V
= 5.0V  
PIN 12  
DC TESTED  
PIN 14  
DC TESTED  
CC  
DC TESTED  
PIN 14  
4.5V  
5.0V  
4.5V  
PIN 12  
5.0V  
5.5V  
5.5V  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
NE5211 Output Resistance  
vs Frequency  
NE5211 Output Resistance  
vs Frequency  
NE5211 Output Resistance  
vs Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
PIN 12  
V
= 5.0V  
CC  
V
= 5.0V  
T
= 25°C  
CC  
A
+125°C  
+85°C  
PIN 12  
PIN 14  
4.5V  
5.0V  
+25°C  
–55°C  
5.5V  
0
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
NE5211 Power Supply Rejection Ratio  
vs Temperature  
NE5211 Group Delay  
vs Frequency  
10  
40  
8
6
4
2
0
V
= V = 5.0V  
CC2  
CC1  
V  
38  
36  
34  
32  
30  
28  
= ±0.1V  
CC  
DC TESTED  
OUTPUT REFERRED  
0.1 20 40 60 80 100 120 140 160 180 200  
FREQUENCY (MHz)  
–60 –40 –20  
0
20 40 60 80 100 120 140  
AMBIENT TEMPERATURE (°C)  
SD00335  
Figure 9. Typical Performance Characteristics (cont.)  
12  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Output Step Response  
V
T
= 5V  
CC  
= 25°C  
A
20mV/Div  
0
2
4
6
8
10  
(ns)  
12  
14  
16  
18  
20  
SD00334  
Figure 10. Typical Performance Characteristics (cont.)  
– Q are bonded to an external pin, V , in order to reduce  
CC2  
Q
THEORY OF OPERATION  
11  
12  
the feedback to the input stage. The output impedance is about 17Ω  
single-ended. For ease of performance evaluation, a 33resistor is  
used in series with each output to match to a 50test system.  
Transimpedance amplifiers have been widely used as the  
preamplifier in fiber-optic receivers. The SA5211 is a wide bandwidth  
(typically 180MHz) transimpedance amplifier designed primarily for  
input currents requiring a large dynamic range, such as those  
produced by a laser diode. The maximum input current before  
output stage clipping occurs at typically 50µA. The SA5211 is a  
bipolar transimpedance amplifier which is current driven at the input  
and generates a differential voltage signal at the outputs. The  
forward transfer function is therefore a ratio of the differential output  
voltage to a given input current with the dimensions of ohms. The  
main feature of this amplifier is a wideband, low-noise input stage  
which is desensitized to photodiode capacitance variations. When  
connected to a photodiode of a few picoFarads, the frequency  
response will not be degraded significantly. Except for the input  
stage, the entire signal path is differential to provide improved  
power-supply rejection and ease of interface to ECL type circuitry. A  
block diagram of the circuit is shown in Figure 11. The input stage  
(A1) employs shunt-series feedback to stabilize the current gain of  
the amplifier. The transresistance of the amplifier from the current  
BANDWIDTH CALCULATIONS  
The input stage, shown in Figure 13, employs shunt-series feedback  
to stabilize the current gain of the amplifier. A simplified analysis can  
determine the performance of the amplifier. The equivalent input  
capacitance, C , in parallel with the source, I , is approximately  
IN  
S
7.5pF, assuming that C =0 where C is the external source  
S
S
capacitance.  
Since the input is driven by a current source the input must have a  
low input resistance. The input resistance, R , is the ratio of the  
IN  
incremental input voltage, V , to the corresponding input current, I  
IN  
IN  
and can be calculated as:  
VIN  
IIN  
RF  
14.4K  
71  
RIN  
+
+
+
+ 203W  
1 ) AVOL  
source to the emitter of Q is approximately the value of the  
3
More exact calculations would yield a higher value of 200.  
feedback resistor, R =14.4k. The gain from the second stage (A2)  
F
Thus C and R will form the dominant pole of the entire amplifier;  
IN  
IN  
and emitter followers (A3 and A4) is about two. Therefore, the  
differential transresistance of the entire amplifier, R is  
T
1
f*3dB  
+
2p RIN CIN  
VOUT(diff)  
RT  
+
+ 2RF + 2(14.4K) + 28.8kW  
Assuming typical values for R = 14.4k, R = 200, C = 4pF  
IIN  
F
IN  
IN  
1
The single-ended transresistance of the amplifier is typically 14.4k.  
f*3dB  
+
+ 200MHz  
2p 4pF 200W  
The simplified schematic in Figure 12 shows how an input current is  
converted to a differential output voltage. The amplifier has a  
The operating point of Q1, Figure 12, has been optimized for the  
lowest current noise without introducing a second dominant pole in  
the pass-band. All poles associated with subsequent stages have  
been kept at sufficiently high enough frequencies to yield an overall  
single pole response. Although wider bandwidths have been  
achieved by using a cascade input stage configuration, the present  
solution has the advantage of a very uniform, highly desensitized  
frequency response because the Miller effect dominates over the  
external photodiode and stray capacitances. For example, assuming  
single input for current which is referenced to Ground 1. An input  
current from a laser diode, for example, will be converted into a  
voltage by the feedback resistor R . The transistor Q1 provides most  
F
of the open loop gain of the circuit, A  
70. The emitter follower Q  
2
VOL  
minimizes loading on Q . The transistor Q , resistor R , and V  
B1  
1
4
7
provide level shifting and interface with the Q – Q differential  
15  
16  
pair of the second stage which is biased with an internal reference,  
. The differential outputs are derived from emitter followers Q  
a source capacitance of 1pF, input stage voltage gain of 70, R  
=
V
B2  
11  
IN  
Q
which are biased by constant current sources. The collectors of  
12  
13  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
60then the total input capacitance, C = 4 pF which will lead to  
only a 12% bandwidth reduction.  
Assuming a data rate of 400 Mbaud (Bandwidth, B=200MHz), the  
noise parameter Z may be calculated as:  
IN  
1
IEQ  
41 @ 10*9  
Z +  
+
+ 1281  
(1.6 @ 10*19)(200 @ 106)  
qB  
NOISE  
Most of the currently installed fiber-optic systems use non-coherent  
transmission and detect incident optical power. Therefore, receiver  
noise performance becomes very important. The input stage  
achieves a low input referred noise current (spectral density) of  
2.9pA/Hz. The transresistance configuration assures that the  
external high value bias resistors often required for photodiode  
biasing will not contribute to the total noise system noise. The  
where Z is the ratio of  
noise output to the peak response to a  
RMS  
single hole-electron pair. Assuming 100% photodetector quantum  
efficiency, half mark/half space digital transmission, 850nm  
lightwave and using Gaussian approximation, the minimum required  
-9  
optical power to achieve 10 BER is:  
hc  
PavMIN + 12 B Z + 12 @ 2.3 @ 10*19  
l
equivalent input  
noise current is strongly determined by the  
RMS  
200 @ 106 (1281) + 719nW + * 31.5dBm  
+ 1139nW + * 29.4dBm  
quiescent current of Q , the feedback resistor R , and the  
1
F
bandwidth; however, it is not dependent upon the internal  
Miller-capacitance. The measured wideband noise was 41nA RMS  
in a 200MHz bandwidth.  
where h is Planck’s Constant, c is the speed of light, λ is the  
wavelength. The minimum input current to the SA5211, at this input  
power is:  
DYNAMIC RANGE CALCULATIONS  
The electrical dynamic range can be defined as the ratio of  
maximum input current to the peak noise current:  
Joule  
@ q + I  
sec  
l
1
IavMIN + qP  
@
avMIN hc  
Joule  
Electrical dynamic range, D , in a 200MHz bandwidth assuming  
E
I
= 60µA and a wideband noise of I =41nA  
for an  
INMAX  
EQ  
RMS  
707 @ 10*9 @ 1.6 @ 10*19  
2.3 @ 10*19  
external source capacitance of C = 1pF.  
S
+
(Max. input current)  
(Peak noise current)  
DE  
+
= 500nA  
Choosing the maximum peak overload current of I  
maximum mean optical power is:  
=60µA, the  
avMAX  
(60 @ 10*6  
)
DE(dB) + 20log  
DE(dB) + 20log  
Ǹ
( 2 41 10*9  
)
hcIavMAX  
2.3 @ 10*19  
PavMAX  
+
+
60 @ 10mA  
1.6 @ 10*19  
(60mA)  
(58nA)  
lq  
+ 60dB  
+ 86mW or * 10.6dBm (optical)  
Thus the optical dynamic range, D is:  
In order to calculate the optical dynamic range the incident optical  
power must be considered.  
O
For a given wavelength λ;  
D
= P  
- P  
= -4.6 -(-29.4) = 24.8dB.  
O
avMAX  
avMIN  
DO + PavMAX * PavMIN + * 31.5 * (* 10.6)  
+ 20.8dB  
hc  
l
Energy of one Photon =  
watt sec (Joule)  
-34  
Where h=Planck’s Constant = 6.6 × 10 Joule sec.  
1. S.D. Personick, Optical Fiber Transmission Systems,  
Plenum Press, NY, 1981, Chapter 3.  
8
c = speed of light = 3 × 10 m/sec  
c / λ = optical frequency  
P
hs  
No. of incident photons/sec=  
where P=optical incident power  
P
OUTPUT +  
l
A3  
hs  
l
No. of generated electrons/sec =  
h @  
INPUT  
A1  
A2  
where η = quantum efficiency  
no. of generated electron hole paris  
no. of incident photons  
+
R
P
F
A4  
hs  
l
OUTPUT –  
NI + h @  
@ e Amps (Coulombsńsec.)  
SD00327  
-19  
Figure 11. SA5211 – Block Diagram  
where e = electron charge = 1.6 × 10 Coulombs  
h@e  
hs  
Responsivity R =  
Amp/watt  
This represents the maximum limit attainable with the SA5211  
operating at 200MHz bandwidth, with a half mark/half space digital  
transmission at 850nm wavelength.  
l
I + P @ R  
14  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
V
CC1  
R
V
CC2  
R
R
R
13  
1
3
12  
Q
Q
Q
11  
2
4
INPUT  
+
Q
Q
12  
3
Q
1
Q
Q
OUT–  
OUT+  
15  
R
16  
R
2
R
14  
15  
GND  
1
R
+
7
PHOTODIODE  
VB2  
R
5
R
4
GND  
2
SD00328  
Figure 12. Transimpedance Amplifier  
Pins 8–11, and Ground 2, Pins 1 and 2 on opposite ends of the  
SO14 package. This ground-plane stripe also provides isolation  
V
CC  
I
C1  
between the output return currents flowing to either V  
or Ground  
R3  
CC2  
R1  
2 and the input photodiode currents to flowing to Ground 1. Without  
this ground-plane stripe and with large lead inductances on the  
board, the part may be unstable and oscillate near 800MHz. The  
easiest way to realize that the part is not functioning normally is to  
measure the DC voltages at the outputs. If they are not close to their  
quiescent values of 3.3V (for a 5V supply), then the circuit may be  
oscillating. Input pin layout necessitates that the photodiode be  
physically very close to the input and Ground 1. Connecting Pins 3  
and 5 to Ground 1 will tend to shield the input but it will also tend to  
increase the capacitance on the input and slightly reduce the  
bandwidth.  
INPUT  
Q2  
I
B
I
Q3  
IN  
Q1  
R2  
I
V
F
EQ3  
V
IN  
R
F
R4  
As with any high-frequency device, some precautions must be  
observed in order to enjoy reliable performance. The first of these is  
the use of a well-regulated power supply. The supply must be  
capable of providing varying amounts of current without significantly  
changing the voltage level. Proper supply bypassing requires that a  
good quality 0.1µF high-frequency capacitor be inserted between  
SD00329  
Figure 13. Shunt-Series Input Stage  
V
and V  
, preferably a chip capacitor, as close to the package  
CC2  
CC1  
APPLICATION INFORMATION  
pins as possible. Also, the parallel combination of 0.1µF capacitors  
with 10µF tantalum capacitors from each supply, V and V , to  
Package parasitics, particularly ground lead inductances and  
parasitic capacitances, can significantly degrade the frequency  
response. Since the SA5211 has differential outputs which can feed  
back signals to the input by parasitic package or board layout  
capacitances, both peaking and attenuating type frequency  
response shaping is possible. Constructing the board layout so that  
Ground 1 and Ground 2 have very low impedance paths has  
produced the best results. This was accomplished by adding a  
ground-plane stripe underneath the device connecting Ground 1,  
CC1  
CC2  
the ground plane should provide adequate decoupling. Some  
applications may require an RF choke in series with the power  
supply line. Separate analog and digital ground leads must be  
maintained and printed circuit board ground plane should be  
employed whenever possible.  
Figure 14 depicts a 50Mb/s TTL fiber-optic receiver using the  
BPF31, 850nm LED, the SA5211 and the SA5214 post amplifier.  
15  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
+V  
CC  
GND  
47µF  
C1  
C2  
.01µF  
L1  
10µH  
C5  
R1  
100  
1.0µF  
D1  
LED  
R2  
220  
C7  
LED  
C
GND  
1
20  
19  
V
V
IN  
8
9
7
6
CC  
1B  
1A  
100pF  
C9  
C3  
10µF  
.01µF  
C4  
.01µF  
2
PKDET  
GND  
GND  
GND  
IN  
CC  
NC  
100pF  
C8  
THRESH  
3
18  
10  
11  
5
4
C
C
C6  
AZP  
GND  
A
I
IN  
4
5
17  
16  
0.1µF  
AZN  
BPF31  
OPTICAL  
INPUT  
R3  
47k  
FLAG  
JAM  
NC  
OUT  
OUT  
12  
13  
3
2
1B  
L2  
10µH  
6
7
15  
14  
GND  
GND  
GND  
OUT  
IN  
8B  
V
CCD  
OUT  
14  
1
1A  
C11  
C10  
V
CCA  
8
13  
12  
10µF  
.01µF  
IN  
R
8A  
GND  
D
9
HYST  
R
TTL  
10  
11  
C12  
10µF  
PKDET  
OUT  
L3  
10µH  
C13  
.01µF  
R4  
4k  
V
(TTL)  
OUT  
NOTE:  
The NE5210/NE5217 combination can operate at data rates in excess of 100Mb/s NRZ  
The capacitor C7 decreases the NE5210 bandwidth to improve overall S/N ratio in the DC–50MHz band, but does create extra high frequency noise  
on the NE5210 V pin(s).  
CC  
SD00330  
Figure 14. A 50Mb/s Fiber Optic Receiver  
16  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
1
14  
OUT (–)  
GND 2  
2
13  
GND 2  
GND 2  
12  
3
OUT (+)  
NC  
GND 1  
11  
4
INPUT  
NC  
10  
GND 1  
5
GND 1  
VCC1  
9
6
ECN No.: 06027  
1992 Mar 13  
GND 1  
7
8
VCC 2  
SD00488  
Figure 15. SA5211 Bonding Diagram  
carriers, it is impossible to guarantee 100% functionality through this  
process. There is no post waffle pack testing performed on  
individual die.  
Die Sales Disclaimer  
Due to the limitations in testing high frequency and other parameters  
at the die level, and the fact that die electrical characteristics may  
shift after packaging, die electrical parameters are not specified and  
die are not guaranteed to meet electrical characteristics (including  
temperature range) as noted in this data sheet which is intended  
only to specify electrical characteristics for a packaged device.  
Since Philips Semiconductors has no control of third party  
procedures in the handling or packaging of die, Philips  
Semiconductors assumes no liability for device functionality or  
performance of the die or systems on any die sales.  
All die are 100% functional with various parametrics tested at the  
wafer level, at room temperature only (25°C), and are guaranteed to  
be 100% functional as a result of electrical testing to the point of  
wafer sawing only. Although the most modern processes are  
utilized for wafer sawing and die pick and place into waffle pack  
Although Philips Semiconductors typically realizes a yield of 85%  
after assembling die into their respective packages, with care  
customers should achieve a similar yield. However, for the reasons  
stated above, Philips Semiconductors cannot guarantee this or any  
other yield on any die sales.  
17  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
SO14: plastic small outline package; 14 leads; body width 3.9 mm  
SOT108-1  
18  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
NOTES  
19  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (180MHz)  
SA5211  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1998  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 10-98  
Document order number:  
9397 750 04624  
Philips  
Semiconductors  

相关型号:

SA5211D

Transimpedance amplifier 180MHz
NXP

SA5211D-T

IC SPECIALTY TELECOM CIRCUIT, PDSO14, PLASTIC, SO-14, Telecom IC:Other
NXP

SA5211D/01,112

IC SPECIALTY TELECOM CIRCUIT, PDSO14, PLASTIC, SO-14, Telecom IC:Other
NXP

SA5211D/01,118

IC SPECIALTY TELECOM CIRCUIT, PDSO14, PLASTIC, SO-14, Telecom IC:Other
NXP

SA5212

Transimpedance amplifier 140MHz
NXP

SA5212A

Transimpedance amplifier 140MHz
NXP

SA5212AD

Transimpedance amplifier 140MHz
NXP

SA5212AD,602

IC SPECIALTY TELECOM CIRCUIT, PDSO8, PLASTIC, SO-8, Telecom IC:Other
NXP

SA5212AD,623

IC SPECIALTY TELECOM CIRCUIT, PDSO8, PLASTIC, SO-8, Telecom IC:Other
NXP

SA5212AD-T

IC SPECIALTY TELECOM CIRCUIT, PDSO8, PLASTIC, SO-8, Telecom IC:Other
NXP

SA5212AD/01,118

IC SPECIALTY TELECOM CIRCUIT, PDSO8, PLASTIC, SO-8, Telecom IC:Other
NXP

SA5212AFE

Transimpedance amplifier 140MHz
NXP