SA5222 [NXP]

Low-power FDDI transimpedance amplifier; 低功耗FDDI阻放大器
SA5222
型号: SA5222
厂家: NXP    NXP
描述:

Low-power FDDI transimpedance amplifier
低功耗FDDI阻放大器

放大器
文件: 总8页 (文件大小:81K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Philips Semiconductors  
Product specification  
Low-power FDDI transimpedance amplifier  
SA5222  
DESCRIPTION  
PIN DESCRIPTION  
The NE/SA5222 is a low-power, wide-band, low noise  
transimpedance amplifier with differential outputs, optimized for  
signal recovery in FDDI fiber optic receivers. The part is also suited  
for many other RF and fiber optic applications as a general purpose  
gain block.  
D Package  
V
V
1
2
3
4
8
7
6
5
CC1  
CC2  
OUT  
OUT  
GND  
1
FEATURES  
IN  
Ǹ
2.0pAń Hz  
Extremely low noise:  
GND  
GND  
2
1
Single 5V supply  
SD00360  
Low supply current: 9mA  
Large bandwidth: 165MHz  
Differential outputs  
Figure 1. Pin Configuration  
APPLICATIONS  
FDDI preamp  
Low output offset  
Current-to-voltage converters  
Wide-band gain block  
Low input/output impedances  
High power-supply-rejection ratio: 55dB  
Tight transresistance control  
High input overload: 115µA  
ESD protected  
Medical and scientific instrumentation  
Sensor preamplifiers  
Single-ended to differential conversion  
Low noise RF amplifiers  
RF signal processing  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
ORDER CODE  
SA5222D  
DWG #  
-40 to +85°C  
8-Pin Plastic Small Outline (SO) package  
SOT96-1  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
UNITS  
V
CC1,2  
Power supply voltage  
6
V
T
Ambient temperature range  
Junction temperature range  
-40 to +85  
-55 to +150  
°C  
°C  
A
T
J
°C  
W
T
Storage temperature range  
-65 to +150  
STG  
o
1
P
Power dissipation T = 25 C (still air)  
0.78  
5
D
A
I
Maximum input current  
mA  
INMAX  
NOTE:  
o
1. Maximum power dissipation is determined by the operating ambient temperature and the thermal resistance θ = 158 C/W. Derate  
JA  
6.2mW/°C above 25°C.  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
RATING  
UNITS  
V
CC1,2  
Power supply voltage  
4.5 to 5.5  
V
°C  
°C  
T
Ambient temperature range: SA grade  
Junction temperature range: SA grade  
-40 to +85  
A
T
-40 to +105  
J
1
1995 Apr 26  
853-1582 15170  
Philips Semiconductors  
Product specification  
Low-power FDDI transimpedance amplifier  
SA5222  
DC ELECTRICAL CHARACTERISTICS  
Typical data and Min and Max limits apply at T = 25°C, and V  
= V  
= +5V, unless otherwise specified.  
A
CC1  
CC2  
SA5222  
Typ  
SYMBOL  
PARAMETER  
Input bias voltage  
TEST CONDITIONS  
UNIT  
Min  
Max  
V
V
1.3  
1.55  
1.8  
3.5  
V
IN  
Output bias voltage  
Output offset voltage  
2.9  
3.2  
0
V
±
O
V
±100  
12  
mV  
mA  
mA  
µA  
µA  
OS  
CC  
I
Supply current  
6
9
2
I
Output sink/source current  
1.5  
±60  
±80  
OMAX  
I
IN  
Input current (2% linearity)  
Test circuit 5, Procedure 2  
Test circuit 5, Procedure 4  
±90  
±115  
3.6  
I
Maximum input current overload threshold  
Maximum differential output voltage swing  
INMAX  
V
OMAX  
R = , Test Circuit 5, Procedure 3  
V
P-P  
L
AC ELECTRICAL CHARACTERISTICS  
Typical data and Min and Max limits apply at T = 25°C and V  
= V  
=+5V, unless otherwise specified.  
A
CC1  
CC2  
SA5222  
Typ  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
Min  
Max  
DC tested, R = , Test Circuit 5,  
L
R
T
Transresistance (differential output)  
13.3  
16.6  
19.9  
kΩ  
Procedure 1  
Output resistance  
(differential output)  
R
DC tested  
30  
60  
8.3  
30  
90  
9.95  
45  
kΩ  
O
Transresistance  
(single-ended output)  
R
6.65  
DC tested, R = ∞  
T
L
Output resistance  
(single-ended output)  
R
DC tested  
15  
O
1
f
Bandwidth (-3dB)  
Test Circuit 1  
110  
140  
150  
1
MHz  
3dB  
R
C
Input resistance  
IN  
IN  
2
Input capacitance  
pF  
R/V  
R/T  
Transresistance power supply sensitivity  
V
= V  
= 5 ±0.5V  
1.0  
%/V  
CC1  
CC2  
Transresistance ambient temperature sensi-  
tivity  
o
T = T  
- T  
A MIN  
0.07  
2.0  
15  
%/ C  
A
A MAX  
RMS noise current spectral density (referred  
to input)  
Ǹ
I
IN  
Test Circuit 2, f = 10MHz  
pAń Hz  
Integrated RMS noise current over the band-  
width (referred to input)  
Test circuit 2,  
f = 50MHz  
C
= 0pF  
f = 100MHz  
f = 150MHz  
f = 50MHz  
f = 100MHz  
f = 150MHz  
25  
36  
17  
35  
55  
S
I
T
nA  
C
= 1pF  
S
PSRR  
PSRR  
Power supply rejection ratio  
DC Tested, V = ±0.5V  
–55  
–34  
dB  
dB  
CC  
3
Power supply rejection ratio  
f = 1.0MHz, Test Circuit 3  
Maximum input amplitude for output duty  
cycle of 50 ±5%  
I
Test circuit 4  
±120  
µA  
INMAX  
4
t , t  
Rise and fall times  
Group delay  
10 – 90%  
f = 10MHz  
2.2  
2.2  
ns  
ns  
r
f
t
D
NOTES:  
1. Bandwidth is tested into 50load. Bandwidth into 1kload is approximately 165MHz.  
2. Does not include Miller-multiplied capacitance of input device.  
3. PSRR is output referenced and is circuit board layout dependent at higher frequencies. For best performance use a RF filter in V line.  
CC  
4. Monitored in production via linearity and over load tests.  
2
1995 Apr 26  
Philips Semiconductors  
Product specification  
Low-power FDDI transimpedance amplifier  
SA5222  
TEST CIRCUITS  
SINGLE-ENDED  
DIFFERENTIAL  
V
V
OUT  
OUT  
R
R
2
S
R
R
R
4
S
21  
R
T
21  
T
V
V
IN  
IN  
SPECTRUM ANALYZER  
1 + S22  
1 + S22  
-20  
-40  
R
= Z  
O
R
= 2Z  
O
50  
O
O
1 - S22  
1 - S22  
NETWORK ANALYZER  
V
CC  
S-PARAMETER TEST SET  
.1µF  
20  
10µF  
10µF  
PORT1  
PORT2  
OUT  
Z
= 50Ω  
V
Z
= 50Ω  
NE5209  
IN DUT  
OUT  
O
CC  
O
.1µF  
20  
.1uF  
.1uF  
20  
20  
0.1uF  
R=1k  
GND  
GND  
GND  
OUT  
C
2
1
S
50Ω  
IN DUT  
OUT  
GND  
50  
1
2
50  
SD00361  
SD00362  
Test Circuit 1: Bandwidth  
Figure 2. Test Circuit1  
Test Circuit 2: Noise  
Figure 3. Test Circuit2  
TEST CIRCUITS (continued)  
5V  
BIAS TEE  
NETWORK ANALYZER  
S-PARAMETER TEST SET  
PORT2  
PORT1  
50Ω  
TRANSFORMER  
CONVERSION  
LOSS = 9dB  
CAL  
0.1uF  
V
CC  
OUT  
.1uF  
20Ω  
20Ω  
NHO300HB  
IN DUT  
OUT  
.1uF  
NC  
GND  
50Ω  
UNBAL.  
GND  
100Ω  
BAL.  
2
1
Test Circuit 3: PSRR  
SD00363  
Figure 4. Test Circuit4  
3
1995 Apr 26  
Philips Semiconductors  
Product specification  
Low-power FDDI transimpedance amplifier  
SA5222  
TEST CIRCUITS (continued)  
5V  
PULSE GEN  
.1µF  
.1µF  
1kΩ  
1kΩ  
OFFSET  
0.1uF  
OUT  
OUT  
A
Z
= 50Ω  
O
DUT  
IN  
1
OSCILLOSCOPE  
1kΩ  
B
Z
= 50Ω  
O
50Ω  
GND  
GND  
2
Meaurement done using  
differential wave forms  
Test Circuit 4: Duty Cycle Distortion  
Figure 5. Test Circuit4  
SD00364  
TEST CIRCUITS (continued)  
5V  
+
OUT +  
OUT –  
V
(VOLTS)  
O
I
µ
IN ( A)  
GND  
GND  
2
1
Typical V (Differential) vs I  
O
IN  
2.25  
1.80  
V
O
7
V
O
1.35  
5
V
3
O
0.90  
V
O1  
0.45  
V
O
0.00  
S
V
O2  
–0.45  
–0.90  
–1.35  
–1.80  
–2.25  
V
O4  
V
O6  
V
O8  
–200  
–160  
–120  
–80  
–40  
0
40  
80  
120  
160  
200  
CURRENT INPUT (µA)  
SA5222 TEST CONDITIONS  
Procedure 1  
Procedure 3  
Procedure 2  
R
R
measured at 30µA  
Linearity = 1 - ABS((V  
- V  
OA OB  
/ (V - V ))  
O3 O4  
IN  
IN  
T
T
= (V  
- V ) / (+30µA - (-30µA)  
Where:  
V
V
V
V
Measured at I = +60µA  
O1 O2  
O3  
O4  
OA  
OB  
Where:  
V
Measure at I = +30µA  
Measured at I = -60µA  
O1  
IN  
IN  
V
Measured at I = -30µA  
= R x (+60µA) + V  
O2  
T
T
OS  
OS  
= R x (-60µA) + V  
Procedure 4  
V
= V  
- V  
I
Test Pass Conditions:  
OMAX  
O7 O8  
INMAX  
Where:  
V
V
Measured at I = +130µA  
V
- V  
O7 O5  
> 50mV and V  
- V  
< 50mV  
O7  
O8  
IN  
O6 O8  
Measured at I = -130µA  
Where:  
V
V
V
V
Measured at I = +80µA  
IN  
O5  
O6  
O7  
OB  
IN  
IN  
IN  
IN  
Measured at I = -80µA  
Measured at I = +130µA  
Measured at I = -130µA  
SD00365  
Test Circuit 5: DC Tests  
Figure 6. Test Circuit5  
4
1995 Apr 26  
Philips Semiconductors  
Product specification  
Low-power FDDI transimpedance amplifier  
SA5222  
5
4
3
2
1
0
10  
OUT  
OUT  
25°C  
9
85°C  
–40°C  
8
7
6
T
= +25°C  
A
V
= 5V  
CC  
4.5  
5
5.5  
SD00366  
–200  
–100  
0
100  
200  
SD00548  
SUPPLY VOLTAGE (V)  
INPUT CURRENT (µA)  
Figure 10. Differential Output Voltages vs. Input Current  
Figure 7. I vs. V and Temperature  
CC  
CC  
2.5  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
–40°C  
1.5  
0.5  
25°C  
85°C  
–0.5  
–1.5  
–2.5  
4.5V  
5.5V  
T
= +25°C  
A
–200  
–100  
0
100  
200  
SD00549  
4.5  
5
5.5  
INPUT CURRENT (µA)  
SUPPLY VOLTAGE (V)  
SD00546  
Figure 11. Differential Output Voltage vs Input Current and V  
CC  
Figure 8. Input Voltage vs. V and Temperature  
CC  
2.5  
3.8  
3.6  
1.5  
85°C  
3.4  
–40°C  
85°C  
3.2  
25°C  
0.5  
3
–40°C  
2.8  
–0.5  
–1.5  
2.6  
2.4  
2.2  
V
= 5V  
CC  
PIN 6 OUTPUT  
–2.5  
2
–200  
–100  
0
100  
200  
SD00550  
4.5  
5
5.5  
INPUT CURRENT (µA)  
SUPPLY VOLTAGE (V)  
SD00547  
Figure 12. Diff. Output Voltage vs. Input Current and Temp.  
Figure 9. Output Voltage vs. V and Temperature  
CC  
5
1995 Apr 26  
Philips Semiconductors  
Product specification  
Low-power FDDI transimpedance amplifier  
SA5222  
18  
15  
10  
5
85°C  
17  
PIN 6  
25°C  
16  
–40°C  
15  
14  
PIN 7  
0
13  
V
T
= 5V  
CC  
= +25°C  
Iin = ±20µA  
A
12  
–5  
1
10  
FREQUENCY (MHz)  
100  
300  
SD00553  
4.5  
5
5.5  
SD00367  
SUPPLY VOLTAGE (V)  
Figure 16. Insertion Gain vs. Frequency  
Figure 13. Differential Transresistance vs. V and  
CC  
Temperature  
15  
50  
5.5V  
4.5V  
–40°C  
10  
5
40  
25°C  
30  
20  
10  
85°C  
0
PIN 6 OUTPUT  
T
= +25°C  
A
–5  
1
10  
FREQUENCY (MHz)  
100  
300  
0
SD00554  
4.5  
5
5.5  
SUPPLY VOLTAGE (V)  
SD00551  
Figure 17. Insertion Gain vs. Frequency and V  
CC  
Figure 14. Output Resistance vs. V and Temperature  
CC  
15  
50  
+85°C  
45  
85°C  
10  
–40°C  
40  
35  
25°C  
30  
25  
20  
5
0
15  
PIN 6 OUTPUT  
–40°C  
+85°C  
10  
5
V
= 5V  
CC  
–5  
1
10  
FREQUENCY (MHz)  
100  
300  
0
SD00555  
4.5  
5
5.5  
SUPPLY VOLTAGE (V)  
SD00552  
Figure 18. Insertion Gain vs. Frequency and Temperature  
Figure 15. Output Offset Voltage vs. V and Temperature  
CC  
6
1995 Apr 26  
Philips Semiconductors  
Product specification  
Low-power FDDI transimpedance amplifier  
SA5222  
200  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
PIN 7 OUTPUT  
V
= 5V  
CC  
300 PARTS FROM  
3 WAFERS  
50 Load  
= 25°C  
100  
T
A
0
PIN 6 OUTPUT  
–100  
V
= 5V  
CC  
= +25°C  
T
A
0
–200  
110  
140  
BANDWIDTH (MHz)  
170  
1
10  
FREQUENCY (MHz)  
100  
300  
SD00368  
SD00558  
Figure 22. –3dB Bandwidth Distribution  
Figure 19. Phase vs. Frequency  
8
DIFFERENTIAL OUTPUT  
0.1µF COUPLING CAP’s  
7
6
5
4
3
2
1
0
0
–20  
PIN 6 OUTPUT  
–4  
0
V
= 5V  
CC  
= +25°C  
V
T
= 5V  
= +25°C  
CC  
A
T
A
–60  
0.1  
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
300  
SD00556  
SD00559  
Figure 23. Power–Supply Rejection Ratio vs. Frequency  
Figure 20. Group Delay vs. Frequency  
8
115  
95  
75  
55  
35  
15  
–5  
OUTPUT NOISE DIVIDED BY 10MHz GAIN  
7
V
T
= 5V  
= +25°C  
CC  
A
6
5
4
PIN 6  
C
= 1pF  
S
PIN 7  
3
2
1
C
= 0pF  
S
V
= 5V  
CC  
= +25°C  
T
A
0
1
10  
FREQUENCY (MHz)  
100  
300  
SD00560  
1
10  
FREQUENCY (MHz)  
100  
300  
SD00557  
Figure 24. Input Noise Spectral Density vs. Frequency  
Figure 21. Output Impedancevs. Frequency  
7
1995 Apr 26  
Philips Semiconductors  
Product specification  
Low-power FDDI transimpedance amplifier  
SA5222  
VCC2  
VCC1  
1
2
8
7
OUT  
GND 1  
OUT  
6
5
3
4
IN  
GND 2  
GND 1  
SD00505  
Figure 25. SA5222 Bonding Diagram  
carriers, it is impossible to guarantee 100% functionality through this  
process. There is no post waffle pack testing performed on  
individual die.  
Die Sales Disclaimer  
Due to the limitations in testing high frequency and other parameters  
at the die level, and the fact that die electrical characteristics may  
shift after packaging, die electrical parameters are not specified and  
die are not guaranteed to meet electrical characteristics (including  
temperature range) as noted in this data sheet which is intended  
only to specify electrical characteristics for a packaged device.  
Since Philips Semiconductors has no control of third party  
procedures in the handling or packaging of die, Philips  
Semiconductors assumes no liability for device functionality or  
performance of the die or systems on any die sales.  
All die are 100% functional with various parametrics tested at the  
wafer level, at room temperature only (25°C), and are guaranteed to  
be 100% functional as a result of electrical testing to the point of  
wafer sawing only. Although the most modern processes are  
utilized for wafer sawing and die pick and place into waffle pack  
Although Philips Semiconductors typically realizes a yield of 85%  
after assembling die into their respective packages, with care  
customers should achieve a similar yield. However, for the reasons  
stated above, Philips Semiconductors cannot guarantee this or any  
other yield on any die sales.  
8
1995 Apr 26  

相关型号:

SA5222D

Low-power FDDI transimpedance amplifier
NXP

SA5222D-T

IC SPECIALTY TELECOM CIRCUIT, PDSO8, 3.90 MM, PLASTIC, MS-012AA, SOT-96-1, SOP-8, Telecom IC:Other
NXP

SA5223

Wide dynamic range AGC transimpedance amplifier 150MHz
NXP

SA5223D

Wide dynamic range AGC transimpedance amplifier 150MHz
NXP

SA5223D-T

IC SPECIALTY TELECOM CIRCUIT, PDSO8, 3.90 MM, PLASTIC, MS-012AA, SOT-96-1, SOP-8, Telecom IC:Other
NXP

SA5224

FDDI fiber optic postamplifier
NXP

SA5224D

FDDI fiber optic postamplifier
NXP

SA5225

Fiber optic postamplifier
NXP

SA5225D

Fiber optic postamplifier
NXP

SA5230

Low voltage operational amplifier
NXP

SA5230

Low Voltage Operational Amplifier
ONSEMI

SA5230D

Low voltage operational amplifier
NXP