SAA7129H/V1,518 [NXP]

SAA7129H;
SAA7129H/V1,518
型号: SAA7129H/V1,518
厂家: NXP    NXP
描述:

SAA7129H

编码器 商用集成电路
文件: 总55页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SAA7128H; SAA7129H  
Digital video encoder  
Rev. 03 — 9 December 2004  
Product data sheet  
1. General description  
The SAA7128H; SAA7129H encodes digital CR-Y-CB video data to an NTSC, PAL or  
SECAM CVBS or S-video signal. Simultaneously, RGB or bypassed but interpolated  
CR-Y-CB signals are available via three additional DACs. The circuit at a 54 MHz  
multiplexed digital D1 input port accepts two ITU-R BT.656 compatible CR-Y-CB data  
streams with 720 active pixels per line in 4 : 2 : 2 multiplexed formats, for example MPEG  
decoded data with overlay and MPEG decoded data without overlay, where one data  
stream is latched at the rising clock edge and the other at the falling clock edge.  
It includes a sync/clock generator and on-chip DACs.  
2. Features  
Monolithic CMOS 3.3 V device, 5 V I2C-bus optional  
Digital PAL/NTSC/SECAM encoder  
System pixel frequency 13.5 MHz  
54 MHz double-speed multiplexed D1 interface capable of splitting data into two  
separate channels (encoded and baseband)  
Three Digital-to-Analog Converters (DACs) for CVBS (CSYNC), VBS (CVBS) and C  
(CVBS) two times oversampled with 10-bit resolution (signals in brackets optional)  
Three DACs for RED (CR), GREEN (Y) and BLUE (CB) two times oversampled with  
9-bit resolution (signals in brackets optional)  
An advanced composite sync is available on the CVBS output for RGB display  
centering  
Real-time control of subcarrier  
Cross-color reduction filter  
Closed captioning encoding and World Standard Teletext (WST) and North-American  
Broadcast Text System (NABTS) teletext encoding including sequencer and filter  
Copy Generation Management System (CGMS) encoding (CGMS described by  
standard CPR-1204 of EIAJ); 20 bits in lines 20/283 (NTSC) can be loaded via I2C-bus  
Fast I2C-bus control port (400 kHz)  
Line 23 Wide Screen Signalling (WSS) encoding  
Video Programming System (VPS) data encoding in line 16 (50/625 lines counting)  
Encoder can be master or slave  
Programmable horizontal and vertical input synchronization phase  
Programmable horizontal sync output phase  
Internal Color Bar Generator (CBG)  
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Macrovision® Pay-per-View copy protection system rev. 7.01 and rev. 6.1 optional; this  
applies to SAA7128H only. The device is protected by US patents 4631603, 4577216  
and 4819098 and other intellectual property rights; use of the Macrovision anti-copy  
process in the device is licensed for non-commercial home use only. Reverse  
engineering or disassembly is prohibited; please contact your nearest Philips  
Semiconductors sales office for more information.  
Controlled rise/fall times of output syncs and blanking  
On-chip crystal oscillator (3rd-harmonic or fundamental crystal)  
Down mode (low output voltage) or power-save mode of DACs  
QFP44 package  
3. Quick reference data  
Table 1:  
Quick reference data  
VDDD = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; unless otherwise specified.  
Symbol  
VDDA  
VDDD  
IDDA  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
analog supply voltage  
digital supply voltage  
analog supply current  
digital supply current  
input signal voltage levels  
3.15 3.3  
3.45  
3.6  
V
3.0  
3.3  
130  
75  
V
[1]  
[1]  
-
-
150  
100  
mA  
mA  
IDDD  
VDDD = 3.3 V  
Vi  
TTL compatible  
Vo(p-p)  
analog output signal voltages Y,  
C and CVBS without load  
(peak-to-peak value)  
1.25 1.35 1.50  
V
RL  
load resistance  
75  
-
-
-
300  
LElf(i)  
low frequency integral linearity  
error  
±3  
LSB  
LElf(d)  
Tamb  
low frequency differential linearity  
error  
-
-
-
±1  
LSB  
ambient temperature  
0
70  
°C  
[1] At maximum supply voltage with highly active input signals.  
4. Ordering information  
Table 2:  
Ordering information  
Type  
number  
Package  
Name  
Description  
Version  
SAA7128H QFP44  
SAA7129H  
plastic quad flat package; 44 leads (lead length 1.3 mm); SOT307-2  
body 10 × 10 × 1.75 mm  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
2 of 55  
 
 
 
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
V
V
DDA1  
V
DDA3  
V
DDA2  
DDA4  
RESET_N  
40  
SDA SCL  
XTALI XTALO RCV1 RCV2 TTXRQ XCLK LLC1  
42  
41  
35  
34  
7
8
43  
37  
4
25 28 31 36  
20  
21  
V
DD(I2C)  
SA  
2
I C-BUS  
INTERFACE  
SYNC/CLOCK  
SAA7128H  
SAA7129H  
2
clock and timing  
2
I C-bus control  
I C-bus control  
2
2
I C-bus control  
I C-bus control  
MP  
30  
27  
24  
MP  
MP  
CVBS  
(CSYNC)  
Y
Y
C
pos  
9 to 16  
A
D
MP  
VP  
MP7 to MP0  
OUTPUT  
INTERFACE  
VBS  
(CVBS)  
SWITCH  
FADER  
ENCODER  
MP  
C -C  
B
neg  
R
B
C
A
(CVBS)  
22  
32  
33  
V
V
V
SSA1  
SSA2  
SSA3  
2
2
I C-bus control  
2
I C-bus control  
I C-bus  
44  
control  
TTX  
Y
23  
26  
29  
RED  
D
RGB  
PROCESSOR  
GREEN  
BLUE  
C -C  
B
R
A
5
18  
38  
6
17  
39  
2
3
19  
mhb572  
V
V
SSD2  
V
V
V
DDD2  
V
DDD3  
SP AP  
RTCI  
SSD1  
SSD3  
DDD1  
Fig 1. Block diagram  
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
6. Pinning information  
6.1 Pinning  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RES  
SP  
V
V
V
SSA3  
SSA2  
DDA3  
3
AP  
4
LLC1  
CVBS  
BLUE  
5
V
SSD1  
DDD1  
SAA7128H  
SAA7129H  
6
V
V
DDA2  
7
RCV1  
RCV2  
MP7  
VBS  
8
GREEN  
9
V
DDA1  
10  
11  
MP6  
C
MP5  
RED  
001aac194  
Fig 2. Pin configuration  
6.2 Pin description  
Table 3:  
Symbol  
RES  
Pinning  
Pin  
1
Type  
Description  
reserved pin; do not connect  
-
SP  
2
I
test pin; connected to digital ground for normal operation  
test pin; connected to digital ground for normal operation  
line-locked clock input; this is the 27 MHz master clock  
digital ground 1  
AP  
3
I
LLC1  
VSSD1  
VDDD1  
RCV1  
RCV2  
4
I
5
supply  
supply  
I/O  
6
digital supply voltage 1  
7
raster control 1 for video port; this pin receives/provides a VS/FS/FSEQ signal  
8
I/O  
raster control 2 for video port; this pin provides an HS pulse of programmable length or  
receives an HS pulse  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
4 of 55  
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 3:  
Symbol  
MP7  
Pinning…continued  
Pin  
9
Type  
Description  
I
double-speed 54 MHz MPEG port; it is an input for ITU-R BT.656 style multiplexed  
CR-Y-CB data; data is sampled on the rising and falling clock edge; data sampled on the  
rising edge is then sent to the encoding part of the device; data sampled on the falling  
edge is sent to the RGB part of the device (or vice versa, depending on programming)  
MP6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
I
MP5  
I
MP4  
I
MP3  
I
MP2  
I
MP1  
I
MP0  
I
VDDD2  
VSSD2  
RTCI  
supply  
supply  
I
digital supply voltage 2  
digital ground 2  
real-time control input; if the LLC1 clock is provided by an SAA7113 or SAA7118, RTCI  
should be connected to the RTCO pin of the respective decoder to improve the signal  
quality  
VDD(I2C)  
SA  
20  
21  
supply  
I
sense input for I2C-bus voltage; connect to I2C-bus supply  
select I2C-bus address; LOW selects slave address 88h, HIGH selects slave address  
8Ch  
VSSA1  
RED  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
supply  
analog ground 1 for RED (CR), C (CVBS) and GREEN (Y) outputs  
analog output of RED (CR) signal  
O
C
O
analog output of chrominance (CVBS) signal  
VDDA1  
GREEN  
VBS  
supply  
analog supply voltage 1 for RED (CR) and C (CVBS) outputs  
analog output of GREEN (Y) signal  
O
O
analog output of VBS (CVBS) signal  
VDDA2  
BLUE  
CVBS  
VDDA3  
VSSA2  
VSSA3  
XTALO  
XTALI  
supply  
O
analog supply voltage 2 for VBS (CVBS) and GREEN (Y) outputs  
analog output of BLUE (CB) signal  
O
analog output of CVBS (CSYNC) signal  
supply  
supply  
supply  
O
analog supply voltage 3 for BLUE (CB) and CVBS (CSYNC) outputs  
analog ground 2 for VBS (CVBS), BLUE (CB) and CVBS (CSYNC) outputs  
analog ground 3 for the DAC reference ladder and the oscillator  
crystal oscillator output  
I
crystal oscillator input; if the oscillator is not used, this pin should be connected to  
ground  
VDDA4  
XCLK  
VSSD3  
VDDD3  
36  
37  
38  
39  
supply  
O
analog supply voltage 4 for the DAC reference ladder and the oscillator  
clock output of the crystal oscillator  
digital ground 3  
supply  
supply  
I
digital supply voltage 3  
RESET_N 40  
Reset input, active LOW. After reset is applied, all digital I/Os are in input mode; PAL  
black burst on CVBS, VBS and C; RGB outputs set to lowest voltage. The I2C-bus  
receiver waits for the START condition.  
SCL  
41  
42  
43  
44  
I/(O)  
I/O  
O
serial clock input (I2C-bus) with inactive output path  
serial data input/output (I2C-bus)  
SDA  
TTXRQ  
TTX  
teletext request output, indicating when text bits are requested  
teletext bit stream input  
I
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
5 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
7. Functional description  
The digital video encoder encodes digital luminance and color difference signals into  
analog CVBS, S-video and simultaneously RGB or CR-Y-CB signals. NTSC-M, PAL-B/G,  
SECAM and sub-standards are supported.  
Both interlaced and non-interlaced operation is possible for all standards.  
The basic encoder function consists of subcarrier generation and color modulation and  
insertion of synchronization signals. Luminance and chrominance signals are filtered in  
accordance with the standard requirements of RS170A and ITU-R BT.470-3.  
For ease of post analog filtering the signals are twice oversampled with respect to the  
pixel clock before digital-to-analog conversion.  
The total filter transfer characteristics are illustrated in Figure 8 to Figure 13. The DACs for  
Y, C and CVBS are realized with full 10-bit resolution; 9-bit resolution for RGB output. The  
CR-Y-CB to RGB dematrix can be bypassed optionally in order to provide the upsampled  
CR-Y-CB input signals.  
The 8-bit multiplexed CR-Y-CB formats are ITU-R BT.656 (D1 format) compatible, but the  
SAV and EAV codes can be decoded optionally when the device is operated in slave  
mode. Two independent data streams can be processed, one latched by the rising edge of  
LLC1, the other latched by the falling edge of LLC1. The purpose of that is e.g. to forward  
one of the data streams containing both video and On-Screen Display (OSD) information  
to the RGB outputs, and the other stream containing video only to the encoded outputs  
CVBS and S-video.  
For optimum display of RGB signals through a euro-connector TV set, an early composite  
sync pulse (up to 31 LLC1 clock periods) can be provided at the CVBS output.  
As a further alternative, the VBS and C outputs may provide a second and third CVBS  
signal.  
It is also possible to connect a Philips digital video decoder (SAA7111A, SAA7113 or  
SAA7118) to the SAA7128H; SAA7129H. Via the RTCI pin, connected to RTCO of a  
decoder, information concerning actual subcarrier, PAL-ID and definite subcarrier phase  
can be inserted.  
The device synthesizes all necessary internal signals, color subcarrier frequency and  
synchronization signals from that clock.  
Wide screen signalling data can be loaded via the I2C-bus and is inserted into line 23 for  
standards using 50 Hz field rate.  
VPS data for program dependent automatic start and stop of such featured VCRs is  
loadable via I2C-bus.  
The IC also contains closed caption and extended data services encoding (line 21), and  
supports anti-taping signal generation in accordance with Macrovision. It is also possible  
to load data for copy generation management system into line 20 of every field (525/60  
line counting).  
A number of possibilities are provided for setting different video parameters, such as:  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
6 of 55  
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Black and blanking level control  
Color subcarrier frequency  
Variable burst amplitude, etc.  
During reset (RESET_N = LOW) and after reset is released, all digital I/O stages are set  
to input mode and the encoder is set to PAL mode and outputs a ‘black burst’ signal on  
CVBS and S-video outputs, while RGB outputs are set to their lowest output voltages.  
A reset forces the I2C-bus interface to abort any running bus transfer.  
7.1 Versatile fader  
Important note: whenever the fader is activated with the SYMP bit set to a logic 1  
(enabling the detection of embedded Start of Active Video (SAV) and End of Active Video  
(EAV)), codes 00h and FFh are not allowed within the actual video data (as prescribed by  
ITU-R BT.656). If SAV (00h) has been detected, the fader automatically passes 100% of  
the respective signal until SAV is detected.  
Within the digital video encoder, two data streams can be faded against each other; these  
data streams can be input to the double speed MPEG port, which is able to separate two  
independent 27 MHz data streams MPA and MPB via a cross switch controlled by EDGE1  
and EDGE2.  
MP  
MP  
pos  
EDGE1 = 0  
EDGE2 = 1  
A
MP  
MP  
neg  
B
mhb574  
Fig 3. Cross switch  
7.1.1 Configuration examples  
Figure 4 to Figure 7 show examples on how to configure the fader between the input ports  
and the outputs, separated into the composite (and S-video) encoder and the RGB  
encoder.  
7.1.1.1 Configuration 1  
Input MPA can be faded into MPB. The resulting output of the fader is then encoded  
simultaneously to composite (and S-video) and RGB output (RGBIN = ENCIN = 1). In this  
example, either MPA or MPB could be an overlay (menu) signal to be faded smoothly in  
and out.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
7 of 55  
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
e.g.  
ENCODER  
video  
FADER  
MP  
MP  
MP  
VP  
PATH  
A
B
recorder  
OUTPUT  
e.g. TV  
RGB PATH  
mhb575  
Fig 4. Configuration 1  
7.1.1.2 Configuration 2  
Input MPA can be faded into MPB. The resulting output of the fader is then encoded to  
RGB output, while the signal coming from MPB is fed directly to composite (and S-video)  
output (RGBIN = 1, ENCIN = 0). Also in this example, either MPA or MPB could be an  
overlay (menu) signal to be faded smoothly in and out, whereas the overlay appears only  
in the RGB output connected to the TV set.  
e.g.  
video  
recorder  
ENCODER  
PATH  
FADER  
MP  
MP  
MP  
VP  
A
B
OUTPUT  
e.g. TV  
RGB PATH  
mhb576  
Fig 5. Configuration 2  
7.1.1.3 Configuration 3  
Input MPB is passed directly to the RGB output, assuming e.g. it contains video including  
overlay. MPA is equivalently passed through the inactive fader to the composite (and  
S-video) output, assuming e.g. it contains video excluding overlay (RGBIN = 0,  
ENCIN = 1).  
e.g.  
video  
recorder  
ENCODER  
PATH  
MP  
MP  
FADER BYPASS  
A
B
e.g. TV  
RGB PATH  
mhb577  
Fig 6. Configuration 3  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
8 of 55  
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
7.1.1.4 Configuration 4  
Only MPB input is in use; its signal is both composite (and S-video) and RGB encoded  
(RGBIN = ENCIN = 0).  
ENCODER  
PATH  
MP  
MP  
e.g. video recorder  
e.g. TV  
A
B
RGB PATH  
mhb578  
Fig 7. Configuration 4  
7.1.2 Parameters of the fader  
Basically, there are three independent fade factors available, allowing for the equation:  
Output = (FADEx × In1) + [(1 FADEx) × In2]  
Where x = 1, 2 or 3.  
Factor FADE1 is effective, when a color in the data stream fed to the MPEG port fader  
input is recognized as being between KEY1L and KEY1U. That means, the color is not  
identified by a single numeric value, but an upper and lower threshold in a 24-bit YUV  
color space can be defined. FADE1 = 00h results in 100 % signal at the MPEG port fader  
input and 0 % signal at the fader video port input. Variation of 63 steps is possible up to  
FADE1 = 3Fh, resulting in 0 % signal at the MPEG port fader input and 100 % signal at  
the fader video port input.  
Factor FADE2 is effective, when a color in the data stream fed to the MPEG port fader  
input is recognized as being between KEY2L and KEY2U. FADE2 is to be seen in  
conjunction with a color that is defined by a 24-bit internal Color Look-Up Table (CLUT).  
FADE2 = 00h results in 100 % of the internally defined LUT color and 0 % signal at the  
fader video port input. Variation of 63 steps is possible up to FADE2 = 3Fh, resulting in  
0 % of the internally defined LUT color and 100 % signal at the fader video port input.  
Finally, factor FADE3 is effective, when a color in the data stream fed to the MPEG port  
fader input is recognized as neither being between KEY1L and KEY1U nor being between  
KEY2L and KEY2H. FADE3 = 00h results in 100 % signal at the MPEG port fader input  
and 0 % signal at the fader video port input. Variation of 63 steps is possible up to  
FADE3 = 3Fh, resulting in 0 % signal at the MPEG port fader input and 100 % signal at  
the fader video port input.  
Optionally, all upper and lower thresholds can be ignored, enabling to fade signals only  
against the LUT color.  
If bit CFADM is set HIGH, all data at the MPEG port fader are faded against the LUT color,  
if bit CFADV is set HIGH, all data at the video port fader are faded against the LUT color.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
9 of 55  
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
7.2 Data manager  
In the data manager, a pre-defined color look-up table located in this block can be read  
out in a pre-defined sequence (8 steps per active video line) as an alternative to the  
external video data, achieving a color bar test pattern generator without the need for an  
external data source.  
7.3 Encoder  
7.3.1 Video path  
The encoder generates out of Y, U and V baseband signals luminance and color  
subcarrier output signals, suitable for use as CVBS or separate Yand C signals.  
Luminance is modified in gain and in offset (latter programmable in a certain range to  
enable different black level set-ups). A blanking level can be set after insertion of a fixed  
synchronization pulse tip level in accordance with standard composite synchronization  
schemes. Other manipulations used for the Macrovision anti-taping process such as  
additional insertion of AGC super-white pulses (programmable in height) are supported by  
the SAA7128H only.  
In order to enable easy post analog filtering, luminance is interpolated from a 13.5 MHz  
data rate to a 27 MHz data rate, providing luminance in 10-bit resolution. The transfer  
characteristics of the luminance interpolation filter are illustrated in  
Figure 10 and Figure 11. Appropriate transients at start/end of active video and for  
synchronization pulses are ensured.  
Chrominance is modified in gain (programmable separately for U and V), standard  
dependent burst is inserted, before baseband color signals are interpolated from a  
6.75 MHz data rate to a 27 MHz data rate. One of the interpolation stages can be  
bypassed, thus providing a higher color bandwidth, which can be made use of for Yand C  
output. The transfer characteristics of the chrominance interpolation filter are illustrated in  
Figure 8 and Figure 9.  
The amplitude, beginning and ending of the inserted burst, is programmable in a certain  
range that is suitable for standard signals and for special effects. Behind the succeeding  
quadrature modulator, color in a 10-bit resolution is provided on the subcarrier.  
The numeric ratio between Yand C outputs is in accordance with the respective  
standards.  
7.3.2 Teletext insertion and encoding  
Pin TTX receives a WST or NABTS teletext bitstream sampled at the LLC clock. Two  
protocols are provided:  
At each rising edge of output signal (TTXRQ) a single teletext bit has to be provided  
after a programmable delay at input pin TTX  
The signal TTXRQ performs only a single LOW-to-HIGH transition and remains at  
HIGH-level for 360, 296 or 288 teletext bits, depending on the chosen standard.  
Phase variant interpolation is achieved on this bitstream in the internal teletext encoder,  
providing sufficient small phase jitter on the output text lines.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
10 of 55  
 
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
TTXRQ provides a fully programmable request signal to the teletext source, indicating the  
insertion period of bitstream at lines which are selectable independently for both fields.  
The internal insertion window for text is set to 360 (PAL-WST), 296 (NTSC-WST) or 288  
(NABTS) teletext bits including clock run-in bits. The protocol and timing are illustrated in  
Figure 23.  
7.3.3 Video Programming System (VPS) encoding  
Five bytes of VPS information can be loaded via the I2C-bus and will be encoded in the  
appropriate format into line 16.  
7.3.4 Closed caption encoder  
Using this circuit, data in accordance with the specification of closed caption or extended  
data service, delivered by the control interface, can be encoded (line 21). Two dedicated  
pairs of bytes (two bytes per field), each pair preceded by run-in clocks and framing code,  
are possible.  
The actual line number where data is to be encoded in, can be modified in a certain range.  
The data clock frequency is in accordance with the definition for NTSC-M standard  
32 times horizontal line frequency.  
Data LOW at the output of the DACs corresponds to 0 IRE, data HIGH at the output of the  
DACs corresponds to approximately 50 IRE.  
It is also possible to encode closed caption data for 50 Hz field frequencies at 32 times  
horizontal line frequency.  
7.3.5 Anti-taping (SAA7128H only)  
For more information contact your nearest Philips Semiconductors sales office.  
7.4 RGB processor  
This block contains a dematrix in order to produce red, green and blue signals to be fed to  
a SCART plug.  
Before Y, CB and CR signals are de-matrixed, individual gain adjustment for Y and color  
difference signals and 2 times oversampling for luminance and 4 times oversampling for  
color difference signals is performed. The transfer curves of luminance and color  
difference components of RGB are illustrated in Figure 12 and Figure 13 respectively.  
7.5 SECAM processor  
SECAM specific pre-processing is achieved by a pre-emphasis of color difference signals  
(for gain and phase see Figure 14 and Figure 15 respectively).  
A baseband frequency modulator with a reference frequency shifted from 4.286 MHz to  
DC carries out SECAM modulation in accordance with appropriate standard or optional  
wide clipping limits.  
After HF pre-emphasis, line-by-line sequential carriers with black reference of 4.25 MHz  
(Db) and 4.40625 MHz (Dr) are generated on a DC reference carrier (anti-Cloche filter;  
see Figure 16 and Figure 17) using specified values for FSC programming bytes.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
11 of 55  
 
 
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Alternating phase reset in accordance with SECAM standard is carried out automatically.  
During vertical blanking, the so-called ‘bottle pulses’ are not provided.  
7.6 Output interface/DACs  
In the output interface, encoded Yand C signals are converted from digital-to-analog in a  
10-bit resolution. Yand C signals are also combined in a 10-bit CVBS signal.  
The CVBS output occurs with the same processing delay (equal to 82 LLC clock periods,  
measured from MP input to the analog outputs) as the Y, C and RGB outputs. Absolute  
amplitude at the input of the DAC for CVBS is reduced by 15  
DACs to make maximum use of conversion ranges.  
16 with respect to Yand C  
Red, green and blue signals are also converted from digital-to-analog, each providing a  
9-bit resolution.  
Outputs of the DACs can be set together via software control to minimum output voltage  
(approximately 0.2 V DC) for either purpose. Alternatively, the buffers can be switched into  
3-state output condition; this allows for a ‘wired AND’ configuration with other 3-state  
outputs and can also be used as a power-save mode.  
7.7 Synchronization  
The synchronization of the SAA7128H; SAA7129H is able to operate in two modes; slave  
mode and master mode.  
In master mode, see Figure 19, the circuit generates all necessary timings in the video  
signal itself, and it can provide timing signals at the RCV1 and RCV2 ports. In slave mode,  
it accepts timing information either from the RCV pins or from the embedded timing data  
of the ITU-R BT.656 data stream.  
For the SAA7128H; SAA7129H, the only difference between master and slave mode is  
that it ignores the timing information at its inputs in master mode. Thus, if in slave mode,  
any timing information is missing, the IC will continue running free without a visible effect.  
But there must not be any additional pulses (with wrong phase) because the circuit will not  
ignore them.  
In slave mode, see Figure 18, an interface circuit decides which signal is expected at the  
RCV1 port and which information is taken from its active slope. The polarity can be  
chosen. If PRCV1 is logic 0, the rising slope will be active.  
The signal can be:  
A Vertical Sync (VS) pulse; the active slope sets the vertical phase  
An odd/even signal; the active slope sets the vertical phase, the internal field flag to  
odd and optionally sets the horizontal phase  
A Field Sequence (FSEQ) signal; it marks the first field of the 4 (NTSC) or 8 (PAL) or  
12 (SECAM) field sequences; in addition to the odd/even signal, it also sets the PAL  
phase and optionally defines the subcarrier phase.  
On the RCV2 port, the IC can provide a horizontal pulse with programmable start and stop  
phase; this pulse can be inhibited in the vertical blanking period to build up, for example, a  
composite blanking signal.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
12 of 55  
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
The horizontal phase can be set via a separate input RCV2. In the event of VS pulses at  
RCV1, this is mandatory. It is also possible to set the signal path to blank via this input.  
From the ITU-R BT.656 data stream, the SAA7128H; SAA7129H decodes only the start of  
the first line in the odd field. All other information is ignored and may miss. If this kind of  
slave mode is active, the RCV pins may be switched to output mode.  
In slave mode, the horizontal trigger phase can be programmed to any point in the line,  
the vertical phase from line 0 to line 15 counted from the first serration pulse in half line  
steps.  
Whenever synchronization information cannot be derived directly from the inputs, the  
SAA7128H; SAA7129H will calculate it from the internal horizontal, vertical and PAL  
phase. This gives good flexibility with respect to external synchronization, but the circuit  
does not suppress illegal settings. In such an event, the odd/even information may vanish  
as it does in the non-interlaced modes.  
In master mode, the line lengths are fixed to 1728 clocks at 50 Hz and 1716 clocks at  
60 Hz. To allow non-interlaced frames, the field lengths can be varied by ±0.5 lines. In the  
event of non-interlace, the SAA7128H; SAA7129H does not provide odd/even information  
and the output signal does not contain the PAL ‘Bruch sequence’.  
At the RCV1 pin the IC can provide:  
A Vertical Sync (VS) signal with 2.5 (50 Hz) or 3 (60 Hz) lines duration  
An odd/even signal which is LOW in odd fields  
A Field Sequence (FSEQ) signal which is HIGH in the first field of the 4 or 8 or 12 field  
sequences.  
At the RCV2 pin, there is a horizontal pulse of programmable phase and duration  
available. This pulse can be suppressed in the programmable inactive part of a field,  
giving a composite blank signal.  
The directions and polarities of the RCV ports can be chosen independently. Timing  
references can be found in Table 55 and Table 63.  
7.8 Clock  
The input to LLC1 can either be an external clock source or the buffered on-chip clock  
XCLK. The internal crystal oscillator can be run with either a 3rd-harmonic or a  
fundamental crystal frequency.  
7.9 I2C-bus interface  
The I2C-bus interface is a standard slave transceiver, supporting 7-bit slave addresses  
and 400 kbit/s guaranteed transfer rate. It uses 8-bit subaddressing with an  
auto-increment function. All registers are write and readable, except one read only status  
byte.  
The I2C-bus slave address is defined as 88h with pin 21 (SA) tied LOW and as 8Ch with  
pin 21 (SA) tied HIGH.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
13 of 55  
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
7.10 Input levels and formats  
The SAA7128H; SAA7129H expects digital Y, CB and CR data with levels (digital codes) in  
accordance with ITU-R BT.601.  
For C and CVBS outputs, deviating amplitudes of the color difference signals can be  
compensated by an independent gain control setting, while gain for luminance is set to  
predefined values, distinguishable for 7.5 IRE set-up or without set-up.  
The RGB, respectively CR-Y-CB path features a gain setting individually for luminance  
(GY) and color difference signals (GCD).  
Reference levels are measured with a color bar, 100 % white, 100 % amplitude and  
100 % saturation.  
Table 4:  
Color  
ITU-R BT.601 signal component levels  
Signals[1]  
Y
CB  
CR  
R[2]  
235  
235  
16  
G[2]  
235  
235  
235  
235  
16  
B[2]  
235  
16  
White  
Yellow  
Cyan  
235  
210  
170  
145  
106  
81  
128  
16  
128  
146  
16  
166  
54  
235  
16  
Green  
Magenta  
Red  
34  
16  
202  
90  
222  
240  
110  
128  
235  
235  
16  
235  
16  
16  
Blue  
41  
240  
128  
16  
235  
16  
Black  
16  
16  
16  
[1] Transformation:  
R = Y + 1.3707 × (CR 128)  
G = Y 0.3365 × (CB 128) 0.6982 × (CR 128)  
B = Y + 1.7324 × (CB 128).  
[2] Representation of R, G and B (or CR, Yand CB) at the output is 9 bits at 27 MHz.  
Table 5:  
Time  
8-bit multiplexed format (similar to ITU-R BT.601)  
Bits  
0
1
2
3
4
5
6
7
Sample  
CB0  
0
Y0  
CR0  
1
Y1  
CB2  
2
Y2  
CR2  
3
Y3  
Luminance pixel number  
Color pixel number  
0
2
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
14 of 55  
 
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
7.11 Bit allocation map  
Table 6:  
Slave receiver (slave address 88h)  
Register function  
Subaddress Data byte[1]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Status byte (read only)  
Null  
00h  
VER2  
0
VER1  
0
VER0  
0
CCRDO  
0
CCRDE  
0
0
FSEQ  
O_E  
01h to 25h  
26h  
0
0
0
Wide screen signal  
WSS7  
WSSON  
DECCOL  
0
WSS6  
0
WSS5  
WSS13  
BS5  
BE5  
CG05  
CG13  
0
WSS4  
WSS3  
WSS2  
WSS1  
WSS0  
Wide screen signal  
27h  
WSS12  
BS4  
WSS11  
BS3  
WSS10  
BS2  
WSS9  
WSS8  
Real-time control, burst start  
Burst end  
28h  
DECFIS  
0
BS1  
BS0  
29h  
BE4  
BE3  
BE2  
BE1  
BE0  
Copy generation 0  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh to 37h  
38h  
CG07  
CG15  
CGEN  
CG06  
CG14  
0
CG04  
CG03  
CG02  
CG01  
CG00  
Copy generation 1  
CG12  
CG11  
CG10  
CG09  
CG08  
CG enable, copy generation 2  
Output port control  
0
CG19  
CG18  
CG17  
CG16  
CVBSEN1 CVBSEN0 CVBSTRI  
YTRI  
CTRI  
RTRI  
GTRI  
BTRI  
Null  
0
0
0
0
0
0
0
0
Gain luminance for RGB  
Gain color difference for RGB  
Input port control 1  
0
0
0
GY4  
GY3  
GY2  
GY1  
GY0  
39h  
0
0
0
GCD4  
GCD3  
GCD2  
GCD1  
GCD0  
3Ah  
42h  
CBENB  
KEY1LU7  
KEY1LV7  
KEY1LY7  
KEY2LU7  
KEY2LV7  
KEY2LY7  
KEY1UU7  
KEY1UV7  
KEY1UY7  
KEY2UU7  
KEY2UV7  
KEY2UY7  
0
0
0
SYMP  
DEMOFF  
KEY1LU3  
KEY1LV3  
KEY1LY3  
KEY2LU3  
KEY2LV3  
KEY2LY3  
KEY1UU3  
KEY1UV3  
KEY1UY3  
KEY2UU3  
KEY2UV3  
KEY2UY3  
FADE13  
FADE23  
CSYNC  
KEY1LU2  
KEY1LV2  
KEY1LY2  
KEY2LU2  
KEY2LV2  
KEY2LY2  
KEY1UU2  
KEY1UV2  
KEY1UY2  
KEY2UU2  
KEY2UV2  
KEY2UY2  
FADE12  
FADE22  
MP2C  
VP2C  
Key color 1 lower limit U  
Key color 1 lower limit V  
Key color 1 lower limit Y  
Key color 2 lower limit U  
Key color 2 lower limit V  
Key color 2 lower limit Y  
Key color 1 upper limit U  
Key color 1 upper limit V  
Key color 1 upper limit Y  
Key color 2 upper limit U  
Key color 2 upper limit V  
Key color 2 upper limit Y  
Fade factor key color 1  
CFade, Fade factor key color 2  
KEY1LU6  
KEY1LV6  
KEY1LY6  
KEY2LU6  
KEY2LV6  
KEY2LY6  
KEY1UU6  
KEY1UV6  
KEY1UY6  
KEY2UU6  
KEY2UV6  
KEY2UY6  
0
KEY1LU5  
KEY1LV5  
KEY1LY5  
KEY2LU5  
KEY2LV5  
KEY2LY5  
KEY1UU5  
KEY1UV5  
KEY1UY5  
KEY2UU5  
KEY2UV5  
KEY2UY5  
FADE15  
FADE25  
KEY1LU4  
KEY1LV4  
KEY1LY4  
KEY2LU4  
KEY2LV4  
KEY2LY4  
KEY1UU4  
KEY1UV4  
KEY1UY4  
KEY2UU4  
KEY2UV4  
KEY2UY4  
FADE14  
FADE24  
KEY1LU1  
KEY1LV1  
KEY1LY1  
KEY2LU1  
KEY2LV1  
KEY2LY1  
KEY1UU1  
KEY1UV1  
KEY1UY1  
KEY2UU1  
KEY2UV1  
KEY2UY1  
FADE11  
FADE21  
KEY1LU0  
KEY1LV0  
KEY1LY0  
KEY2LU0  
KEY2LV0  
KEY2LY0  
KEY1UU0  
KEY1UV0  
KEY1UY0  
KEY2UU0  
KEY2UV0  
KEY2UY0  
FADE10  
FADE20  
43h  
44h  
45h  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
CFADEM  
CFADEV  
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Slave receiver (slave address 88h)…continued  
Table 6:  
Register function  
Subaddress Data byte[1]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Fade factor other  
Look-up table key color 2 U  
Look-up table key color 2 V  
Look-up table key color 2 Y  
VPS enable, input control 2  
VPS byte 5  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
0
0
FADE35  
LUTU5  
LUTV5  
LUTY5  
ENCIN  
VPS55  
VPS115  
VPS125  
VPS135  
VPS145  
CHPS5  
GAINU5  
GAINV5  
BLCKL5  
FADE34  
LUTU4  
LUTV4  
LUTY4  
RGBIN  
VPS54  
VPS114  
VPS124  
VPS134  
VPS144  
CHPS4  
GAINU4  
GAINV4  
BLCKL4  
FADE33  
LUTU3  
LUTV3  
LUTY3  
DELIN  
FADE32  
LUTU2  
LUTV2  
LUTY2  
VPSEL  
VPS52  
VPS112  
VPS122  
VPS132  
VPS142  
CHPS2  
GAINU2  
GAINV2  
BLCKL2  
FADE31  
LUTU1  
LUTV1  
LUTY1  
EDGE2  
VPS51  
VPS111  
VPS121  
VPS131  
VPS141  
CHPS1  
GAINU1  
GAINV1  
BLCKL1  
FADE30  
LUTU0  
LUTV0  
LUTY0  
EDGE1  
VPS50  
VPS110  
VPS120  
VPS130  
VPS140  
CHPS0  
GAINU0  
GAINV0  
BLCKL0  
LUTU7  
LUTV7  
LUTY7  
VPSEN  
VPS57  
VPS117  
VPS127  
VPS137  
VPS147  
CHPS7  
GAINU7  
GAINV7  
GAINU8  
LUTU6  
LUTV6  
LUTY6  
0
VPS56  
VPS116  
VPS126  
VPS136  
VPS146  
CHPS6  
GAINU6  
GAINV6  
DECOE  
VPS53  
VPS113  
VPS123  
VPS133  
VPS143  
CHPS3  
GAINU3  
GAINV3  
BLCKL3  
VPS byte 11  
VPS byte 12  
VPS byte 13  
VPS byte 14  
Chrominance phase  
Gain U  
Gain V  
Gain U MSB, real-time control,  
black level  
Gain V MSB, real-time control,  
blanking level  
5Eh  
GAINV8  
DECPH  
BLNNL5  
BLNNL4  
BLNNL3  
BLNNL2  
BLNNL1  
BLNNL0  
CCR, blanking level VBI  
Null  
5Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
CCRS1  
0
CCRS0  
0
BLNVB5  
0
BLNVB4  
0
BLNVB3  
0
BLNVB2  
0
BLNVB1  
0
BLNVB0  
0
Standard control  
RTC enable, burst amplitude  
Subcarrier 0  
DOWNB  
RTCE  
DOWNA  
BSTA6  
FSC06  
FSC14  
FSC22  
FSC30  
L21O06  
L21O16  
L21E06  
L21E16  
SRCV10  
INPI  
YGS  
SECAM  
BSTA3  
FSC03  
FSC11  
FSC19  
FSC27  
L21O03  
L21O13  
L21E03  
L21E13  
PRCV1  
SCBW  
BSTA2  
FSC02  
FSC10  
FSC18  
FSC26  
L21O02  
L21O12  
L21E02  
L21E12  
CBLF  
PAL  
FISE  
BSTA5  
FSC05  
FSC13  
FSC21  
FSC29  
L21O05  
L21O15  
L21E05  
L21E15  
TRCV2  
BSTA4  
FSC04  
FSC12  
FSC20  
FSC28  
L21O04  
L21O14  
L21E04  
L21E14  
ORCV1  
BSTA1  
FSC01  
FSC09  
FSC17  
FSC25  
L21O01  
L21O11  
L21E01  
L21E11  
ORCV2  
BSTA0  
FSC00  
FSC08  
FSC16  
FSC24  
L21O00  
L21O10  
L21E00  
L21E10  
PRCV2  
FSC07  
FSC15  
FSC23  
FSC31  
L21O07  
L21O17  
L21E07  
L21E17  
SRCV11  
Subcarrier 1  
Subcarrier 2  
Subcarrier 3  
Line 21 odd 0  
Line 21 odd 1  
Line 21 even 0  
Line 21 even 1  
RCV port control  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Slave receiver (slave address 88h)…continued  
Table 6:  
Register function  
Subaddress Data byte[1]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Trigger control  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
7Ch  
7Dh  
7Eh  
7Fh  
HTRIG7  
HTRIG10  
SBLBN  
CCEN1  
RCV2S7  
RCV2E7  
0
HTRIG6  
HTRIG9  
BLCKON  
CCEN0  
RCV2S6  
RCV2E6  
RCV2E10  
TTXHS6  
TTXHD6  
HTRIG5  
HTRIG8  
PHRES1  
TTXEN  
RCV2S5  
RCV2E5  
RCV2E9  
TTXHS5  
TTXHD5  
HTRIG4  
VTRIG4  
PHRES0  
SCCLN4  
RCV2S4  
RCV2E4  
RCV2E8  
TTXHS4  
TTXHD4  
HTRIG3  
VTRIG3  
LDEL1  
SCCLN3  
RCV2S3  
RCV2E3  
0
HTRIG2  
VTRIG2  
LDEL0  
HTRIG1  
VTRIG1  
FLC1  
HTRIG0  
VTRIG0  
FLC0  
Trigger control  
Multi control  
Closed caption, teletext enable  
RCV2 output start  
SCCLN2  
RCV2S2  
RCV2E2  
RCV2S10  
TTXHS2  
TTXHD2  
SCCLN1  
RCV2S1  
RCV2E1  
RCV2S9  
TTXHS1  
TTXHD1  
VS_S1  
TTXOVS1  
TTXOVE1  
TTXEVS1  
TTXEVE1  
FAL1  
SCCLN0  
RCV2S0  
RCV2E0  
RCV2S8  
TTXHS0  
TTXHD0  
VS_S0  
TTXOVS0  
TTXOVE0  
TTXEVS0  
TTXEVE0  
FAL0  
RCV2 output end  
MSBs RCV2 output  
TTX request H start  
TTX request H delay  
CSYNC advance, Vsync shift  
TTX odd request vertical start  
TTX odd request vertical end  
TTX even request vertical start  
TTX even request vertical end  
First active line  
TTXHS7  
TTXHD7  
TTXHS3  
TTXHD3  
CSYNCA4 CSYNCA3 CSYNCA2 CSYNCA1 CSYNCA0 VS_S2  
TTXOVS7  
TTXOVE7  
TTXEVS7  
TTXEVE7  
FAL7  
TTXOVS6  
TTXOVE6  
TTXEVS6  
TTXEVE6  
FAL6  
TTXOVS5  
TTXOVE5  
TTXEVS5  
TTXEVE5  
FAL5  
TTXOVS4  
TTXOVE4  
TTXEVS4  
TTXEVE4  
FAL4  
TTXOVS3  
TTXOVE3  
TTXEVS3  
TTXEVE3  
FAL3  
TTXOVS2  
TTXOVE2  
TTXEVS2  
TTXEVE2  
FAL2  
Last active line  
LAL7  
LAL6  
LAL5  
LAL4  
LAL3  
LAL2  
LAL1  
LAL0  
TTX mode, MSB vertical  
Null  
TTX60  
0
LAL8  
TTXO  
FAL8  
TTXEVE8  
0
TTXOVE8  
0
TTXEVS8  
0
TTXOVS8  
0
0
0
0
Disable TTX line  
LINE12  
LINE20  
LINE11  
LINE19  
LINE10  
LINE18  
LINE9  
LINE8  
LINE7  
LINE6  
LINE5  
Disable TTX line  
LINE17  
LINE16  
LINE15  
LINE14  
LINE13  
[1] All bits labelled ‘0’ are reserved. They must be programmed with logic 0.  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
7.12 I2C-bus format  
Table 7:  
I2C-bus address; see Table 8  
S SLAVE ADDRESS ACK SUBADDRESS ACK DATA 0 ACK -------- DATA n ACK  
P
Table 8:  
Part  
S
Explanation of Table 7  
Description  
START condition  
SLAVE ADDRESS  
1000 100X or 1000 110X[1]  
acknowledge, generated by the slave  
subaddress byte  
ACK  
SUBADDRESS[2]  
DATA  
--------  
P
data byte  
continued data bytes and ACKs  
STOP condition  
[1] X is the read/write control bit; X = logic 0 is order to write; X = logic 1 is order to read.  
[2] If more than 1 byte DATA is transmitted, then auto-increment of the subaddress is performed.  
7.13 Slave receiver  
Table 9:  
Bit  
Subaddress 26h  
Symbol Description  
7
6
5
4
3
2
1
0
WSS7  
WSS6  
WSS5  
WSS4  
WSS3  
WSS2  
WSS1  
WSS0  
wide screen signalling bits: enhanced services field  
wide screen signalling bits: aspect ratio field  
Table 10: Subaddress 27h  
Bit  
Symbol  
Description  
7
WSSON  
0 = Wide screen signalling output is disabled; default state after reset,  
1 = Wide screen signalling output is enabled.  
this bit is reserved and must be set to logic 0  
wide screen signalling bits: reserved field  
6
5
4
3
2
1
0
-
WSS13  
WSS12  
WSS11  
WSS10  
WSS9  
WSS8  
wide screen signalling bits: subtitles field  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
18 of 55  
 
 
 
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 11: Subaddress 28h  
Bit  
Symbol  
Description  
7
DECCOL 0 = disable color detection bit of RTCI input,  
1 = enable color detection bit of RTCI input; bit RTCE must be set to  
logic 1, see Figure 22  
6
DECFIS  
0 = field sequence as FISE in subaddress 61,  
1 = field sequence as FISE bit in RTCI input; bit RTCE must be set to  
logic 1, see Figure 22  
5
4
3
2
1
0
BS5  
BS4  
BS3  
BS2  
BS1  
BS0  
starting point of burst in clock cycles:  
PAL: BS[5:0] = 33 (21h); default value after reset  
NTSC: BS[5:0] = 25 (19h).  
Table 12: Subaddress 29h  
Bit  
7
Symbol  
-
Description  
these 2 bits are reserved; each must be set to logic 0  
6
-
5
BE5  
BE4  
BE3  
BE2  
BE1  
BE0  
ending point of burst in clock cycles:  
PAL: BE[5:0] = 29 (1Dh); default value after reset  
NTSC: BE[5:0] = 29 (1Dh).  
4
3
2
1
0
Table 13: Subaddress 2Ah  
Bit  
Symbol  
Description  
7 to 0  
CG[07:00] LSB of the byte is encoded immediately after run-in, the MSB of the byte  
has to carry the CRCC bit, in accordance with the definition of copy  
generation management system encoding format  
Table 14: Subaddress 2Bh  
Bit  
Symbol  
Description  
7 to 0  
CG[15:08] second byte; the MSB of the byte has to carry the CRCC bit, in  
accordance with the definition of copy generation management system  
encoding format  
Table 15: Subaddress 2Ch  
Bit  
Symbol  
Description  
7
CGEN  
0 = copy generation data output is disabled; default state after reset,  
1 = copy generation data output is enabled.  
these 3 bits are reserved; each must be set to logic 0  
6
5
4
-
-
-
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
19 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 15: Subaddress 2Ch…continued  
Bit  
3
Symbol  
CG19  
CG18  
CG17  
CG16  
Description  
remaining bits of copy generation code  
2
1
0
Table 16: Subaddress 2Dh  
Bit  
Symbol  
Description  
7
CVBSEN1 0 = luminance output signal is switched to Y DAC; default state after  
reset,  
1 = CVBS output signal is switched to Y DAC.  
6
5
CVBSEN0 0 = chrominance output signal is switched to C DAC; default state after  
reset,  
1 = CVBS output signal is switched to C DAC.  
CVBSTRI 0 = DAC for CVBS output in 3-state mode (high-impedance),  
1 = DAC for CVBS output in normal operation mode; default state after  
reset.  
4
3
2
YTRI  
CTRI  
RTRI  
0 = DAC for Y output in 3-state mode (high-impedance),  
1 = DAC for Y output in normal operation mode; default state after reset.  
0 = DAC for C output in 3-state mode (high-impedance),  
1 = DAC for C output in normal operation mode; default state after reset.  
0 = DAC for RED output in 3-state mode (high-impedance),  
1 = DAC for RED output in normal operation mode; default state after  
reset.  
1
0
GTRI  
BTRI  
0 = DAC for GREEN output in 3-state mode (high-impedance),  
1 = DAC for GREEN output in normal operation mode; default state after  
reset.  
0 = DAC for BLUE output in 3-state mode (high-impedance),  
1 = DAC for BLUE output in normal operation mode; default state after  
reset.  
Table 17: Subaddress 38h  
Bit  
Symbol  
-
Description  
7 to 5  
4 to 0  
these 3 bits are reserved; each must be set to logic 0  
GY[4:0]  
gain luminance of RGB (CR, Yand CB) output, ranging from  
(1 1632) to (1 + 1532); suggested nominal value = 6 (11010b),  
depending on external application  
Table 18: Subaddress 39h  
Bit  
Symbol  
Description  
7 to 5  
4 to 0  
-
these 3 bits are reserved; each must be set to logic 0  
GCD[4:0] gain color difference of RGB (CR, Yand CB) output, ranging from  
(1 1632) to (1 + 1532); suggested nominal value = 6 (11010b),  
depending on external application  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
20 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 19: Subaddress 3Ah  
Bit  
Symbol  
Description  
7
CBENB  
0 = data from input ports is encoded; default state after reset,  
1 = color bar with fixed colors is encoded.  
6
5
4
-
these 2 bits are reserved; each must be set to a logic 0  
-
SYMP  
0 = horizontal and vertical trigger is taken from RCV2 and RCV1,  
respectively; default state after reset,  
1 = horizontal and vertical trigger is decoded out of ITU-R BT.656  
compatible data at MPEG port.  
3
2
DEMOFF 0 = YCBCR-to-RGB dematrix is active; default state after reset,  
1 = YCBCR-to-RGB dematrix is bypassed.  
CSYNC  
MP2C  
VP2C  
0 = CVBS output signal is switched to CVBS DAC; default state after  
reset,  
1 = advanced composite sync is switched to CVBS DAC.  
1
0
0 = input data is twos complement from MPEG port fader input,  
1 = input data is straight binary from MPEG port fader input; default state  
after reset.  
0 = input data is twos complement from video port fader input,  
1 = input data is straight binary from video port fader input; default state  
after reset.  
Table 20: Subaddresses 42h to 44h and 48h to 4Ah  
Address Byte Description  
42h, 48h KEY1LU[7:0] Key color 1 lower and upper limits for U, V and Y; if MPEG input signal is  
KEY1UU[7:0] within the limits of key color 1 the incoming signals at the video port and  
MPEG port are added together according to the equation:  
43h, 49h KEY1LV[7:0]  
FADE1 × video signal + (1 FADE1) × MPEG signal  
KEY1UV[7:0]  
Default value of all bytes after reset = 80h.  
44h, 4Ah KEY1LY[7:0]  
KEY1UY[7:0]  
Table 21: Subaddresses 45h to 47h and 4Bh to 4Dh  
Address Byte Description  
45h, 4Bh KEY2LU[7:0] Key color 2 lower and upper limits for U, V and Y; if MPEG input signal is  
KEY2UU[7:0] within the limits of key color 2 the incoming signals at the video port and  
MPEG port are added together according to the equation:  
46h, 4Ch KEY2LV[7:0]  
FADE2 × video signal + (1 FADE2) × LUT values  
KEY2UV[7:0]  
Default value of all bytes after reset = 80h.  
47h, 4Dh KEY2LY[7:0]  
KEY2UY[7:0]  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
21 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 22: Subaddress 4Eh  
Bit  
Symbol  
Description  
these 2 bits are reserved; each must be set to logic 0  
7 to 6  
5 to 0  
-
FADE1[5:0] these 6 bits form factor FADE1 which determines the ratio between the  
MPEG and video input signal in the resulting video data stream if the key  
color 1 is detected in the MPEG input signal:  
FADE1 = 00h: 100 % MPEG, 0 % video  
FADE1 = 3Fh: 100 % video, 0 % MPEG; default value after reset.  
Table 23: Subaddress 4Fh  
Bit  
Symbol  
Description  
7
CFADEM  
0 = fader operates in normal mode; default state after reset,  
1 = the entire video input stream is faded with the color stored in the LUT  
(subaddresses 51h to 53h) regardless of the MPEG input signal; the  
color keys are disabled.  
6
CFADEV  
0 = fader operates in normal mode; default state after reset,  
1 = the entire MPEG input stream is faded with the color stored in the  
LUT (subaddresses 51h to 53h) regardless of the video input signal; the  
color keys are disabled.  
5 to 0  
FADE2[5:0] these 6 bits form factor FADE2 which determines the ratio between the  
LUT color values (subaddresses 51h to 53h) and the video input signal in  
the resulting video data stream if the key color 2 is detected in the MPEG  
input signal:  
FADE2 = 00h: 100 % LUT color, 0 % video  
FADE2 = 3Fh: 100 % video, 0 % LUT color; default value after reset.  
Table 24: Subaddress 50h  
Bit  
Symbol  
Description  
7 to 6  
5 to 0  
-
these 2 bits are reserved; each must be a logic 0  
FADE3[5:0] these 6 bits form factor FADE3 which determines the ratio between the  
MPEG and video input signal in the resulting video data stream if neither  
the key color 1 nor the key color 2 is detected in the MPEG input signal:  
FADE3 = 00h: 100 % MPEG, 0 % video  
FADE3 = 3Fh: 100 % video, 0 % MPEG; default value after reset.  
Table 25: Subaddress 51h  
Bit  
Symbol  
Description  
7 to 0  
LUTU[7:0] LUT for the color values inserted in case of key color 2 U detection in the  
MPEG input data stream; LUTU[7:0] = 80h; default value after reset  
Table 26: Subaddress 52h  
Bit  
Symbol  
Description  
7 to 0  
LUTV[7:0] LUT for the color values inserted in case of key color 2 V detection in the  
MPEG input data stream; LUTV[7:0] = 80h; default value after reset  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
22 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 27: Subaddress 53h  
Bit  
Symbol  
Description  
7 to 0  
LUTY[7:0] LUT for the color values inserted in case of key color 2 Y detection in the  
MPEG input data stream; LUTY[7:0] = 80h; default value after reset  
Table 28: Subaddress 54h  
Bit  
Symbol  
Description  
7
VPSEN  
0 = video programming system data insertion is disabled; default state  
after reset,  
1 = video programming system data insertion in line 16 is enabled.  
this bit is not used and should be set to logic 0  
6
5
-
ENCIN  
0 = encoder path is fed with MPB input data; fader is bypassed; default  
state after reset,  
1 = encoder path is fed with output signal of fader; see Section 7.1.  
4
RGBIN  
0 = RGB path is fed with MPB input data; fader is bypassed; default state  
after reset,  
1 = RGB path is fed with output signal of fader; see Section 7.1.  
0 = not supported in current version; do not use,  
1 = recommended value; default state after reset.  
0 = not supported in current version; do not use,  
1 = recommended value; default state after reset.  
3
2
1
DELIN  
VPSEL  
EDGE2  
0 = MPB data is sampled on the rising clock edge; default state after  
reset,  
1 = MPB data is sampled on the falling clock edge.  
0
EDGE1  
0 = MPA data is sampled on the rising clock edge; default state after  
reset,  
1 = MPA data is sampled on the falling clock edge.  
Table 29: Subaddress 55h  
Bit  
Symbol  
Description  
7 to 0  
VPS5[7:0] fifth byte of video programming system data in line 16; LSB first  
Table 30: Subaddress 56h  
Bit  
Symbol  
Description  
7 to 0  
VPS11[7:0] eleventh byte of video programming system data in line 16; LSB first  
Table 31: Subaddress 57h  
Bit  
Symbol  
Description  
7 to 0  
VPS12[7:0] twelfth byte of video programming system data in line 16; LSB first  
Table 32: Subaddress 58h  
Bit  
Symbol  
Description  
7 to 0  
VPS13[7:0] thirteenth byte of video programming system data in line 16; LSB first  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
23 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 33: Subaddress 59h  
Bit  
Symbol  
Description  
7 to 0  
VPS14[7:0] fourteenth byte of video programming system data in line 16; LSB first  
Table 34: Subaddress 5Ah  
Bit  
Symbol  
Description  
7 to 0  
CHPS[7:0] phase of encoded color subcarrier (including burst) relative to horizontal  
sync; can be adjusted in steps of 360/256 degrees:  
0Fh = PAL-B/G and data from input ports  
3Ah = PAL-B/G and data from look-up table  
35h = NTSC-M and data from input ports  
57h = NTSC-M and data from look-up table.  
Table 35: Subaddress 5Bh  
Bit  
Symbol  
Description  
7 to 0  
GAINU[7:0] these are the 8 LSBs of the 9-bit code that selects the variable gain for  
the CB signal; input representation in accordance with ITU-R BT.601;  
see Table 36; the MSB is held in subaddress 5Dh; see Table 39  
Table 36: GAINU values  
Conditions[1]  
Encoding  
White-to-black = 92.5 IRE  
GAINU[8:0] = 0  
GAINU = 2.17 × nominal to +2.16 × nominal  
output subcarrier of U contribution = 0  
output subcarrier of U contribution = nominal  
GAINU = 2.05 × nominal to +2.04 × nominal  
output subcarrier of U contribution = 0  
output subcarrier of U contribution = nominal  
nominal GAINU for SECAM encoding  
GAINU[8:0] = 118 (76h)  
White-to-black = 100 IRE  
GAINU[8:0] = 0  
GAINU[8:0] = 125 (7Dh)  
GAINU[8:0] = 106 (6Ah)  
[1] All IRE values are rounded up.  
Table 37: Subaddress 5Ch  
Bit  
Symbol  
Description  
7 to 0  
GAINV[7:0] these are the 8 LSBs of the 9-bit code that selects the variable gain for  
the CR signal; input representation in accordance with ITU-R BT.601;  
see Table 38; the MSB is held in subaddress 5Eh; see Table 41  
Table 38: GAINV values  
Conditions[1]  
Encoding  
White-to-black = 92.5 IRE  
GAINV[8:0] = 0  
GAINV = 1.55 × nominal to +1.55 × nominal  
output subcarrier of V contribution = 0  
output subcarrier of V contribution = nominal  
GAINV = 1.46 × nominal to +1.46 × nominal  
output subcarrier of V contribution = 0  
output subcarrier of V contribution = nominal  
GAINV[8:0] = 165 (A5h)  
White-to-black = 100 IRE  
GAINV[8:0] = 0  
GAINV[8:0] = 175 (AFh)  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
24 of 55  
 
 
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 38: GAINV values…continued  
Conditions[1]  
Encoding  
nominal GAINV for SECAM encoding  
GAINV[8:0] = 129 (81h)  
[1] All IRE values are rounded up.  
Table 39: Subaddress 5Dh  
Bit  
Symbol  
Description  
7
GAINU8  
MSB of the 9-bit code that sets the variable gain for the CB signal;  
see Table 35.  
6
DECOE  
real-time control:  
0 = disable odd/even field control bit from RTCI  
1 = enable odd/even field control bit from RTCI; see Figure 22.  
5 to 0  
BLCKL[5:0] variable black level; input representation in accordance with  
ITU-R BT.601; see Table 40  
Table 40: BLCKL values  
Conditions[1]  
Encoding[1]  
White-to-sync = 140 IRE[2] recommended value: BLCKL = 58 (3Ah)  
BLCKL = 0[2]  
output black level = 29 IRE  
BLCKL = 63 (3Fh)[2]  
output black level = 49 IRE  
White-to-sync = 143 IRE[3] recommended value: BLCKL = 51 (33h)  
BLCKL = 0[3]  
BLCKL = 63 (3Fh)[3]  
output black level = 27 IRE  
output black level = 47 IRE  
[1] All IRE values are rounded up.  
[2] Output black level/IRE = BLCKL × 2/6.29 + 28.9.  
[3] Output black level/IRE = BLCKL × 2/6.18 + 26.5.  
Table 41: Subaddress 5Eh  
Bit  
Symbol  
Description  
7
GAINV8  
MSB of the 9-bit code that sets the variable gain for the CR signal;  
see Table 37.  
6
DECPH  
real-time control:  
0 = disable subcarrier phase reset bit from RTCI  
1 = enable subcarrier phase reset bit from RTCI; see Figure 22.  
5 to 0  
BLNNL[5:0] variable blanking level; see Table 42  
Table 42: BLNNL values  
Conditions[1]  
Encoding[1]  
White-to-sync = 140 IRE[2] recommended value: BLNNL = 46 (2Eh)  
BLNNL = 0[2]  
output blanking level = 25 IRE  
BLNNL = 63 (3Fh) [2]  
output blanking level = 45 IRE  
White-to-sync = 143 IRE[3] recommended value: BLNNL = 53 (35h)  
BLNNL = 0[3]  
output blanking level = 26 IRE  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
25 of 55  
 
 
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 42: BLNNL values…continued  
Conditions[1]  
Encoding[1]  
BLNNL = 63 (3Fh) [3]  
output blanking level = 46 IRE  
[1] All IRE values are rounded up.  
[2] Output black level/IRE = BLNNL × 2/6.29 + 25.4.  
[3] Output black level/IRE = BLNNL × 2/6.18 + 25.9; default after reset: 35h.  
Table 43: Subaddress 5Fh  
Bit  
7
Symbol  
CCRS1  
CCRS0  
BLNVB5  
BLNVB4  
BLNVB3  
BLNVB2  
BLNVB1  
BLNVB0  
Description  
these 2 bits select the cross-color reduction filter in luminance;  
see Table 44 and Figure 10  
6
5
these 6 bits select the variable blanking level during vertical blanking;  
interval is typically identical to value of BLNNL  
4
3
2
1
0
Table 44: Selection of cross-color reduction filter  
CCRS1  
CCRS0  
Description  
0
0
1
1
0
1
0
1
no cross-color reduction  
cross-color reduction #1 active  
cross-color reduction #2 active  
cross-color reduction #3 active  
Table 45: Subaddress 61h  
Bit  
Symbol  
Description  
7
DOWNB  
0 = DACs for R, G and B in normal operational mode,  
1 = DACs for R, G and B forced to lowest output voltage; default state  
after reset.  
6
5
4
3
DOWNA  
INPI  
0 = DACs for CVBS, Y and C in normal operational mode; default state  
after reset,  
1 = DACs for CVBS, Y and C forced to lowest output voltage.  
0 = PAL switch phase is nominal; default state after reset,  
1 = PAL switch phase is inverted compared to nominal if RTC is enabled;  
see Table 46.  
YGS  
0 = luminance gain for white black 100 IRE; default state after reset,  
1 = luminance gain for white black 92.5 IRE including 7.5 IRE set-up of  
black.  
SECAM  
0 = no SECAM encoding; default state after reset,  
1 = SECAM encoding activated; bit PAL has to be set to logic 0.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
26 of 55  
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 45: Subaddress 61h…continued  
Bit  
Symbol  
Description  
2
SCBW  
0 = enlarged bandwidth for chrominance encoding (for overall transfer  
characteristic of chrominance in baseband representation  
see Figure 8 and 9),  
1 = standard bandwidth for chrominance encoding (for overall transfer  
characteristic of chrominance in baseband representation  
see Figure 8 and 9); default state after reset.  
1
0
PAL  
0 = NTSC encoding (non-alternating V component),  
1 = PAL encoding (alternating V component); default state after reset.  
0 = 864 total pixel clocks per line; default state after reset,  
1 = 858 total pixel clocks per line.  
FISE  
Table 46: Subaddress 62h  
Bit  
Symbol  
Description  
7
RTCE  
0 = no real-time control of generated subcarrier frequency; default state  
after reset,  
1 = real-time control of generated subcarrier frequency through SAA7113  
or SAA7118; for timing, see Figure 22.  
6 to 0  
BSTA[6:0] amplitude of color burst; input representation in accordance with  
ITU-R BT.601; see Table 47  
Table 47: BSTA values  
Conditions[1]  
Encoding  
White-to-black = 92.5 IRE;  
recommended value: BSTA = 63 (3Fh)  
burst = 40 IRE; NTSC encoding  
BSTA = 0 to 2.02 × nominal  
White-to-black = 92.5 IRE;  
burst = 40 IRE; PAL encoding  
recommended value: BSTA = 45 (2Dh)  
recommended value: BSTA = 67 (43h)  
BSTA = 0 to 2.82 × nominal  
White-to-black = 100 IRE;  
burst = 43 IRE; NTSC encoding  
BSTA = 0 to 1.90 × nominal  
White-to-black = 100 IRE;  
burst = 43 IRE; PAL encoding  
recommended value: BSTA = 47 (2Fh); default value after  
reset  
BSTA = 0 to 3.02 × nominal  
Fixed burst amplitude with SECAM encoding  
[1] All IRE values are rounded up.  
Table 48: Subaddresses 63h to 66h  
Address  
Byte  
Description  
63h  
FSC[07:00] these 4 bytes are used to program the subcarrier frequency;  
FSC[31:24] is the most significant byte, FSC[07:00] is the least  
significant byte:  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
27 of 55  
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 48: Subaddresses 63h to 66h…continued  
Address  
Byte  
Description  
64h  
FSC[15:08]  
fsc = subcarrier frequency (in multiples of line frequency)  
fllc = clock frequency (in multiples of line frequency).  
65h  
66h  
FSC[23:16]  
FSC[31:24]  
f sc  
× 232  
[1]  
FSC = round  
--------  
f llc  
[1] Examples:  
a) NTSC-M: fsc = 227.5, fllc = 1716 FSC = 569408543 (21F07C1Fh).  
b) PAL-B/G: fsc = 283.7516, fllc = 1728 FSC = 705268427 (2A098ACBh).  
c) SECAM: fsc = 274.304, fllc = 1728 FSC = 681786290 (28A33BB2h).  
Table 49: Subaddress 67h  
Bit  
Symbol  
Description  
7 to 0  
L21O[07:00] first byte of captioning data, odd field; LSB of the byte is encoded  
immediately after run-in and framing code, the MSB of the byte has to  
carry the parity bit, in accordance with the definition of line 21  
encoding format  
Table 50: Subaddress 68h  
Bit  
Symbol  
Description  
7 to 0  
L21O[17:10] second byte of captioning data, odd field; the MSB of the byte has to  
carry the parity bit, in accordance with the definition of line 21  
encoding format  
Table 51: Subaddress 69h  
Bit  
Symbol  
Description  
7 to 0  
L21E[07:00] first byte of extended data, even field; LSB of the byte is encoded  
immediately after run-in and framing code, the MSB of the byte has to  
carry the parity bit, in accordance with the definition of line 21  
encoding format  
Table 52: Subaddress 6Ah  
Bit  
Symbol  
Description  
7 to 0  
L21E[17:10] second byte of extended data, even field; the MSB of the byte has to  
carry the parity bit, in accordance with the definition of line 21  
encoding format  
Table 53: Subaddress 6Bh  
Bit  
7
Symbol  
SRCV11  
SRCV10  
TRCV2  
Description  
these 2 bits define signal type on pin RCV1; see Table 54  
6
5
0 = horizontal synchronization is taken from RCV1 port (at bit  
SYMP = LOW) or from decoded frame sync of ITU-R BT.656 input (at  
bit SYMP = HIGH); default state after reset,  
1 = horizontal synchronization is taken from RCV2 port (at bit  
SYMP = LOW).  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
28 of 55  
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 53: Subaddress 6Bh…continued  
Bit  
Symbol  
Description  
4
ORCV1  
0 = pin RCV1 is switched to input; default state after reset,  
1 = pin RCV1 is switched to output.  
3
2
PRCV1  
CBLF  
0 = polarity of RCV1 as output is active HIGH, rising edge is taken  
when input; default state after reset,  
1 = polarity of RCV1 as output is active LOW, falling edge is taken  
when input.  
when CBLF = 0:  
If ORCV2 = 1, pin RCV2 provides an HREF signal (horizontal  
reference pulse that is defined by RCV2S and RCV2E, also during  
vertical blanking interval); default state after reset  
If ORCV2 = 0 and bit SYMP = 0, signal input to RCV2 is used for  
horizontal synchronization only (if TRCV2 = 1); default state after  
reset.  
when CBLF = 1:  
If ORCV2 = 1, pin RCV2 provides a ‘composite-blanking-not’ signal,  
for example a reference pulse that is defined by RCV2S and  
RCV2E, excluding vertical blanking interval, which is defined by FAL  
and LAL  
If ORCV2 = 0 and bit SYMP = 0, signal input to RCV2 is used for  
horizontal synchronization (if TRCV2 = 1) and as an internal  
blanking signal.  
1
0
ORCV2  
PRCV2  
0 = pin RCV2 is switched to input; default state after reset,  
1 = pin RCV2 is switched to output.  
0 = polarity of RCV2 as output is active HIGH, rising edge is taken  
when input, respectively; default state after reset,  
1 = polarity of RCV2 as output is active LOW, falling edge is taken  
when input, respectively.  
Table 54: Selection of the signal type on pin RCV1  
SRCV11  
SRCV10  
RCV1  
VS  
Function  
0
0
1
0
1
0
Vertical Sync each field; default state after reset  
Frame Sync (odd/even).  
FS  
FSEQ  
Field Sequence, vertical sync every fourth field (PAL = 0),  
eighth field (PAL = 1) or twelfth field (SECAM = 1).  
1
1
-
not applicable  
Table 55: Subaddress 6Ch  
Bit  
Symbol  
Description  
7 to 0  
HTRIG[7:0] These are the 8 LSBs of the 11-bit code that sets the horizontal trigger  
phase related to the signal on RCV1 or RCV2 input. The 3 MSBs are held  
in subaddress 6Dh; see Table 56. Values above 1715 (FISE = 1) or  
1727 (FISE = 0) are not allowed. Increasing HTRIG[10:0] decreases  
delays of all internally generated timing signals. Reference mark: analog  
output horizontal sync (leading slope) coincides with active edge of RCV  
used for triggering at HTRIG[10:0] = 4Fh (79).  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
29 of 55  
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 56: Subaddress 6Dh  
Bit  
7
Symbol  
Description  
HTRIG10 these are the 3 MSBs of the horizontal trigger phase code; see Table 55  
6
HTRIG9  
HTRIG8  
5
4
VTRIG4  
VTRIG3  
VTRIG2  
VTRIG1  
VTRIG0  
sets the vertical trigger phase related to signal on RCV1 input; increasing  
VTRIG decreases delays of all internally generated timing signals,  
measured in half lines; variation range of VTRIG[4:0] = 0 to 31 (1Fh)  
3
2
1
0
Table 57: Subaddress 6Eh  
Bit  
Symbol  
Description  
7
SBLBN  
0 = vertical blanking is defined by programming of FAL and LAL; default  
state after reset,  
1 = vertical blanking is forced in accordance with ITU-R BT.624 (50 Hz) or  
RS170A (60 Hz).  
6
BLCKON 0 = encoder in normal operation mode,  
1 = output signal is forced to blanking level; default state after reset.  
5
4
3
2
1
0
PHRES1 these 2 bits select the phase reset mode of the color subcarrier  
generator; see Table 58  
PHRES0  
LDEL1  
LDEL0  
FLC1  
these 2 bits select the delay on luminance path with reference to  
chrominance path; see Table 59  
these 2 bits select field length control; see Table 60  
FLC0  
Table 58: Selection of phase reset mode  
PHRES1 PHRES0 Description  
0
0
no reset or reset via RTCI from SAA7113 or SAA7118 if bit RTCE = 1;  
default value after reset  
0
1
1
1
0
1
reset every two lines or SECAM specific if bit SECAM = 1  
reset every eight fields  
reset every four fields  
Table 59: Selection of luminance path delay  
LDEL1  
LDEL0  
Luminance path delay  
0
0
1
1
0
1
0
1
no luminance delay; default value after reset  
1 LLC luminance delay  
2 LLC luminance delay  
3 LLC luminance delay  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
30 of 55  
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 60: Selection of field length control  
FLC1  
FLC0  
Description  
0
0
interlaced 312.5 lines/field at 50 Hz, 262.5 lines/field at 60 Hz; default  
value after reset  
0
1
1
1
0
1
non-interlaced 312 lines/field at 50 Hz, 262 lines/field at 60 Hz  
non-interlaced 313 lines/field at 50 Hz, 263 lines/field at 60 Hz  
Table 61: Subaddress 6Fh  
Bit  
7
Symbol  
CCEN1  
CCEN0  
TTXEN  
Description  
these 2 bits enable individual line 21 encoding; see Table 62  
6
5
0 = disables teletext insertion; default state after reset,  
1 = enables teletext insertion.  
4
SCCLN4  
these 5 bits select the actual line where closed caption or extended data  
are encoded:  
3
2
1
0
SCCLN3  
SCCLN2  
SCCLN1  
SCCLN0  
line = (SCCLN[4:0] + 4) for M-systems  
line = (SCCLN[4:0] + 1) for other systems.  
Table 62: Selection of line 21 encoding  
CCEN1  
CCEN0  
Line 21 encoding  
0
0
1
1
0
1
0
1
line 21 encoding off; default value after reset  
enables encoding in field 1 (odd)  
enables encoding in field 2 (even)  
enables encoding in both fields  
Table 63: Subaddress 70h  
Bit  
Symbol  
Description  
7 to 0  
RCV2S[7:0] these are the 8 LSBs of the 11-bit code that determines the start of the  
output signal on the RCV2 pin; the 3 MSBs of the 11-bit code are held at  
subaddress 72h; see Table 65; values above 1715 (FISE = 1)  
or 1727 (FISE = 0) are not allowed; leading sync slope at CVBS output  
coincides with leading slope of RCV2 out at RCV2S = 49h  
Table 64: Subaddress 71h  
Bit  
Symbol  
Description  
7 to 0  
RCV2E[7:0] these are the 8 LSBs of the 11-bit code that determines the end of the  
output signal on the RCV2 pin; the 3 MSBs of the 11-bit code are held at  
subaddress 72h; see Table 65; values above 1715 (FISE = 1)  
or 1727 (FISE = 0) are not allowed; leading sync slope at CVBS output  
coincides with trailing slope of RCV2 out at RCV2E = 49h  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
31 of 55  
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 65: Subaddress 72h  
Bit  
7
Symbol  
Description  
this bit is reserved and must be set to a logic 0  
-
6
RCV2E10 these are the 3 MSBs of end of output signal code; see Table 64  
5
RCV2E9  
RCV2E8  
4
3
-
this bit is reserved and must be set to a logic 0  
2
RCV2S10 these are the 3 MSBs of start of output signal code; see Table 63  
1
RCV2S9  
RCV2S8  
0
Table 66: Subaddress 73h  
Bit  
Symbol  
Description  
7 to 0  
TTXHS[7:0] start of signal on pin TTXRQ; see Figure 23:  
PAL: TTXHS[7:0] = 42h  
NTSC: TTXHS[7:0] = 54h.  
Table 67: Subaddress 74h  
Bit  
Symbol  
Description  
7 to 0  
TTXHD[7:0] indicates the delay in clock cycles between rising edge of TTXRQ output  
and valid data at pin TTX:  
minimum value: TTXHD[7:0] = 2.  
Table 68: Subaddress 75h  
Bit  
7
Symbol  
Description  
CSYNCA4 advanced composite sync against RGB output from 0 to 31 LLC clock  
periods  
6
CSYNCA3  
5
CSYNCA2  
CSYNCA1  
CSYNCA0  
4
3
2
VS_S2  
VS_S1  
VS_S0  
vertical sync shift between RCV1 and RCV2 (switched to output); in  
master mode it is possible to shift Hsync (RCV2; CBLF = 0) against  
Vsync (RCV1; SRCV11 = 0 and SRCV10 = 0):  
1
0
Standard value: VS_S[2:0] = 3.  
Table 69: Subaddress 76h  
Bit  
Symbol  
Description  
Remarks  
7 to 0  
TTXOVS[7:0] These are the 8 LSBs of the 9-bit code that  
determines the first line of occurrence of signal  
on pin TTXRQ in odd field. The MSB is held in  
subaddress 7Ch; see Table 75:  
PAL:  
TTXOVS = 05h;  
NTSC:  
TTXOVS = 06h  
line = (TTXOVS[8:0] + 4) for M-systems  
line = (TTXOVS[8:0] + 1) for other systems.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
32 of 55  
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 70: Subaddress 77h  
Bit  
Symbol  
TTXOVE[7:0] These are the 8 LSBs of the 9-bit code that  
determines the last line of occurrence of signal on TTXOVE = 16h;  
Description  
Remarks  
7 to 0  
PAL:  
pin TTXRQ in odd field. The MSB is held in  
subaddress 7Ch; see Table 75:  
NTSC:  
TTXOVE = 10h  
Last line = (TTXOVE[8:0] + 3) for M-systems  
Last line = TTXOVE[8:0] for other systems.  
Table 71: Subaddress 78h  
Bit  
Symbol  
Description  
Remarks  
7 to 0  
TTXEVS[7:0] These are the 8 LSBs of the 9-bit code that  
determines the first line of occurrence of signal on  
pin TTXRQ in even field. The MSB is held in  
subaddress 7Ch; see Table 75:  
PAL:  
TTXEVS = 04h;  
NTSC:  
TTXEVS = 05h  
first line = (TTXEVS[8:0] + 4) for M-systems  
first line = (TTXEVS[8:0] + 1) for other systems.  
Table 72: Subaddress 79h  
Bit  
Symbol  
Description  
Remarks  
7 to 0  
TTXEVE[7:0] These are the 8 LSBs of the 9-bit code that  
determines the last line of occurrence of signal on  
pin TTXRQ in even field. The MSB is held in  
subaddress 7Ch; see Table 75:  
PAL:  
TTXEVE = 16h;  
NTSC:  
TTXEVE = 10h  
last line = (TTXEVE[8:0] + 3) for M-systems  
last line = TTXEVE[8:0] for other systems.  
Table 73: Subaddress 7Ah  
Bit  
Symbol  
Description  
7 to 0  
FAL[7:0]  
These are the 8 LSBs of the 9-bit code that determines the first active  
line. The MSB is held in subaddress 7Ch; see Table 75; FAL[8:0] = 0  
coincides with the first field synchronization pulse:  
first active line = (FAL[8:0] + 4) for M-systems  
first active line = (FAL[8:0] + 1) for other systems.  
Table 74: Subaddress 7Bh  
Bit  
Symbol  
Description  
7 to 0  
LAL[7:0]  
These are the 8 LSBs of the 9-bit code that determines the last active  
line. The MSB is held in subaddress 7Ch; see Table 75; LAL[8:0] = 0  
coincides with the first field synchronization pulse:  
last active line = (LAL[8:0] + 3) for M-systems  
last active line = LAL[8:0] for other systems.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
33 of 55  
 
 
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 75: Subaddress 7Ch  
Bit  
Symbol  
Description  
7
TTX60  
0 = enables NABTS (FISE = 1) or European teletext (FISE = 0); default  
state after reset,  
1 = enables World Standard Teletext 60 Hz (FISE = 1).  
MSB of the last active line code; see Table 74  
6
5
LAL8  
TTXO  
0 = new teletext protocol selected: at each rising edge of TTXRQ a  
single teletext bit is requested; see Figure 23; default state after reset,  
1 = old teletext protocol selected: the encoder provides a window of  
TTXRQ going HIGH; the length of the window depends on the chosen  
teletext standard; see Figure 23.  
4
3
FAL8  
MSB of the first active line code; see Table 73  
TTXEVE8  
MSB of the 9-bit code that selects the last line of occurrence of signal  
on pin TTXRQ in even field; see Table 72  
2
1
0
TTXOVE8  
TTXEVS8  
TTXOVS8  
MSB of the 9-bit code that selects the last line of occurrence of signal  
on pin TTXRQ in odd field; see Table 70  
MSB of the 9-bit code that selects the first line of occurrence of signal  
on pin TTXRQ in even field; see Table 71  
MSB of the 9-bit code that selects the first line of occurrence of signal  
on pin TTXRQ in odd field; see Table 69  
Table 76: Subaddress 7Eh  
Bit  
Symbol  
Description  
7 to 0  
LINE[12:5] Individual lines in both fields (PAL counting) can be disabled for insertion  
of teletext by the respective LINE bits. Disabled line = LINEnn (50 Hz  
field rate). This bit mask is effective only, if the lines are enabled by  
TTXOVS/TTXOVE and TTXEVS/TTXEVE.  
Table 77: Subaddress 7Fh  
Bit  
Symbol  
Description  
7 to 0  
LINE[20:13] Individual lines in both fields (PAL counting) can be disabled for insertion  
of teletext by the respective LINE bits. Disabled line = LINEnn (50 Hz  
field rate). This bit mask is effective only, if the lines are enabled by  
TTXOVS/TTXOVE and TTXEVS/TTXEVE.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
34 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
7.14 Slave transmitter  
The slave transmitter slave address is 89h.  
Table 78: Subaddress 00h  
Bit  
7
Symbol  
VER2  
Description  
these 3 bits form the version identification number of the device: it will be  
changed with all versions of the IC that have different programming  
models; current version is 000b  
6
VER1  
5
VER0  
4
CCRDO  
1 = closed caption bytes of the odd field have been encoded,  
0 = the bit is reset after information has been written to the  
subaddresses 67h and 68h; it is set immediately after the data has been  
encoded.  
3
CCRDE  
1 = closed caption bytes of the even field have been encoded,  
0 = the bit is reset after information has been written to the subaddresses  
69h and 6Ah; it is set immediately after the data has been encoded.  
2
1
-
not used; set to logic 0  
FSEQ  
1 = during first field of a sequence (repetition rate: NTSC = 4 fields,  
PAL = 8 fields, SECAM = 12 fields),  
0 = not first field of a sequence.  
1 = during even field,  
0
O_E  
0 = during odd field.  
mbe737  
6
G
v
(dB)  
6  
18  
30  
42  
54  
(1)  
(2)  
0
2
4
6
8
10  
12  
14  
f (MHz)  
(1) SCBW = 1  
(2) SCBW = 0  
Fig 8. Chrominance transfer characteristic 1  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
35 of 55  
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
mbe735  
2
G
v
(dB)  
0
(1)  
(2)  
2  
4  
6  
0
0.4  
0.8  
1.2  
1.6  
f (MHz)  
(1) SCBW = 1  
(2) SCBW = 0  
Fig 9. Chrominance transfer characteristic 2  
mgd672  
6
(4)  
G
v
(dB)  
(2)  
(3)  
6  
(1)  
18  
30  
42  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
(1) CCRS1 = 0; CCRS0 = 1  
(2) CCRS1 = 1; CCRS0 = 0  
(3) CCRS1 = 1; CCRS0 = 1  
(4) CCRS1 = 0; CCRS0 = 0  
Fig 10. Luminance transfer characteristic 1  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
36 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
mbe736  
1
0
G
v
(dB)  
(1)  
1  
2  
3  
4  
5  
0
2
4
6
f (MHz)  
(1) CCRS1 = 0; CCRS0 = 0  
Fig 11. Luminance transfer characteristic 2  
mgb708  
6
G
v
(dB)  
6  
18  
30  
42  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig 12. Luminance transfer characteristic in RGB  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
37 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
mgb706  
6
G
v
(dB)  
6  
18  
30  
42  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig 13. Color difference transfer characteristic in RGB  
mgb705  
10  
G
v
(dB)  
8
6
4
2
0
0
0.4  
0.8  
1.2  
1.6  
f (MHz)  
Fig 14. Gain of SECAM pre-emphasis  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
38 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
mgb704  
30  
ϕ
(deg)  
20  
10  
0
0
0.4  
0.8  
1.2  
1.6  
f (MHz)  
Fig 15. Phase of SECAM pre-emphasis  
mgb703  
20  
G
v
(dB)  
16  
12  
8
4
0
0
0.4  
0.8  
1.2  
1.6  
f (MHz)  
Fig 16. Gain of SECAM anti-Cloche  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
39 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
mgb702  
80  
ϕ
(deg)  
60  
40  
20  
0
0
0.4  
0.8  
1.2  
1.6  
f (MHz)  
Fig 17. Phase of SECAM anti-Cloche  
CVBS output  
RCV2 input  
79 LLC  
MP input  
82 LLC  
mhb579  
(1) HTRIG = 0  
(2) PRCV2 = 0  
(3) TRCV2 = 1  
(4) ORCV2 = 0  
Fig 18. Sync and video input timing  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
40 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
CVBS output  
RCV2 output  
mhb580  
73 LLC  
(1) RCV2S = 0  
(2) PRCV2 = 0  
(3) ORCV2 = 1  
Fig 19. Sync and video output timing  
8. Limiting values  
Table 79: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). All ground pins connected together and all supply  
pins connected together.  
Symbol  
VDDD  
VDDA  
Vo(A)  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
0.5  
0.5  
-
Max  
Unit  
V
digital supply voltage  
analog supply voltage  
output voltage at analog output  
+4.6  
+4.6  
V
VDDA + 0.5  
+5.5  
V
Vi(D)  
input voltage at digital inputs or I/O pins outputs in 3-state  
V
Vo(D)  
output voltage at digital outputs  
outputs active  
VDDD + 0.5  
100  
V
VSS  
voltage difference between VSSAall and  
VSSDall  
mV  
Tstg  
storage temperature  
65  
+150  
70  
°C  
°C  
V
Tamb  
Vesd  
ambient temperature  
0
-
[1]  
[2]  
electrostatic discharge voltage  
human body model  
machine model  
±2000  
±150  
-
V
[1] Class 2 according to EIA/JESD22-114-B.  
[2] Class A according to EIA/JESD22-115-A.  
9. Thermal characteristics  
Table 80: Thermal characteristics  
Symbol  
Parameter  
Conditions  
in free air  
Typ  
Unit  
K/W  
[1]  
Rth(j-a)  
thermal resistance from junction to ambient  
53  
[1] The overall Rth(j-a) value can vary depending on the board layout. To minimize the effective Rth(j-a) all power and ground pins must be  
connected to the power and ground layers directly. An ample copper area directly under the SAA7128H; SAA7129H with several  
through-hole platings, which connect to the ground layer (four-layer board: second layer), can also reduce the effective Rth(j-a). Please do  
not use any solder-stop varnish under the chip. In addition the usage of soldering glue with a high thermal conductance after curing is  
recommended.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
41 of 55  
 
 
 
 
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
10. Characteristics  
Table 81: Characteristics  
VDDD = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; unless otherwise specified.  
Symbol  
Supply  
VDDA  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
analog supply voltage  
digital supply voltage  
analog supply current  
digital supply current  
3.15  
3.3  
3.3  
130  
75  
3.45  
3.6  
V
VDDD  
3.0  
V
[1]  
[1]  
IDDA  
-
-
150  
100  
mA  
mA  
IDDD  
VDDD = 3.3 V  
Inputs: LLC1, RCV1, RCV2, MP7 to MP0, RTCI, SA, RESET_N and TTX  
VIL  
VIH  
ILI  
LOW-level input voltage  
HIGH-level input voltage  
input leakage current  
input capacitance  
0.5  
-
-
-
-
-
-
+0.8  
V
2.0  
VDDD + 0.3  
V
-
-
-
-
1
µA  
pF  
pF  
pF  
Ci  
clocks  
10  
8
data  
I/Os at high-impedance  
8
Outputs: RCV1, RCV2 and TTXRQ  
VOL  
VOH  
LOW-level output voltage  
IOL = 2 mA  
-
-
-
0.4  
-
V
V
HIGH-level output voltage  
IOH = 2 mA  
2.4  
I2C-bus: SDA and SCL  
VIL  
VIH  
Ii  
LOW-level input voltage  
0.5  
-
-
-
-
+0.3VDD(I2C)  
V
HIGH-level input voltage  
input current  
0.7VDD(I2C)  
VDD(I2C) + 0.3 V  
Vi = LOW or HIGH  
IOL = 3 mA  
10  
+10  
0.4  
µA  
VOL  
LOW-level output voltage (pin  
SDA)  
-
V
Io  
output current  
during acknowledge  
3
-
-
mA  
Clock timing: LLC1 and XCLK  
[2]  
TLLC1  
cycle time  
34  
40  
40  
-
-
-
41  
60  
60  
ns  
%
%
δ
duty factor tHIGH/TLLC1  
duty factor tHIGH/TXCLK  
LLC1 input  
XCLK output 50 %  
(typical)  
[2]  
[2]  
tr  
tf  
rise time  
fall time  
-
-
-
-
5
6
ns  
ns  
Input timing: RCV1, RCV2, MP7 to MP0, RTCI, SA and TTX  
tSU;DAT  
tHD;DAT  
input data set-up time  
input data hold time  
6
3
-
-
-
-
ns  
ns  
Crystal oscillator  
fn  
nominal frequency (usually  
27 MHz)  
3rd harmonic  
-
-
-
30  
MHz  
[3]  
f/fn  
permissible deviation of nominal  
frequency  
50 × 106  
+50 × 106  
Crystal specification  
Tamb  
ambient temperature  
0
-
70  
°C  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
42 of 55  
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
Table 81: Characteristics…continued  
VDDD = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; unless otherwise specified.  
Symbol  
CL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
pF  
load capacitance  
8
-
-
-
-
-
RS  
series resistance  
-
80  
Cmot  
Cpar  
motional capacitance (typical)  
parallel capacitance (typical)  
1.5 20 %  
3.5 20 %  
1.5 + 20 %  
3.5 + 20 %  
fF  
pF  
Data and reference signal output timing  
CL  
th  
output load capacitance  
output hold time  
7.5  
4
-
-
-
40  
-
pF  
ns  
ns  
td  
output delay time  
-
18  
Outputs: C, VBS, CVBS and RGB  
[4]  
[5]  
Vo(p-p)  
output signal voltage  
(peak-to-peak value)  
1.25  
-
1.35  
-
1.50  
2
V
V  
inequality of output signal  
voltages  
%
Rint  
RL  
internal serial resistance  
output load resistance  
1
-
-
-
-
3
75  
10  
-
300  
-
B
output signal bandwidth of DACs 3 dB  
MHz  
LSB  
LElf(i)  
low frequency integral linearity  
error of DACs  
±3  
LElf(d)  
low frequency differential  
linearity error of DACs  
-
-
-
-
±1  
LSB  
LLC  
td(pipe)(MP) total pipeline delay from MP port 27 MHz  
82  
[1] At maximum supply voltage with highly active input signals.  
[2] The data is for both input and output direction.  
[3] If an internal oscillator is used, crystal deviation of nominal frequency is directly proportional to the deviation of subcarrier frequency and  
line/field frequency.  
[4] For full digital range, without load, VDDA = 3.3 V. The typical minimum output voltage (digital zero at DAC) is 0.2 V.  
[5] Referring to peak-to-peak analog voltages resulting from identical peak-to-peak digital codes.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
43 of 55  
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
T
LLC1  
t
HIGH  
2.6 V  
1.5 V  
0.6 V  
LLC1  
t
t
r
f
t
t
t
t
HD; DAT  
SU; DAT  
HD; DAT  
SU; DAT  
2.0 V  
0.8 V  
not  
valid  
not  
valid  
MP  
MP  
MP  
pos  
pos  
neg  
MP input data  
t
d
t
h
2.4 V  
0.6 V  
output data  
valid  
not valid  
valid  
mhb581  
Fig 20. Clock data timing  
LLC  
C (0)  
B
C (0)  
R
C (2)  
B
MP(n)  
RCV2  
Y(0)  
Y(1)  
mgb699  
The data demultiplexing phase is coupled to the internal horizontal phase.  
The phase of the RCV2 signal is programmed to 262 for 50 Hz and to 234 for 60 Hz in this example in output mode  
(RCV2S).  
Fig 21. Functional timing  
10.1 Explanation of RTCI data bits  
Refer to Figure 22:  
The HPLL increment is not evaluated by the SAA7128H; SAA7129H.  
The SAA7128H; SAA7129H generates the subcarrier frequency from the FSCPLL  
increment if enabled (see last bullet).  
The PAL bit indicates the line with inverted (R Y) component of color difference  
signal.  
If the reset bit is enabled (RTCE = 1; DECPH = 1; PHRES = 00), the phase of the  
subcarrier is reset in each line whenever the reset bit of RTCI input is set to logic 1.  
If the FISE bit is enabled (RTCE = 1; DECFIS = 1), the SAA7128H; SAA7129H takes  
this bit instead of the FISE bit in subaddress 61h.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
44 of 55  
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
If the odd/even bit is enabled (RTCE = 1; DECOE = 1), the SAA7128H; SAA7129H  
ignores its internally generated odd/even flag and takes the odd/even bit from RTCI  
input.  
If the color detection bit is enabled (RTCE = 1; DECCOL = 1) and no color was  
detected (color detection bit = 0), the subcarrier frequency is generated by the  
SAA7128H; SAA7129H. In the other case (color detection bit = 1) the subcarrier  
frequency is evaluated out of FSCPLL increment.  
If the color detection bit is disabled (RTCE = 1; DECCOL = 0), the subcarrier  
frequency is evaluated out of FSCPLL increment, independent of the color detection  
bit of RTCI input.  
HIGH-to-LOW transition  
count start  
3 bits  
reserved  
4 bits  
reserved  
(3)  
(1)  
(5)  
LOW  
HPLL  
increment  
(2)  
(1)  
(4)  
(1)  
FSCPLL increment  
128  
13  
RTCI  
0
22  
19  
0
time slot: 0 1  
14  
64  
67 69 72 74  
68  
valid  
sample  
invalid  
sample  
8/LLC  
(6)  
not used in SAA7128H/29H  
001aac192  
(1) SAA7113 and SAA7118 support RTC level 3.1.  
(2) Sequence bit: PAL: 0 = (RY) line normal, 1 = (RY) line inverted; NTSC: 0 = no change.  
(3) FISE bit: 0 = 50 Hz, 1 = 60 Hz.  
(4) Odd/even bit: odd_even from external.  
(5) Color detection: 0 = no color detected, 1 = color detected.  
(6) Reserved bits: 229 with 50 Hz systems, 226 with 60 Hz systems.  
Fig 22. RTCI timing  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
45 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
10.2 Teletext timing  
Time tFD is the time needed to interpolate input data TTX and insert it into the CVBS and  
VBS output signal, such that it appears at tTTX = 9.78 µs (PAL) or tTTX = 10.5 µs (NTSC)  
after the leading edge of the horizontal synchronization pulse.  
Time tPD is the pipeline delay time introduced by the source that is gated by TTXRQ in  
order to deliver TTX data. This delay is programmable by register TTXHD. For every active  
HIGH state at output pin TTXRQ, a new teletext bit must be provided by the source (new  
protocol) or a window of TTXRQ going HIGH is provided and the number of teletext bits,  
depending on the chosen teletext standard, is requested at input pin TTX (old protocol).  
Since the beginning of the pulses representing the TTXRQ signal and the delay between  
the rising edge of TTXRQ and valid teletext input data are fully programmable (TTXHS  
and TTXHD), the TTX data is always inserted at the correct position after the leading edge  
of outgoing horizontal synchronization pulse.  
Time ti(TTXW) is the internally used insertion window for TTX data; it has a constant length  
that allows insertion of 360 teletext bits at a text data rate of 6.9375 Mbit/s (PAL),  
296 teletext bits at a text data rate of 5.7272 Mbit/s (WST) or 288 teletext bits at a text  
data rate of 5.7272 Mbit/s (NABTS). The insertion window is not opened if the control bit  
TTXEN is logic 0.  
Using appropriate programming, all suitable lines of the odd field (TTXOVS and TTXOVE)  
plus all suitable lines of the even field (TTXEVS and TTXEVE) can be used for teletext  
insertion.  
CVBS/Y  
t
t
TTX  
i(TTXW)  
text bit #:  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
TTX  
t
t
FD  
PD  
TTXRQ (new)  
TTXRQ (old)  
mhb504  
Fig 23. Teletext timing  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
46 of 55  
 
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
DGND  
+3.3 V digital  
0.1 µF  
+3.3 V analog  
0.1 µF  
0.1 µF  
10 µH  
10 pF  
10 pF  
DGND  
use one capacitor  
for each V  
AGND  
use one capacitor  
for each V  
27.0 MHz  
1 nF  
DDD  
DDA  
AGND  
X1  
3rd harmonic  
V
to V  
V
V
to V  
DDA3  
DDD1  
DDD3  
DDA1  
XTALI  
XTALO  
34  
DDA4  
35  
36  
25, 28, 31  
6, 17, 39  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
2 Ω  
2 Ω  
2 Ω  
2 Ω  
2 Ω  
2 Ω  
4.7 Ω  
10 Ω  
10 Ω  
23 Ω  
23 Ω  
23 Ω  
DAC1  
30  
27  
24  
23  
26  
29  
CVBS  
VBS  
U
CVBS  
1.23 V (p-p)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
75 Ω  
AGND  
DAC2  
DAC3  
DAC4  
DAC5  
DAC6  
U
VBS  
1.00 V (p-p)  
75 Ω  
AGND  
C
U
C
75 Ω  
digital  
inputs and  
outputs  
0.89 V (p-p)  
SAA7128H  
SAA7129H  
AGND  
RED  
GREEN  
BLUE  
U
R
75 Ω  
0.70 V (p-p)  
AGND  
U
G
75 Ω  
0.70 V (p-p)  
AGND  
U
B
75 Ω  
0.70 V (p-p)  
5, 18, 38  
22, 32, 33  
to V  
SSA3  
AGND  
mhb583  
V
to V  
V
SSA1  
SSD1  
SSD3  
AGND  
DGND  
(1) Typical value.  
(2) For 100  
100 color bar.  
Fig 24. Application circuit  
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
11.1 Analog output voltages  
The analog output voltages are dependent on the open-loop voltage of the operational  
amplifiers for full-scale conversion (typical value 1.35 V), the internal series resistor  
(typical value 2 ), the external series resistor and the external load impedance.  
The digital output signals in front of the DACs under nominal conditions occupy different  
conversion ranges, as indicated in Table 82 for a 100  
100 color bar signal.  
Values for the external series resistors result in a 75 load.  
Table 82: Digital output signals conversion range Ordering information  
Conversion range (peak-to-peak)  
CVBS sync-tip to peak-carrier Y (VBS) sync-tip to white  
RGB (Y) black to white at  
(digits)  
(digits)  
GDY = GDC = 6 (digits)  
1016  
881  
712  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
48 of 55  
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
12. Package outline  
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm  
SOT307-2  
y
X
A
33  
23  
34  
22  
Z
E
e
H
E
E
A
2
A
(A )  
3
A
1
w M  
θ
b
p
L
p
pin 1 index  
L
12  
44  
detail X  
1
11  
w M  
Z
v
M
A
D
b
p
e
D
B
H
v
M
B
D
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
E
p
D
E
max.  
10o  
0o  
0.25 1.85  
0.05 1.65  
0.4 0.25 10.1 10.1  
0.2 0.14 9.9 9.9  
12.9 12.9  
12.3 12.3  
0.95  
0.55  
1.2  
0.8  
1.2  
0.8  
mm  
2.1  
0.25  
0.8  
1.3  
0.15 0.15  
0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
97-08-01  
03-02-25  
SOT307-2  
Fig 25. Package outline SOT307-2 (QFP44)  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
49 of 55  
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
13. Soldering  
13.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
13.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
13.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
50 of 55  
 
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
13.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
13.5 Package related soldering information  
Table 83: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
51 of 55  
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
52 of 55  
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
14. Revision history  
Table 84: Revision history  
Document ID  
Release  
date  
Data sheet status  
Change  
notice  
Doc. number  
Supersedes  
SAA7128H_SAA7129H_3 20041209  
Product data sheet  
-
9397 750 14325 SAA7128H_7129H_2  
Modifications:  
Added Table 79 “Limiting values”  
Updated Table 80 “Thermal characteristics”  
Changed the type number of some referenced ICs.  
SAA7128H_7129H_2  
SAA7128H_7129H_1  
20021015  
Product specification  
-
9397 750 09727 SAA7128H_7129H_1  
000308  
Product specification  
-
9397 750 06127  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
53 of 55  
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
15. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
responsibility or liability for the use of any of these products, conveys no  
16. Definitions  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
18. Licenses  
Purchase of Philips I2C-bus components  
Purchase of Philips I2C-bus components conveys a  
license under the Philips’ I2C-bus patent to use the  
components in the I2C-bus system provided the system  
conforms to the I2C-bus specification defined by  
Koninklijke Philips Electronics N.V. This specification  
can be ordered using the code 9398 393 40011.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
19. Patents  
17. Disclaimers  
Notice is herewith given that the subject device uses one or more of the  
following patents and that each of these patents may have corresponding  
patents in other jurisdictions.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
US 4631603 — owned by Macrovision Corporation  
US 4577216 — owned by Macrovision Corporation  
US 4819098 — owned by Macrovision Corporation  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
20. Trademarks  
Macrovision — is a registered trademark of Macrovision Corporation  
21. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14325  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 03 — 9 December 2004  
54 of 55  
 
 
 
 
 
 
 
SAA7128H; SAA7129H  
Philips Semiconductors  
Digital video encoder  
22. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
13.2  
13.3  
13.4  
13.5  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 50  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 50  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 51  
Package related soldering information. . . . . . 51  
14  
15  
16  
17  
18  
19  
20  
21  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 53  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 54  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Licenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Contact information . . . . . . . . . . . . . . . . . . . . 54  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Versatile fader. . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Configuration examples . . . . . . . . . . . . . . . . . . 7  
Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Configuration 2 . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Configuration 3 . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Configuration 4 . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Parameters of the fader . . . . . . . . . . . . . . . . . . 9  
Data manager. . . . . . . . . . . . . . . . . . . . . . . . . 10  
Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Video path. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Teletext insertion and encoding . . . . . . . . . . . 10  
Video Programming System (VPS) encoding. 11  
Closed caption encoder . . . . . . . . . . . . . . . . . 11  
Anti-taping (SAA7128H only) . . . . . . . . . . . . . 11  
RGB processor . . . . . . . . . . . . . . . . . . . . . . . . 11  
SECAM processor . . . . . . . . . . . . . . . . . . . . . 11  
Output interface/DACs . . . . . . . . . . . . . . . . . . 12  
Synchronization . . . . . . . . . . . . . . . . . . . . . . . 12  
Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
I2C-bus interface. . . . . . . . . . . . . . . . . . . . . . . 13  
Input levels and formats . . . . . . . . . . . . . . . . . 14  
Bit allocation map . . . . . . . . . . . . . . . . . . . . . . 15  
I2C-bus format. . . . . . . . . . . . . . . . . . . . . . . . . 18  
Slave receiver . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Slave transmitter. . . . . . . . . . . . . . . . . . . . . . . 35  
7.1.1  
7.1.1.1  
7.1.1.2  
7.1.1.3  
7.1.1.4  
7.1.2  
7.2  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
8
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 41  
Thermal characteristics. . . . . . . . . . . . . . . . . . 41  
10  
10.1  
10.2  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 42  
Explanation of RTCI data bits. . . . . . . . . . . . . 44  
Teletext timing. . . . . . . . . . . . . . . . . . . . . . . . . 46  
11  
11.1  
12  
Application information. . . . . . . . . . . . . . . . . . 47  
Analog output voltages . . . . . . . . . . . . . . . . . . 48  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 49  
13  
13.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
© Koninklijke Philips Electronics N.V. 2004  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 9 December 2004  
Document number: 9397 750 14325  
Published in The Netherlands  

相关型号:

NXP

SAA7129HB-S

IC COLOR SIGNAL ENCODER, PQFP44, PLASTIC, SOT-307, QFP-44, Color Signal Converter
NXP

SAA7130

PCI video broadcast decoder
NXP

SAA7130HL

PCI video broadcast decoder
NXP

SAA7130HL/V1,518

IC SPECIALTY CONSUMER CIRCUIT, PQFP128, 14 X 20 MM, 1.4 MM HEIGHT, MS-026, SOT-425-1, LQFP-128, Consumer IC:Other
NXP

SAA7130HL/V1,557

IC SPECIALTY CONSUMER CIRCUIT, PQFP128, 14 X 20 MM, 1.4 MM HEIGHT, MS-026, SOT-425-1, LQFP-128, Consumer IC:Other
NXP

SAA7130HLBE

IC SPECIALTY CONSUMER CIRCUIT, PQFP128, 14 X 20 MM, 1.4 MM HEIGHT, MS-026, SOT-425-1, LQFP-128, Consumer IC:Other
NXP

SAA7131

FULL MPEG1 VIDEO AND AUDIO DECODER (FMPEG)
NXP

SAA7131A

FULL MPEG1 VIDEO AND AUDIO DECODER (FMPEG)
NXP

SAA7131AGP

IC SPECIALTY CONSUMER CIRCUIT, PQFP160, 28 X 28 MM, 3.40 MM HEIGHT, PLASTIC, MO-112DD1, SOT-322-1, QFP-160, Consumer IC:Other
NXP

SAA7131E

Global standard low-IF demodulator and PCI audio and video decoder for analog TV
NXP

SAA7131E/V203/G

IC,TV/VIDEO CIRCUIT,AUDIO/VIDEO DECODER FOR MPEG,BGA,256PIN,PLASTIC
NXP