SSTUA32866EC [NXP]

1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-667 RDIMM applications; 1.8伏25位1:1或14位1:2配置的登记奇偶缓冲DDR2-667 RDIMM的应用
SSTUA32866EC
型号: SSTUA32866EC
厂家: NXP    NXP
描述:

1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-667 RDIMM applications
1.8伏25位1:1或14位1:2配置的登记奇偶缓冲DDR2-667 RDIMM的应用

触发器 锁存器 逻辑集成电路 双倍数据速率
文件: 总27页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SSTUA32866  
1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer  
with parity for DDR2-667 RDIMM applications  
Rev. 01 — 15 July 2005  
Product data sheet  
1. General description  
The SSTUA32866 is a 1.8 V configurable register specifically designed for use on DDR2  
memory modules requiring a parity checking function. It is defined in accordance with the  
JEDEC standard for the SSTUA32866 registered buffer. The register is configurable  
(using configuration pins C0 and C1) to two topologies: 25-bit 1 : 1 or 14-bit 1 : 2, and in  
the latter configuration can be designated as Register A or Register B on the DIMM.  
The SSTUA32866 accepts a parity bit from the memory controller on its parity bit  
(PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs  
and indicates whether a parity error has occurred on its open-drain QERR pin  
(active LOW). The convention is even parity, that is, valid parity is defined as an even  
number of ones across the DIMM-independent data inputs combined with the parity input  
bit.  
The SSTUA32866 is packaged in a 96-ball, 6 × 16 grid, 0.8 mm ball pitch LFBGA package  
(13.5 mm × 5.5 mm).  
2. Features  
Configurable register supporting DDR2 up to 667 MT/s Registered DIMM applications  
Configurable to 25-bit 1 : 1 mode or 14-bit 1 : 2 mode  
Controlled output impedance drivers enable optimal signal integrity and speed  
Exceeds JESD82-7 speed performance (1.8 ns max. single-bit switching propagation  
delay; 2.0 ns max. mass-switching)  
Supports up to 450 MHz clock frequency of operation  
Optimized pinout for high-density DDR2 module design  
Chip-selects minimize power consumption by gating data outputs from changing state  
Supports SSTL_18 data inputs  
Checks parity on the DIMM-independent data inputs  
Partial parity output and input allows cascading of two SSTUA32866s for correct parity  
error processing  
Differential clock (CK and CK) inputs  
Supports LVCMOS switching levels on the control and RESET inputs  
Single 1.8 V supply operation (1.7 V to 2.0 V)  
Available in 96-ball, 13.5 × 5.5 mm, 0.8 mm ball pitch LFBGA package  
3. Applications  
400 MT/s to 667 MT/s DDR2 registered DIMMs desiring parity checking functionality  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
4. Ordering information  
Table 1:  
Ordering information  
Tamb = 0 °C to +70 °C.  
Type number  
Solder process  
Package  
Name  
SSTUA32866EC/G Pb-free (SnAgCu solder LFBGA96 plastic low profile fine-pitch ball grid array package; SOT536-1  
Description  
Version  
ball compound)  
96 balls; body 13.5 × 5.5 × 1.05 mm  
SSTUA32866EC  
SnPb solder ball  
compound  
LFBGA96 plastic low profile fine-pitch ball grid array package; SOT536-1  
96 balls; body 13.5 × 5.5 × 1.05 mm  
5. Functional diagram  
RESET  
CK  
CK  
SSTUA32866  
VREF  
DCKE  
1D  
C1  
QCKEA  
QCKEB  
(1)  
(1)  
R
DODT  
DCS  
CSR  
D2  
1D  
QODTA  
QODTB  
C1  
R
1D  
QCSA  
C1  
(1)  
QCSB  
R
0
1
1D  
Q2A  
C1  
(1)  
Q2B  
R
002aab388  
to 10 other channels  
(D3, D5, D6, D8 to D14)  
(1) Disabled in 1 : 1 configuration.  
Fig 1. Functional diagram of SSTUA32866; 1 : 2 Register A configuration with C0 = 0 and  
C1 = 1 (positive logic)  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
2 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
RESET  
CK  
CK  
LPS0  
(internal node)  
Q2A, Q3A,  
Q5A, Q6A,  
Q8A to Q14A  
D2, D3, D5, D6,  
11  
CE  
D
D8 to D14  
VREF  
11  
D2, D3, D5, D6,  
D8 to D14  
11  
CLK  
R
11  
Q2B, Q3B,  
Q5B, Q6B,  
Q8B to Q14B  
D2, D3, D5, D6,  
D8 to D14  
11  
PARITY  
CHECK  
C1  
1
0
0
1
PPO  
D
D
D
CLK  
R
CLK  
R
CLK  
R
CE  
PAR_IN  
QERR  
C0  
CLK  
2-BIT  
COUNTER  
R
0
1
LPS1  
(internal node)  
D
CLK  
R
002aaa650  
Fig 2. Parity logic diagram for 1 : 2 Register A configuration (positive logic); C0 = 0, C1 = 1  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
3 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
6. Pinning information  
6.1 Pinning  
SSTUA32866EC/G  
ball A1  
SSTUA32866EC  
index area  
1 2 3 4 5 6  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
002aab389  
Transparent top view  
Fig 3. Pin configuration for LFBGA96  
1
DCKE  
D2  
2
3
4
5
QCKE  
Q2  
6
A
B
C
D
E
F
PPO  
D15  
D16  
QERR  
D17  
D18  
VREF  
GND  
V
DNU  
Q15  
Q16  
DNU  
Q17  
Q18  
C0  
DD  
GND  
D3  
V
V
Q3  
DD  
DD  
DODT  
D5  
GND  
GND  
QODT  
Q5  
V
V
DD  
DD  
D6  
GND  
GND  
Q6  
G
H
J
PAR_IN RESET  
V
V
C1  
DD  
DD  
CK  
CK  
DCS  
CSR  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
GND  
GND  
QCS  
n.c.  
Q8  
DNU  
n.c.  
V
V
DD  
DD  
K
L
D8  
GND  
GND  
Q19  
Q20  
Q21  
Q22  
Q23  
Q24  
D9  
V
V
Q9  
DD  
DD  
M
N
P
R
T
D10  
D11  
D12  
D13  
D14  
GND  
GND  
Q10  
Q11  
Q12  
Q13  
Q14  
V
V
DD  
DD  
GND  
GND  
V
V
V
DD  
DD  
DD  
VREF  
Q25  
002aab108  
Fig 4. Ball mapping, 1 : 1 register (C0 = 0, C1 = 0)  
Rev. 01 — 15 July 2005  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
4 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
1
DCKE  
D2  
2
3
4
5
6
A
B
C
D
E
F
PPO  
DNU  
DNU  
QERR  
n.c.  
VREF  
GND  
V
QCKEA QCKEB  
DD  
GND  
Q2A  
Q3A  
Q2B  
Q3B  
D3  
V
V
DD  
DD  
DODT  
D5  
GND  
GND  
QODTA QODTB  
V
V
Q5A  
Q6A  
Q5B  
Q6B  
DD  
DD  
D6  
n.c.  
GND  
GND  
G
H
J
PAR_IN RESET  
V
V
C1  
C0  
DD  
DD  
CK  
CK  
DCS  
CSR  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
GND  
GND  
QCSA  
n.c.  
QCSB  
n.c.  
V
V
DD  
DD  
K
L
D8  
GND  
GND  
Q8A  
Q8B  
D9  
V
V
Q9A  
Q9B  
DD  
DD  
M
N
P
R
T
D10  
D11  
D12  
D13  
D14  
GND  
GND  
Q10A  
Q11A  
Q12A  
Q13A  
Q14A  
Q10B  
Q11B  
Q12B  
Q13B  
V
V
DD  
DD  
GND  
GND  
V
V
V
DD  
DD  
DD  
VREF  
Q14B  
002aab109  
Fig 5. Ball mapping, 1 : 2 Register A (C0 = 0, C1 = 1)  
1
2
3
4
5
6
A
B
C
D
E
F
D1  
D2  
D3  
D4  
D5  
D6  
PPO  
DNU  
DNU  
QERR  
DNU  
DNU  
VREF  
GND  
V
Q1A  
Q2A  
Q3A  
Q4A  
Q5A  
Q6A  
C1  
Q1B  
Q2B  
Q3B  
Q4B  
Q5B  
Q6B  
C0  
DD  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
G
H
J
PAR_IN RESET  
V
V
DD  
DD  
CK  
CK  
DCS  
CSR  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
GND  
GND  
QCSA  
n.c.  
QCSB  
n.c.  
V
V
DD  
DD  
K
L
D8  
GND  
GND  
Q8A  
Q9A  
Q10A  
Q8B  
Q9B  
Q10B  
D9  
V
V
DD  
DD  
M
N
P
R
T
D10  
DODT  
D12  
D13  
DCKE  
GND  
GND  
V
V
QODTA QODTB  
DD  
DD  
GND  
GND  
Q12A  
Q13A  
Q12B  
Q13B  
V
V
V
DD  
DD  
DD  
VREF  
QCKEA QCKEB  
002aab110  
Fig 6. Ball mapping, 1 : 2 Register B (C0 = 1, C1 = 1)  
Rev. 01 — 15 July 2005  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
5 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
6.2 Pin description  
Table 2:  
Symbol  
GND  
Pin description  
Pin  
Type  
Description  
B3, B4, D3, D4, ground input  
F3, F4, H3, H4,  
ground  
K3, K4, M3, M4,  
P3, P4  
VDD  
A4, C3, C4, E3, 1.8 V nominal  
E4, G3, G4, J3,  
J4, L3, L4, N3,  
power supply voltage  
input reference voltage  
N4, R3, R4, T4  
VREF  
CK  
A3, T3  
H1  
0.9 V nominal  
Differential input positive master clock input  
Differential input negative master clock input  
CK  
J1  
C0  
G6  
LVCMOS inputs Configuration control inputs; Register A  
or Register B and 1 : 1 mode or  
C1  
G5  
1 : 2 mode select.  
RESET  
G2  
LVCMOS input  
SSTL_18 input  
SSTL_18 input  
Asynchronous reset input (active LOW).  
Resets registers and disables VREF data  
and clock.  
CSR  
DCS  
J2  
Chip select inputs (active LOW). Disables  
D1 to D25[2] outputs switching when both  
inputs are HIGH.  
H2  
[1]  
D1 to D25  
Data input. Clocked in on the crossing of  
the rising edge of CK and the falling edge  
of CK.  
[1]  
[1]  
DODT  
DCKE  
PAR_IN  
SSTL_18 input  
SSTL_18 input  
SSTL_18 input  
The outputs of this register bit will not be  
suspended by the DCS and CSR control.  
The outputs of this register bit will not be  
suspended by the DCS and CSR control.  
G1  
Parity input. Arrives one clock cycle after  
the corresponding data input.  
[1]  
Q1 to Q25,  
Q2A to Q14A,  
Q1B to Q14B  
1.8 V CMOS  
outputs  
Data outputs that are suspended by the  
DCS and CSR control[3]  
.
PPO  
A2  
1.8 V CMOS  
output  
Partial parity out. Indicates odd parity of  
inputs D1 to D25[2]  
.
[1]  
QCS, QCSA,  
QCSB  
1.8 V CMOS  
output  
Data output that will not be suspended by  
the DCS and CSR control.  
[1]  
[1]  
QODT, QODTA,  
QODTB  
1.8 V CMOS  
output  
Data output that will not be suspended by  
the DCS and CSR control.  
QCKE, QCKEA,  
QCKEB  
1.8 V CMOS  
output  
Data output that will not be suspended by  
the DCS and CSR control.  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
6 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
Table 2:  
Symbol  
QERR  
Pin description …continued  
Pin  
Type  
Description  
D2  
open-drain  
output  
Output error bit (active LOW). Generated  
one clock cycle after the corresponding  
data output  
[1]  
[1]  
n.c.  
-
-
Not connected. Ball present but no  
internal connection to the die.  
DNU  
Do not use. Inputs are in  
standby-equivalent mode and outputs  
are driven LOW.  
[1] Depends on configuration. See Figure 4, Figure 5, and Figure 6 for ball number.  
[2] Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.  
Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.  
Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.  
[3] Data outputs = Q2, Q3, Q5, Q6, Q8 to Q25 when C0 = 0 and C1 = 0.  
Data outputs = Q2, Q3, Q5, Q6, Q8 to Q14 when C0 = 0 and C1 = 1.  
Data outputs = Q1 to Q6, Q8 to Q10, Q12, Q13 when C0 = 1 and C1 = 1.  
7. Functional description  
The SSTUA32866 is a 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity,  
designed for 1.7 V to 2.0 V VDD operation.  
All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The  
control and reset (RESET) inputs are LVCMOS. All data outputs are 1.8 V CMOS drivers  
that have been optimized to drive the DDR2 DIMM load, and meet SSTL_18  
specifications. The error (QERR) output is 1.8 V open-drain driver.  
The SSTUA32866 operates from a differential clock (CK and CK). Data are registered at  
the crossing of CK going HIGH, and CK going LOW.  
The C0 input controls the pinout configuration for the 1 : 2 pinout from A configuration  
(when LOW) to B configuration (when HIGH). The C1 input controls the pinout  
configuration from 25-bit 1 : 1 (when LOW) to 14-bit 1 : 2 (when HIGH).  
The SSTUA32866 accepts a parity bit from the memory controller on its parity bit  
(PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs  
and indicates whether a parity error has occurred on its open-drain QERR pin  
(active LOW). The convention is even parity, that is, valid parity is defined as an even  
number of ones across the DIMM-independent data inputs combined with the parity input  
bit.  
When used as a single device, the C0 and C1 inputs are tied LOW. In this configuration,  
parity is checked on the PAR_IN input which arrives one cycle after the input data to which  
it applies. The Partial-Parity-Out (PPO) and QERR signals are produced three cycles after  
the corresponding data inputs.  
When used in pairs, the C0 input of the first register is tied LOW and the C0 input of the  
second register is tied HIGH. The C1 input of both registers are tied HIGH. Parity, which  
arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of  
the first device. The PPO and QERR signals are produced on the second device three  
clock cycles after the corresponding data inputs. The PPO output of the first register is  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
7 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
cascaded to the PAR_IN of the second register. The QERR output of the first register is  
left floating and the valid error information is latched on the QERR output of the second  
register.  
If an error occurs and the QERR output is driven LOW, it stays latched LOW for two clock  
cycles or until RESET is driven LOW. The DIMM-dependent signals (DCKE, DCS, DODT,  
and CSR) are not included in the parity check computation.  
The device supports low-power standby operation. When RESET is LOW, the differential  
input receivers are disabled, and undriven (floating) data, clock and reference voltage  
(VREF) inputs are allowed. In addition, when RESET is LOW all registers are reset, and  
all outputs are forced LOW. The LVCMOS RESET input must always be held at a valid  
logic HIGH or LOW level.  
The device also supports low-power active operation by monitoring both system chip  
select (DCS and CSR) inputs and will gate the Qn and PPO outputs from changing states  
when both DCS and CSR inputs are HIGH. If either DCS or CSR input is LOW, the Qn  
and PPO outputs will function normally. The RESET input has priority over the DCS and  
CSR control and when driven LOW will force the Qn and PPO outputs LOW, and the  
QERR output HIGH. If the DCS control functionality is not desired, then the CSR input can  
be hard-wired to ground, in which case, the setup time requirement for DCS would be the  
same as for the other Dn data inputs. To control the low-power mode with DCS only, then  
the CSR input should be pulled up to VDD through a pull-up resistor.  
To ensure defined outputs from the register before a stable clock has been supplied,  
RESET must be held in the LOW state during power-up.  
In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with  
respect to CK and CK. Therefore, no timing relationship can be guaranteed between the  
two. When entering reset, the register will be cleared and the Qn outputs will be driven  
LOW quickly, relative to the time to disable the differential input receivers. However, when  
coming out of reset, the register will become active quickly, relative to the time to enable  
the differential input receivers. As long as the data inputs are LOW, and the clock is stable  
during the time from the LOW-to-HIGH transition of RESET until the input receivers are  
fully enabled, the design of the SSTUA32866 must ensure that the outputs will remain  
LOW, thus ensuring no glitches on the output.  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
8 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
7.1 Function table  
Table 3:  
Function table (each flip-flop)  
L = LOW voltage level; H = HIGH voltage level; X = don’t care; = LOW-to-HIGH transition; = HIGH-to-LOW transition  
Inputs  
Outputs[1]  
QCS  
RESET  
DCS  
CSR  
CK  
CK  
Dn, DODTn,  
DCKEn  
Qn  
QODT,  
QCKE  
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
H
X
L
L
H
L
L
L
H
L
L
L or H  
L or H  
Q0  
L
Q0  
L
Q0  
L
L
H
H
H
L
L
H
X
L
H
L
H
L
L or H  
L or H  
Q0  
L
Q0  
H
Q0  
L
H
H
H
H
H
H
L
L or H  
L or H  
H
X
L
H
H
H
L
Q0  
Q0  
Q0  
Q0  
L
Q0  
H
Q0  
L
H
H
H
H
X
H
H
L or H  
L or H  
Q0  
L
Q0  
L
X or floating X or floating X or floating X or floating X or floating  
[1] Q0 is the previous state of the associated output.  
Table 4:  
Parity and standby function table  
L = LOW voltage level; H = HIGH voltage level; X = don’t care; = LOW-to-HIGH transition; = HIGH-to-LOW transition  
Inputs  
Outputs[1]  
CK  
RESET  
DCS  
CSR  
CK  
of inputs = H PAR_IN[2]  
PPO [3]  
QERR  
(D1 to D25)  
H
H
H
H
H
H
H
H
H
H
L
L
L
X
X
X
X
L
even  
odd  
L
L
H
L
H
L
L
even  
odd  
H
H
L
L
H
L
H
H
H
H
H
H
X
even  
odd  
L
L
H
H
L
L
L
L
even  
odd  
H
H
L
H
L
H
L
H
X
X
X
X
PPO0  
PPO0  
L
QERR0  
QERR0  
H
L or H  
L or H  
X
X or floating X or floating X or floating X or floating  
X or floating  
X or floating  
[1] PPO0 is the previous state of output PPO; QERR0 is the previous state of output QERR.  
[2] Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.  
Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.  
Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.  
[3] PAR_IN arrives one clock cycle (C0 = 0), or two clock cycles (C0 = 1), after the data to which it applies.  
[4] This condition assumes QERR is HIGH at the crossing of CK going HIGH and CK going LOW. If QERR is LOW, it stays latched LOW for  
two clock cycles or until RESET is driven LOW.  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
9 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
8. Limiting values  
Table 5:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
VI  
Parameter  
Conditions  
Min  
Max  
Unit  
V
supply voltage  
0.5  
0.5[1]  
0.5[1]  
+2.5  
receiver input voltage  
driver output voltage  
input clamp current  
output clamp current  
continuous output current  
+2.5[2]  
VDD + 0.5 [2]  
50  
V
VO  
V
IIK  
VI < 0 V or VI > VDD  
VO < 0 V or VO > VDD  
0 V < VO < VDD  
-
-
-
-
mA  
mA  
mA  
mA  
IOK  
±50  
IO  
±50  
ICCC  
continuous current through  
each VDD or GND pin  
±100  
Tstg  
storage temperature  
65  
+150  
-
°C  
Vesd  
electrostatic discharge  
voltage  
Human Body Model (HBM); 1.5 k;  
100 pF  
2
kV  
Machine Model (MM); 0 ; 200 pF  
200  
-
V
[1] The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
[2] This value is limited to 2.5 V maximum.  
9. Recommended operating conditions  
Table 6:  
Recommended operating conditions  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD  
Vref  
supply voltage  
1.7  
-
2.0  
V
V
V
V
V
reference voltage  
termination voltage  
input voltage  
0.49 × VDD  
0.50 × VDD  
0.51 × VDD  
VTT  
VI  
V
0
ref 0.040  
Vref  
Vref + 0.040  
-
-
VDD  
-
VIH(AC)  
AC HIGH-level input voltage  
data (Dn), CSR,  
and PAR_IN  
inputs  
Vref + 0.250  
VIL(AC)  
VIH(DC)  
VIL(DC)  
AC LOW-level input voltage  
DC HIGH-level input voltage  
DC LOW-level input voltage  
data (Dn), CSR,  
and PAR_IN  
inputs  
-
-
-
-
V
-
ref 0.250  
V
V
V
data (Dn), CSR,  
and PAR_IN  
inputs  
Vref + 0.125  
data (Dn), CSR,  
and PAR_IN  
inputs  
-
V
ref 0.125  
[1]  
[1]  
[2]  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
RESET, Cn  
RESET, Cn  
CK, CK  
0.65 × VDD  
-
-
-
-
V
V
V
-
0.35 × VDD  
VICR  
common mode input voltage  
range  
0.675  
1.125  
[2]  
VID  
differential input voltage  
CK, CK  
600  
-
-
mV  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
10 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
Table 6:  
Recommended operating conditions …continued  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
8  
Unit  
mA  
mA  
°C  
IOH  
HIGH-level output current  
-
-
-
-
IOL  
LOW-level output current  
ambient temperature  
-
8
Tamb  
operating in  
free air  
0
+70  
[1] The RESET and Cn inputs of the device must be held at valid levels (not floating) to ensure proper device operation.  
[2] The differential inputs must not be floating, unless RESET is LOW.  
10. Characteristics  
Table 7:  
Characteristics  
At recommended operating conditions (see Table 6); unless otherwise specified.  
Symbol  
VOH  
VOL  
Parameter  
Conditions  
Min  
Typ  
Max  
-
Unit  
V
HIGH-level output voltage  
LOW-level output voltage  
input current  
IOH = 6 mA; VDD = 1.7 V  
IOL = 6 mA; VDD = 1.7 V  
all inputs; VI = VDD or GND;  
1.2  
-
-
-
-
-
0.5  
±5  
V
II  
µA  
V
DD = 2.0 V  
RESET = GND; IO = 0 mA;  
DD = 2.0 V  
RESET = VDD; IO = 0 mA;  
DD = 2.0 V; VI = VIH(AC) or VIL(AC)  
dynamic operating current per MHz, RESET = VDD  
IDD  
static standby current  
static operating current  
-
-
-
-
100  
40  
-
µA  
mA  
µA  
V
-
V
IDDD  
;
16  
clock only  
VI = VIH(AC) or VIL(AC); CK and CK  
switching at 50 % duty cycle.  
IO = 0 mA; VDD = 1.8 V  
dynamic operating current per MHz, RESET = VDD  
;
-
-
11  
19  
-
-
µA  
µA  
per each data input, 1 : 1 mode  
VI = VIH(AC) or VIL(AC); CK and CK  
switching at 50 % duty cycle. One  
data input switching at half clock  
frequency, 50 % duty cycle.  
IO = 0 mA; VDD = 1.8 V  
dynamic operating current per MHz, RESET = VDD  
;
per each data input, 1 : 2 mode  
VI = VIH(AC) or VIL(AC); CK and CK  
switching at 50 % duty cycle. One  
data input switching at half clock  
frequency, 50 % duty cycle.  
IO = 0 mA; VDD = 1.8 V  
Ci  
input capacitance, data and CSR  
inputs  
VI = Vref ± 250 mV; VDD = 1.8 V  
2.5  
2
-
-
-
3.5  
3
pF  
pF  
pF  
input capacitance,  
CK and CK inputs  
VICR = 0.9 V; Vi(p-p) = 600 mV;  
VDD = 1.8 V  
input capacitance, RESET input  
VI = VDD or GND; VDD = 1.8 V  
3
4
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
11 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
Table 8:  
Timing requirements  
At recommended operating conditions (see Table 6), unless otherwise specified. See Figure 2.  
Symbol Parameter  
fclock clock frequency  
tW  
Conditions  
Min  
Typ  
Max  
450  
-
Unit  
MHz  
ns  
-
-
-
pulse duration, CK, CK HIGH  
or LOW  
1
[1] [2]  
[1] [3]  
tACT  
tINACT  
tsu  
differential inputs active time  
differential inputs inactive time  
setup time  
-
-
-
-
10  
15  
-
ns  
ns  
ns  
-
DCS before CK, CK, CSR HIGH; CSR  
before CK, CK, DCS HIGH  
0.7  
DCS before CK, CK, CSR LOW  
0.5  
0.5  
-
-
-
-
ns  
ns  
DODT, DCKE and data (Dn) before CK,  
CK↓  
PAR_IN before CK, CK↓  
0.5  
0.5  
-
-
-
-
ns  
ns  
th  
hold time  
DCS, DODT, DCKE and data (Dn) after  
CK, CK↓  
PAR_IN after CK, CK↓  
0.5  
-
-
ns  
[1] This parameter is not necessarily production tested.  
[2] VREF must be held at a valid input voltage level and data inputs must be held LOW for a minimum time of tACT(max) after RESET is taken  
HIGH.  
[3] VREF, data and clock inputs must be held at valid levels (not floating) a minimum time of tINACT(max) after RESET is taken LOW.  
Table 9:  
Switching characteristics  
At recommended operating conditions (see Table 6), unless otherwise specified. See Section 11.1.  
Symbol Parameter  
Conditions  
Min  
450  
1.2  
0.5  
1.2  
1
Typ  
Max  
-
Unit  
MHz  
ns  
fMAX  
tPDM  
tPD  
maximum input clock frequency  
-
-
-
-
-
-
[1]  
propagation delay, single bit switching from CKand CKto Qn  
1.8  
1.8  
3
propagation delay  
from CKand CKto PPO  
from CKand CKto QERR  
from CKand CKto QERR  
from CKand CKto Qn  
ns  
tLH  
LOW-to-HIGH propagation delay  
HIGH-to-LOW propagation delay  
ns  
tHL  
2.4  
2.0  
ns  
[1] [2]  
tPDMSS  
propagation delay,  
-
ns  
simultaneous switching  
tPHL  
HIGH-to-LOW propagation delay  
LOW-to-HIGH propagation delay  
from RESETto Qn↓  
from RESETto PPO↓  
from RESETto QERR↑  
-
-
-
-
-
-
3
3
3
ns  
ns  
ns  
tPLH  
[1] Includes 350 ps of test-load transmission line delay.  
[2] This parameter is not necessarily production tested.  
Table 10: Data output edge rates  
At recommended operating conditions (see Table 6), unless otherwise specified. See Section 11.2.  
Symbol  
dV/dt_r  
dV/dt_f  
dV/dt_∆  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
rising edge slew rate  
falling edge slew rate  
from 20 % to 80 %  
from 80 % to 20 %  
1
1
-
-
-
-
4
4
1
V/ns  
V/ns  
V/ns  
absolute difference between dV/dt_r from 20 % or 80 %  
and dV/dt_f  
to 80 % or 20 %  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
12 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
10.1 Timing diagrams  
RESET  
DCS  
CSR  
CK  
m
m + 1  
m + 2  
m + 3  
m + 4  
CK  
t
t
h
su  
D1  
to  
D25  
t
PD  
CK to Q  
Q1  
to  
Q25  
t
t
h
su  
PAR_IN  
PPO  
t
PD  
CK to PPO  
t
t
PD  
PD  
CK to QERR  
CK to QERR  
QERR  
002aaa655  
Fig 7. Timing diagram for SSTUA32866 used as a single device; C0 = 0, C1 = 0  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
13 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
RESET  
DCS  
CSR  
CK  
m
m + 1  
m + 2  
m + 3  
m + 4  
CK  
t
t
h
su  
D1  
to  
D14  
t
PD  
CK to Q  
Q1  
to  
Q14  
t
t
h
su  
PAR_IN  
PPO  
t
PD  
CK to PPO  
t
t
PD  
PD  
CK to QERR  
CK to QERR  
QERR  
(not used)  
002aaa656  
Fig 8. Timing diagram for the first SSTUA32866 (1 : 2 Register A configuration) device used in pair; C0 = 0,  
C1 = 1  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
14 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
RESET  
DCS  
CSR  
CK  
m
m + 1  
m + 2  
m + 3  
m + 4  
CK  
t
t
h
su  
D1  
to  
D14  
t
PD  
CK to Q  
Q1  
to  
Q14  
t
t
h
su  
(1)  
PAR_IN  
t
PD  
CK to PPO  
PPO  
(not used)  
t
t
PD  
PD  
CK to QERR  
CK to QERR  
QERR  
002aaa657  
(1) PAR_IN is driven from PPO of the first SSTUA32866 device.  
Fig 9. Timing diagram for the second SSTUA32866 (1 : 2 Register B configuration) device used in pair;  
C0 = 1, C1 = 1  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
15 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
11. Test information  
11.1 Parameter measurement information for data output load circuit  
VDD = 1.8 V ± 0.1 V.  
All input pulses are supplied by generators having the following characteristics:  
PRR 10 MHz; Z0 = 50 ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.  
The outputs are measured one at a time with one transition per measurement.  
V
DD  
DUT  
R
= 1000  
= 1000 Ω  
L
T
= 50  
T
= 350 ps, 50 Ω  
L
L
CK  
CK  
CK inputs  
OUT  
(1)  
= 30 pF  
C
L
R
L
test point  
R
L
= 100 Ω  
002aaa371  
test point  
(1) CL includes probe and jig capacitance.  
Fig 10. Load circuit, data output measurements  
LVCMOS  
V
DD  
RESET  
V
/2  
DD  
V
/2  
DD  
0 V  
t
t
ACT  
INACT  
90 %  
(1)  
DD  
I
10 %  
002aaa372  
(1) IDD tested with clock and data inputs held at VDD or GND, and IO = 0 mA.  
Fig 11. Voltage and current waveforms; inputs active and inactive times  
t
W
V
V
IH  
IL  
V
input  
V
V
ICR  
ID  
ICR  
002aaa373  
VID = 600 mV  
VIH = Vref + 250 mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.  
VIL = Vref 250 mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS inputs.  
Fig 12. Voltage waveforms; pulse duration  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
16 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
CK  
V
V
ICR  
ID  
CK  
t
t
h
su  
V
V
IH  
IL  
input  
V
ref  
V
ref  
002aaa374  
VID = 600 mV  
Vref = VDD/2  
VIH = Vref + 250 mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.  
VIL = Vref 250 mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS inputs.  
Fig 13. Voltage waveforms; setup and hold times  
CK  
V
V
V
ICR  
ICR  
i(p-p)  
CK  
t
t
PHL  
PLH  
V
V
OH  
OL  
V
output  
TT  
002aaa375  
tPLH and tPHL are the same as tPD  
.
Fig 14. Voltage waveforms; propagation delay times (clock to output)  
LVCMOS  
V
V
V
V
IH  
RESET  
V
/2  
DD  
IL  
t
PHL  
OH  
OL  
output  
V
TT  
002aaa376  
tPLH and tPHL are the same as tPD  
.
VIH = Vref + 250 mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.  
VIL = Vref 250 mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS inputs.  
Fig 15. Voltage waveforms; propagation delay times (reset to output)  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
17 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
11.2 Data output slew rate measurement information  
VDD = 1.8 V ± 0.1 V.  
All input pulses are supplied by generators having the following characteristics:  
PRR 10 MHz; Z0 = 50 ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.  
V
DD  
R
DUT  
= 50 Ω  
L
OUT  
test point  
002aaa377  
(1)  
= 10 pF  
C
L
(1) CL includes probe and jig capacitance.  
Fig 16. Load circuit, HIGH-to-LOW slew measurement  
output  
V
OH  
80 %  
dv_f  
20 %  
V
OL  
dt_f  
002aaa378  
Fig 17. Voltage waveforms, HIGH-to-LOW slew rate measurement  
DUT  
OUT  
test point  
(1)  
= 10 pF  
C
L
R
L
= 50 Ω  
002aaa379  
(1) CL includes probe and jig capacitance.  
Fig 18. Load circuit, LOW-to-HIGH slew measurement  
dt_r  
V
V
OH  
80 %  
dv_r  
20 %  
output  
OL  
002aaa380  
Fig 19. Voltage waveforms, LOW-to-HIGH slew rate measurement  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
18 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
11.3 Error output load circuit and voltage measurement information  
VDD = 1.8 V ± 0.1 V.  
All input pulses are supplied by generators having the following characteristics:  
PRR 10 MHz; Z0 = 50 ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.  
V
DD  
R
DUT  
= 1 kΩ  
L
OUT  
test point  
002aaa500  
(1)  
= 10 pF  
C
L
(1) CL includes probe and jig capacitance.  
Fig 20. Load circuit, error output measurements  
LVCMOS  
V
CC  
RESET  
V
/2  
CC  
0 V  
t
PLH  
V
OH  
0.15 V  
output  
waveform 2  
0 V  
002aaa501  
Fig 21. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to  
RESET input.  
timing  
inputs  
V
i(p-p)  
V
V
ICR  
ICR  
t
HL  
V
V
CC  
OL  
output  
waveform 1  
V
/2  
CC  
002aaa502  
Fig 22. Voltage waveforms, open-drain output HIGH-to-LOW transition time with respect  
to clock inputs  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
19 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
timing  
inputs  
V
V
i(p-p)  
V
ICR  
ICR  
t
LH  
V
OH  
output  
waveform 2  
0.15 V  
0 V  
002aaa503  
Fig 23. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to  
clock inputs  
11.4 Partial parity out load circuit and voltage measurement information  
VDD = 1.8 V ± 0.1 V.  
All input pulses are supplied by generators having the following characteristics:  
PRR 10 MHz; Z0 = 50 ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.  
DUT  
OUT  
test point  
(1)  
= 5 pF  
C
L
R
L
= 1 kΩ  
002aaa654  
(1) CL includes probe and jig capacitance.  
Fig 24. Partial parity out load circuit  
CK  
V
V
V
ICR  
ICR  
i(p-p)  
CK  
t
t
PHL  
PLH  
V
V
OH  
OL  
V
output  
TT  
002aaa375  
VTT = VDD/2  
tPLH and tPHL are the same as tPD  
.
Vi(p-p) = 600 mV  
Fig 25. Partial parity out voltage waveforms; propagation delay times with respect to clock  
inputs  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
20 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
LVCMOS  
V
V
V
V
IH  
RESET  
output  
V
/2  
DD  
IL  
t
PHL  
OH  
OL  
V
TT  
002aaa376  
VTT = VDD/2  
tPLH and tPHL are the same as tPD  
.
VIH = Vref + 250 mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.  
VIL = Vref 250 mV (AC voltage levels) for differential inputs. VIL = VDD for LVCMOS inputs.  
Fig 26. Partial parity out voltage waveforms; propagation delay times with respect to  
RESET input  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
21 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
12. Package outline  
LFBGA96: plastic low profile fine-pitch ball grid array package; 96 balls; body 13.5 x 5.5 x 1.05 mm SOT536-1  
B
A
D
ball A1  
index area  
A
2
A
E
A
1
detail X  
e
1
C
1/2 e  
y
y
v M  
w M  
C
C
A B  
C
1
e
b
T
R
P
N
e
M
L
K
J
H
G
F
e
2
1/2 e  
E
D
C
B
A
ball A1  
index area  
1
2
3
4
5
6
X
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
e
e
e
v
w
y
y
1
D
E
1
2
1
2
max.  
0.41  
0.31  
1.2  
0.9  
0.51  
0.41  
5.6  
5.4  
13.6  
13.4  
mm  
1.5  
4
12  
0.1  
0.2  
0.8  
0.15  
0.1  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
00-03-04  
03-02-05  
SOT536-1  
Fig 27. Package outline SOT536-1 (LFBGA96)  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
22 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
13. Soldering  
13.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
13.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
13.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
23 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
13.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
13.5 Package related soldering information  
Table 11: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
24 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
14. Abbreviations  
Table 12: Abbreviations  
Acronym  
CMOS  
DDR  
Description  
Complementary Metal Oxide Silicon  
Double Data Rate  
DIMM  
LVCMOS  
PPO  
Dual In-line Memory Module  
Low Voltage Complementary Metal Oxide Silicon  
Partial Parity Out  
PRR  
Pulse Repetition Rate  
RDIMM  
SSTL  
Registered Dual In-line Memory Module  
Stub Series Terminated Logic  
15. Revision history  
Table 13: Revision history  
Document ID  
Release date Data sheet status  
20050715 Product data sheet  
Change notice Doc. number  
Supersedes  
SSTUA32866_1  
-
9397 750 14759  
-
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
25 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
16. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
17. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
19. Trademarks  
Notice — All referenced brands, product names, service names and  
18. Disclaimers  
trademarks are the property of their respective owners.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
20. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14759  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 15 July 2005  
26 of 27  
SSTUA32866  
Philips Semiconductors  
1.8 V DDR2-667 configurable registered buffer with parity  
21. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
7
7.1  
8
Functional description . . . . . . . . . . . . . . . . . . . 7  
Function table . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 10  
Recommended operating conditions. . . . . . . 10  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 11  
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . 13  
9
10  
10.1  
11  
11.1  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 16  
Parameter measurement information for  
data output load circuit . . . . . . . . . . . . . . . . . . 16  
Data output slew rate measurement  
information . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Error output load circuit and voltage  
measurement information. . . . . . . . . . . . . . . . 19  
Partial parity out load circuit and voltage  
11.2  
11.3  
11.4  
measurement information. . . . . . . . . . . . . . . . 20  
12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 22  
13  
13.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 23  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 23  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 24  
Package related soldering information . . . . . . 24  
13.2  
13.3  
13.4  
13.5  
14  
15  
16  
17  
18  
19  
20  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 25  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 26  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Contact information . . . . . . . . . . . . . . . . . . . . 26  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 15 July 2005  
Document number: 9397 750 14759  
Published in The Netherlands  

相关型号:

SSTUA32866EC,518

SSTUA32866 - 1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-667 RDIMM applications BGA 96-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SSTUA32866EC-G

1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-667 RDIMM applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SSTUA32866EC/G

1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-667 RDIMM applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SSTUA32866EC/G,518

SSTUA32866 - 1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-667 RDIMM applications BGA 96-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SSTUA32S865

1.8 V 28-bit 1 : 2 registered buffer with parity for DDR2-667 RDIMM applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SSTUA32S865ET

1.8 V 28-bit 1 : 2 registered buffer with parity for DDR2-667 RDIMM applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SSTUA32S865ET,551

SSTUA32S865 - 1.8 V 28-bit 1 : 2 registered buffer with parity for DDR2-667 RDIMM applications BGA 160-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SSTUA32S865ET/G

1.8 V 28-bit 1 : 2 registered buffer with parity for DDR2-667 RDIMM applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SSTUA32S865ET/G,51

SSTUA32S865 - 1.8 V 28-bit 1 : 2 registered buffer with parity for DDR2-667 RDIMM applications BGA 160-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SSTUA32S869BHLF

Interface Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

SSTUB32864

1.8 V configurable registered buffer for DDR2-800 RDIMM applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP