TDA6651 [NXP]

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog); 5 V混频器/振荡器和低噪声的PLL合成器,用于混合动力地面调谐器(数字和模拟)
TDA6651
型号: TDA6651
厂家: NXP    NXP
描述:

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
5 V混频器/振荡器和低噪声的PLL合成器,用于混合动力地面调谐器(数字和模拟)

振荡器
文件: 总55页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA6650TT; TDA6651TT  
5 V mixer/oscillator and low noise  
PLL synthesizer for hybrid  
terrestrial tuner (digital and analog)  
Product specification  
2004 Mar 22  
Supersedes data of 2003 Sep 11  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
CONTENTS  
10  
11  
12  
13  
14  
HANDLING  
THERMAL CHARACTERISTICS  
CHARACTERISTICS  
1
2
3
4
5
6
7
FEATURES  
APPLICATIONS  
INTERNAL PIN CONFIGURATION  
APPLICATION AND TEST INFORMATION  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
14.1  
14.2  
14.3  
Tuning amplifier  
Crystal oscillator  
Examples of I2C-bus program sequences  
PINNING  
FUNCTIONAL DESCRIPTION  
15  
PACKAGE OUTLINE  
SOLDERING  
7.1  
7.2  
7.3  
Mixer, Oscillator and PLL (MOPLL) functions  
I2C-bus voltage  
Phase noise, I2C-bus traffic and crosstalk  
16  
16.1  
Introduction to soldering surface mount  
packages  
Reflow soldering  
Wave soldering  
Manual soldering  
8
I2C-BUS PROTOCOL  
16.2  
16.3  
16.4  
16.5  
8.1  
Write mode; R/W = 0  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
8.2  
I2C-bus address selection  
XTOUT output buffer and mode setting  
Step frequency setting  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
AGC detector setting  
17  
18  
19  
20  
DATA SHEET STATUS  
DEFINITIONS  
Charge pump current setting  
Automatic Loop Bandwidth Control (ALBC)  
Read mode; R/W = 1  
DISCLAIMERS  
PURCHASE OF PHILIPS I2C COMPONENTS  
8.3  
Status at Power-on reset  
9
LIMITING VALUES  
2004 Mar 22  
2
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
1
FEATURES  
Single-chip 5 V mixer/oscillator and low phase noise  
PLL synthesizer for TV and VCR tuners, dedicated to  
hybrid (digital and analog) as well as pure digital  
applications (DVB-T)  
Five possible step frequencies to cope with different  
digital terrestrial TV and analog TV standards  
2
APPLICATIONS  
Eight charge pump currents between 40 and 600 µA to  
reach the optimum phase noise performance over the  
bands  
Digital and analog terrestrial tuners (OFDM, PAL, etc.)  
Cable tuners (QAM)  
Automatic Loop Bandwidth Control (ALBC) sets the  
Digital TV sets  
optimum phase noise performance for DVB-T channels  
I2C-bus protocol compatible with 2.5, 3.3 and 5 V  
Digital set-top boxes.  
microcontrollers:  
– Address + 5 data bytes transmission (I2C-bus write  
mode)  
– Address + 1 status byte (I2C-bus read mode)  
– Four independent I2C-bus addresses  
Five PMOS open-drain ports with 15 mA source  
capability for band switching and general purpose; one  
of these ports is combined with a 5-step ADC  
Wide band AGC detector for internal tuner AGC:  
– Six programmable take-over points  
– Two programmable time constants  
– AGC flag  
In-lock flag  
Crystal frequency output buffer  
33 V tuning voltage output  
Fractional-N programmable divider  
Balanced mixers with a common emitter input for the low  
band and for the mid band (each single input)  
Balanced mixer with a common base input for the high  
band (balanced input)  
2-pin asymmetrical oscillator for the low band  
2-pin symmetrical oscillator for the mid band  
4-pin symmetrical oscillator for the high band  
Switched concept IF amplifier with both asymmetrical  
and symmetrical outputs to drive low impedance or  
SAW filters i.e. 500 //40 pF.  
2004 Mar 22  
3
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
3
GENERAL DESCRIPTION  
The AGC detector provides a control that can be used in a  
tuner to set the gain of the RF stage. Six AGC take-over  
points are available by software. Two programmable AGC  
time constants are available for search tuning and normal  
tuner operation.  
The TDA6650TT; TDA6651TT is a programmable 3-band  
mixer/oscillator and low phase noise PLL synthesizer  
intended for pure 3-band tuner concepts applied to hybrid  
(digital and analog) terrestrial and cable TV reception.  
The local oscillator signal is fed to the fractional-N divider.  
The divided frequency is compared to the comparison  
frequency into the fast phase detector which drives the  
charge pump. The loop amplifier is also on-chip, including  
the high-voltage transistor to drive directly the 33 V tuning  
voltage without the need to add an external transistor.  
The device includes three double balanced mixers for low,  
mid and high bands, three oscillators for the corresponding  
bands, a switchable IF amplifier, a wide band AGC  
detector and a low noise PLL synthesizer. The frequencies  
of the three bands are shown in Table 1. Two pins are  
available between the mixer output and the IF amplifier  
input to enable IF filtering for improved signal handling and  
to improve the adjacent channel rejection.  
The comparison frequency is obtained from an on-chip  
crystal oscillator. The crystal frequency can be output to  
the XTOUT pin to drive the clock input of a digital  
demodulation IC.  
Table 1 Recommended band limits in MHz for PAL and  
DVB-T tuners; note 1  
Control data is entered via the I2C-bus; six serial bytes are  
required to address the device, select the local  
oscillator (LO) frequency, select the step frequency,  
program the output ports and set the charge pump current  
or select the ALBC mode, enable or disable the crystal  
output buffer, select the AGC take-over point and time  
constant and/or select a specific test mode. A status byte  
concerning the AGC level detector and the ADC voltage  
can be read out on the SDA line during a read operation.  
During a read operation, the loop ‘in-lock’ flag, the  
Power-on reset flag and the automatic loop bandwidth  
control flag are read.  
RF INPUT  
MIN. MAX.  
44.25  
OSCILLATOR  
BAND  
Low  
MIN.  
83.15  
MAX.  
196.15  
482.15  
902.15  
157.25  
443.25  
863.25  
Mid  
157.25  
443.25  
196.15  
482.15  
High  
Note  
1. RF input frequency is the frequency of the  
corresponding picture carrier for analog standard.  
The device has 4 programmable addresses. Each address  
can be selected by applying a specific voltage to pin AS,  
enabling the use of multiple devices in the same system.  
The IF amplifier is switchable in order to drive both  
symmetrical and asymmetrical outputs. When it is used as  
an asymmetrical amplifier, the IFOUTB pin needs to be  
The I2C-bus is fast mode compatible, except for the timing  
as described in the functional description and is  
compatible with 5, 3.3 and 2.5 V microcontrollers  
depending on the voltage applied to pin BVS.  
connected to the supply voltage VCCA  
.
Five open-drain PMOS ports are included on the IC. Two  
of them, BS1 and BS2, are also dedicated to the selection  
of the low, mid and high bands. PMOS port BS5 pin is  
shared with the ADC.  
4
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA6650TT  
TDA6651TT  
TSSOP38 plastic thin shrink small outline package; 38 leads; body width 4.4 mm;  
lead pitch 0.5 mm  
SOT510-1  
2004 Mar 22  
4
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
5
BLOCK DIAGRAM  
IFFIL1  
IFFIL2  
IFOUTA  
IFOUTB  
V
n.c.  
21 (18)  
CCA  
26 (13)  
6 (33)  
7 (32) 28 (11)  
27 (12)  
(30) 9  
AGC  
IF  
AGC  
AMP  
DETECTOR  
TDA6650TT  
AGC  
flag  
(TDA6651TT)  
AL0, AL1, AL2 ATC  
(10) 29  
IFGND  
(1) 38  
(2) 37  
LOSCIN  
4 (35)  
LOW  
INPUT  
LOW  
MIXER  
LOW  
OSCILLATOR  
LBIN  
BS1  
BS1  
LOSCOUT  
(5) 34  
(4) 35  
MOSCIN1  
MOSCIN2  
3 (36)  
MID  
INPUT  
MID  
MIXER  
MID  
OSCILLATOR  
MBIN  
BS2  
BS2  
(9) 30  
(8) 31  
(7) 32  
(6) 33  
1 (38)  
2 (37)  
HOSCIN1  
HBIN1  
HBIN2  
HIGH  
INPUT  
HIGH  
MIXER  
HOSCOUT1  
HOSCOUT2  
HOSCIN2  
HIGH  
OSCILLATOR  
BS1 . BS2  
BS1 . BS2  
5 (34)  
(3) 36  
RFGND  
OSCGND  
XTOUT  
(21) 18  
OUTPUT  
BUFFER  
R0, R1,  
R2  
24 (15)  
[ ]  
N 14:0  
V
CCD  
T0, T1, T2  
PHASE  
COMPARATOR  
FRACTIONAL  
DIVIDER  
FRACTIONAL  
CALCULATOR  
(17) 22  
(16) 23  
LOOP  
AMP  
VT  
CP  
19 (20)  
20 (19)  
XTAL1  
XTAL2  
CHARGE  
PUMP  
CRYSTAL  
OSCILLATOR  
REFERENCE  
DIVIDER  
15 (24)  
16 (23)  
17 (22)  
13 (26)  
T0, T1, CP0, CP1,  
SCL  
SDA  
AS  
LOCK  
DETECTOR  
T2  
CP2  
2
I C-BUS  
TRANSCEIVER  
FRACTIONAL  
SPURIOUS  
COMPENSATION  
BAND SWITCH  
BS5-  
BVS  
AGC  
OUTPUT PORTS  
BS1  
(14) 25  
POR  
ADC  
14  
8
10  
11  
12  
PLLGND  
(25) (31) (29) (28) (27)  
FCE723  
ADC/  
BS5  
BS3  
BS1  
BS4  
BS2  
The pin numbers in parenthesis represent the TDA6651TT.  
Fig.1 Block diagram.  
5
2004 Mar 22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
6
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
TDA6650TT TDA6651TT  
HBIN1  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
high band RF input 1  
high band RF input 2  
mid band RF input  
low band RF input  
RF ground  
HBIN2  
MBIN  
LBIN  
2
3
4
RFGND  
IFFIL1  
IFFIL2  
BS4  
5
6
IF filter output 1  
IF filter output 2  
7
8
PMOS open-drain output port 4 for general purpose  
AGC output  
AGC  
9
BS3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
PMOS open-drain output port 3 for general purpose  
PMOS open-drain output port 2 to select the mid band  
PMOS open-drain output port 1 to select the low band  
bus voltage selection input  
BS2  
BS1  
BVS  
ADC/BS5  
SCL  
ADC input or PMOS open-drain output port 5 for general purpose  
I2C-bus serial clock input  
I2C-bus serial data input and output  
I2C-bus address selection input  
crystal frequency buffer output  
crystal oscillator input 1  
SDA  
AS  
XTOUT  
XTAL1  
XTAL2  
n.c  
crystal oscillator input 2  
not connected  
VT  
tuning voltage output  
CP  
charge pump output  
VCCD  
PLLGND  
VCCA  
IFOUTB  
supply voltage for the PLL part  
PLL ground  
supply voltage for the analog part  
IF output B for symmetrical amplifier and asymmetrical IF amplifier  
switch input  
IFOUTA  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
11  
10  
9
IF output A  
IFGND  
IF ground  
HOSCIN1  
HOSCOUT1  
HOSCOUT2  
HOSCIN2  
MOSCIN1  
MOSCIN2  
OSCGND  
LOSCOUT  
LOSCIN  
high band oscillator input 1  
high band oscillator output 1  
high band oscillator output 2  
high band oscillator input 2  
mid band oscillator input 1  
mid band oscillator input 2  
oscillators ground  
8
7
6
5
4
3
2
low band oscillator output  
low band oscillator input  
1
2004 Mar 22  
6
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
handbook, halfpage  
handbook, halfpage  
HBIN1  
HBIN2  
MBIN  
LBIN  
1
2
3
4
5
6
7
8
9
38 LOSCIN  
1
2
38  
37  
36  
35  
34  
HBIN1  
HBIN2  
MBIN  
LOSCIN  
37 LOSCOUT  
36 OSCGND  
35 MOSCIN2  
34 MOSCIN1  
33 HOSCIN2  
32 HOSCOUT2  
31 HOSCOUT1  
30 HOSCIN1  
29 IFGND  
LOSCOUT  
OSCGND  
MOSCIN2  
MOSCIN1  
HOSCIN2  
HOSCOUT2  
HOSCOUT1  
HOSCIN1  
IFGND  
3
4
LBIN  
RFGND  
IFFIL1  
IFFIL2  
BS4  
5
RFGND  
6
33 IFFIL1  
32 IFFIL2  
7
8
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
BS4  
TDA6650TT  
TDA6651TT  
AGC  
9
AGC  
BS3  
BS3 10  
BS2 11  
BS1 12  
BVS 13  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
28 IFOUTA  
IFOUTA  
BS2  
27 IFOUTB  
IFOUTB  
BS1  
26  
V
V
BVS  
CCA  
CCA  
ADC/BS5 14  
SCL 15  
25 PLLGND  
PLLGND  
ADC/BS5  
SCL  
24  
V
V
CCD  
CCD  
SDA 16  
23 CP  
CP  
VT  
SDA  
AS 17  
22 VT  
AS  
XTOUT 18  
21 n.c.  
20 XTAL2  
n.c.  
XTOUT  
XTAL1  
19  
XTAL1  
XTAL2  
FCE724  
FCE874  
Fig.2 Pin configuration TDA6650TT.  
Fig.3 Pin configuration TDA6651TT.  
7
FUNCTIONAL DESCRIPTION  
a fractional calculator on the chip that generates the data  
for the fractional divider as well as the reference divider  
ratio, depending on the step frequency selected. The  
crystal oscillator requires a 4 MHz crystal in series with an  
18 pF capacitor between pins XTAL1 and XTAL2.  
7.1  
Mixer, Oscillator and PLL (MOPLL) functions  
Bit BS1 enables the BS1 port, the low band mixer and the  
low band oscillator. Bit BS2 enables the BS2 port, the mid  
band mixer and the mid band oscillator. When both BS1  
and BS2 bits are logic 0, the high band mixer and the high  
band oscillator are enabled.  
The output of the phase comparator drives the charge  
pump and the loop amplifier section. This amplifier has an  
on-chip high voltage drive transistor. Pin CP is the output  
of the charge pump, and pin VT is the pin to drive the  
tuning voltage to the varicap diodes of the oscillators and  
the tracking filters. The loop filter has to be connected  
between pins CP and VT. The spurious signals introduced  
by the fractional divider are automatically compensated by  
the spurious compensation block.  
The oscillator signal is applied to the fractional-N  
programmable divider. The divided signal fdiv is fed to the  
phase comparator where it is compared in both phase and  
frequency with the comparison frequency fcomp. This  
frequency is derived from the signal present on the crystal  
oscillator fxtal and divided in the reference divider. There is  
2004 Mar 22  
7
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
Phase noise, I2C-bus traffic and crosstalk  
It is possible to drive the clock input of a digital  
demodulation IC from pin XTOUT with the 4 MHz signal  
from the crystal oscillator. This output is also used to  
output 1/2fdiv and fcomp signals in a specific test mode (see  
Table 6). It is possible to switch off this output, which is  
recommended when it is not used.  
7.3  
While the TDA6650TT; TDA6651TT is dedicated for hybrid  
terrestrial applications, the low noise PLL will clean up the  
noise spectrum of the VCOs close to the carrier to reach  
noise levels at 1 kHz offset from the carrier compatible with  
e.g. DVB-T reception.  
For test and alignment purposes, it is also possible to  
release the tuning voltage output by selecting the sinking  
mode (see Table 6), and by applying an external voltage  
on pin VT.  
Linked to this noise improvement, some disturbances may  
become visible while they were not visible because they  
were hidden into the noise in analog dedicated  
applications and circuits.  
In addition to the BS1 and BS2 output ports that are used  
for the band selection, there are three general purpose  
ports BS3, BS4 and BS5. All five ports are PMOS  
open-drain type, each with 15 mA drive capability. The  
connection for port BS5 and the ADC input is combined on  
one pin. It is not possible to use the ADC if port BS5 is  
used.  
This is especially true for disturbances coming from the  
I2C-bus traffic, whatever this traffic is intended for the  
MOPLL or for another slave on the bus.  
To avoid this I2C-bus crosstalk and be able to have a clean  
noise spectrum, it is necessary to use a bus gate that  
enables the signal on the bus to drive the MOPLL only  
when the communication is intended for the tuner part  
(such a kind of I2C-bus gate is included into the Philips  
terrestrial channel decoders), and to avoid unnecessary  
repeated sending of the same information.  
The AGC detector compares the level at the IF amplifier  
output to a reference level which is selected from  
6 different levels via the I2C-bus. The time constant of the  
AGC can be selected via the I2C-bus to cope with normal  
operation as well as with search operation.  
8
I2C-BUS PROTOCOL  
When the output level on pin AGC is higher than the  
threshold VRMH, then bit AGC = 1. When the output level  
on pin AGC is lower than the threshold VRML, then  
bit AGC = 0. Between these two thresholds, bit AGC is not  
defined. The status of the AGC bit can be read via the  
I2C-bus according to the read mode as described in  
Table 12.  
The TDA6650TT; TDA6651TT is controlled via the  
two-wire I2C-bus. For programming, there is one device  
address (7 bits) and the R/W bit for selecting read or write  
mode. To be able to have more than one MOPLL in an  
I2C-bus system, one of four possible addresses is selected  
depending on the voltage applied to address selection  
pin AS (see Table 5).  
7.2  
I2C-bus voltage  
The TDA6650TT; TDA6651TT fulfils the fast mode  
I2C-bus, according to the Philips I2C-bus specification (see  
Chapter 20), except for the timing as described in Fig.4.  
The I2C-bus interface is designed in such a way that the  
pins SCL and SDA can be connected to 5, 3.3 or to 2.5 V  
pulled-up I2C-bus lines, depending on the voltage applied  
to pin BVS (see Table 2).  
The I2C-bus lines SCL and SDA can be connected to an  
I2C-bus system tied to 2.5, 3.3 or 5 V. The choice of the  
bus input threshold voltages is made with pin BVS that can  
be left open-circuit, connected to the supply voltage or to  
ground (see Table 2).  
Table 2 I2C-bus voltage selection  
LOGIC LEVEL  
PIN BVS  
BUS  
CONNECTION VOLTAGE  
LOW  
HIGH  
To ground  
Open-circuit  
To VCC  
2.5 V  
3.3 V  
5 V  
0 to 0.75 V 1.75 to 5.5 V  
0 to 1.0 V 2.3 to 5.5 V  
0 to 1.5 V 3.0 to 5.5 V  
2004 Mar 22  
8
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
8.1  
Write mode; R/W = 0  
sent by the controller, additional data bytes can be entered  
without the need to re-address the device. The fractional  
calculator is updated only at the end of the transmission  
(STOP condition). Each control byte is loaded after the  
8th clock pulse of the corresponding control byte. Main  
divider data are valid only if no new I2C-bus transmission  
is started (START condition) during the computation  
period of 50 µs.  
After the address transmission (first byte), data bytes can  
be sent to the device (see Table 3). Five data bytes are  
needed to fully program the TDA6650TT; TDA6651TT.  
The I2C-bus transceiver has an auto-increment facility that  
permits programming the device within one single  
transmission (address + 5 data bytes).  
The TDA6650TT; TDA6651TT can also be partly  
programmed on the condition that the first data byte  
following the address is byte 2 (divider byte 1) or byte 4  
(control byte 1). The first bit of the first data byte  
transmitted indicates whether byte 2 (first bit = 0) or byte 4  
(first bit = 1) will follow. Until an I2C-bus STOP condition is  
Both DB1 and DB2 need to be sent to change the main  
divider ratio. If the value of the ratio selection bits R2, R1  
and R0 are changed, the bytes DB1 and DB2 have to be  
sent in the same transmission.  
50 µs  
ADDRESS  
ADDRESS  
BYTE  
DIVIDER DIVIDER CONTROL CONTROL CONTROL CONTROL  
STOP  
START  
START  
2
BYTE  
BYTE 1  
BYTE 2  
BYTE 1  
BYTE 2  
BYTE 1  
BYTE 2  
2
I C transmission dedicated to  
the MOPLL  
I C transmission  
dedicated to  
another IC  
FCE921  
Fig.4 Example of I2C-bus transmission frame.  
Table 3 I2C-bus write data format  
BIT  
NAME  
BYTE  
ACK  
MSB(1)  
LSB  
Address byte  
1
2
3
4
1
1
0
N13  
N5  
T2  
0
N12  
N4  
T1  
0
MA1  
N10  
N2  
MA0  
N9  
R/W = 0  
N8  
A
A
A
A
A
A
Divider byte 1 (DB1)  
Divider byte 2 (DB2)  
0
N7  
1
N14  
N11  
N3  
N6  
N1  
N0  
Control byte 1  
(CB1); see Table 4  
T/A = 1  
T/A = 0  
CP1  
T0  
R2  
R1  
R0  
1
0
0
ATC  
BS4  
AL2  
BS3  
AL1  
BS2  
AL0  
BS1  
Control byte 2 (CB2)  
5
CP2  
CP0  
BS5  
Note  
1. MSB is transmitted first.  
2004 Mar 22  
9
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
Table 4 Description of write data format bits  
BIT  
DESCRIPTION  
A
acknowledge  
MA1 and MA0  
R/W  
programmable address bits; see Table 5  
logic 0 for write mode  
N14 to N0  
T/A  
programmable LO frequency; N = N14 × 214 + N13 × 213 + N12 × 212 + ... + N1 × 21 + N0  
test/AGC bit  
T/A = 0: the next six bits sent are AGC settings  
T/A = 1: the next six bits sent are test and reference divider ratio settings  
test bits; see Table 6  
T2, T1 and T0  
R2, R1, and R0  
ATC  
reference divider ratio and programmable frequency step; see Table 7  
AGC current setting and time constant; capacitor on pin AGC = 150 nF  
ATC = 0: AGC current = 220 nA; AGC time constant = 2 s  
ATC = 1: AGC current = 9 µA; AGC time constant = 50 ms  
AGC take-over point bits; see Table 8  
AL2, AL1 and AL0  
CP2, CP1 and CP0 charge pump current; see Table 9  
BS5, BS4, BS3,  
BS2 and BS1  
PMOS ports control bits  
BSn = 0: corresponding port is off, high-impedance state (status at Power-on reset)  
BSn = 1: corresponding port is on; VO = VCC VDS(sat)  
8.1.1  
I2C-BUS ADDRESS SELECTION  
The device address contains programmable address bits MA1 and MA0, which offer the possibility of having up to four  
MOPLL ICs in one system. Table 5 gives the relationship between the voltage applied to the AS input and the MA1 and  
MA0 bits.  
Table 5 Address selection  
VOLTAGE APPLIED TO PIN AS  
MA1  
MA0  
0 V to 0.1VCC  
0
0
1
1
0
1
0
1
0.2VCC to 0.3VCC or open-circuit  
0.4VCC to 0.6VCC  
0.9VCC to VCC  
2004 Mar 22  
10  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
8.1.2  
XTOUT OUTPUT BUFFER AND MODE SETTING  
recommended to disable it, by setting T[2:0] to 000. This  
pin is also used to output 1/2fdiv and fcomp in a test mode.  
At Power-on, the XTOUT output buffer is set to on,  
supplying the fxtal signal. The relation between the signal  
on pin XTOUT and the setting of theT[2:0] bits is given in  
Table 6.  
The crystal frequency can be sent to pin XTOUT and used  
in the application, for example to drive the clock input of a  
digital demodulator, saving a quartz crystal in the bill of  
material. To output fxtal, it is necessary to set T[2:0] to 001.  
If the output signal on this pin is not used, it is  
Table 6 XTOUT buffer status and test modes  
T2  
T1  
T0  
PIN XTOUT  
MODE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
disabled  
fxtal (4 MHz)  
1/2fdiv  
normal mode with XTOUT buffer off  
normal mode with XTOUT buffer on  
charge pump off  
fxtal (4 MHz)  
switch ALBC on or off (note 1)  
test mode  
fcomp  
1/2fdiv  
test mode  
fxtal (4 MHz)  
disabled  
charge pump sinking current (note 2)  
charge pump sourcing current  
Notes  
1. Automatic Loop Bandwidth Control (ALBC) is disabled at Power-on reset. After Power-on reset this feature is  
enabled by setting T[2:0] = 011. To disable again the ALBC, set T[2:0] = 011 again. This test mode acts like a toggle  
switch, which means each time it is set the status of the ALBC changes. To toggle the ALBC, two consecutive Control  
byte 1s (CB1), should be sent: one byte with T[2:0] = 011 indicating that ALBC will be switched on or off and one byte  
programming the test mode to be selected (see Table 23, example of I2C-bus sequence).  
2. This is the default mode at Power-on reset. This mode disables the tuning voltage.  
8.1.3  
STEP FREQUENCY SETTING  
The step frequency is set by three bits, giving five steps to cope with different application requirements.  
The reference divider ratio is automatically set depending on bits R2, R1 and R0. The phase detector works at either  
4, 2 or 1 MHz.  
Table 7 shows the step frequencies and corresponding reference divider ratios. When the value of bits R2, R1 and R0  
are changed, it is necessary to re-send the data bytes DB1 and DB2.  
Table 7 Reference divider ratio select bits  
REFERENCE  
DIVIDER RATIO  
FREQUENCY  
COMPARISON  
R2  
R1  
R0  
FREQUENCY STEP  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
1
1
4
1
2 MHz  
4 MHz  
4 MHz  
1 MHz  
4 MHz  
62.5 kHz  
142.86 kHz  
166.67 kHz  
50 kHz  
125 kHz  
reserved  
reserved  
reserved  
2004 Mar 22  
11  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
8.1.4  
AGC DETECTOR SETTING  
The AGC take-over point can be selected out of 6 levels according to Table 8.  
Table 8 AGC programming  
AL2  
AL1  
AL0  
TYPICAL TAKE-OVER POINT LEVEL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
124 dBµV (p-p)  
121 dBµV (p-p)  
118 dBµV (p-p)  
115 dBµV (p-p)  
112 dBµV (p-p)  
109 dBµV (p-p)  
IAGC = 0; note 1  
VAGC = 3.5 V; note 2  
Notes  
1. The AGC current sources are disabled. The AGC output goes into a high-impedance state and an external AGC  
source can be connected in parallel and will not be influenced.  
2. The AGC detector is disabled and IAGC = 9 µA.  
8.1.5  
CHARGE PUMP CURRENT SETTING  
The charge pump current can be chosen from 8 values depending on the value of bits CP2, CP1 and CP0 bits; see  
Table 9. The programming of the CP bits are not taken into account when ALBC mode is in use.  
Table 9 Charge pump current  
CHARGE PUMP CURRENT  
NUMBER  
TYPICAL CURRENT  
(ABSOLUTE VALUE IN µA)  
CP2  
CP1  
CP0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
38  
54  
83  
122  
163  
254  
400  
580  
8.1.6  
AUTOMATIC LOOP BANDWIDTH CONTROL (ALBC)  
tuner, to set the charge pump current to different values  
depending on the band and frequency used. This is to  
cope with the variations of the different parameters that set  
the bandwidth. The selection can be done in the  
application and requires for each frequency to program not  
only the divider ratios, but also the band and the best  
charge pump current.  
In a PLL controlled VCO in which the PLL reduces phase  
noise close to the carrier, there is an optimum loop  
bandwidth corresponding to the minimum integrated  
phase jitter. This loop bandwidth depends on different  
parameters like the VCO slope, the loop filter components,  
the dividing ratio and the gain of the phase detector and  
charge pump.  
The TDA6650TT; TDA6651TT includes the ALBC feature  
that automatically sets the band and the charge pump  
current, provided the IC is used in the DVB-T standard  
In order to reach the best phase noise performance it is  
necessary, especially in a wide band system like a digital  
2004 Mar 22  
12  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
application shown in Figs 27 and 28. This feature is  
activated by setting bits T[2:0] = 011 after Power-on reset.  
This feature is disabled when the same bits are set again.  
When ALBC is activated, the output ports BS1, BS2  
and BS3 are not programmed by the corresponding  
BS bits, but are set according to Tables 10 and 11. When  
ALBC is active, bit ALBC = 1. Table 11 summarizes the  
programming of the band selection and the charge pump  
current when ALBC is active.  
Table 10 ALBC settings  
BIT  
CHARGE  
PUMP  
CURRENT  
PORT  
BS2  
BAND  
SELECTED  
ALBC  
BS3  
BS2  
BS1  
BS3  
BS1  
0
0
0
0
1
X
X
X
X
X
0
0
1
1
X
0
1
0
1
X
high  
low  
see  
Table 11  
follows  
bit BS3  
off  
off  
on  
off  
on  
off  
mid  
forbidden  
depends on LO program, shown in Table 11  
Table 11 ALBC band selection and charge current setting  
CHARGE PUMP CURRENT  
NUMBER  
LO FREQUENCY  
BAND  
80 to 92 MHz  
92 to 144 MHz  
144 to 156 MHz  
156 to 176 MHz  
176 to 184 MHz  
184 to 196 MHz  
196 to 224 MHz  
224 to 296 MHz  
296 to 380 MHz  
380 to 404 MHz  
404 to 448 MHz  
448 to 472 MHz  
472 to 484 MHz  
484 to 604 MHz  
604 to 676 MHz  
676 to 752 MHz  
752 to 868 MHz  
868 to 904 MHz  
low  
mid  
2
3
4
5
6
7
2
3
4
5
6
7
8
4
5
6
7
8
high  
2004 Mar 22  
13  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
8.2  
Read mode; R/W = 1  
A second data byte can be read from the device if the  
microcontroller generates an acknowledge on the SDA  
line (master acknowledge). End of transmission will occur  
if no master acknowledge occurs. The device will then  
release the data line to allow the microcontroller to  
generate a STOP condition.  
Data can be read from the device by setting the R/W bit  
to 1 (see Table 12). After the device address has been  
recognized, the device generates an acknowledge pulse  
and the first data byte (status byte) is transferred on the  
SDA line (MSB first). Data is valid on the SDA line during  
a HIGH level of the SCL clock signal.  
Table 12 I2C-bus read data format  
BIT  
NAME  
BYTE  
ACK  
LSB  
MSB(1)  
Address byte  
Status byte  
1
2
1
1
0
0
1
0
MA1  
A2  
MA0  
A1  
R/W = 1  
A0  
A
POR  
FL  
ALBC  
AGC  
Note  
1. MSB is transmitted first.  
Table 13 Description of read data format bits  
BIT  
DESCRIPTION  
A
acknowledge bit  
POR  
Power-on reset flag  
POR = 0, normal operation  
POR = 1, Power-on reset  
in-lock flag  
FL  
FL = 0, not locked  
FL = 1, the PLL is locked  
ALBC  
AGC  
automatic loop bandwidth control flag  
ALBC = 0, no automatic loop bandwidth control  
ALBC = 1, automatic loop bandwidth control selected  
internal AGC flag  
AGC = 0 when internal AGC is active (VAGC < VRML  
)
AGC = 1 when internal AGC is not active (VAGC > VRMH  
)
A2, A1, A0  
digital outputs of the 5-level ADC; see Table 14  
2004 Mar 22  
14  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
Table 14 ADC levels  
VOLTAGE APPLIED TO PIN ADC(1)  
0.6VCC to VCC  
A2  
1
A1  
0
A0  
0
0.45VCC to 0.6VCC  
0.3VCC to 0.45VCC  
0.15VCC to 0.3VCC  
0 to 0.15VCC  
0
1
1
0
1
0
0
0
1
0
0
0
Note  
1. Accuracy is ±0.03VCC. Bit BS5 must be set to logic 0 to disable the BS5 output port. The BS5 output port uses the  
same pin as the ADC and can not be used when the ADC is in use.  
8.3  
Status at Power-on reset  
At power on or when the supply voltage drops below approximately 2.85 V (at Tamb = 25 °C), internal registers are set  
according to Table 15.  
At power on, the charge pump current is set to 580 µA, the test bits T[2:0] are set to 110 which means that the charge  
pump is sinking current, the tuning voltage output is disabled and the ALBC function is disabled. The XTOUT buffer is  
on, driving the 4 MHz signal from the crystal oscillator and all the ports are off. As a consequence, the high band is  
selected by default.  
Table 15 Default setting at Power-on reset  
BIT(1)  
NAME  
BYTE  
MSB  
LSB  
X
Address byte  
1
2
3
4
1
1
0
0
0
MA1  
MA0  
Divider byte 1 (DB1)  
Divider byte 2 (DB2)  
Control byte 1 (CB1)  
0
N7 = X  
1
N14 = X N13 = X N12 = X N11 = X N10 = X N9 = X  
N8 = X  
N0 = X  
R0 = X  
N6 = X  
N5 = X  
T2 = 1  
N4 = X  
T1 = 1  
N3 = X  
T0 = 0  
N2 = X  
R2 = X  
N1 = X  
R1 = X  
T/A = X;  
note 2  
1
T/A = X;  
note 3  
0
0
ATC = 0 AL2 = 0 AL1 = 1 AL0 = 0  
Control byte 2 (CB2)  
5
CP2 = 1 CP1 = 1 CP0 = 1 BS5 = 0 BS4 = 0 BS3 = 0 BS2 = 0 BS1 = 0  
Notes  
1. X means that this bit is not set or reset at Power-on reset.  
2. The next six bits are written, when bit T/A = 1 in a write sequence.  
3. The next six bits are written, when bit T/A = 0 in a write sequence.  
2004 Mar 22  
15  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
9
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); positive currents are entering the IC and  
negative currents are going out of the IC; all voltages are referenced to ground (GND); note 1  
SYMBOL  
VCCA  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
0.3  
MAX.  
UNIT  
,
+6  
V
VCCD  
VVT  
tuning voltage output  
0.3  
0.3  
0
+35  
V
V
VSDA  
ISDA  
VSCL  
VAS  
Vn  
serial data input and output voltage  
serial data output current  
serial clock input voltage  
+6  
during acknowledge  
4.5 V< VCC < 5.5 V  
10  
mA  
V
0.3  
0.3  
0.3  
+6  
address selection input voltage  
+6  
V
voltage on all other inputs, outputs and  
combined inputs and outputs, except  
GNDs  
VCC + 0.3  
V
IBSn  
PMOS port output current  
corresponding port on;  
open-drain  
20  
0
mA  
IBS(tot)  
tsc(max)  
Tstg  
sum of all PMOS port output currents  
maximum short-circuit time  
storage temperature  
open-drain  
50  
0
mA  
s
each pin to VCC or to GND  
10  
40  
20  
+150  
°C  
°C  
°C  
(2)  
Tamb  
Tj  
ambient temperature  
Tamb(max)  
+150  
junction temperature  
Notes  
1. Maximum ratings cannot be exceeded, not even momentarily without causing irreversible IC damage. Maximum  
ratings cannot be accumulated.  
2. The maximum allowed ambient temperature Tamb(max) depends on the assembly conditions of the package and  
especially on the design of the PCB. The application mounting must be done in such a way that the maximum junction  
temperature Tj is never exceeded. An estimation of the junction temperature can be obtained through measurement  
of the temperature of the top centre of the package (Tpackage). The temperature difference junction to case (Tj-c) is  
estimated at about 13 °C on the demoboard (PCB 827-3).  
The junction temperature is: Tj = Tpackage + ∆Tj-c  
10 HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be completely safe, it  
is desirable to take normal precautions appropriate to handling integrated circuits.  
2004 Mar 22  
16  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
11 THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
PARAMETER  
CONDITIONS  
notes 1, 2 and 3  
VALUE  
UNIT  
thermal resistance from  
junction to ambient  
TDA6650TT  
TDA6651TT  
82  
74  
K/W  
K/W  
Notes  
1. Measured in free air as defined by JEDEC standard JESD51-2  
2. These values are given for information only. The thermal resistance depends strongly on the nature and design of  
the PCB used in the application.The thermal resistance given corresponds to the value that can be measured on a  
multilayer PCB (4 layers) as defined by JEDEC standard.  
3. The junction temperature influences strongly the reliability of an IC. The PCB used in the application contributes in a  
large part to the overall thermal characteristic. It must therefore be insured that the junction temperature of the IC  
never exceeds Tj(max) = 150 °C at the maximum ambient temperature.  
12 CHARACTERISTICS  
VCCA = VCCD = 5 V, Tamb = 25 °C; values are given for an asymmetrical IF output loaded with a 75 load or with a  
symmetrical IF output loaded with 1.25 k; positive currents are entering the IC and negative currents are going out of  
the IC; the performances of the circuits are measured in the measurement circuits Figs 27 and 28 for digital application  
or in the measurement circuits Figs 29 and 30 for hybrid application; unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VCC  
ICC  
supply voltage  
supply current  
4.5  
80  
one PMOS port on: sourcing 15 mA 96  
5.0  
5.5  
V
PMOS ports off  
96  
115  
131  
136  
mA  
mA  
mA  
112  
117  
two PMOS ports on: one port  
sourcing 15 mA and one other port  
sourcing 5 mA  
101  
General functions  
VPOR  
Power-on reset supply  
Power-on reset active if VCC < VPOR  
2.85  
3.5  
V
voltage  
flock  
frequency range the PLL is  
able to synthesize  
64  
1024  
MHz  
Crystal oscillator; note 1  
fxtal crystal frequency  
Zxtal  
4.0  
MHz  
input impedance (absolute fxtal = 4 MHz; VCC = 4.5 V to 5.5 V; 350  
430  
value)  
Tamb = 20 °C to + 85 °C  
Pxtal  
crystal drive level  
fxtal = 4 MHz; note 2  
70  
µW  
µA  
PMOS ports: pins BS1, BS2, BS3, BS4 and BS5  
ILO(off)  
output leakage current in  
off state  
VCC = 5.5 V; VBS = 0 V  
10  
2004 Mar 22  
17  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
SYMBOL  
VDS(sat)  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
0.2  
MAX.  
UNIT  
output saturation voltage  
only corresponding buffer is on,  
sourcing 15 mA;  
0.4  
V
VDS(sat) = VCC VBS  
ADC input: pin ADC  
Vi  
ADC input voltage  
see Table 14  
VADC = VCC  
VADC = 0 V  
0
5.5  
10  
V
IIH  
IIL  
HIGH-level input current  
LOW-level input current  
µA  
µA  
10  
Address selection input: pin AS  
IIH  
IIL  
HIGH-level input current  
LOW-level input current  
VAS = 5.5 V  
VAS = 0 V  
10  
µA  
µA  
10  
Bus voltage selection input: pin BVS  
IIH  
IIL  
HIGH-level input current  
LOW-level input current  
VBVS = 5.5 V  
VBVS = 0 V  
100  
µA  
µA  
100  
Buffered output: pin XTOUT  
Vo(p-p)  
square wave AC output  
voltage (peak-to peak  
value)  
note 3  
400  
175  
mV  
Zo  
output impedance  
I2C-bus  
INPUTS: PINS SCL AND SDA  
fclk  
VIL  
clock frequency  
frequency on SCL  
VBVS = 0 V  
400  
0.75  
1.0  
1.5  
5.5  
5.5  
5.5  
10  
kHz  
V
LOW-level input voltage  
0
VBVS = 2.5 V or open-circuit  
VBVS = 5 V  
0
V
0
V
VIH  
HIGH-level input voltage  
VBVS = 0 V  
1.75  
2.3  
3.0  
V
VBVS = 2.5 V or open-circuit  
VBVS = 5 V  
V
V
IIH  
HIGH-level input current  
LOW-level input current  
VCC = 0 V; VBUS = 5.5 V  
VCC = 5.5 V; VBUS = 5.5 V  
VCC = 0 V; VBUS = 1.5 V  
VCC = 5.5 V; VBUS = 0 V  
µA  
µA  
µA  
µA  
10  
IIL  
10  
10  
OUTPUT: PIN SDA  
ILH  
leakage current  
VSDA = 5.5 V  
ISDA = 3 mA  
10  
µA  
VO(ack)  
output voltage during  
acknowledge  
0.4  
V
Charge pump output: pin CP  
Io  
output current (absolute  
see Table 9  
µA  
value)  
IL(off)  
off-state leakage current  
charge pump off (T[2:0] = 010)  
15  
0
+15  
nA  
2004 Mar 22  
18  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
SYMBOL  
Tuning voltage output: pin VT  
IL(off) leakage current when  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
tuning supply voltage = 33 V  
10  
µA  
switched-off  
Vo(cl)  
output voltage when the  
loop is closed  
charge pump off (T[2:0] = 010);  
tuning supply voltage = 33 V;  
RL = 15 kΩ  
0.3  
32.7  
V
Noise performance  
Jφ(rms)  
phase jitter (RMS value)  
integrated between 1 kHz and  
1 MHz offset from the carrier  
digital application  
hybrid application  
0.5  
0.6  
deg  
deg  
Low band mixer, including IF amplifier  
fRF  
Gv  
RF frequency  
voltage gain  
picture carrier; note 4  
43.25  
157.25 MHz  
asymmetrical IF output; RL = 75 ;  
see Fig.14  
f
RF = 44.25 MHz  
21  
21  
24  
24  
27  
27  
dB  
dB  
fRF = 157.25 MHz  
symmetrical IF output;  
RL = 1.25 k; see Fig.15  
fRF = 44.25 MHz  
fRF = 157.25 MHz  
see Figs 16 and 17  
fRF = 50 MHz  
25  
25  
28  
28  
31  
31  
dB  
dB  
NF  
Vo  
noise figure  
8.0  
8.0  
10.0  
10.0  
dB  
dB  
fRF = 150 MHz  
output voltage causing 1% asymmetrical application;  
cross modulation in  
channel  
see Fig.18; note 5  
fRF = 44.25 MHz  
107  
107  
110  
110  
dBµV  
dBµV  
fRF = 157.25 MHz  
symmetrical application;  
see Fig.19; note 5  
fRF = 44.25 MHz  
fRF = 157.25 MHz  
117  
117  
120  
120  
90  
dBµV  
dBµV  
dBµV  
Vi  
input voltage causing  
750 Hz frequency  
asymmetrical IF output  
deviation pulling in channel  
INTSO2  
Vi(lock)  
Gi  
channel SO2 beat  
VRFpix = 80 dBµV; note 6  
57  
60  
dBc  
dBµV  
mS  
input level without lock-out see Fig.25; note 7  
120  
input conductance  
fRF = 44.25 MHz; see Fig.5  
0.13  
0.11  
1.36  
fRF = 157.25 MHz; see Fig.5  
mS  
Ci  
input capacitance  
fRF = 44.25 to 157.25 MHz;  
see Fig.5  
pF  
2004 Mar 22  
19  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Mid band mixer, including IF amplifier  
fRF  
Gv  
RF frequency  
voltage gain  
picture carrier; note 4  
157.25 −  
443.25 MHz  
asymmetrical IF output;  
load = 75 ; see Fig.14  
fRF = 157.25 MHz  
fRF = 443.25 MHz  
21  
21  
24  
24  
27  
27  
dB  
dB  
symmetrical IF output;  
load = 1.25 k; see Fig.15  
fRF = 157.25 MHz  
fRF = 443.25 MHz  
see Figs 16 and 17  
fRF = 150 MHz  
25  
25  
28  
28  
31  
31  
dB  
dB  
NF  
Vo  
noise figure  
8.0  
9.0  
10.0  
11.0  
dB  
dB  
fRF = 300 MHz  
output voltage causing 1% asymmetrical application;  
cross modulation in  
channel  
see Fig.18; note 5  
fRF = 157.25 MHz  
fRF = 443.25 MHz  
107  
107  
110  
110  
dBµV  
dBµV  
symmetrical application;  
see Fig.19; note 5  
f
RF = 157.25 MHz  
117  
117  
120  
120  
80  
dBµV  
dBµV  
dBµV  
fRF = 443.25 MHz  
Vf(N+5)-1  
(N + 5) 1 MHz pulling  
fRF(wanted) = 443.25 MHz;  
fosc = 482.15 MHz;  
fRF(unwanted) = 482.25 MHz; note 8  
Vi  
input voltage causing  
750 Hz frequency  
asymmetrical IF output  
89  
dBµV  
deviation pulling in channel  
Vi(lock)  
Gi  
input level without lock-out see Fig.25; note 7  
120  
dBµV  
mS  
input conductance  
input capacitance  
see Fig.6  
see Fig.6  
0.3  
1.1  
Ci  
pF  
High band mixer, including IF amplifier  
fRF  
Gv  
RF frequency  
voltage gain  
picture carrier; note 4  
443.25 −  
863.25 MHz  
asymmetrical IF output;  
load = 75 Ω; see Fig.20  
fRF = 443.25 MHz  
fRF = 863.25 MHz  
31.5  
31.5  
34.5  
37.5  
37.5  
dB  
dB  
34.5  
symmetrical IF output;  
load = 1.25 k; see Fig.21  
fRF = 443.25 MHz  
fRF = 863.25 MHz  
35.5  
35.5  
38.5  
38.5  
41.5  
41.5  
dB  
dB  
2004 Mar 22  
20  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
SYMBOL  
NF  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
noise figure, not corrected see Fig.22  
for image  
fRF = 443.25 MHz  
6.0  
8.0  
9.0  
dB  
fRF = 863.25 MHz  
7.0  
dB  
Vo  
output voltage causing 1% asymmetrical application;  
cross modulation in  
channel  
see Fig.23; note 5  
fRF = 443.25 MHz  
fRF = 863.25 MHz  
107  
107  
110  
110  
dBµV  
dBµV  
symmetrical application;  
see Fig.24; note 5  
f
RF = 443.25 MHz  
fRF = 863.25 MHz  
input level without lock-out see Fig.26; note 7  
117  
117  
120  
120  
dBµV  
dBµV  
dBµV  
dBµV  
Vi(lock)  
120  
Vf(N+5)-1  
(N + 5) 1 MHz pulling  
fRF(wanted) = 815.25 MHz;  
80  
fosc = 854.15 MHz;  
fRF(unwanted) = 854.25 MHz; note 8  
Vi  
Zi  
input voltage causing  
750 Hz frequency  
deviation pulling in channel  
asymmetrical IF output  
79  
dBµV  
input impedance  
fRF = 443.25 MHz; see Fig.7  
(RS + jLSω)  
RS  
35  
8
LS  
nH  
fRF = 863.25 MHz; see Fig.7  
RS  
LS  
36  
8
nH  
Low band oscillator  
fosc  
oscillator frequency  
note 9  
83.15  
196.15 MHz  
fosc(V)  
oscillator frequency shift  
with supply voltage  
note 10  
110  
kHz  
fosc(T)  
oscillator frequency drift  
with temperature  
T = 25 °C; VCC = 5 V with  
compensation; note 11  
900  
95  
kHz  
Φosc(dig)  
phase noise, carrier to  
sideband noise in digital  
application  
±1 kHz frequency offset;  
fcomp = 4 MHz; see  
Figs 8, 27 and 28  
82  
dBc/Hz  
±10 kHz frequency offset; worst  
case in the frequency range; see  
Figs 9, 27 and 28  
87  
104  
100  
110  
117  
dBc/Hz  
dBc/Hz  
dBc/Hz  
±100 kHz frequency offset; worst  
case in the frequency range; see  
Figs 10, 27 and 28  
±1.4 MHz frequency offset; worst  
case in the frequency range; see  
Figs 27 and 28  
2004 Mar 22  
21  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
SYMBOL  
Φosc(hyb)  
PARAMETER  
CONDITIONS  
MIN.  
80  
TYP.  
95  
MAX.  
UNIT  
phase noise, carrier to  
sideband noise in hybrid  
application  
±1 kHz frequency offset;  
fcomp = 4 MHz; see  
Figs 11, 29, and 30  
dBc/Hz  
±10 kHz frequency offset; worst  
case in the frequency range; see  
Figs 12, 29, and 30  
85  
104  
96  
dBc/Hz  
dBc/Hz  
dBc/Hz  
mV  
±100 kHz frequency offset; worst  
case in the frequency range; see  
Figs 13, 29, and 30  
110  
117  
200  
±1.4 MHz frequency offset; worst  
case in the frequency range; see  
Figs 29 and 30  
RSCp-p  
ripple susceptibility of VCC VCC = 5 V ±5%; worst case in the  
15  
(peak-to-peak value)  
frequency range; ripple frequency  
500 kHz; note 12  
Mid band oscillator  
fosc  
oscillator frequency  
note 9  
196.15 −  
482.15 MHz  
fosc(V)  
oscillator frequency shift  
with supply voltage  
note 10  
110  
kHz  
fosc(T)  
oscillator frequency drift  
with temperature  
T = 25 °C; VCC = 5 V with  
compensation; note 11  
1500  
90  
kHz  
Φosc(dig)  
phase noise, carrier to  
sideband noise in digital  
application  
±1 kHz frequency offset;  
fcomp = 4 MHz; see  
Figs 8, 27 and 28  
85  
dBc/Hz  
±10 kHz frequency offset; worst  
case in the frequency range; see  
Figs 9, 27 and 28  
87  
104  
95  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
±100 kHz frequency offset; worst  
case in the frequency range; see  
Figs 10, 27 and 28  
110  
115  
88  
±1.4 MHz frequency offset; worst  
case in the frequency range; see  
Figs 27 and 28  
Φosc(hyb)  
phase noise, carrier to  
sideband noise in hybrid  
application  
±1 kHz frequency offset;  
fcomp = 4 MHz; see  
Figs 11, 29 and 30  
82  
85  
104  
±10 kHz frequency offset; worst  
case in the frequency range; see  
Figs 12, 29 and 30  
90  
±100 kHz frequency offset; worst  
case in the frequency range; see  
Figs 13, 29 and 30  
110  
115  
±1.4 MHz frequency offset; worst  
case in the frequency range; see  
Figs 29 and 30  
2004 Mar 22  
22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
SYMBOL  
RSCp-p  
PARAMETER  
CONDITIONS  
MIN.  
15  
TYP.  
MAX.  
UNIT  
mV  
ripple susceptibility of VCC VCC = 5 V ±5%; worst case in the  
140  
(peak-to-peak value)  
frequency range; ripple frequency  
500 kHz; note 12  
High band oscillator  
fosc  
oscillator frequency  
note 9  
482.15 −  
902.15 MHz  
fosc(V)  
oscillator frequency shift  
with supply voltage  
note 10  
300  
kHz  
fosc(T)  
oscillator frequency drift  
with temperature  
T = 25 °C; VCC = 5 V; with  
compensation; note 11  
1100  
89  
kHz  
Φosc(dig)  
phase noise, carrier to  
sideband noise in digital  
application  
±1 kHz frequency offset;  
85  
dBc/Hz  
fcomp = 4 MHz; see  
Figs 8, 27 and 28  
±10 kHz frequency offset; worst  
case in the frequency range; see  
Figs 9, 27 and 28  
87  
104  
93  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
mV  
±100 kHz frequency offset; worst  
case in the frequency range; see  
Figs 11, 27 and 28  
107  
117  
85  
±1.4 MHz frequency offset; worst  
case in the frequency range; see  
Figs 27 and 28  
Φosc(hyb)  
phase noise, carrier to  
sideband noise in hybrid  
application  
±1 kHz frequency offset;  
fcomp = 4 MHz; see  
Figs 11, 29 and 30  
80  
82  
104  
±10 kHz frequency offset; worst  
case in the frequency range; see  
Figs 12, 29 and 30  
86  
±100 kHz frequency offset; worst  
case in the frequency range; see  
Figs 13, 29 and 30  
107  
117  
40  
±1.4 MHz frequency offset; worst  
case in the frequency range; see  
Figs 29 and 30  
RSCp-p  
ripple susceptibility of VCC VCC = 5 V ±5%; worst case in the  
15  
(peak-to-peak value)  
frequency range; ripple frequency  
500 kHz; note 12  
IF amplifier  
Zo  
output impedance  
asymmetrical IF output  
RS at 38.9 MHz  
50  
LS at 38.9 MHz  
5.4  
nH  
symmetrical IF output  
RS at 38.9 MHz  
100  
LS at 38.9 MHz  
10.4  
nH  
2004 Mar 22  
23  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Rejection at the IF output (IF amplifier in asymmetrical mode)  
INTdiv  
divider interferences in  
IF level  
worst case; note 13  
20  
dBµV  
dBc  
INTxtal  
INTf(step)  
crystal oscillator  
interferences rejection  
VIF = 100 dBµV; worst case in the  
frequency range; note 14  
50  
50  
step frequency rejection  
measured in digital application for  
DVB-T; fstep = 166.67 kHz;  
IF = 36.125 MHz; note 15  
dBc  
measured in hybrid application for  
DVB-T; fstep = 166.67 kHz;  
IF = 36.125 MHz; note 15  
57  
57  
57  
45  
dBc  
measured in hybrid application for  
PAL; fstep = 62.5 kHz;  
IF = 38.9 MHz; note 15  
dBc  
measured in hybrid application for  
FM; fstep = 50 kHz; IF = 38.9 MHz;  
note 15  
dBc  
INTXTH  
crystal oscillator  
harmonics in the  
IF frequency  
note 16  
dBµV  
AGC output (IF amplifier in asymmetrical mode): pin AGC  
AGCTOP(p-p)  
AGC take-over point  
(peak-to-peak level)  
bits AL[2:0] = 000  
122.5 124  
125.5 dBµV  
Isource(fast)  
Isource(slow)  
Vo  
source current fast  
source current slow  
output voltage  
7.5  
185  
3.45  
0
9.0  
220  
3.55  
11.6  
280  
3.8  
µA  
nA  
V
maximum level  
minimum level  
bits AL[2:0] = 111  
0.1  
V
Vo(dis)  
output voltage with AGC  
disabled  
3.45  
3.55  
3.8  
V
VRF(slip)  
RF voltage range to switch  
the AGC from active to not  
active mode  
0.5  
dB  
VRML  
VRMH  
ILO  
low threshold AGC output AGC bit = 0 or AGC not active  
voltage  
0
2.8  
3.8  
+50  
V
high threshold AGC output AGC bit = 1 or AGC active  
voltage  
3.2  
3.55  
V
leakage current  
bits AL[2:0] = 110; 0 < VAGC < VCC 50  
nA  
2004 Mar 22  
24  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
Notes  
1. Important recommendation: to obtain the performances mentioned in this specification, the serial resistance of the  
crystal used with this oscillator must never exceed 120 . The crystal oscillator is guaranteed to operate for any  
supply voltage between 4.5 V and 5.5 V and at any temperature between 20 °C and +85 °C  
2. The drive level is expected with a 50 series resistance of the crystal at series resonance. The drive level will be  
different with other series resistance values.  
3. The VXTOUT level is measured when the pin XTOUT is loaded with 5 kin parallel with 10 pF.  
4. The RF frequency range is defined by the oscillator frequency range and the intermediate frequency (IF).  
5. The 1% cross modulation performance is measured with AGC detector turned off (AGC bits set to 110).  
6. Channel SO2 beat is the interfering product of fRFpix, fIF and fosc of channel SO2; fbeat = 37.35 MHz. The possible  
mechanisms are: fosc 2 × fIFpix or 2 × fRFpix fosc  
.
7. The IF output signal stays stable within the range of the step frequency for any RF input level up to 120 dBµV.  
8. (N + 5) 1 MHz pulling is the input level of channel N + 5, at frequency 1 MHz lower, causing 100 kHz FM sidebands  
30 dB below the wanted carrier.  
9. Limits are related to the tank circuits used in Figs 27 and 28 for digital application or Figs 29 and 30 for hybrid  
application. Frequency bands may be adjusted by the choice of external components.  
10. The frequency shift is defined as a change in oscillator frequency when the supply voltage varies from  
VCC = 5 to 4.5 V or from VCC = 5 to 5.25 V. The oscillator is free running during this measurement.  
11. The frequency drift is defined as a change in oscillator frequency when the ambient temperature varies from  
Tamb = 25 to 50 °C or from Tamb = 25 to 0 °C. The oscillator is free running during this measurement.  
12. The supply ripple susceptibility is measured in the measurement circuit according to Figs 27, 28, 29 and 30 using a  
spectrum analyser connected to the IF output. An unmodulated RF signal is applied to the test board RF input. A  
sinewave signal with a frequency of 500 kHz is superimposed onto the supply voltage. The amplitude of this ripple  
signal is adjusted to bring the 500 kHz sidebands around the IF carrier to a level of 53.5 dB with respect to the  
carrier.  
13. This is the level of divider interferences close to the IF frequency. For example channel S3: fosc = 158.15 MHz,  
14 fosc = 39.5375 MHz. The low and mid band inputs must be left open (i.e. not connected to any load or cable); the  
high band inputs are connected to an hybrid.  
14. Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator.  
15. The step frequency rejection is the level of step frequency sidebands (e.g. 166.67 kHz) related to the carrier.  
16. This is the level of the 9th and 11th harmonics of the 4 MHz crystal oscillator into the IF output.  
2004 Mar 22  
25  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
1
2
0.5  
0.2  
5
10  
10  
j  
+ j  
10  
5
2
1
0.5  
0.2  
40 MHz  
0
200 MHz  
5
0.2  
2
0.5  
MCE160  
1
Fig.5 Input admittance (S11) of the low band mixer (40 to 200 MHz); Yo = 20 mS.  
1
2
0.5  
0.2  
5
10  
10  
j  
+ j  
10  
5
2
1
0.5  
0.2  
100 MHz  
0
500 MHz  
5
0.2  
2
0.5  
MCE161  
1
Fig.6 Input admittance (S11) of the mid band mixer (100 to 500 MHz); Yo = 20 mS.  
2004 Mar 22  
26  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
1
0.5  
2
900 MHz  
0.2  
5
400 MHz  
0.5  
10  
+ j  
j  
0.2  
1
2
5
10  
0
10  
5
0.2  
2
0.5  
MCE165  
1
Fig.7 Input impedance (S11) of the high band mixer (400 to 900 MHz); Zo = 100 .  
FCE915  
80  
Φ
osc  
(dBc/Hz)  
85  
90  
95  
100  
40  
140  
240  
340  
440  
540  
640  
740  
840  
940  
(MHz)  
f
RF  
Fig.8 1 kHz phase noise typical performance in digital application (Figs 27 and 28).  
27  
2004 Mar 22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
FCE916  
80  
Φ
osc  
(dBc/Hz)  
85  
90  
95  
100  
105  
110  
40  
140  
240  
340  
440  
540  
640  
740  
840  
940  
(MHz)  
f
RF  
Fig.9 10 kHz phase noise typical performance in digital application (Figs 27 and 28).  
FCE917  
100  
Φ
osc  
(dBc/Hz)  
105  
110  
115  
120  
40  
140  
240  
340  
440  
540  
640  
740  
840  
940  
(MHz)  
f
RF  
Fig.10 100 kHz phase noise typical performance in digital application (Figs 27 and 28).  
28  
2004 Mar 22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
FCE918  
80  
Φ
osc  
(dBc/Hz)  
85  
90  
95  
100  
105  
40  
140  
240  
340  
440  
540  
640  
740  
840  
940  
(MHz)  
f
RF  
Fig.11 1 kHz phase noise typical performance in hybrid application (Figs 29 and 30).  
FCE919  
80  
Φ
osc  
(dBc/Hz)  
85  
90  
95  
100  
105  
40  
140  
240  
340  
440  
540  
640  
740  
840  
940  
(MHz)  
f
RF  
Fig.12 10 kHz phase noise typical performance in hybrid application (Figs 29 and 30).  
29  
2004 Mar 22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
FCE920  
100  
Φ
osc  
(dBc/Hz)  
105  
110  
115  
120  
40  
140  
240  
340  
440  
540  
640  
740  
840  
940  
(MHz)  
f
RF  
Fig.13 100 kHz phase noise typical performance in hybrid application (Figs 29 and 30).  
signal  
LBIN  
or  
MBIN  
source  
50 Ω  
27 Ω  
IFOUTA  
spectrum  
analyzer  
DUT  
50  
V
e
V
V'  
meas  
50 Ω  
meas  
V
o
V
i
IFOUTB  
RMS  
voltmeter  
V
FCE747  
CCA  
Zi >> 50 Ω → Vi = 2 × Vmeas = 70 dBµV.  
Vi = Vmeas + 6 dB = 70 dBµV.  
Vo = V’meas + 3.75 dB.  
Vo  
Gv = 20 log  
.
------  
DVB-T and PAL.  
IF = 38.9 MHz.  
Vi  
Fig.14 Gain (GV) measurement in low and mid band with asymmetrical IF output.  
30  
2004 Mar 22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
signal  
50 source  
LBIN  
or  
transformer  
IFOUTA  
spectrum  
MBIN  
analyzer  
V
DUT  
50  
N1  
N2  
V'  
C
meas  
e
50 Ω  
V
V
i
V
o
meas  
IFOUTB  
RMS  
voltmeter  
FCE748  
Zi >> 50 Ω → Vi = 2 × Vmeas = 70 dBµV.  
Vi = Vmeas + 6 dB = 70 dBµV.  
Vo = V’meas + 15 dB (transformer ratio N2/N1 = 5 and transformer loss).  
N1 = 10 turns.  
N2 = 2 turns.  
N1/N2 = 5.  
Vo  
DVB-T and PAL.  
IF = 38.9 MHz.  
Gv = 20 log  
.
------  
Vi  
Fig.15 Gain (GV) measurement in low and mid band with symmetrical IF output.  
NOISE  
FIGURE  
METER  
LBIN  
or  
MBIN  
27 Ω  
NOISE  
SOURCE  
BNC  
RIM  
IFOUTA  
INPUT  
CIRCUIT  
DUT  
IFOUTB  
V
FCE750  
CCA  
NF = NFmeas loss of input circuit (dB).  
Fig.16 Noise figure (NF) measurement in low and mid band with asymmetrical IF output.  
31  
2004 Mar 22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
BNC  
connector  
BNC  
connector  
Cs  
TL  
TL  
Cc  
Cp  
Cc  
Cp  
Ls  
to the IC  
mixer input  
to the IC  
mixer input  
Lp  
Lp  
MCE452  
Schematic A.  
Schematic B.  
For fRF = 50 MHz (Schematic A)  
For fRF = 300 MHz (Schematic B)  
Loss = 0 dB.  
Loss = 0.5 dB.  
Cs = 12 pF in parallel with a 0.8 pF to 8 pF trimmer.  
Cp = 18 pF in parallel with a 0.8 pF to 8 pF trimmer.  
Cc = 4.7 nF.  
Cp = 8.2 pF in parallel with a 0.8 pF to 8 pF trimmer.  
Cc = 4.7 nF.  
Ls = 2 turns, 1.5 mm, wire = 0.4 mm air coil.  
Lp = 2 turns, 1.5 mm, wire = 0.4 mm air coil.  
TL = 50 semi rigid cable, length = 75 mm.  
Lp = 8 turns, 5 mm, wire = 0.4 mm air coil  
TL = 50 semi rigid cable, length = 75 mm.  
For fRF = 150 MHz (Schematic A)  
Loss = 0 dB.  
Cs = 0.8 pF to 8 pF trimmer.  
Cp = 0.4 pF to 2.5 pF trimmer.  
Cc = 4.7 nF.  
Lp = 4 turns, 4.5 mm, wire = 0.4 mm air coil  
TL = 50 semi rigid cable, length = 75 mm.  
Fig.17 Input circuit for optimum noise figure in low and mid band.  
FILTER  
AM = 30%  
10 dB  
1 kHz  
LBIN  
or  
MBIN  
attenuator  
50  
27 Ω  
A
C
IFOUTA  
modulation  
analyzer  
unwanted  
signal  
source  
e
u
38.9 MHz  
V
o
HYBRID  
DUT  
V
meas  
50 Ω  
V
50 Ω  
IFOUTB  
B
D
wanted  
signal  
source  
50  
e
w
RMS  
voltmeter  
V
CCA  
fce749  
Vo = Vmeas + 3.75 dB.  
Wanted signal source at fRFpix is 80 dBµV.  
Unwanted output signal at fsnd  
.
The level of unwanted signal is measured by causing 1% AM modulation in  
the wanted signal.  
Fig.18 Cross modulation measurement in low and mid band with asymmetrical IF output.  
32  
2004 Mar 22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
FILTER  
6 dB  
AM = 30%  
attenuator  
1 kHz  
LBIN  
or  
MBIN  
50 Ω  
transformer  
A
IFOUTA  
C
modulation  
analyzer  
unwanted  
signal  
e
u
38.9 MHz  
source  
HYBRID  
C
N2  
DUT  
N1  
o
V
V'  
meas  
50 Ω  
V
50 Ω  
B
D
IFOUTB  
wanted  
signal  
source  
50  
e
w
RMS  
voltmeter  
fce793  
V’meas = Vo (transformer ratio N1/N2 = 5 and loss).  
Wanted signal source at fRFpix is 80 dBµV.  
N1 = 10 turns.  
N2 = 2 turns.  
N1/N2 = 5.  
The level of unwanted signal Vo at fsnd is measured by causing 1%  
AM modulation in the wanted output signal.  
Fig.19 Cross modulation measurement in low and mid band with symmetrical IF output.  
signal  
source  
50 Ω  
27 Ω  
A
HBIN1  
HBIN2  
C
IFOUTA  
spectrum  
analyzer  
DUT  
50  
HYBRID  
V
V
V
e
50 Ω  
meas  
i
V
o
IFOUTB  
B
D
50  
RMS  
voltmeter  
V
CCA  
FCE751  
Loss in hybrid = 1 dB.  
Vi = Vmeas loss = 70 dBµV.  
Vo = V’meas + 3.75 dB.  
Vo  
G = 20 log  
v
.
------  
DVB-T and PAL.  
IF = 38.9 MHz.  
Vi  
Fig.20 Gain (GVa) measurement in high band with asymmetrical IF output.  
33  
2004 Mar 22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
signal  
source  
50 Ω  
transformer  
C
D
HBIN1  
HBIN2  
IFOUTA  
A
spectrum  
analyzer  
50  
DUT  
HYBRID  
V
C
N1  
N2  
V'  
V
e
V
meas  
50 Ω  
i
V
o
meas  
B
IFOUTB  
50  
RMS  
voltmeter  
FCE752  
Loss in hybrid = 1 dB.  
Vi = Vmeas loss = 70 dBµV.  
Vo = V’meas + 15 dB (transformer ratio N2/N1 = 5 and transformer  
loss).  
Vo  
DVB-T and PAL.  
IF = 38.9 MHz.  
G = 20 log  
v
.
------  
Vi  
Fig.21 Gain (GVs) measurement in high band with symmetrical IF output.  
NOISE  
FIGURE  
METER  
27 Ω  
NOISE  
SOURCE  
A
HBIN1 IFOUTA  
C
HYBRID  
DUT  
B
D
IFOUTB  
HBIN2  
50  
V
FCE753  
CCA  
Loss in hybrid = 1 dB.  
NF = NFmeas loss.  
Fig.22 Noise figure (NF) measurement in high band with asymmetrical IF output.  
34  
2004 Mar 22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
FILTER  
AM = 30%  
10 dB  
1 kHz  
attenuator  
50 Ω  
27 Ω  
A
A
C
C
HBIN1  
IFOUTA  
IFOUTB  
modulation  
analyzer  
unwanted  
signal  
source  
e
u
38.9 MHz  
HYBRID  
HYBRID  
DUT  
V
o
V
50 Ω  
V
meas  
50 Ω  
B
D
B
D
HBIN2  
wanted  
signal  
source  
50  
50  
e
w
RMS  
voltmeter  
V
CCA  
fce754  
Wanted signal source at fRFpix is 70 dBµV.  
Unwanted output signal at fsnd  
.
The level of unwanted signal is measured by causing 1% AM modulation  
in the wanted signal.  
Fig.23 Cross modulation measurement in high band with asymmetrical IF output.  
FILTER  
6 dB  
attenuator  
AM = 30%  
1 kHz  
transformer  
50 Ω  
A
C
A
C
HBIN1 IFOUTA  
DUT  
modulation  
unwanted  
signal  
source  
analyzer  
e
u
38.9 MHz  
HYBRID  
HYBRID  
V'  
meas  
N1  
N2  
C
V
50 Ω  
V
o
50 Ω  
B
D
D
HBIN2 IFOUTB  
B
wanted  
signal  
source  
50  
50  
e
w
RMS  
voltmeter  
fce794  
N1 = 10 turns.  
N2 = 2 turns.  
N1 / N2 = 5.  
V’meas = Vo (transformer ratio N1/N2 = 5 and loss).  
Fig.24 Cross modulation measurement in high band with symmetrical IF output.  
35  
2004 Mar 22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
signal  
source  
LBIN  
or  
27 Ω  
50 Ω  
IFOUTA  
spectrum  
analyzer  
MBIN  
50  
DUT  
e
V
V
50 Ω  
meas  
IFOUTB  
RMS  
voltmeter  
V
CCA  
FCE755  
Zi >> 50 Ω → Vi = 2 × Vmeas  
.
Vi = Vmeas + 6 dB.  
Fig.25 Maximum RF input level without lock-out in low and mid band with asymmetrical IF output.  
signal  
source  
27  
50 Ω  
A
HBIN1  
HBIN2  
IFOUTA  
IFOUTB  
C
spectrum  
analyzer  
DUT  
HYBRID  
50  
V
V
V
50 Ω  
e
i
meas  
B
D
50  
RMS  
voltmeter  
V
FCE756  
CCA  
Loss in hybrid = 1 dB.  
Vi = Vmeas loss.  
Fig.26 Maximum RF input level without lock-out in high band with asymmetrical IF output.  
36  
2004 Mar 22  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
The TDA6650TT, TDA6651TT PLL loop stability is  
guaranteed in the configuration of Figs. 27, 28, 29 and 30.  
In this configuration, the external supply source is 30 V  
minimum, the pull-up resistor R19, is 15 kand all of the  
local oscillators are aligned to operate at a maximum  
tuning voltage of 26 V. If the configuration is changed,  
there might be an impact on the loop stability.  
V
DC VT  
Idelivered  
Where  
=
> ICP  
-----------------------  
Rpu  
I
delivered is the delivered current  
VDC is the supply source voltage or DC-to-DC converter  
output voltage  
For any other configurations, a stability analysis must be  
performed. The conventional PLL AC model (cf. SIMPATA  
Philips software) used for the stability analysis, is valid  
provided the external source (DC supply source or  
DC-to-DC converter) is able to deliver a minimum current  
that is equal to the charge pump current in use.  
VT is the tuning voltage  
Rpu is the pull-up resistor between the DC supply source  
(or the DC-to-DC converter output) and the tuning line  
(R19 in Figs. 27 to 30)  
ICP is the charge pump current in use.  
The delivered current can be simply calculated with the  
following formula:  
2004 Mar 22  
37  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
The pin numbers in parenthesis  
represent the TDA6651TT.  
J4  
J1  
J2  
J3  
LOW  
HIGH1 HIGH2  
MID  
C7  
L3  
R1  
140 nH  
R08304  
12  
1.8 pF  
N750  
C6  
C5  
D1  
C4  
4.7  
nF  
C3  
4.7  
nF  
C1  
4.7  
nF  
C2  
4.7  
nF  
47 pF  
N750  
1.5 pF BB182  
N750  
R2  
6
4
1 kΩ  
2
6t  
2
L4  
T0K0;  
500 nF  
*
C34  
R3  
HBIN1  
LOSCIN  
1 (38)  
2 (37)  
3 (36)  
4 (35)  
5 (34)  
6 (33)  
7 (32)  
8 (31)  
9 (30)  
(1) 38  
(2) 37  
5.6 kΩ  
120 pF  
N750  
HBIN2  
MBIN  
LBIN  
LOSCOUT  
OSCGND  
MOSCIN2  
MOSCIN1  
HOSCIN2  
HOSCOUT2  
HOSCOUT1  
HOSCIN1  
IFGND  
1
3
D2  
BB178  
R4  
L1  
25 nH  
(3) 36  
C27  
C26  
(4) 35  
C33  
RFGND  
IFFIL1  
IFFIL2  
BS4  
(5) 34  
12 pF  
12 pF  
5.6 kΩ  
120 pF  
N750  
(6) 33  
(7) 32  
C11 1 pF  
TDA6650TT  
(TDA6651TT)  
(8) 31  
AGC  
AGC  
TP1  
(9) 30  
N750  
D3  
BB179  
BS3  
10 (29)  
11 (28)  
12 (27)  
13 (26)  
14 (25)  
15 (24)  
16 (23)  
17 (22)  
18 (21)  
19 (20)  
(10) 29  
(11) 28  
(12) 27  
(13) 26  
(14) 25  
(15) 24  
(16) 23  
(17) 22  
(18) 21  
(19) 20  
C28  
150 nF  
C12 1 pF  
BS2  
IFOUTA  
L2  
13 nH  
R01255  
R5  
BS1  
IFOUTB  
N750  
C13 1 pF  
V
BVS  
D4  
CCA  
R20  
5.6 kΩ  
C17  
ADC/BS5  
SCL  
PLLGND  
15 pF  
N470  
R8  
1 kΩ  
C18  
V
N750  
CCD  
V
CC  
2.7 nF  
D5  
D6  
D7  
D8  
SDA  
CP  
C14 1 pF  
R21  
R6  
AS  
VT  
1 kΩ  
27 Ω  
5.6 kΩ  
N750  
XTOUT  
XTAL1  
n.c.  
XTAL2  
R22  
1 kΩ  
V
CC  
Y1  
C19  
18 pF  
R9  
330  
R10  
330  
R11  
330  
V
CC  
C23  
4.7 nF  
R7  
1 kΩ  
R23  
C21  
100 nF  
4 MHz  
1 kΩ  
C16  
4.7 nF  
C15  
4.7 nF  
5 V bus  
ST2  
V
R24  
ADC  
5 V bus  
C20  
330 pF  
R13  
6.8 kΩ  
1 kΩ  
R27  
3.3  
kΩ  
R28  
3.3  
kΩ  
V
CC  
CC  
30 V  
R14  
SCL  
1
SDA AS  
C29  
4.7 nF  
ST1  
1 kΩ  
R19  
15 kΩ  
R26  
27 Ω  
C31  
10  
µF  
C32  
10  
µF  
C30  
10  
µF  
1
2 3 4  
J5  
J8  
2
3
4
5
6
J6  
J7  
IF out  
test  
30 V  
5 V bus  
MCE162  
Fig.27 Measurement circuit for digital application, with asymmetrical IF output and DVB-T compliant loop filter.  
ahdnbok,uflapegwidt  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
J4  
LOW  
J3  
J1  
J2  
C7  
L3  
R1  
MID HIGH1 HIGH2  
140 nH  
R08304  
12  
1.8 pF  
N750  
C6  
C5  
D1  
C4  
4.7  
nF  
C3  
4.7  
nF  
C1  
4.7  
nF  
C2  
4.7  
nF  
47 pF  
N750  
1.5 pF BB182  
N750  
R2  
6
4
1 kΩ  
2
6t  
2
L4  
T0K0;  
500 nF  
*
C34  
R3  
HBIN1  
LOSCIN  
1 (38)  
2 (37)  
3 (36)  
4 (35)  
5 (34)  
6 (33)  
7 (32)  
8 (31)  
9 (30)  
(1) 38  
(2) 37  
5.6 kΩ  
120 pF  
N750  
HBIN2  
MBIN  
LBIN  
LOSCOUT  
OSCGND  
MOSCIN2  
MOSCIN1  
HOSCIN2  
HOSCOUT2  
HOSCOUT1  
HOSCIN1  
IFGND  
1
3
D2  
BB178  
R4  
L1  
25 nH  
(3) 36  
C27  
C26  
(4) 35  
C33  
RFGND  
IFFIL1  
IFFIL2  
BS4  
(5) 34  
12 pF  
12 pF  
5.6 kΩ  
120 pF  
N750  
(6) 33  
(7) 32  
C11 1 pF  
TDA6650TT  
(TDA6651TT)  
(8) 31  
AGC  
AGC  
TP1  
(9) 30  
N750  
D3  
BB179  
BS3  
10 (29)  
11 (28)  
12 (27)  
13 (26)  
14 (25)  
15 (24)  
16 (23)  
17 (22)  
18 (21)  
19 (20)  
(10) 29  
(11) 28  
(12) 27  
(13) 26  
(14) 25  
(15) 24  
(16) 23  
(17) 22  
(18) 21  
(19) 20  
C28  
150 nF  
C12 1 pF  
BS2  
IFOUTA  
L2  
13 nH  
R01255  
R5  
BS1  
IFOUTB  
N750  
C13 1 pF  
V
BVS  
D4  
CCA  
R20  
5.6 kΩ  
C17  
ADC/BS5  
SCL  
PLLGND  
15 pF  
N470  
R8  
1 kΩ  
C18  
V
N750  
CCD  
V
CC  
2.7 nF  
D5  
D6  
D7  
D8  
SDA  
CP  
C14 1 pF  
R21  
R6  
AS  
VT  
1 kΩ  
27 Ω  
5.6 kΩ  
N750  
XTOUT  
XTAL1  
n.c.  
XTAL2  
R22  
C24  
4.7 nF  
C23  
4.7 nF  
R7  
1 kΩ  
1 kΩ  
C21  
100 nF  
Y1  
C19  
18 pF  
R9  
330  
R10  
330  
R11  
330  
V
CC  
R23  
C25  
4 MHz  
C20  
330 pF  
1 kΩ  
R13  
6.8 kΩ  
C16  
4.7 nF  
C15  
4.7 nF  
5 V bus  
12 pF  
ST2  
V
R24  
ADC  
5 V bus  
1 kΩ  
R27  
3.3  
kΩ  
R28  
3.3  
kΩ  
1
2
3
4
V
CC  
CC  
30 V  
R14  
SCL  
1
SDA AS  
C29  
4.7 nF  
ST1  
1 kΩ  
6
C31  
10  
C32  
10  
C30  
10  
1
2 3 4  
J5  
J8  
4 5  
R19  
15 kΩ  
R26  
0 Ω  
2
3
6
µF  
µF  
µF  
J7  
J6  
test  
IF out  
30 V  
fce875  
5 V bus  
The pin numbers in parenthesis represent  
the TDA6651TT.  
Fig.28 Measurement circuit for digital application, with symmetrical IF output and DVB-T compliant loop filter.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
The pin numbers in parenthesis  
represent the TDA6651TT.  
J4  
LOW  
J3  
J1  
J2  
C7  
L3  
R1  
MID HIGH1 HIGH2  
140 nH  
R08304  
12  
1.8 pF  
N750  
C6  
C5  
D1  
C4  
4.7  
nF  
C3  
4.7  
nF  
C1  
4.7  
nF  
C2  
4.7  
nF  
47 pF  
N750  
1.5 pF BB182  
N750  
R2  
6
4
1 kΩ  
2
6t  
2
L4  
T0K0;  
500 nF  
*
C34  
R3  
HBIN1  
LOSCIN  
1 (38)  
2 (37)  
3 (36)  
4 (35)  
5 (34)  
6 (33)  
7 (32)  
8 (31)  
9 (30)  
(1) 38  
(2) 37  
5.6 kΩ  
120 pF  
N750  
HBIN2  
MBIN  
LBIN  
LOSCOUT  
OSCGND  
MOSCIN2  
MOSCIN1  
HOSCIN2  
HOSCOUT2  
HOSCOUT1  
HOSCIN1  
IFGND  
1
3
D2  
BB178  
R4  
L1  
25 nH  
(3) 36  
C27  
C26  
(4) 35  
C33  
RFGND  
IFFIL1  
IFFIL2  
BS4  
(5) 34  
12 pF  
12 pF  
5.6 kΩ  
120 pF  
N750  
(6) 33  
(7) 32  
C11 1 pF  
TDA6650TT  
(TDA6651TT)  
(8) 31  
AGC  
AGC  
TP1  
(9) 30  
N750  
D3  
BB179  
BS3  
10 (29)  
11 (28)  
12 (27)  
13 (26)  
14 (25)  
15 (24)  
16 (23)  
17 (22)  
18 (21)  
19 (20)  
(10) 29  
(11) 28  
(12) 27  
(13) 26  
(14) 25  
(15) 24  
(16) 23  
(17) 22  
(18) 21  
(19) 20  
C28  
150 nF  
C12 1 pF  
BS2  
IFOUTA  
L2  
13 nH  
R01255  
R5  
BS1  
IFOUTB  
N750  
C13 1 pF  
V
BVS  
D4  
CCA  
R20  
5.6 kΩ  
C17  
ADC/BS5  
SCL  
PLLGND  
15 pF  
N470  
R8  
1 kΩ  
C18  
V
N750  
CCD  
V
CC  
4.7 nF  
D5  
D6  
D7  
D8  
SDA  
CP  
C14 1 pF  
R21  
R6  
AS  
VT  
1 kΩ  
27 Ω  
5.6 kΩ  
N750  
XTOUT  
XTAL1  
n.c.  
XTAL2  
R22  
1 kΩ  
V
CC  
Y1  
C19  
18 pF  
R9  
330  
R10  
330  
R11  
330  
V
CC  
C23  
4.7 nF  
R7  
1 kΩ  
R23  
C21  
100 nF  
4 MHz  
1 kΩ  
C16  
4.7 nF  
C15  
4.7 nF  
5 V bus  
ST2  
V
R24  
ADC  
5 V bus  
C20  
2.7 nF  
R13  
1.8 kΩ  
1 kΩ  
R27  
3.3  
kΩ  
R28  
3.3  
kΩ  
V
CC  
CC  
30 V  
R14  
SCL  
1
SDA AS  
C29  
4.7 nF  
ST1  
1 kΩ  
R19  
15 kΩ  
R26  
27 Ω  
C31  
10  
µF  
C32  
10  
µF  
C30  
10  
µF  
1
2 3 4  
J5  
J8  
2
3
4
5
6
J6  
J7  
IF out  
test  
30 V  
FCE909  
5 V bus  
Fig.29 Measurement circuit for hybrid application, with asymmetrical IF output and loop filter for PAL and DVB-T standards.  
ahdnbok,uflapegwidt  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
J4  
LOW  
J3  
J1  
J2  
C7  
L3  
R1  
MID HIGH1 HIGH2  
140 nH  
R08304  
12 Ω  
1.8 pF  
N750  
C6  
C5  
D1  
C4  
4.7  
nF  
C3  
4.7  
nF  
C1  
4.7  
nF  
C2  
4.7  
nF  
47 pF  
N750  
1.5 pF BB182  
N750  
R2  
6
4
1 kΩ  
2
6t  
2
L4  
T0K0;  
500 nF  
*
C34  
R3  
HBIN1  
LOSCIN  
1 (38)  
2 (37)  
3 (36)  
4 (35)  
5 (34)  
6 (33)  
7 (32)  
8 (31)  
9 (30)  
(1) 38  
(2) 37  
5.6 kΩ  
120 pF  
N750  
HBIN2  
MBIN  
LBIN  
LOSCOUT  
OSCGND  
MOSCIN2  
MOSCIN1  
HOSCIN2  
HOSCOUT2  
HOSCOUT1  
HOSCIN1  
IFGND  
1
3
D2  
BB178  
R4  
L1  
25 nH  
(3) 36  
C27  
C26  
(4) 35  
C33  
RFGND  
IFFIL1  
IFFIL2  
BS4  
(5) 34  
12 pF  
12 pF  
5.6 kΩ  
120 pF  
N750  
(6) 33  
(7) 32  
C11 1 pF  
TDA6650TT  
(TDA6651TT)  
(8) 31  
AGC  
AGC  
TP1  
(9) 30  
N750  
D3  
BB179  
BS3  
10 (29)  
11 (28)  
12 (27)  
13 (26)  
14 (25)  
15 (24)  
16 (23)  
17 (22)  
18 (21)  
19 (20)  
(10) 29  
(11) 28  
(12) 27  
(13) 26  
(14) 25  
(15) 24  
(16) 23  
(17) 22  
(18) 21  
(19) 20  
C28  
150 nF  
C12 1 pF  
BS2  
IFOUTA  
L2  
13 nH  
R01255  
R5  
BS1  
IFOUTB  
N750  
C13 1 pF  
V
BVS  
D4  
CCA  
R20  
5.6 kΩ  
C17  
ADC/BS5  
SCL  
PLLGND  
15 pF  
N470  
R8  
1 kΩ  
C18  
V
N750  
CCD  
V
CC  
2.7 nF  
D5  
D6  
D7  
D8  
SDA  
CP  
C14 1 pF  
R21  
R6  
AS  
VT  
1 kΩ  
27 Ω  
5.6 kΩ  
N750  
XTOUT  
XTAL1  
n.c.  
XTAL2  
R22  
C24  
4.7 nF  
C23  
4.7 nF  
R7  
1 kΩ  
1 kΩ  
C21  
100 nF  
Y1  
C19  
18 pF  
R9  
330  
R10  
330  
R11  
330  
V
CC  
R23  
C25  
4 MHz  
C20  
2.7 nF  
1 kΩ  
R13  
6.8 kΩ  
C16  
4.7 nF  
C15  
4.7 nF  
5 V bus  
12 pF  
ST2  
V
R24  
ADC  
5 V bus  
1 kΩ  
R27  
3.3  
kΩ  
R28  
3.3  
kΩ  
1
2
3
4
V
CC  
CC  
30 V  
R14  
SCL  
1
SDA AS  
C29  
4.7 nF  
ST1  
1 kΩ  
6
C31  
10  
C32  
10  
C30  
10  
1
2 3 4  
J5  
J8  
4 5  
R19  
15 kΩ  
R26  
0 Ω  
2
3
6
µF  
µF  
µF  
J7  
J6  
test  
IF out  
30 V  
fce910  
5 V bus  
The pin numbers in parenthesis represent  
the TDA6651TT.  
Fig.30 Measurement circuit for hybrid application, with symmetrical IF output and loop filter for PAL and DVB-T standards.  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
13 INTERNAL PIN CONFIGURATION  
AVERAGE DC VOLTAGE VERSUS  
PIN  
BAND SELECTION  
MID HIGH  
SYMBOL  
DESCRIPTION(1)  
TDA6650TT TDA6651TT  
LOW  
n.a.  
HBIN1  
HBIN2  
1
2
38  
37  
n.a  
n.a  
1.0 V  
1.0 V  
n.a.  
n.a.  
(38)  
1
2 (37)  
FCE899  
MBIN  
3
4
5
36  
35  
34  
1.8 V  
n.a.  
n.a.  
n.a  
(36)  
3
FCE901  
LBIN  
1.8 V  
(35)  
4
FCE898  
RFGND  
5
(34)  
FCE897  
IFFIL1  
IFFIL2  
6
7
33  
32  
3.7 V  
3.7 V  
3.7 V  
3.7 V  
3.7 V  
3.7 V  
7
(32)  
(33)  
6
FCE896  
2004 Mar 22  
42  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
AVERAGE DC VOLTAGE VERSUS  
PIN  
BAND SELECTION  
MID  
SYMBOL  
DESCRIPTION(1)  
TDA6650TT TDA6651TT  
LOW  
high Z or  
CC VDS  
HIGH  
BS4  
8
31  
high Z or  
CC VDS  
high Z or  
VCC VDS  
V
V
8
(31)  
FCE895  
AGC  
9
30  
0 V or  
3.5 V  
0 V or  
3.5 V  
0 V or  
3.5 V  
9
(30)  
FCE907  
BS3  
BS2  
10  
11  
29  
28  
high Z or  
high Z or  
high Z or  
VCC VDS  
VCC VDS  
VCC VDS  
10 (29)  
FCE893  
high Z  
VCC VDS high Z  
11 (28)  
FCE892  
BS1  
12  
27  
VCC VDS high Z  
high Z  
12 (27)  
FCE891  
2004 Mar 22  
43  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
AVERAGE DC VOLTAGE VERSUS  
PIN  
BAND SELECTION  
MID  
SYMBOL  
DESCRIPTION(1)  
TDA6650TT TDA6651TT  
LOW  
2.5 V  
HIGH  
BVS  
13  
26  
2.5 V  
2.5 V  
(26) 13  
MCE163  
ADC/BS5  
14  
25  
VCEsat or  
high Z  
VCEsat or  
high Z  
VCEsat or  
high Z  
(25) 14  
FCE887  
SCL  
15  
24  
high Z  
high Z  
high Z  
(24) 15  
FCE889  
SDA  
16  
23  
high Z  
high Z  
high Z  
(23) 16  
FCE888  
AS  
17  
22  
1.25 V  
1.25 V  
1.25 V  
(22) 17  
FCE890  
2004 Mar 22  
44  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
AVERAGE DC VOLTAGE VERSUS  
PIN  
BAND SELECTION  
MID HIGH  
SYMBOL  
DESCRIPTION(1)  
TDA6650TT TDA6651TT  
LOW  
3.45 V  
XTOUT  
18  
21  
3.45 V  
3.45 V  
18 (21)  
MCE164  
XTAL1  
XTAL2  
19  
20  
20  
19  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
20 (19)  
19 (20)  
FCE883  
n.c.  
VT  
21  
22  
18  
17  
n.a.  
VVT  
not connected  
VVT  
VVT  
22 (17)  
FCE884  
CP  
23  
16  
1.8 V  
1.8 V  
1.8 V  
23 (16)  
FCE885  
VCCD  
24  
15  
5 V  
5 V  
5 V  
2004 Mar 22  
45  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
AVERAGE DC VOLTAGE VERSUS  
PIN  
BAND SELECTION  
MID HIGH  
SYMBOL  
DESCRIPTION(1)  
TDA6650TT TDA6651TT  
LOW  
PLLGND  
25  
14  
(14)  
25  
FCE882  
VCCA  
26  
27  
28  
13  
12  
11  
5 V  
5 V  
5 V  
IFOUTB  
IFOUTA  
2.1 V  
2.1 V  
2.1 V  
2.1 V  
2.1 V  
2.1 V  
28 (11)  
FCE886  
IFGND  
29  
10  
(10)  
29  
FCE880  
HOSCIN1  
30  
31  
32  
33  
9
8
7
6
2.2 V  
5 V  
2.2 V  
5 V  
1.8 V  
2.5 V  
2.5 V  
1.8 V  
HOSCOUT1  
HOSCOUT2  
HOSCIN2  
5 V  
5 V  
(7)  
32  
31  
33  
(8)  
(6)  
2.2 V  
2.2 V  
30 (9)  
FCE879  
MOSCIN1  
MOSCIN2  
34  
35  
5
4
2.3 V  
2.3 V  
1.3 V  
1.3 V  
2.3 V  
2.3 V  
35 (4)  
34 (5)  
FCE878  
2004 Mar 22  
46  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
AVERAGE DC VOLTAGE VERSUS  
PIN  
BAND SELECTION  
MID HIGH  
SYMBOL  
DESCRIPTION(1)  
TDA6650TT TDA6651TT  
LOW  
OSCGND  
36  
3
36 (3)  
FCE908  
LOSCOUT  
LOSCIN  
37  
38  
2
1
1.7 V  
2.9 V  
1.4 V  
3.5 V  
1.4 V  
3.5 V  
(2)  
37  
(1) 38  
FCE877  
Note  
1. The pin numbers in parenthesis refer to the TDA6651TT.  
2004 Mar 22  
47  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
14 APPLICATION AND TEST INFORMATION  
14.1 Tuning amplifier  
Do not use the signal on pins XTAL1 or XTAL2, or the  
signal present on the crystal, to drive an external IC or for  
any other use as this may dramatically degrade the phase  
noise performance of the TDA6650TT; TDA6651TT.  
The tuning amplifier is capable of driving the varicap  
voltage without an external transistor. The tuning voltage  
output must be connected to an external load of 15 kΩ  
which is connected to the tuning voltage supply rail. The  
loop filter design depends on the oscillator characteristics  
and the selected reference frequency as well as the  
required PLL loop bandwidth.  
14.3 Examples of I2C-bus program sequences  
Tables 16 to 23 show various sequences where:  
S = START  
A = acknowledge  
P = STOP.  
Applications with the TDA6650TT; TDA6651TT have a  
large loop bandwidth, in the order of a few tens of kHz. The  
calculation of the loop filter elements has to be done for  
each application, it depends on the reference frequency  
and charge pump current. A simulation of the loop can  
easily be done using the SIMPATA software from Philips.  
The following conditions apply:  
LO frequency is 800 MHz  
fcomp = 166.666 kHz  
N = 4800  
BS3 output port is on and all other ports are off: thus the  
high band is selected  
14.2 Crystal oscillator  
The TDA6650TT; TDA6651TT needs to be used with a  
4 MHz crystal in series with a capacitor with a typical value  
of 18 pF, connected between pin XTAL1 and pin XTAL2.  
Philips crystal 4322 143 04093 is recommended. When  
choosing a crystal, take care to select a crystal able to  
withstand the drive level of the TDA6650TT; TDA6651TT  
without suffering from accelerated ageing. For optimum  
performances, it is highly recommended to connect the  
4 MHz crystal without any serial resistance.  
Charge pump current ICP = 280 µA  
Normal mode, with XTOUT buffer on  
IAGC = 220 nA  
AGC take-over point is set to 112 dBµV (p-p)  
Address selection is adjusted to make address C2 valid.  
To fully program the device, either sequence of Table 16  
or 17 can be used, while other arrangements of the bytes  
are also possible.  
The crystal oscillator of the TDA6650TT; TDA6651TT  
should not be driven (forced) from an external signal.  
Table 16 Complete sequence 1  
ADDRESS  
BYTE  
DIVIDER  
BYTE 1  
DIVIDER  
BYTE 2  
CONTROL  
BYTE 1(1)  
CONTROL  
BYTE 2  
CONTROL  
BYTE 1(2)  
START  
S
STOP  
C2  
A
12  
A
C0  
A
CA  
A
A4  
A
84  
A
P
Notes  
1. Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1 and R0.  
2. Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1  
and AL0.  
Table 17 Complete sequence 2  
ADDRESS  
BYTE  
CONTROL  
BYTE 1(1)  
CONTROL  
BYTE 2  
DIVIDER  
BYTE 1  
DIVIDER  
BYTE 2  
CONTROL  
BYTE 1(2)  
START  
S
STOP  
C2  
A
CA  
A
A4  
A
12  
A
C0  
A
84  
A
P
Notes  
1. Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1 and R0.  
2. Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1  
and AL0.  
2004 Mar 22  
48  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
Table 18 Sequence to program only the main divider ratio  
START  
ADDRESS BYTE  
C2  
DIVIDER BYTE 1  
12  
DIVIDER BYTE 2  
C0  
STOP  
S
A
A
A
P
Table 19 Sequence to change the charge pump current, the ports and the test mode. If the reference divider ratio is  
changed, it is necessary to send the DB1 and DB2 bytes  
START  
ADDRESS BYTE  
C2  
CONTROL BYTE 1(1)  
CA  
CONTROL BYTE 2  
A4  
STOP  
S
A
A
A
P
Note  
1. Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1 and R0.  
Table 20 Sequence to change the test mode. If the reference divider ratio is changed, it is necessary to send the DB1  
and DB2 bytes  
START  
ADDRESS BYTE  
C2  
CONTROL BYTE 1(1)  
CA  
STOP  
S
A
A
P
Note  
1. Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1 and R0.  
Table 21 Sequence to change the charge pump current, the ports and the AGC data  
START  
ADDRESS BYTE  
C2  
CONTROL BYTE 1(1)  
82  
CONTROL BYTE 2  
A4  
STOP  
S
A
A
A
P
Note  
1. Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1  
and AL0.  
Table 22 Sequence to change only the AGC data  
START  
ADDRESS BYTE  
C2  
CONTROL BYTE 1(1)  
84  
STOP  
S
A
A
P
Note  
1. Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1  
and AL0.  
Table 23 Sequence to program the main divider, the ALBC on and the test modes in normal mode with XTOUT buffer  
off.  
STAR  
T
ADDRESS  
BYTE  
DIVIDER  
BYTE 1  
DIVIDER  
BYTE 2  
CONTROL  
BYTE 1(1)  
CONTROL  
BYTE 2  
CONTROL  
BYTE 1  
STOP  
S
C2  
A
12  
A
C0  
A
DA  
A
00  
A
C2  
A
P
Note  
1. Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1 and R0.  
2004 Mar 22  
49  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
15 PACKAGE OUTLINE  
TSSOP38: plastic thin shrink small outline package; 38 leads; body width 4.4 mm;  
lead pitch 0.5 mm  
SOT510-1  
E
H
D
A
X
c
v
M
A
y
E
Z
20  
38  
A
(A )  
3
2
A
A
1
pin 1 index  
θ
L
p
L
1
19  
detail X  
w
M
b
e
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions).  
A
(1)  
(2)  
(1)  
Z
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
v
w
y
θ
1
2
3
p
E
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.85  
0.27  
0.17  
0.20  
0.09  
9.8  
9.6  
4.5  
4.3  
0.7  
0.5  
0.49  
0.21  
mm  
1.1  
0.5  
1
0.2  
0.25  
6.4  
0.08  
0.08  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
98-09-16  
03-02-18  
SOT510-1  
2004 Mar 22  
50  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
16 SOLDERING  
To overcome these problems the double-wave soldering  
method was specifically developed.  
16.1 Introduction to soldering surface mount  
packages  
If wave soldering is used the following conditions must be  
observed for optimal results:  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
16.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Driven by legislation and environmental forces the  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 270 °C depending on solder paste material. The  
top-surface temperature of the packages should  
preferably be kept:  
Typical dwell time of the leads in the wave ranges from  
3 to 4 seconds at 250 °C or 265 °C, depending on solder  
material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
below 225 °C (SnPb process) or below 245 °C (Pb-free  
process)  
– for all BGA, HTSSON-T and SSOP-T packages  
16.4 Manual soldering  
– for packages with a thickness 2.5 mm  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
– for packages with a thickness < 2.5 mm and a  
volume 350 mm3 so called thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free  
process) for packages with a thickness < 2.5 mm and a  
volume < 350 mm3 so called small/thin packages.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Moisture sensitivity precautions, as indicated on packing,  
must be respected at all times.  
16.3 Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
2004 Mar 22  
51  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
16.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE(1)  
WAVE  
not suitable  
REFLOW(2)  
BGA, HTSSON..T(3), LBGA, LFBGA, SQFP, SSOP..T(3), TFBGA,  
USON, VFBGA  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON,  
HTQFP, HTSSOP, HVQFN, HVSON, SMS  
PLCC(5), SO, SOJ  
not suitable(4)  
suitable  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(5)(6) suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L(8), PMFP(9), WQCCN..L(8)  
not recommended(7)  
suitable  
not suitable  
not suitable  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account  
be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature  
exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature  
must be kept as low as possible.  
4. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
5. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
6. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
7. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
8. Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted  
on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar  
soldering process. The appropriate soldering profile can be provided on request.  
9. Hot bar or manual soldering is suitable for PMFP packages.  
2004 Mar 22  
52  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
17 DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
18 DEFINITIONS  
19 DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2004 Mar 22  
53  
Philips Semiconductors  
Product specification  
5 V mixer/oscillator and low noise PLL synthesizer  
for hybrid terrestrial tuner (digital and analog)  
TDA6650TT;  
TDA6651TT  
20 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
2004 Mar 22  
54  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2004  
SCA76  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R25/03/pp55  
Date of release: 2004 Mar 22  
Document order number: 9397 750 13025  

相关型号:

TDA6651ATT

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651ATT/C3

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651ATT/C3/S2

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651ATT/C3/S3

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651TT

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651TT/C3

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651TT/C3/S2

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651TT/C3/S3

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6800

Video modulator circuit
NXP

TDA6800T

Video modulator circuit
NXP

TDA6811

Consumer IC, Bipolar, PDIP18
INFINEON

TDA6812-2M

Consumer Circuit, Bipolar, PQFP44, METRIC, PLASTIC, QFP-44
INFINEON