TDA8025HN/C1,557 [NXP]

TDA8025 - Low voltage supply smart card interface QFN 32-Pin;
TDA8025HN/C1,557
型号: TDA8025HN/C1,557
厂家: NXP    NXP
描述:

TDA8025 - Low voltage supply smart card interface QFN 32-Pin

文件: 总38页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8025  
IC card interface  
Rev. 01 — 6 April 2009  
Product data sheet  
1. General description  
The TDA8025 is a cost-effective analog interface for asynchronous smart cards operating  
at 3 V, 1.8 V or optionally, 1.2 V. Using few external components, the TDA8025 provides  
integrated supply, protection and control functions for a range of applications.  
2. Features  
I Integrated circuit smart card interface  
I 3 V, 1.8 V or 1.2 V smart card supply  
I Low power consumption in inactive mode  
I Three protected, half duplex, bidirectional buffered input/output lines (C4, C7 and C8)  
I VCC regulation:  
N 3 V, 1.8 V or optionally 1.2 V at ± 5 % using one 220 nF and one 470 nF low ESR  
multilayer ceramic capacitor.  
N Current pulse handling for pulses of 40 nAs at VCC = 3 V, 15 nAs at VCC = 1.8 V or  
VCC = 1.2 V up to 20 MHz  
I Thermal and short-circuit protection for all card contacts  
I Automatic activation and deactivation sequences triggered by short-circuit, card  
take-off, overheating, falling VDD(INTF) and VDD(INTREGD)  
I Enhanced card-side ElectroStatic Discharge (ESD) protection of > 6 kV  
I Clock signal using the internal oscillator or an external crystal (26 MHz) connected to  
pin XTAL1  
I Card clock generation up to 20 MHz with synchronous frequency changes of fxtal  
,
12 fxtal, 14 fxtal or 18 fxtal using pins CLKDIV1 and CLKDIV2  
I Non-inverted control of pin RST using pin RSTIN  
I NDS certified  
I Supply supervisors during power on and off:  
N VDD(INTREGD) using a fixed threshold  
N VDD(INTF) using resistor bridge threshold adjustment  
I Built-in debouncing on card presence contacts (typically 4.5 ms)  
I Multiplexed status signal using pin OFFN  
3. Applications  
I Pay TV  
I Electronic payment  
I Identification  
I Bank card readers  
 
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
4. Quick reference data  
Table 1.  
Symbol  
Supplies  
VDDI(REG)  
Quick reference data  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
regulator input  
supply voltage  
pin CONFIG = ground  
3.6  
3
5
5.5  
3.6  
V
V
pin CONFIG = VDDI(REG); regulator is  
bypassed  
3.3  
[1]  
VDD(INTF)  
interface supply  
voltage  
pin CONFIG = ground  
1.6  
1.6  
3.0  
3.0  
3.3  
V
V
pin CONFIG = VDDI(REG) and VDD(INTF) not  
connected to VDDI(REG) and VDD(INTREGD)  
VDDI(REG)  
+ 0.3  
pin CONFIG = VDDI(REG) with VDD(INTF)  
connected to VDDI(REG) and VDD(INTREGD)  
3
3.3  
3.6  
V
IDDI(REG)  
regulator input  
supply current  
inactive mode  
VDDI(REG) = 5 V; fxtal = stopped  
VDDI(REG) = 5 V; fxtal = 10 MHz;  
-
-
-
-
300  
2.5  
µA  
mA  
f
CLK = 18 fXTAL  
active mode  
VCC = 3 V; ICC = 65 mA  
VCC = 1.8 V; ICC = 65 mA  
VCC = 1.2 V; ICC = 30 mA  
-
-
-
-
-
-
85  
85  
50  
mA  
mA  
mA  
Card supply voltage  
VCC  
supply voltage  
including ripple  
inactive mode  
no load  
0.1  
0.1  
-
-
+0.1  
+0.3  
V
V
ICC = 1 mA  
active mode  
3 V card:  
ICC < 65 mA DC  
single current pulse 100 mA; 2 µs  
2.85  
2.76  
2.76  
3.05  
3.05  
3.05  
3.15  
3.20  
3.20  
V
V
V
current pulses of 40 nAs at  
ICC < 200 mA; t < 400 ns  
1.8 V card:  
ICC < 65 mA DC  
1.71  
1.66  
1.66  
1.83  
1.83  
1.83  
1.89  
1.94  
1.94  
V
V
V
single current pulse 100 mA; 2 µs  
current pulses of 15 nAs with  
ICC < 200 mA; t < 400 ns  
1.2 V card:  
ICC < 30 mA DC  
1.1  
1.2  
1.2  
1.2  
1.3  
1.3  
1.3  
V
V
V
single current pulse 100 mA; 2 µs  
1.1  
current pulses of 15 nAs with ICC  
< 200 mA; t < 400 ns  
1.10  
Vripple(p-p)  
peak-to-peak ripple pin VCC; 20 kHz to 200 MHz  
voltage  
-
-
350  
mV  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
2 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
Table 1.  
Symbol  
ICC  
Quick reference data …continued  
Parameter  
Conditions  
0 V to 3 V  
Min  
Typ  
Max  
65  
Unit  
mA  
supply current  
-
-
0 V to 1.8 V  
0 V to 1.2 V  
up or down  
-
-
65  
mA  
-
-
30  
mA  
SR  
slew rate  
0.02  
0.14  
0.26  
V/µs  
General  
tdeact  
Ptot  
[2]  
deactivation time  
total sequence  
35  
-
80  
-
100  
µs  
total power  
dissipation  
Tamb = 25 °C to +85 °C  
0.56  
W
Tamb  
ambient temperature  
25  
-
+85  
°C  
[1] To enable the microcontroller to provide the required maximum voltage input level on XTAL1, VDD(INTF) must not exceed  
VDD(INTREGD) + 0.3 V. See Section 8.1 on page 7 for specific limitations on the maximum VDD(INTF) voltage and Table 8 on page 23 for  
the limits of XTAL1.  
[2] See Figure 12 on page 18.  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDA8025HN  
HVQFN32 plastic thermal enhanced very thin quad flat package; no leads;  
SOT617-1  
32 terminals; body 5 × 5 × 0.85 mm  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
3 of 38  
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
6. Block diagram  
V
DDI(REG)  
TEST2  
TEST1 TEST4  
10 µF  
GND  
20  
CONFIG  
16  
21  
2
3
32  
24  
19  
REGULATOR  
TEST  
TEST3  
100 nF  
V
DD(INTREGD)  
V
DD(INTF)  
R1  
10 µF  
SUPPLY  
INTERNAL  
REFERENCE  
INTERNAL  
OSCILLATOR  
TDA8025  
PORADJ 25  
(1)  
R2  
VOLTAGE  
SENSE  
CLKUP  
18  
14  
V
ALARMN  
EN1  
CC  
V
CC  
10  
9
470 nF  
PVCC  
CGND  
PRES  
LOOP  
PRESN  
220 nF  
17  
15  
22  
1
EN4  
EN3  
RST  
SEQUENCER  
RESET  
GENERATOR  
RSTIN  
CMDVCCN  
OFFN  
23  
6
CLK  
CLOCK  
CIRCUIT  
CLOCK  
GENERATOR  
EN2  
CLK  
CLKDIV1  
CLKDIV2  
ENCLKIN  
VCC_SEL1  
VCC_SEL2  
V
DD(INTREGD)  
INTERFACE  
C5  
C6  
C7  
C8  
C1  
5
MULTIPLEXER  
THERMAL  
PROTECTION  
C2  
C3  
C4  
26  
7
11  
13  
12  
I/O  
I/O  
TRANSCEIVER  
Level shifter  
(V  
)
XTAL  
DD(INTF)  
8
AUX1  
AUX2  
I/O  
TRANSCEIVER  
OSCILLATOR  
(V  
)
DD(INTREGD)  
I/O  
220 nF  
TRANSCEIVER  
4
27  
28  
29  
30  
31  
100 nF  
XTAL1  
AUX1UC  
AUX2UC  
V
XTAL2  
I/OUC  
001aai957  
DD(INTF)  
(1) Optional external resistor bridge. If this bridge is not needed, connect pin PORADJ to VDD(INTF)  
.
Fig 1. Block diagram  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
4 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
CMDVCCN  
TEST1  
TEST3  
OFFN  
RSTIN  
TEST2  
V
V
DDI(REG)  
DD(INTF)  
TDA8025  
CLKDIV2  
CLKDIV1  
GND  
V
V
DD(INTREGD)  
CC  
VCC_SEL1  
VCC_SEL2  
RST  
001aai958  
Transparent top view  
Fig 2. Pin configuration (HVQFN32)  
7.2 Pin description  
Table 3.  
Pin description  
Pin Type[1] Description  
Symbol  
CMDVCCN  
TEST1  
1
2
3
4
5
I
microcontroller start activation sequence input; active LOW  
test pin; connect to GND  
I
TEST2  
I
test pin; connect to GND  
VDD(INTF)  
CLKDIV2  
P
I
interface supply voltage  
sets the clock frequency; used together with pin CLKDIV1;  
see Table 4 on page 12  
CLKDIV1  
6
7
I
I
sets the clock frequency; used together pin CLKDIV2; see Table 4 on  
page 12  
VCC_SEL1  
optional 1.2 V selection control signal:  
active HIGH: VCC = 1.2 V  
active LOW: disables 1.2 V selection  
3 V or 1.8 V selection control signal:  
active LOW: VCC = 3 V  
VCC_SEL2  
8
I
active HIGH: VCC = 1.8 V when pin VCC_SEL1 is active LOW  
card presence contact input; active LOW[2]  
card presence contact input; active HIGH[2]  
card input/output data line (C7)[3]  
card auxiliary 2 input/output data line (C8)[3]  
card auxiliary 1 input/output data line (C4)[3]  
PRESN  
PRES  
I/O  
9
I
I
10  
11 I/O  
12 I/O  
13 I/O  
AUX2  
AUX1  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
5 of 38  
 
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
Table 3.  
Pin description …continued  
Symbol  
CGND  
CLK  
Pin Type[1] Description  
14  
15  
16  
G
O
I
card signal ground  
card clock (C3)  
CONFIG  
3.3 V or 5 V core regulator supply voltage selection; see Figure 3 on  
page 7  
RST  
VCC  
17  
18  
O
P
card reset (C2)  
card supply (C1); decouple to pin CGND using one 470 nF and one  
220 nF capacitor with an Equivalent Series Resistance  
(ESR) < 100 mΩ  
VDD(INTREGD) 19  
P
G
P
I
internally regulated supply voltage  
ground  
GND  
20  
21  
22  
23  
VDDI(REG)  
RSTIN  
OFFN  
regulator input supply voltage  
microcontroller card reset input; active HIGH  
NMOS interrupt to microcontroller[4]; active LOW; see Section 8.10  
on page 19  
O
TEST3  
24  
25  
26  
27  
28  
O
I
test pin; do not connect to the application  
PORADJ  
ENCLKIN  
XTAL2  
power-on reset threshold adjustment input[4]  
enable external clock on pin XTAL1; active HIGH  
crystal connection pin; open when used with an external clock source  
crystal connection pin; supply reference VDD(INTREGD)  
external clock input; supply reference VDD(INTF)  
microcontroller input/output data line[4]  
microcontroller auxiliary 1 input/output data line[4]  
microcontroller auxiliary 2 input/output data line[4]  
test pin; connect to GND  
I
O
I
XTAL1  
I/OUC  
29 I/O  
30 I/O  
31 I/O  
AUX1UC  
AUX2UC  
TEST4  
32  
I
[1] I = input, O = output, I/O = input/output, G = ground and P = power supply.  
[2] If pin PRESN or pin PRES is true, the card is considered to be present. During card insertion, debouncing  
can occur on these signals. To counter this, the TDA8025 has a built-in debouncing timer (typically 4.5 ms).  
[3] Using the internal pull-up resistor connected to pin VCC  
.
[4] Using the internal pull-up resistor connected to pin VDD(INTF)  
.
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
6 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
8. Functional description  
Remark: Throughout this document the ISO7816 terminology conventions have been  
adhered to and it is assumed that the reader is familiar with these.  
8.1 Power supplies  
Two supply selections can be made using pin CONFIG (see Figure 3) depending on the  
active state of the pin:  
pin CONFIG is LOW: supply is pin VDDI(REG). The voltage range of the pin is between  
3.6 V and 5.5 V. The regulator output range is between 3 V and 3.6 V.  
pin CONFIG is HIGH: supply pins VDDI(REG) and VDD(INTREGD) are connected together  
to bypass the regulator. Pin VDDI(REG) voltage is between 3 V and 3.6 V.  
Remark: VDD(INTF) must not exceed VDD(INTREGD) + 0.3 V.  
10 µF  
10 µF  
V
V
DDI(REG)  
DDI(REG)  
10 µF  
100 nF  
100 nF  
V
V
DD(INTREGD)  
DD(INTREGD)  
GND CONFIG  
20 16  
GND CONFIG  
20 16  
21  
19  
21  
19  
REGULATOR  
REGULATOR  
SUPPLY  
SUPPLY  
INTERNAL  
INTERNAL  
REFERENCE  
REFERENCE  
18  
14  
V
18  
14  
V
CC  
CC  
VOLTAGE  
SENSE  
V
VOLTAGE  
SENSE  
V
CC  
LOOP  
CC  
470 nF  
220 nF  
470 nF  
220 nF  
LOOP  
CGND  
CGND  
001aai959  
001aai960  
3.6 V < VDDI(REG) < 5.5 V  
3 V < VDD(INTREGD) < 3.6 V  
Fig 3. Power strategy  
The following examples illustrate the voltage restrictions for VDD(INTF)  
.
CONFIG pin driven to GND: when VDD(INTREGD) is generated by the internal regulator,  
VDD(INTF) must not exceed 3.3 V.  
CONFIG pin is driven by VDDI(REG) without VDD(INTF) tied to VDDI(REG) while  
VDD(INTREGD) is tied to VDDI(REG): VDD(INTF) must not exceed VDDI(REG) + 0.3 V.  
CONFIG pin is driven by VDDI(REG) with VDD(INTF) tied to both VDDI(REG) and  
VDD(INTREGD): there no are restrictions for VDD(INTF)  
.
The TDA8025 is held in the reset state until VDD(INTREGD) reaches Vth + Vhys and  
PORADJ Vth + Vhys plus the tw(POR) delay. If the VDD(INTREGD) and PORADJ signals fall  
below Vth, an automatic contact deactivation is triggered.  
All interface signals to the microcontroller are referenced to VDD(INTF). In addition, all card  
contacts remain inactive during power-up and power-down cycles.  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
7 of 38  
 
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
After powering up the device, pin OFFN remains LOW until pins CMDVCCN and PRES  
are both HIGH or pin CMDVCCN is HIGH and pin PRESN is LOW. During power off, pin  
OFFN is driven LOW when VDD(INTREGD) is below the falling threshold voltage (Vth).  
When pin CMDVCCN is HIGH, the internal oscillator frequency (fosc(int)) is switched to Low  
frequency (inactive) mode to reduce power consumption.  
8.2 Voltage supervisors  
8.2.1 Block diagram  
V
DD(INTF)  
R1  
PORADJ  
V
DD(INTREGD)  
R2  
REFERENCE  
VOLTAGE  
V
DD(INTREGD)  
001aai961  
Fig 4. Voltage supervisor circuit  
8.2.2 Description  
The voltage supervisors provide both the Power-On Reset (POR) and supply drop-out  
detection functions. They control the internal regulated supply voltage (VDD(INTREGD)) and  
the microcontroller interface supply voltage (VDD(INTF)) to ensure problem-free operation of  
the TDA8025.  
By monitoring both VDD(INTREGD) and VDD(INTF), the voltage supervisors ensure these  
voltages are high enough to ensure correct operation of the TDA8025 and flawless  
communication between it and the microcontroller. This information is combined and sent  
to the digital controller in order to reset the TDA8025.  
An extension of the power-on reset pulse width of ± 8 ms (tw(POR)) is used to maintain the  
TDA8025 in inactive mode after the supply voltage power on or off sequences (see  
Figure 5).  
V
+ V  
hys  
th  
V
th  
V
DD(INTREGD)  
ALARMN  
(internal signal)  
t
t
w(POR)  
w(POR)  
Power on  
Supply dropout  
Power off  
001aai962  
Fig 5. Voltage supervisors VDD(INTREGD) and VDD(INTF)  
Rev. 01 — 6 April 2009  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
8 of 38  
 
 
 
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
8.2.3 VDD(INTREGD) voltage supervisor with pin PORADJ connected to VDD(INTF)  
The TDA8025 remains in inactive mode irrespective of the levels on the command lines  
when  
VDD(INTREGD) is less than Vth + Vhys (on pin VDD(INTREGD)  
)
Pin PORADJ (monitoring VDD(INTF)) is less than Vth + Vhys  
In both cases, this lasts for the duration of tw(POR) after VDD(INTREGD) (on pin VDD(INTREGD)  
)
and VDD(INTF) (on pin VDD(INTF)) have reached a level higher than Vth + Vhys. Two threshold  
voltages (Vth) are set by the hardware as follows:  
VDD(INTREGD) threshold voltage: is set to the minimum supply voltage (2.7 V) specified  
for the digital part of the TDA8025  
VDD(INTF) threshold voltage: is set to 1.24 V; see Table 8 on page 23 for detailed  
information.  
8.2.4 VDD(INTF) voltage supervisor with external divider on pin PORADJ  
An external resistor bridge can be used to divide VDD(INTF) on pin PORADJ to adapt the  
detection threshold when monitoring the microcontroller interface supply voltage.  
Connecting the external resistor bridge as illustrated in Figure 4 on page 8 (R1 connected  
to VDD(INTF) and R2 connected to GND) to pin PORADJ overrides the internal threshold  
voltage Vth on pin VDD(INTF)  
.
The threshold voltage on pin VDD(INTF) is calculated as follows:  
1 + R1  
R2  
Vth on pin VDD(INTF) = Vbg  
(1)  
---------------  
where  
Vbg is the bandgap voltage  
When the resistor bridge is not used, pin PORADJ must be connected to pin VDD(INTF)  
.
8.2.4.1 R1 and R2 resistor value calculation  
This section describes how to calculate the values for resistors R1 and R2, taking into  
account the IC detector threshold spread and the external resistance, while ensuring  
reliable activation.  
If for example, the controller is supplied by a regulator at 3.3 V ± 20 %. Activation can be  
triggered above VDD(INTF) = 3.3 V 20 % (in this example 2.64 V). This activation  
threshold is defined as VDD(INTF)actmin; i.e. the minimum value of VDD(INTF) above which  
activation can always be triggered.  
In addition to this external input, activation is permitted provided all the following  
conditions are met (see Table 8 on page 23): card presence, IC temperature, VDD(INTF)  
and VDD(INTREGD) supplies, etc.  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
9 of 38  
 
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
The voltage on PORADJ (VPORADJ) can be calculated as: VPORADJ = α × VDD(INTF)  
where:  
VDD(INTF) is the interface supply voltage  
ratio α  
1
α =  
(2)  
(3)  
----------------  
R1  
R2  
1 +  
------  
An activation can be triggered if  
Vth(max)  
VDD(INTF) × α > Vth(max) VDD(INTF)  
>
-------------------  
α
where  
Vth(max) is the maximum rising external threshold voltage  
The resistance spread of R1 between a minimum value R1min and a maximum value  
R1max induces a spread of the ratio α. This is also true for R2. Based on this:  
Vth(max)  
VDD(INTF)actmin  
=
(4)  
(5)  
-------------------  
αmin  
where  
1
αmin  
=
------------------------  
R1max  
1 +  
--------------  
R2min  
If R1 is the maximum spread of R1 and R2 is the maximum spread of R2 then:  
R1  
R1max = R1nom + R1 = R1nom 1 +  
(6)  
(7)  
---------------  
R1nom  
R2  
R2min = R2nom R2 = R2nom 1 –  
---------------  
R2nom  
Vth(max)  
1
1
αmin  
=
=
=
(8)  
------------------------------------------------------------  
----------------------------------------------  
R1nom (1 + β)  
---------------------------------------  
VDD(INTF)actmin  
R1  
R1nom 1 +  
---------------  
1 +  
-------------------------------------  
R1nom  
R2nom (1 β)  
1 +  
--------------------------------------------------  
R2  
R2nom 1 –  
---------------  
R2nom  
where  
where β is the accuracy ratio of R1 and R2 (R1 and R2 are considered to be of the  
same type).  
Then  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
10 of 38  
TDA8025  
NXP Semiconductors  
IC card interface  
R1nom  
V
(1 β)  
----------------  
(1 + β)  
=
=
DD(INTF)actmin 1  
---------------------------------------  
(9)  
---------------  
R2nom  
Vth(max)  
Rsum  
Rsum  
R2nom  
=
(10)  
------------------------------  
--------------------------------------------------------------------------------------------  
R1nom  
V
(1 β)  
----------------  
(1 + β)  
1 +  
1 +  
DD(INTF)actmin 1  
---------------  
---------------------------------------  
R2nom  
Vth(max)  
If we target 1 % accuracy resistors (β = 0.01) and Rsum = 100 k; Vth(max) = 1.33 V (see  
Table 8 on page 23) and VDD(INTF)actmin = 2.64 V then  
R1nom = 50.88 kΩ  
R2nom = 49.12 kΩ  
Deactivation always occurs when  
Vth(min)  
VPORADJ < Vth(min) VDD(INTF)deactmax  
=
(11)  
-------------------  
αmax  
where  
Vth(min) is the minimum falling external threshold voltage  
VDD(INTF)deactmax is the maximum value of VDD(INTF) below which deactivation always  
occurs  
αmax  
Vth(min)  
1
αmax  
=
=
(12)  
----------------------------------------------  
R1nom (1 β)  
---------------------------------------------  
VDD(INTF)deactmax  
1 +  
-------------------------------------  
R2nom (1 + β)  
With the resulting values for R1nom, R2nom and β; Vth(min) = 1.17 V (see Table 8 on  
page 23) then VDD(INTF)deactmax is 2.28 V.  
8.3 Clock circuits  
The clock signal (pin CLK) to the card is either generated by the clock signal input on pin  
XTAL1 or from a crystal (fxtal 26 MHz) connected between pins XTAL1 and XTAL2. The  
voltage level applied to pin ENCLKIN defines which clock signal is used. When pin  
ENCLKIN is HIGH, connect the external clock to pin XTAL1.  
Driving pin ENCLKIN LOW causes the external crystal to generate frequency fxtal. Using  
pins CLKDIV1 and CLKDIV2, the crystal frequency can be set to either fxtal, 12 fxtal, 14 fxtal  
or 18 fxtal  
.
The frequency change is synchronous and as such during transition, no pulse is shorter  
than 45 % of the smallest period. In addition, only the first and last clock pulse around the  
change have the correct width. When dynamically changing the frequency, the  
modification is only effective after 10 periods of XTAL1.  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
11 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
The duty cycle on pin CLK should be between 45 % and 55 %. To ensure this, the  
following must be applied:  
when the CLK frequency is fxtal  
:
If an external clock is connected to pin XTAL1, the duty cycle should be between 48 %  
and 52 % with an input signal period transition time of less than 5 %.  
If a crystal is used to generate fxtal, the duty cycle on pin CLK should be between  
45 % and 55 % depending on the layout, crystal characteristics and frequency.  
when CLK frequency is either fxtal, 12 fxtal, 14 fxtal or 18 fxtal  
:
The duty cycle is guaranteed between 45 % and 55 % of the period frequency  
divisions.  
When a crystal is used, it runs when pin ENCLKIN is driven LOW.  
CLKDIV1  
CLKDIV2  
6
5
15 CLK  
CLOCK  
CIRCUIT  
ENCLKIN 26  
MULTIPLEXER  
XTAL  
OSCILLATOR  
27  
28  
XTAL1  
XTAL2  
(1)  
26 MHz  
001aai963  
(1) External crystal (optional).  
Fig 6. Clock circuits  
The clock signal is applied to the card based on the activation sequence as shown on the  
timing diagrams; see Figure 8 on page 15 to Figure 13 on page 19.  
When the signal applied to XTAL1 is controlled by the microcontroller, the clock signal is  
sent to the card only after the activation sequence finishes.  
Table 4.  
Clock configuration  
Clock circuitry definition (pins CLKDIV1 and CLKDIV2 can be changed simultaneously; a  
>10 XTAL1 period delay is needed. The minimum duration of any CLK state is 10 XTAL1 periods).  
CLKDIV1  
CLKDIV2  
CLK  
0
0
1
1
0
1
1
0
18 fxtal  
14 fxtal  
12 fxtal  
fxtal  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
12 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
8.4 Input and output circuits  
When pins I/O and I/OUC are driven HIGH using an 11 kresistor between pins I/O and  
VCC and/or between pins I/OUC and VDD(INTF), both lines enter the idle state. Pin I/O is  
referenced to VCC and pin I/OUC to VDD(INTF), thus allowing operation at VCC VDD(INTF)  
.
The first side on which a falling edge occurs becomes the master. An anti-latch circuit  
disables falling edge detection on the other line, making it the slave. After a time delay  
td(edge), the NMOS transistor on the slave-side is turned on. It then sends logic 0 to the  
master-side. When the master returns logic 1, the PMOS transistor on the slave side is  
turned on during the time delay (tpu). After this sequence, both the master and slave return  
to their idle states.  
The active pull-up feature ensures fast LOW-to-HIGH transitions making the TDA8025  
capable of delivering more than 1 mA, up to an output voltage of 0.9 VCC, at a load of  
80 pF. At the end of the active pull-up pulse, the output voltage is dependent on the  
internal pull-up resistor value and load current. The current sent to and received from the  
card’s I/O lines is internally limited to 15 mA at a maximum frequency of 1 MHz.  
001aai964  
8
4
I
I/O  
(A)  
V I/O  
(V)  
OH  
V I/O  
6
4
2
0
3
2
1
0
I
I/O  
OH  
0
20  
40  
60  
80  
100  
t (ns)  
Fig 7. Output voltage and current on pins I/O, AUX1 and AUX2 as a function of time  
during LOW-to-HIGH transitions  
8.5 Inactive mode  
After a power-on reset, the circuit enters the inactive mode, ensuring only the minimum  
number of circuits are active while the TDA8025 waits for the microcontroller to start a  
session. The inactive mode conditions are as follows:  
all card contacts are inactive. The impedance between the contacts and GND is  
approximately 200 .  
pins I/OUC, AUX1UC and AUX2UC are high-impedance using the 11 kpull-up  
resistor connected to VDD(INTF)  
the voltage generators and crystal oscillator are stopped  
the voltage supervisor is active  
the internal oscillator runs in low frequency mode  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
13 of 38  
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
8.6 Activation sequence  
After the power-on and internal pulse width delay, the microcontroller checks the presence  
of the card using signal OFFN.  
The card is present when pins OFFN and CMDVCCN are HIGH  
The card is not present when pin OFFN is LOW and pin CMDVCCN is HIGH  
If the card is in the reader (either pin PRESN or pin PRES is true), the microcontroller can  
start a card session by pulling pin CMDVCCN LOW. When using an external crystal, the  
following sequence is applied (see Figure 8):  
1. pin CMDVCCN is pulled LOW (t0)  
2. the crystal oscillator is triggered  
3. the internal oscillator changes to its high frequency (t1)  
4. VCC rises either from 0 V to 3 V or 1.8 V on a controlled slope (t2)  
5. pins I/O, AUX1 and AUX2 which were pulled LOW are driven HIGH (t3)  
6. the clock (pin CLK) is applied to the C3 contact (t4)  
7. pin RST is enabled (t5)  
Calculation of the time delays is as follows:  
t1 = t0 + 2.13 ms  
t2 = t1  
t3 = t1 + 5T/2  
t4 = driven by host controller; > t3 and < t5  
t5 = t1 + 11T/2  
Remark: The value of period T is 64 times the period interval of the internal oscillator (i.e.  
±25 µs. t3 is called td(start) and t5 is called td(end)  
.
The clock is applied to the card in one of the following ways:  
using pin RSTIN: The clock (pin CLK) start-up can be selected at either t3 or t5 using  
pin RSTIN. When pin RSTIN is HIGH and pin CMDVCCN is LOW, setting pin RSTIN  
to LOW between delays t3 and t5 sends signal CLK. Pin RSTIN should be held LOW  
until after delay t5. After passing t5, pin RST is a copy of pin RSTIN and has no further  
effect on pin CLK. It enables the microcontroller to precisely choose the CLK start by  
counting clock cycles from the falling edge of the RSTIN signal.  
not using pin RSTIN: If this feature is not needed, set both pins CMDVCCN and  
RSTIN to LOW. The clock (pin CLK) will start at delay t3 (a minimum 200 ns after the  
input/output transition). After delay t5, pin RSTIN can be set HIGH to receive the card  
Answer To Request (ATR).  
Remark: Do not perform activation with pin RSTIN permanently pulled HIGH.  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
14 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
CMDVCCN  
XTAL  
V
CC  
I/O  
ATR  
CLK  
RSTIN  
RST  
I/OUC  
OSCINT  
low frequency  
t0 t1 = t2  
high frequency  
t
t4  
t
= t  
d(start)  
d(end) act  
001aai965  
Fig 8. Activation sequence: CLK controlled by pin RSTIN with the crystal oscillator  
CMDVCCN  
XTAL  
V
CC  
I/O  
ATR  
CLK  
> 200 ns  
RSTIN  
RST  
I/OUC  
OSCINT  
low frequency  
t0 t1 = t2  
high frequency  
t4  
t
= t  
d(end) act  
t
d(start)  
001aai966  
Fig 9. Activation sequence: CLK not controlled by pin RSTIN with the crystal oscillator  
The following sequence occurs when using an external clock connected to pin XTAL1 (see  
Figure 10):  
1. external clock (XTAL1) started by the microcontroller (t0)  
2. CMDVCCN is pulled LOW and the internal oscillator changes to its high frequency (t1)  
3. VCC rises either from 0 V to 3 V or 0 V to 1.8 V on a controlled slope (t2)  
© NXP B.V. 2009. All rights reserved.  
TDA8025_1  
Product data sheet  
Rev. 01 — 6 April 2009  
15 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
4. pins I/O, AUX1 and AUX2 are enabled (t3)  
5. CLK is applied to the C3 contact (t4)  
6. pin RST is enabled (t5)  
Calculation of the time delays is as follows:  
t1 = t0 + 2.13 ms  
t2 = t1 = 3T/2 + 3(1fosc(int)low  
)
t3 = t1 + 5T/2  
t4 = driven by the host controller; > t3 and < t5  
t5 = t1 + 11T/2  
Remark: The value of period T is 64 times the period interval of the internal oscillator (i.e.  
±25 µs). t3 is called td(start) and t5 is called td(end). fosc(int)low is the low (or inactive mode)  
frequency of the defined fosc(int) parameter.  
The CLK is applied to the card under control of pin RSTIN in exactly the same way as with  
the crystal oscillator.  
Remark: Do not perform activation with pin RSTIN permanently pulled HIGH.  
CMDVCCN  
XTAL1  
V
CC  
I/O  
ATR  
CLK  
RSTIN  
RST  
I/OUC  
OSCINT  
low frequency  
t0 t1 = t2  
high frequency  
t
t4  
t
= t  
d(start)  
d(end) act  
001aai967  
Fig 10. Activation sequence: CLK controlled by pin RSTIN with an external clock  
connected to pin XTAL1  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
16 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
CMDVCCN  
XTAL1  
V
CC  
I/O  
ATR  
CLK  
> 200 ns  
RSTIN  
RST  
I/OUC  
OSCINT  
low frequency  
t0 t1 = t2  
high frequency  
t4  
t
= t  
d(end) act  
t
d(start)  
001aai968  
Fig 11. Activation sequence: CLK not controlled by pin RSTIN and with an external clock  
connected to pin XTAL1  
8.7 Active mode  
When the activation sequence has finished, the TDA8025 is in active mode. This mode  
enables data exchange between the card and the microcontroller using the input and  
output lines.  
Depending on the layout and application test conditions, line C2 could become polluted  
with high frequency noise from line C3. For example, due to an additional 1 pF  
capacitance between lines C2/C3 and/or lines C2/C7. It is recommended that a 100 pF  
capacitor is added between line C2 and pin CGND, if this occurs.  
When building the application, the following recommendations should be adhered to:  
Keep track C3 as far away as possible from other tracks.  
Keep the connection between pin CGND and line C5 straight. The two capacitors on  
line C1 should be connected to this ground track.  
Do not use ground loops between CGND and GND.  
Following these layout recommendations will ensure that noise remains within the  
specifications and jitter on line C3 is less than 100 ps.  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
17 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
8.8 Deactivation sequence  
When a session is completed, the microcontroller sets pin CMDVCCN to HIGH. The  
circuit then executes an automatic deactivation sequence by counting the sequencer back  
to the inactive state (see Figure 12 and Figure 13):  
1. pin RST is pulled LOW (t11)  
2. the clock is stopped, pin CLK is LOW (t12)  
3. pins I/O, AUX1 and AUX2 are pulled LOW (t13)  
4. VCC falls to zero (t14). The deactivation sequence is completed when VCC reaches its  
inactive state  
5. all card contacts become low-impedance to GND. However, pins I/OUC, AUX1UC and  
AUX2UC remain pulled up to VDD(INTREGD) using the 11 kresistor  
6. The internal oscillator returns to its low frequency mode  
Calculation of the time delays is as follows:  
t11 = t10 + 3T/64  
t12 = t11 + T/2  
t13 = t11 + T  
t14 = t11 + 3T/2  
Remark: The value of period T is 64 times the period interval of the internal oscillator (i.e.  
±25 µs).  
CMDVCCN  
RST  
CLK  
I/O  
V
CC  
XTAL  
OSCINT  
high frequency  
low frequency  
t10 t11  
t12  
t
t13  
t14  
001aai969  
deact  
Fig 12. Deactivation sequence with a crystal oscillator  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
18 of 38  
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
CMDVCCN  
RST  
CLK  
I/O  
V
CC  
XTAL1  
OSCINT  
high frequency  
low frequency  
t10 t11  
t12  
t
t13  
t14  
001aai970  
deact  
Fig 13. Deactivation sequence with an external clock connected to pin XTAL1  
8.9 VCC regulator  
Table 5.  
Selection of VCC using pins VCC_SEL1 and VCC_SEL2  
VCC_SEL1  
VCC_SEL2  
VCC  
0
0
1
1
0
1
0
1
3 V  
1.8 V  
1.2 V  
1.2 V  
The VCC buffer is able to continuously deliver up to:  
65 mA at 3 V  
65 mA at 1.8 V  
30 mA at 1.2 V  
The VCC buffer has an internal overload protection with a threshold value of ±135 mA.  
This detection is filtered, enabling spurious current pulses up to 200 mA with a duration of  
up to 200 ns to be drawn by the card without causing deactivation. However, the average  
current value must be below maximum.  
To enhance VCC stability, one 470 nF capacitor should be tied to pin CGND near pin 18  
and one 220 nF capacitor should be tied to pin CGND near the C1 contact. Both  
capacitors should have an ESR < 100 m.  
8.10 Fault detection  
The following conditions are monitored by the fault detection circuit:  
Short-circuit or high current on pin VCC  
Card removal during transaction  
VDD(INTREGD) falling  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
19 of 38  
 
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
VDD(INTF) falling  
Overheating  
Fault detection monitors two different situations (see Figure 15 on page 21):  
1. Outside card sessions, pin CMDVCCN is HIGH: pin OFFN is LOW if the card is not in  
the reader and HIGH if the card is in the reader. Any supply voltage drop on  
VDD(INTREGD) or VDD(INTF) is detected by the supply supervisor. This generates an  
internal power-on reset pulse but does not act upon the pin OFFN signal. The card is  
not powered-up and as such short-circuits and overheating are not detected.  
2. Within card sessions, pin CMDVCCN is LOW: when pin OFFN falls LOW, the fault  
detection circuit triggers the automatic emergency deactivation sequence (see  
Figure 14). When the system controller resets pin CMDVCCN to HIGH, after the  
deactivation sequence, pin OFFN is rechecked. If the card is still present, pin OFFN  
returns to HIGH. This check identifies the fault as either a hardware problem or a card  
removal incident.  
On card insertion or removal, bouncing can occur in the PRES and/or PRESN signals.  
This depends on the type of card presence switch in the connector (normally open or  
normally closed) and the mechanical characteristics of the switch. To correct for this, a  
debouncing feature is integrated in to the TDA8025. This feature operates at a typical  
duration of 640 × (1fosc(int)low). See Figure 15 for an overview of the debouncing feature.  
Remark: fosc(int)low is the low frequency (or inactive) mode of the defined fosc(int)  
parameter.  
On card insertion, pin OFFN goes HIGH after the debouncing time has elapsed. When the  
card is extracted, the automatic card deactivation sequence is performed on the first true  
or false transition on pin PRESN or pin PRES. After this pin OFFN goes LOW.  
OFFN  
PRESN  
RST  
CLK  
I/O  
V
CC  
XTAL  
OSCINT  
high frequency  
low frequency  
t10  
t12  
t
t13  
t14  
001aai971  
deact  
Fig 14. Emergency deactivation sequence after card removal  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
20 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
PRES  
OFFN  
CMDVCCN  
t
t
deb  
deb  
(1)  
(2)  
V
CC  
001aai972  
(1) Deactivation caused by card removal.  
(2) Deactivation caused by short circuit.  
Fig 15. Operation of debounce feature pin OFFN in combination with pins CMDVCCN,  
PRES and VCC  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
21 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
9. Limiting values  
Remark: All card contacts are protected against any short-circuit to any other card  
contact. Stress beyond the levels indicated in Table 6 can cause permanent damage to  
the device. This is a short-term stress rating only and under no circumstances implies  
functional operation under long-term stress conditions.  
Table 6.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
0.3  
0.3  
0.3  
Max  
+5.5  
+5.5  
+5.5  
Unit  
V
VDDI(REG)  
regulator input supply voltage  
VDD(INTREGD) internal regulated supply voltage  
V
VI  
input voltage  
pins CMDVCCN, TEST1, TEST2,  
CLKDIV2, CLKDIV1, VCC_SEL1,  
VCC_SEL2, CONFIG, RSTIN,  
OFFN, TEST3, PORADJ, ENCLKIN,  
XTAL2, XTAL1, I/OUC, AUX1UC and  
AUX2UC  
V
card contact pins PRES, PRESN,  
I/O, RST, AUX1, AUX2 and CLK  
0.3  
+6.5  
V
Tstg  
Ptot  
Tj  
storage temperature  
55  
-
+150  
0.56  
150  
+85  
+6  
°C  
W
total power dissipation  
junction temperature  
Tamb = 25 °C to +85 °C  
-
°C  
°C  
kV  
Tamb  
VESD  
ambient temperature  
electrostatic discharge voltage  
25  
6  
pins I/O, RST, VCC, AUX1, CLK,  
AUX2, PRES and PRESN; within  
typical application  
Human Body Model (HBM); all pins;  
EIA/JESD22-A114-B, June 2000  
2  
+2  
kV  
V
Machine Model (MM); all pins;  
200  
+200  
EIA/JESD22-A115-A, October 1997  
Charged Device Model (CDM);  
all pins, except corner pins  
500  
750  
+500  
+750  
V
V
only corner pins (1, 8, 9, 16, 17,  
24, 25 and 32)  
10. Thermal characteristics  
Table 7.  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
Conditions  
Typ  
42  
Unit  
thermal resistance from junction to ambient  
with exposed pad soldered  
K/W  
K/W  
without exposed pad soldered  
62  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
22 of 38  
 
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
11. Characteristics  
Table 8.  
Characteristics of IC supply voltage  
Tamb = 25 °C; all parameters remain within limits but are only statistically tested for the temperature range; fxtal = 10 MHz; all  
currents flowing into the IC are positive; unless otherwise specified. Parameters specified as a function of  
VDD(INTF), VDDI(REG), VDD(INTREGD) or VCC refer to the actual value at the time of measurement.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply  
VDDI(REG)  
regulator input  
supply voltage  
pin CONFIG = ground  
3.6  
3
5
5.5  
3.6  
V
V
pin CONFIG = VDDI(REG)  
regulator is bypassed  
;
3.3  
[1]  
[2]  
VDD(INTREGD) internal  
regulated supply  
voltage  
pin CONFIG = ground  
3
3.3  
3.6  
V
VDD(INTF)  
interface supply pin CONFIG = ground  
1.6  
1.6  
3.0  
3.0  
3.3  
V
V
voltage  
pin CONFIG = VDDI(REG)  
VDDI(REG) + 0.3  
and VDD(INTF) not  
connected to VDDI(REG)  
and VDD(INTREGD)  
pin CONFIG = VDDI(REG)  
3
3.3  
3.6  
V
with VDD(INTF) connected  
to VDDI(REG) and  
VDD(INTREGD)  
IDDI(REG)  
regulator input  
supply current  
inactive mode  
VDDI(REG) = 5 V  
-
-
-
-
300  
2.5  
µA  
f
xtal = stopped  
VDDI(REG) = 5 V  
mA  
f
f
xtal = 10 MHz;  
CLK = 18 fxtal  
active mode  
VCC = 3 V; ICC = 65 mA  
VCC = 1.8 V;  
-
-
-
-
85  
85  
mA  
mA  
I
CC = 65 mA  
VCC = 1.2 V;  
CC = 30 mA  
-
-
-
-
50  
mA  
I
IDD(INTF)  
Vth  
interface supply  
current  
100  
µA  
threshold voltage pin VDD(INTREGD); falling  
pin VDD(INTREGD); rising  
2.60  
2.65  
1.17  
1.19  
50  
2.70  
2.80  
1.24  
1.26  
100  
2.80  
2.95  
1.31  
1.33  
150  
V
V
pin PORADJ; falling  
V
pin PORADJ; rising  
V
Vhys  
hysteresis  
voltage  
pin VDD(INTREGD)  
mV  
tw(POR)  
Vth/T  
power-on reset  
pulse width  
5
-
8
-
18  
ms  
threshold voltage  
variation with  
temperature  
0.25  
mV/°C  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
23 of 38  
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
Table 8.  
Characteristics of IC supply voltage …continued  
Tamb = 25 °C; all parameters remain within limits but are only statistically tested for the temperature range; fxtal = 10 MHz; all  
currents flowing into the IC are positive; unless otherwise specified. Parameters specified as a function of  
VDD(INTF), VDDI(REG), VDD(INTREGD) or VCC refer to the actual value at the time of measurement.  
Symbol  
IL  
Parameter  
Conditions  
Min  
0.1  
1  
Typ  
+4  
-
Max  
+10  
+1  
Unit  
µA  
leakage current pin PORADJ < 0.5 V  
pin PORADJ > 1 V  
µA  
Card supply voltage[3]  
Cdec  
decoupling  
connected to VCC  
550  
-
830  
nF  
capacitance  
VCC  
supply voltage  
including ripple  
inactive mode  
no load  
0.1  
0.1  
-
-
+0.1  
+0.3  
V
V
ICC = 1 mA  
active mode  
3 V card:  
ICC < 65 mA DC  
2.85  
2.76  
3.05  
3.05  
3.15  
3.20  
V
V
single current pulse  
100 mA; 2 µs  
current pulses of  
40 nAs at  
2.76  
3.05  
3.20  
V
ICC < 200 mA;  
t < 400 ns  
1.8 V card:  
I
CC < 65 mA DC  
1.71  
1.66  
1.83  
1.83  
1.89  
1.94  
V
V
single current pulse  
100 mA; 2 µs  
current pulses of  
15 nAs with ICC  
1.66  
1.83  
1.94  
V
< 200 mA; t < 400 ns  
1.2 V card:  
ICC < 30 mA DC  
1.1  
1.1  
1.2  
1.2  
1.3  
1.3  
V
V
single current pulse  
100 mA; 2 µs  
current pulses of  
15 nAs with ICC  
< 200 mA; t < 400 ns  
1.10  
-
1.2  
-
1.3  
V
Vripple(p-p)  
ICC  
peak-to-peak  
ripple voltage  
pin VCC; 20 kHz to  
200 MHz  
350  
mV  
supply current  
0 V to 3 V  
-
-
65  
mA  
mA  
mA  
V/µs  
0 V to 1.8 V  
0 V to 1.2 V  
up or down  
-
-
65  
-
-
30  
SR  
slew rate  
0.02  
0.14  
0.26  
Crystal oscillator: pins XTAL1 and XTAL2  
Cext  
external  
pins XTAL1/XTAL2;  
-
-
15  
pF  
capacitance  
depending on the crystal  
or resonator specification  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
24 of 38  
TDA8025  
NXP Semiconductors  
IC card interface  
Table 8.  
Characteristics of IC supply voltage …continued  
Tamb = 25 °C; all parameters remain within limits but are only statistically tested for the temperature range; fxtal = 10 MHz; all  
currents flowing into the IC are positive; unless otherwise specified. Parameters specified as a function of  
VDD(INTF), VDDI(REG), VDD(INTREGD) or VCC refer to the actual value at the time of measurement.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fxtal  
fext  
VIL  
VIH  
crystal frequency card clock reference;  
crystal oscillator  
2
-
26  
MHz  
external  
frequency  
external clock on  
pin XTAL1  
0
-
-
26  
MHz  
V
LOW-level input pin XTAL1  
voltage  
0.3  
+0.3VDD(INTF)  
HIGH-level input pin XTAL1  
voltage  
VDD(INTF)  
0.7VDD(INTF)  
0.7VDD(INTF)  
-
-
VDD(INTF) + 0.3  
V
V
VDD(INTREGD)  
VDD(INTF)  
VDD(INTREGD)  
Data lines: pins I/O, I/OUC, AUX1, AUX2, AUX1UC and AUX2UC  
>
VDD(INTREGD)  
0.3  
+
td  
delay time  
falling edge on pins I/O  
and I/OUC or vise versa  
-
-
-
-
-
-
-
-
200  
100  
1
ns  
tw(pu)  
fio  
pull-up pulse  
width  
ns  
input/output  
frequency  
on data lines  
on data lines  
MHz  
pF  
Ci  
input  
10  
capacitance  
Data lines to the card: pins I/O, AUX1 and AUX2[4]  
Vo  
output voltage  
output current  
inactive mode  
no load  
0
-
-
-
-
0.1  
0.3  
1  
V
Io = 1 mA  
V
Io  
from data lines when in  
inactive mode with pins  
grounded  
-
mA  
VOL  
LOW-level output IOL = 1 mA  
voltage  
0
-
-
-
-
-
0.3  
V
V
V
V
V
IOL 15 mA  
V
CC 0.4  
VCC  
VOH  
HIGH-level  
no DC load  
0.9VCC  
VCC + 0.1  
VCC + 0.1  
VCC + 0.1  
output voltage  
IOH < 40 µA; 3 V  
0.75VCC  
0.75VCC  
IOH < 20 µA; 1.8 V or  
1.2 V card  
current limit IOH = 15 mA  
0
-
-
-
-
-
0.4  
V
V
V
V
V
VIL  
LOW-level input VCC = +3 V  
0.3  
0.3  
0.3  
0.6VCC  
+0.8  
voltage  
VCC = +1.8 V  
+0.6  
VCC = +1.2 V  
+0.4  
VIH  
HIGH-level input  
voltage  
VCC + 0.3  
Vhys  
IIL  
hysteresis  
voltage  
pin I/O  
-
-
350  
-
-
mV  
LOW-level input pin I/O; VIL = 0 V  
current  
600  
µA  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
25 of 38  
TDA8025  
NXP Semiconductors  
IC card interface  
Table 8.  
Characteristics of IC supply voltage …continued  
Tamb = 25 °C; all parameters remain within limits but are only statistically tested for the temperature range; fxtal = 10 MHz; all  
currents flowing into the IC are positive; unless otherwise specified. Parameters specified as a function of  
VDD(INTF), VDDI(REG), VDD(INTREGD) or VCC refer to the actual value at the time of measurement.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IIH  
HIGH-level input pin I/O; VIH = VCC  
current  
-
-
10  
µA  
tr(i)  
tr(o)  
tf(i)  
input rise time  
VIL maximum to  
IH minimum  
-
-
1.2  
0.1  
1.2  
0.1  
13  
µs  
µs  
µs  
µs  
kΩ  
mA  
V
output rise time CL 80 pF; 10 % to 90 %;  
-
-
0 V to VCC  
input fall time  
VIL maximum to  
IH minimum  
-
-
V
tf(o)  
Rpu  
IOH  
output fall time  
CL 80 pF; 10 % to 90 %;  
0 V to VCC  
-
-
pull-up  
resistance  
between I/O and VCC  
8
8  
11  
6  
HIGH-level  
pin I/O when active  
4  
output current  
pull-up; VOH = 0.9VCC  
C = 80 pF  
;
Data lines to the system: pins I/OUC, AUX1UC and AUX2UC[5]  
VOL  
LOW-level output IOL = 1 mA  
voltage  
0
-
0.3  
V
VOH  
HIGH-level  
output voltage  
no DC load  
OH 40 µA;  
DD(INTF) > 2 V  
OH 20 µA;  
DD(INTF) < 2 V  
0.9VDD(INTF)  
-
-
VDD(INTF) + 0.1  
VDD(INTF) + 0.1  
V
V
I
V
0.75VDD(INTF)  
I
V
0.75VDD(INTF)  
-
VDD(INTF) + 0.1  
V
VIL  
VIH  
Vhys  
IIH  
LOW-level input  
voltage  
0.3  
-
+0.3VDD(INTF)  
V
HIGH-level input  
voltage  
0.7VDD(INTF)  
-
VDD(INTF) + 0.3  
V
hysteresis  
voltage  
pin I/OUC  
-
-
-
8
-
-
-
-
0.19VDD(INTF)  
-
V
HIGH-level input pin I/OUC; VIH = VDD(INTF)  
current  
-
10  
600  
13  
1.2  
0.1  
1.2  
0.1  
µA  
µA  
kΩ  
µs  
µs  
µs  
µs  
IIL  
LOW-level input pin I/OUC; VIL = 0 V  
current  
-
Rpu  
tr(i)  
tr(o)  
tf(i)  
pull-up  
resistance  
between I/OUC and  
VDD(INTF)  
11  
-
input rise time  
VIL maximum to  
VIH minimum  
output rise time CL 80 pF;10 % to 90 %;  
-
0 V to VCC  
input fall time  
VIL maximum to  
IH minimum  
-
V
tf(o)  
output fall time  
CL 80 pF; 10 % to 90 %;  
-
0 V to VCC  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
26 of 38  
TDA8025  
NXP Semiconductors  
IC card interface  
Table 8.  
Characteristics of IC supply voltage …continued  
Tamb = 25 °C; all parameters remain within limits but are only statistically tested for the temperature range; fxtal = 10 MHz; all  
currents flowing into the IC are positive; unless otherwise specified. Parameters specified as a function of  
VDD(INTF), VDDI(REG), VDD(INTREGD) or VCC refer to the actual value at the time of measurement.  
Symbol  
IOH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HIGH-level  
pin I/OUC when active  
1  
-
-
mA  
output current  
pull-up; VOH = 0.9VDD  
C = 30 pF  
;
Internal oscillator  
fosc(int) internal oscillator inactive mode  
55  
140  
2.7  
200  
3.2  
kHz  
frequency  
active mode  
1.9  
MHz  
Reset output to the card: pin RST  
Vo  
output voltage  
inactive mode  
no load  
0
-
-
-
-
0.1  
0.3  
1  
V
Io = 1 mA  
V
Io  
output current  
delay time  
when inactive and pin  
RST grounded  
0
mA  
td  
between pins RSTIN and  
RST; RST enabled  
-
-
2
µs  
VOL  
LOW-level output IOL = 200 µA  
0
-
-
-
-
-
0.2  
V
voltage  
current limit IOL = 20 mA  
IOH = 200 µA  
V
CC 0.4  
VCC  
VCC  
0.4  
V
VOH  
HIGH-level  
0.9VCC  
V
output voltage  
current limit IOH = 20 mA  
0
-
V
[6]  
[6]  
tr  
tf  
rise time  
fall time  
CL = 100 pF;  
V
0.1  
µs  
CC = 3 V, 1.8 V or 1.2 V  
CL = 100 pF;  
CC = 3 V, 1.8 V or 1.2 V  
Clock output to the card: pin CLK  
-
-
0.1  
µs  
V
Vo  
output voltage  
output current  
inactive mode  
no load  
0
-
-
-
-
0.1  
0.3  
1  
V
Io = 1 mA  
V
Io  
pin CLK when inactive  
and grounded  
0
mA  
VOL  
LOW-level output IOL = 200 µA  
0
-
-
-
-
-
-
-
-
0.3  
VCC  
VCC  
0.4  
16  
V
voltage  
current limit IOL = 70 mA  
IOH = 200 µA  
V
CC 0.4  
V
VOH  
HIGH-level  
0.9VCC  
V
output voltage  
current limit IOH = 70 mA  
CL = 30 pF  
0
V
[6]  
[6]  
[6]  
tr  
rise time  
fall time  
-
ns  
ns  
%
V/ns  
tf  
CL = 30 pF  
-
16  
δ
duty cycle  
slew rate  
except for fxtal; CL = 30 pF  
rise and fall; CL = 30 pF;  
45  
0.2  
55  
SR  
-
VCC = 3 V or 1.8 V  
CL = 30 pF; VCC = 1.2 V  
0.1  
-
-
V/ns  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
27 of 38  
TDA8025  
NXP Semiconductors  
IC card interface  
Table 8.  
Characteristics of IC supply voltage …continued  
Tamb = 25 °C; all parameters remain within limits but are only statistically tested for the temperature range; fxtal = 10 MHz; all  
currents flowing into the IC are positive; unless otherwise specified. Parameters specified as a function of  
V
DD(INTF), VDDI(REG), VDD(INTREGD) or VCC refer to the actual value at the time of measurement.  
Symbol Parameter Conditions Min Typ  
Control inputs: pins CLKDIV1, CLKDIV2, CMDVCCN, RSTIN, VCC_SEL2, VCC_SEL1 and ENCLKIN[7]  
Max  
Unit  
VIL  
VIH  
Vhys  
IIL  
LOW-level input  
voltage  
0.3  
-
+0.3VDD(INTF)  
V
HIGH-level input  
voltage  
0.7VDD(INTF)  
-
VDD(INTF) + 0.3  
V
hysteresis  
voltage  
control inputs  
-
-
-
0.14VDD(INTF)  
-
V
LOW-level input VIL = 0 V  
current  
-
-
1
1
µA  
µA  
IIH  
HIGH-level input VIH = VDD(INTF)  
current  
Control inputs CMDVCCN and CONFIG[7]  
fCMDVCCN  
frequency on pin  
CMDVCCN  
-
-
150  
kHz  
V
VIL  
LOW-level input  
voltage  
0.3  
-
+0.3VDD(INTF)  
VIH  
HIGH-level input  
voltage  
0.7  
-
VDD(INTREGD)  
0.3  
+
V
VDD(INTREGD)  
Vhys  
IIL  
hysteresis  
voltage  
pin CONFIG  
-
-
-
0.14VDD(INTF)  
-
V
LOW-level input VIL = 0 V  
current  
-
-
1
1
µA  
µA  
IIH  
HIGH-level input VIH = VDD(INTREGD)  
current  
Card detection inputs: pins PRES and PRESN[7][8][9]  
VIL  
VIH  
Vhys  
IIL  
LOW-level input  
voltage  
0.3  
-
-
+0.3VDD(INTREGD)  
V
HIGH-level input  
voltage  
0.7  
VDD(INTREGD)  
0.3  
+
V
VDD(INTREGD)  
hysteresis  
voltage  
pins PRES and PRESN  
-
-
-
0.17  
VDD(INTREGD)  
-
V
LOW-level input VIL = 0 V  
current  
-
5
5
µA  
µA  
IIH  
HIGH-level input VIH = VDD(INTREGD)  
current  
-
OFFN output[10]: pin OFFN  
VOL  
VOH  
Rpu  
LOW-level output IOL = 2 mA  
voltage  
0
-
0.3  
-
V
HIGH-level  
IOH = 15 µA  
0.75VDD(INTF)  
16  
-
V
output voltage  
pull-up  
to VDD  
20  
24  
kΩ  
resistance  
[1] Two decoupling capacitors connected in parallel to VDD(INTREGD) rated at 100 nF and 1 µF.  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
28 of 38  
TDA8025  
NXP Semiconductors  
IC card interface  
[2] To enable the microcontroller to provide the required maximum voltage input level on XTAL1, VDD(INTF) must not exceed  
VDD(INTREGD) + 0.3 V. See Section 8.1 on page 7 for specific limitations on the maximum VDD(INTF) voltage and Table 8 on page 23 for  
the limits of XTAL1.  
[3] To meet these specifications, VCC should be decoupled to pin CGND using two low ESR, ceramic multilayer capacitors one of 470 nF  
and one of 220 nF with an ESR of < 100 m.  
[4] Using the internal pull-up resistor to VCC  
.
[5] Using the internal pull-up resistor to VDD(INTF)  
.
[6] The transition time and the duty factor definitions are shown in Figure 16 on page 30; δ = t1/(t1 + t2).  
[7] Pins PRESN and CMDVCCN are active LOW. Pins RSTIN and PRES are active HIGH; see Table 4 on page 12 for pins CLKDIV1 and  
CLKDIV2; see Table 5 on page 19 for pins VCC_SEL1 and VCC_SEL2.  
[8] If PRESN or PRES is true, the card is considered to be present. A debouncing feature of 4.5 ms typical is built-in.  
[9] Pin PRES has an integrated current source to pin GND, pin PRES to VDD(INTREGD); the card is considered as present if at least one of  
the two inputs is true.  
[10] Pin OFFN is an NMOS drain, using an internal pull-up resistor to VDD(INTREGD)  
.
Table 9.  
Symbol  
ICC  
Protection characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply current  
shutdown current on  
pin VCC  
95  
135  
185  
mA  
pin VCC  
pin CLK  
pin RST  
135  
70  
20  
15  
175  
225  
+70  
+20  
+15  
mA  
mA  
mA  
mA  
-
-
-
IIO  
input/output current  
pins I/O, AUX1 and  
AUX2  
Tsd  
shutdown temperature  
-
150  
-
°C  
Table 10. Timing characteristics  
Symbol  
Parameter  
Conditions  
Min  
35  
Typ  
Max  
3000  
240  
Unit  
[1]  
[2]  
[3]  
tact  
activation time  
total sequence with the crystal oscillator  
external clock  
-
µs  
µs  
µs  
35  
-
tdeact  
td  
deactivation time  
delay time  
total sequence  
35  
80  
100  
CLK sent to a card with the crystal oscillator  
td(start) = t3  
[1]  
[1]  
35  
-
-
3000  
3090  
µs  
µs  
td(end) = t5  
160  
CLK sent to card using an external clock  
td(start) = t3  
[2]  
[2]  
[4]  
35  
-
150  
240  
12  
µs  
µs  
ms  
td(end) = t5  
160  
3.2  
-
tdeb  
debounce time  
on pins PRES and PRESN  
4.5  
[1] See Figure 8 on page 15.  
[2] See Figure 10 on page 16.  
[3] See Figure 12 on page 18.  
[4] See Figure 15 on page 21.  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
29 of 38  
 
 
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
t
t
f
r
V
OH  
90 %  
90 %  
(V  
+ V )/2  
OL  
OH  
10 %  
10 %  
V
OL  
001aai973  
t1  
t2  
Fig 16. Definition of output and input transition times  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
30 of 38  
TDA8025  
NXP Semiconductors  
IC card interface  
12. Application information  
V
MICROCONTROLLER  
DD(INTF)  
V
DD(INTF)  
R1  
V
DD(INTF)  
R2  
V
DD(INTF)  
32 31 30 29 28 27 26 25  
CMDVCCN  
TEST1  
TEST3  
OFFN  
RSTIN  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
V
DDI(REG)  
TEST2  
C5  
100 nF  
C3  
V
V
DDI(REG)  
DD(INTF)  
10 µF  
TDA8025  
CLKDIV2  
CLKDIV1  
GND  
V
V
DD(INTREGD)  
CC  
C4  
VCC_SEL1  
VCC_SEL2  
100 nF  
RST  
9
10 11 12 13 14 15 16  
C1  
470 nF  
V
DD(INTREGD)  
CARD  
CONNECTOR  
C2  
220 nF  
C5  
C1  
C2  
C3  
C4  
K1  
C6  
C7  
C8  
K2  
RD Ω  
V
DDI(REG)  
001aai974  
Refer to Table 8 on page 23 and Section 8.1 “Power supplies” on page 7 for detailed information on  
the VDD(INTF) restrictions.  
Fig 17. Application diagram (3 V < VDDI(REG) < 3.6 V)  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
31 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
V
MICROCONTROLLER  
DD(INTF)  
V
DD(INTF)  
R1  
V
DD(INTF)  
R2  
V
DD(INTF)  
32 31 30 29 28 27 26 25  
CMDVCCN  
TEST1  
TEST3  
OFFN  
RSTIN  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
V
DDI(REG)  
TEST2  
C5  
100 nF  
C3  
V
V
DDI(REG)  
DD(INTF)  
10 µF  
TDA8025  
CLKDIV2  
CLKDIV1  
GND  
V
V
DD(INTREGD)  
CC  
C3  
VCC_SEL1  
VCC_SEL2  
10 µF  
RST  
C4  
9
10 11 12 13 14 15 16  
C1  
470 nF  
100 nF  
CARD  
CONNECTOR  
C2  
220 nF  
C5  
C1  
C2  
C3  
C4  
K1  
C6  
C7  
C8  
K2  
RD Ω  
V
DDI(REG)  
001aaj350  
Refer to Table 8 on page 23 and Section 8.1 “Power supplies” on page 7 for detailed information on  
the VDD(INTF) restrictions.  
Fig 18. Application diagram (3.6 V < VDDI(REG) < 5.5 V)  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
32 of 38  
TDA8025  
NXP Semiconductors  
IC card interface  
13. Package outline  
HVQFN32: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
SOT617-1  
B
A
D
terminal 1  
index area  
A
A
1
E
c
detail X  
C
e
1
y
y
e
1/2 e  
v
M
M
b
C
C
A B  
C
1
w
9
16  
L
17  
8
e
e
E
h
2
1/2 e  
1
24  
terminal 1  
index area  
32  
25  
X
D
h
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
A
b
c
E
e
e
e
2
y
D
D
E
L
v
w
y
1
1
h
1
h
max.  
0.05 0.30  
0.00 0.18  
5.1  
4.9  
3.25  
2.95  
5.1  
4.9  
3.25  
2.95  
0.5  
0.3  
mm  
0.05 0.1  
1
0.2  
0.5  
3.5  
3.5  
0.1  
0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-08-08  
02-10-18  
SOT617-1  
- - -  
MO-220  
- - -  
Fig 19. Package outline SOT617-1  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
33 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
14. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
14.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
14.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
14.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
34 of 38  
 
 
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
14.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 20) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 11 and 12  
Table 11. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 12. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 20.  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
35 of 38  
 
TDA8025  
NXP Semiconductors  
IC card interface  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 20. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
15. Abbreviations  
Table 13. Abbreviations  
Acronym  
ATR  
Description  
Answer To Request  
ESD  
ElectroStatic Discharge  
ESR  
Equivalent Series Resistance  
Negative-channel Metal-Oxide Semiconductor  
Power-On Reset  
NMOS  
POR  
PMOS  
Positive-channel Metal-Oxide Semiconductor  
16. Revision history  
Table 14. Revision history  
Document ID  
Release date  
20090406  
Data sheet status  
Change notice  
Supersedes  
TDA8025_1  
Product data sheet  
-
-
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
36 of 38  
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
17.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
17.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TDA8025_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 6 April 2009  
37 of 38  
 
 
 
 
 
 
TDA8025  
NXP Semiconductors  
IC card interface  
19. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
19  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
8.1  
8.2  
8.2.1  
8.2.2  
8.2.3  
Functional description . . . . . . . . . . . . . . . . . . . 7  
Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Voltage supervisors . . . . . . . . . . . . . . . . . . . . . 8  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VDD(INTREGD) voltage supervisor with  
pin PORADJ connected to VDD(INTF) . . . . . . . . 9  
8.2.4  
VDD(INTF) voltage supervisor with external  
divider on pin PORADJ. . . . . . . . . . . . . . . . . . . 9  
R1 and R2 resistor value calculation . . . . . . . . 9  
Clock circuits. . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input and output circuits . . . . . . . . . . . . . . . . . 13  
Inactive mode . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Activation sequence . . . . . . . . . . . . . . . . . . . . 14  
Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Deactivation sequence . . . . . . . . . . . . . . . . . . 18  
8.2.4.1  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
VCC regulator . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.10  
Fault detection . . . . . . . . . . . . . . . . . . . . . . . . 19  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 22  
Thermal characteristics. . . . . . . . . . . . . . . . . . 22  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 23  
Application information. . . . . . . . . . . . . . . . . . 31  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 33  
9
10  
11  
12  
13  
14  
Soldering of SMD packages . . . . . . . . . . . . . . 34  
Introduction to soldering . . . . . . . . . . . . . . . . . 34  
Wave and reflow soldering . . . . . . . . . . . . . . . 34  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 34  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 35  
14.1  
14.2  
14.3  
14.4  
15  
16  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 36  
17  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 37  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 37  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
17.1  
17.2  
17.3  
17.4  
18  
Contact information. . . . . . . . . . . . . . . . . . . . . 37  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 6 April 2009  
Document identifier: TDA8025_1  
 

相关型号:

TDA8026ET/C2,551

TDA8026 - Multiple smart card slot interface BGA 64-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8029

Low power single card reader

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8029C1

Low power single card reader

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8029C2

Low power single card reader

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8029HL

Low power single card reader

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8029HL/C1

Low power single card reader

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8029HL/C2

Low power single card reader

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8029HL/C207

Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8030

USB smart card reader (OTP or ROM)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8030HL

USB smart card reader (OTP or ROM)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8031

USB smart card reader (OTP or ROM)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP