TDA8589AJ/N3,112 [NXP]

IC SPECIALTY CONSUMER CIRCUIT, PZFM37, PLASTIC, SOT725-1, 37 PIN, Consumer IC:Other;
TDA8589AJ/N3,112
型号: TDA8589AJ/N3,112
厂家: NXP    NXP
描述:

IC SPECIALTY CONSUMER CIRCUIT, PZFM37, PLASTIC, SOT725-1, 37 PIN, Consumer IC:Other

局域网 CD 商用集成电路
文件: 总55页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8589J; TDA8589xJ  
I2C-bus controlled 4 × 45 Watt  
power amplifier and multiple  
voltage regulator  
Product specification  
2004 Feb 24  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
FEATURES  
Amplifiers  
I2C-bus control  
Can drive a 2 load with a battery voltage of up to 16 V  
and a 4 load with a battery voltage of up to 18 V  
DC load detection: open, short and present  
PROTECTION  
AC load (tweeter) detection  
If connection to the battery voltage is reversed, all  
Programmable clip detect 1 % or 3%  
Programmable thermal protection pre-warning  
Independent short-circuit protection per channel  
Low gain line driver mode (20 dB)  
regulator voltages will be zero  
Able to withstand voltages at the output of up to 18 V  
(supply line may be short-circuited)  
Thermal protection to avoid thermal breakdown  
Load-dump protection  
Loss-of-ground and open VP safe  
Regulator outputs protected from DC short-circuit to  
All outputs protected from short-circuit to ground, to VP,  
ground or to supply voltage  
or across the load  
All regulators protected by foldback current limiting  
Power switches protected from loss-of-ground.  
All pins protected from short-circuit to ground  
Soft thermal-clipping to prevent audio holes  
Low battery detection.  
APPLICATIONS  
Voltage regulators  
Boost amplifier and voltage regulator for car radios and  
GENERAL  
CD/MD players.  
I2C-bus control  
GENERAL DESCRIPTION  
Amplifiers  
Good stability with almost any output capacitor value  
Five voltage regulators (microcontroller, display,  
mechanical digital, mechanical drive and audio)  
The TDA8589 has a complementary quad audio power  
amplifier that uses BCDMOS technology. It contains four  
amplifiers configured in Bridge Tied Load (BTL) to drive  
speakers for front and rear left and right channels. The  
I2C-bus allows diagnostic information of each amplifier and  
its speaker to be read separately. Both front and both rear  
channel amplifiers can be configured independently in line  
driver mode with a gain of 20 dB (differential output).  
Choice of non-adjustable 3.3 or 5 V microcontroller  
supply (REG2) versions reducing risk of overvoltage  
damage  
Choice of non-adjustable 3.3 or 5 V digital signal  
processor supply (REG3) versions reducing risk of  
overvoltage damage  
Selectable output voltages for regulators 1, 4 and 5  
Low dropout voltage PNP output stages  
High supply voltage ripple rejection  
Low noise for all regulators  
Voltage regulators  
The TDA8589 has a multiple output voltage regulator with  
two power switches.  
Two power switches (antenna switch and amplifier  
switch)  
The voltage regulator contains the following:  
Four switchable regulators and one permanently active  
regulator (microcontroller supply)  
Regulator 2 (microcontroller supply) operational during  
load-dump and thermal shut-down  
Two power switches with loss-of-ground protection  
Low quiescent current (only regulator 2 is operational)  
Reset output (push-pull output stage)  
Adjustable reset delay time  
A reset output that can be used to communicate with a  
microcontroller.  
The quiescent current has a very low level of 150 µA with  
only regulator 2 active.  
Backup functionality.  
2004 Feb 24  
2
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
Amplifiers  
VP1, VP2  
Iq(tot)  
operating supply voltage  
total quiescent current  
maximum output power  
8
14.4  
270  
41  
18  
400  
V
mA  
W
Po(max)  
RL = 4 ; VP = 14.4 V; VIN = 2 V 39  
RMS square wave  
RL = 4 ; VP = 15.2 V; VIN = 2 V 44  
RMS square wave  
46  
69  
W
W
RL = 2 ; VP = 14.4 V; VIN = 2 V 64  
RMS square wave  
THD  
total harmonic distortion  
0.01  
50  
0.1  
70  
35  
%
Vn(o)(amp)  
Vn(o)(LN)  
noise output voltage in amplifier mode  
noise output voltage in line driver mode  
µV  
µV  
25  
Voltage regulators  
SUPPLY  
VP  
supply voltage  
regulator 1, 3, 4 and 5 on  
regulator 2 on  
10  
4
14.4  
18  
V
V
V
V
jump starts for t 10 minutes  
30  
50  
load dump protection for  
t 50 ms and tr 2.5 ms  
overvoltage for shut-down  
standby mode; VP = 14.4 V  
20  
V
Iq(tot)  
total quiescent supply current  
150  
190  
µA  
VOLTAGE REGULATORS  
VO(REG1)  
output voltage of regulator 1  
0.5 mA IO 400 mA;  
selectable via I2C-bus  
IB2[D3:D2] = 01  
IB2[D3:D2] = 10  
8.3  
8.5  
8.7  
V
V
V
IB2[D3:D2] = 11  
VO(REG2)  
VO(REG3)  
VO(REG4)  
output voltage of regulator 2  
output voltage of regulator 3  
output voltage of regulator 4  
0.5 mA IO 350 mA  
TDA8589J; TDA8589AJ  
TDA8589BJ  
5.0  
3.3  
V
V
0.5 mA IO 300 mA  
TDA8589J  
5.0  
3.3  
V
V
V
TDA8589AJ; TDA8589BJ  
maximum current 1.6 A;  
0.5 mA IO 800 mA;  
selectable via I2C-bus  
IB2[D7:D5] = 001  
IB2[D7:D5] = 010  
IB2[D7:D5] = 011  
IB2[D7:D5] = 100  
5.0  
6.0  
7.0  
8.6  
V
V
V
V
2004 Feb 24  
3
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
VO(REG5)  
output voltage of regulator 5  
0.5 mA IO 400 mA;  
selectable via I2C-bus  
IB1[D7:D4] = 0001  
IB1[D7:D4] = 0010  
IB1[D7:D4] = 0011  
IB1[D7:D4] = 0100  
IB1[D7:D4] = 0101  
IB1[D7:D4] = 0110  
IB1[D7:D4] = 0111  
IB1[D7:D4] = 1000  
IB1[D7:D4] = 1001  
6.0  
V
V
V
V
V
V
V
V
V
7.0  
8.2  
9.0  
9.5  
10.0  
10.4  
12.5  
VP −  
1
POWER SWITCHES  
Vdrop(SW1)  
Vdrop(SW2)  
dropout voltage of switch 1  
dropout voltage of switch 2  
IO = 400 mA  
IO = 400 mA  
0.6  
0.6  
1.1  
1.1  
V
V
ORDERING INFORMATION  
OUTPUT VOLTAGE(1)  
VERSION REGULATOR 2 REGULATOR 3  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
TDA8589J  
TDA8589AJ  
TDA8589BJ  
DBS37P  
plastic DIL-bent-SIL power package; SOT725-1  
37 leads (lead length 6.8 mm)  
5 V  
5 V  
5 V  
3.3 V  
3.3 V  
3.3 V  
Note  
1. Permanent output voltage of regulator 2 and output voltage of regulator 3, respectively.  
2004 Feb 24  
4
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
BLOCK DIAGRAM  
36  
37  
REGULATOR 2  
REG2  
BUCAP  
TEMPERATURE &  
LOAD DUMP  
PROTECTION VOLTAGE  
REGULATOR  
REFERENCE  
BACKUP  
VOLTAGE  
SWITCH  
35  
V
P
30  
31  
33  
34  
29  
27  
REGULATOR 1  
REGULATOR 3  
REGULATOR 4  
REG1  
REG3  
REG4  
REG5  
SW1  
TDA8589  
ENABLE  
LOGIC  
REGULATOR 5  
SWITCH 1  
V
reg2  
SWITCH 2  
SW2  
40 µs  
28  
RESCAP  
26  
32  
RST  
GND  
20  
6
V
2
4
P1  
SDA  
SCL  
V
P2  
25  
DIAG  
22  
2
I C-BUS  
STB  
STANDBY/ MUTE  
CLIP DETECT/ DIAGNOSTIC  
INTERFACE  
9
7
11  
15  
12  
14  
MUTE  
OUT1+  
OUT1−  
IN1  
IN2  
IN3  
IN4  
26 dB/  
20 dB  
PROTECTION/  
DIAGNOSTIC  
17  
19  
MUTE  
OUT2+  
OUT2−  
26 dB/  
20 dB  
PROTECTION/  
DIAGNOSTIC  
5
3
MUTE  
OUT3+  
OUT3−  
26 dB/  
20 dB  
PROTECTION/  
DIAGNOSTIC  
21  
23  
MUTE  
OUT4+  
OUT4−  
26 dB/  
20 dB  
V
P
PROTECTION/  
DIAGNOSTIC  
TEMPERATURE & LOAD  
DUMP PROTECTION  
AMPLIFIER  
10  
SVR  
13  
SGND  
16  
8
1
18  
24  
mdb538  
PGND1  
PGND3  
ACGND  
PGND2/TAB  
PGND4  
Fig.1 Block diagram.  
5
2004 Feb 24  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
power ground 2 and connection for heatsink  
I2C-bus data input and output  
channel 3 negative output  
I2C-bus clock input  
PGND2/TAB  
SDA  
1
2
OUT3−  
SCL  
3
4
OUT3+  
VP2  
5
channel 3 positive output  
power supply voltage 2 to amplifier  
channel 1 negative output  
power ground 1  
6
OUT1−  
PGND1  
OUT1+  
SVR  
7
8
9
channel 1 positive output  
half supply voltage filter capacitor  
channel 1 input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
IN1  
IN3  
channel 3 input  
SGND  
IN4  
signal ground  
channel 4 input  
IN2  
channel 2 input  
ACGND  
OUT2+  
PGND3  
OUT2−  
VP1  
AC ground  
channel 2 positive output  
power ground 3  
channel 2 negative output  
power supply voltage 1 to amplifier  
channel 4 positive output  
standby or operating or mute mode select input  
channel 4 negative output  
power ground 4  
OUT4+  
STB  
OUT4−  
PGND4  
DIAG  
diagnostic and clip detection output; active LOW  
reset output  
RST  
SW2  
antenna switch; supplies unregulated power to car aerial motor  
reset delay capacitor  
RESCAP  
SW1  
amplifier switch; supplies unregulated power to amplifier(s)  
regulator 1 output; supply for audio part of radio and CD player  
regulator 3 output; supply for signal processor part (mechanical digital) of CD player  
combined voltage regulator, power and signal ground  
regulator 4 output; supply for mechanical part (mechanical drive) of CD player  
regulator 5 output; supply for display part of radio and CD player  
power supply to voltage regulator  
REG1  
REG3  
GND  
REG4  
REG5  
VP  
BUCAP  
REG2  
connection for backup capacitor  
regulator 2 output; supply voltage to microcontroller  
2004 Feb 24  
6
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
PGND2/TAB  
SDA  
1
2
3
4
5
6
7
8
9
OUT3  
SCL  
OUT3+  
V
P2  
OUT1−  
PGND1  
OUT1+  
SVR 10  
IN1 11  
IN3 12  
SGND 13  
IN4 14  
IN2 15  
ACGND 16  
OUT2+ 17  
PGND3 18  
OUT219  
TDA8589  
V
P1  
20  
OUT4+ 21  
STB 22  
OUT423  
PGND4 24  
DIAG 25  
RST 26  
SW2 27  
RESCAP 28  
SW1 29  
REG1 30  
REG3 31  
GND 32  
REG4 33  
REG5 34  
V
P
35  
BUCAP 36  
REG2 37  
001aaa259  
Fig.2 Pin configuration.  
7
2004 Feb 24  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
FUNCTIONAL DESCRIPTION  
Power-on reset and supply voltage spikes (see Fig.13  
and (see Fig.14))  
The TDA8589 is a multiple voltage regulator combined  
with four independent audio power amplifiers configured in  
bridge tied load with diagnostic capability. The output  
voltages of all regulators except regulators 2 and 3 can be  
controlled via the I2C-bus. However, regulator 3 can be set  
to 0 V via the I2C-bus. The output voltage of regulator 2  
(microcontroller supply) and the maximum output voltage  
of regulator 3 (mechanical digital and microcontroller  
supplies) can both be either 5 V or 3.3 V depending on the  
type number. The maximum output voltages of both  
regulators are fixed to avoid any risk of damaging the  
microcontroller that may occur during a disturbance of the  
I2C-bus.  
If the supply voltage drops too low to guarantee the  
integrity of the data in the I2C-bus latches, the power-on  
reset cycle will start. All latches will be set to a pre-defined  
state, pin DIAG will be pulled LOW to indicate that a  
power-on reset has occurred, and bit D7 of data byte 2 is  
also set for the same reason. When D0 of instruction  
byte 1 is set, the power-on flag resets, pin DIAG is  
released and the amplifier will then enter its start-up cycle.  
Diagnostic output  
Pin DIAG indicates clipping, thermal protection  
pre-warning of amplifier and voltage regulator sections,  
short-circuit protection, low and high battery voltage.  
Pin DIAG is an open-drain output, is active LOW, and must  
be connected to an external voltage via an external pull-up  
resistor. If a failure occurs, pin DIAG remains LOW during  
the failure and no clipping information is available. The  
microcontroller can read the failure information via the  
I2C-bus.  
The amplifier diagnostic functions give information about  
output offset, load, or short-circuit. Diagnostic functions  
are controlled via the I2C-bus. The TDA8589 is protected  
against short-circuit, over-temperature, open ground and  
open VP connections. If a short-circuit occurs at the input  
or output of a single amplifier, that channel shuts down,  
and the other channels continue to operate normally. The  
channel that has a short-circuit can be disabled by the  
microcontroller via the appropriate enable bit of the  
I2C-bus to prevent any noise generated by the fault  
condition from being heard.  
AMPLIFIERS  
Muting  
A hard mute and a soft mute can both be performed via the  
I2C-bus. A hard mute mutes the amplifier within 0.5 ms.  
A soft mute mutes the amplifier within 20 ms and is less  
audible. A hard mute is also activated if a voltage of 8 V is  
applied to pin STB.  
Start-up  
At power on, regulator 2 will reach its final voltage when  
the backup capacitor voltage exceeds 5.5 V independently  
of the voltage on pin STB. When pin STB is LOW, the total  
quiescent current is low, and the I2C-bus lines are high  
impedance.  
Temperature protection  
When pin STB is HIGH, the I2C-bus is biased on and then  
the TDA8589 performs a power-on reset. When bit D0 of  
instruction byte IB1 is set, the amplifier is activated, bit D7  
of data byte 2 (power-on reset occurred) is reset, and  
pin DIAG is no longer held LOW.  
If the average junction temperature rises to a temperature  
value that has been set via the I2C-bus, a thermal  
protection pre-warning is activated making pin DIAG LOW.  
If the temperature continues to rise, all four channels will  
be muted to reduce the output power (soft thermal  
clipping). The value at which the temperature mute control  
activates is fixed; only the temperature at which the  
thermal protection pre-warning signal occurs can be  
specified by bit D4 in instruction byte 3. If implementing  
the temperature mute control does not reduce the average  
junction temperature, all the power stages will be switched  
Start-up and shut-down timing (see Fig.12)  
A capacitor connected to pin SVR enables smooth start-up  
and shut-down, preventing the amplifier from producing  
audible clicks at switch-on or switch-off. The start-up and  
shut-down times can be extended by increasing the  
capacitor value.  
off (muted) at the absolute maximum temperature Tj(max)  
.
If the amplifier is shut down using pin STB, the amplifier is  
muted, the regulators and switches are switched off, and  
the capacitor connected to pin SVR discharges. The low  
current standby mode is activated 2 seconds after pin STB  
goes LOW.  
Offset detection  
Offset detection can only be performed when there is no  
input signal to the amplifiers, for instance when the  
external digital signal processor is muted after a start-up.  
The output voltage of each channel is measured and  
2004 Feb 24  
8
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
compared with a reference voltage. If the output voltage of  
a channel is greater than the reference voltage, bit D2 of  
the associated data byte is set and read by the  
microcontroller during a read instruction. Note that the  
value of this bit is only meaningful when there is no input  
signal and the amplifier is not muted. Offset detection is  
always enabled.  
AC-LOAD DETECTION  
AC-load detection can be used to detect that AC-coupled  
speakers are connected correctly during assembly. This  
requires at least 3 periods of a 19 kHz sine wave to be  
applied to the amplifier inputs. The amplifier produces a  
peak output voltage which also generates a peak output  
current through the AC-coupled speaker. The 19 kHz sine  
wave is also audible during the test. If the amplifier detects  
three current peaks that are greater than 550 mA, the  
AC-load detection bit D1 of instruction byte IB1 is set to  
logic 1. Three current peaks are counted to avoid false  
AC-load detection which can occur if the input signal is  
switched on and off. The peak current counter can be reset  
by setting bit D1 of instruction byte IB1 to logic 0.  
To guarantee AC-load detection, an amplifier current of  
more than 550 mA is required. AC-load detection will  
never occur with a current of less than 150 mA. Figure 3  
shows which AC loads are detected at different output  
voltages. For example, if a load is detected at an output  
voltage of 2.5 V peak, the load is less than 4 . If no load  
is detected, the output impedance is more than 14 .  
Speaker protection  
If one side of a speaker is connected to ground, a missing  
current protection is implemented to prevent damage to  
the speaker. A fault condition is detected in a channel  
when there is a mismatch between the power current in the  
high side and the power current in the low side; during a  
fault condition the channel will be switched off.  
The load status of each channel can be read via the  
I2C-bus: short to ground (one side of the speaker  
connected to ground), short to VP (one side of the speaker  
connected to VP), and shorted load.  
Line driver mode  
An amplifier can be used as a line driver by switching it to  
low gain mode. In normal mode, the gain between  
single-ended input and differential output (across the load)  
is 26 dB. In low gain mode the gain between single-ended  
input and differential output is 20 dB.  
mrc331  
2
10  
(1)  
no load present  
Z
o(load)  
()  
Input and AC ground capacitor values  
The negative inputs to all four amplifier channels are  
combined at pin ACGND. To obtain the best performance  
for supply voltage ripple rejection and unwanted audible  
noise, the value of the capacitor connected to pin ACGND  
must be as close as possible to 4 times the value of the  
input capacitor connected to the positive input of each  
channel.  
(2)  
undefined  
10  
load present  
Load detection  
1
0
2.5  
5
7.5  
V
10  
(V)  
DC-LOAD DETECTION  
o(peak)  
When DC-load detection is enabled, during the start-up  
cycle, a DC-offset is applied slowly to the amplifier outputs,  
and the output currents are measured. If the output current  
of an amplifier rises above a certain level, it is assumed  
that there is a load of less than 6 and bit D5 is reset in  
the associated data byte register to indicate that a load is  
detected.  
(1) IO(peak) = < 150 mA.  
(2) IO(peak) = > 550 mA.  
Fig.3 Tolerance of AC-load detection as a  
function of output voltage.  
Because the offset is measured during the amplifier  
start-up cycle, detection is inaudible and can be performed  
every time the amplifier is switched on.  
LOAD DETECTION PROCEDURE  
1. At start-up, enable the AC- or DC-load detection by  
setting D1 of instruction byte 1 to logic 1.  
2004 Feb 24  
9
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
2. After 250 ms the DC load is detected and the mute is  
released. This is inaudible and can be implemented  
each time the IC is powered on.  
The headroom voltage is the voltage required for correct  
operation of the amplifier and is defined as the voltage  
difference between the level of the DC output voltage  
before the VP voltage drop and the level of VP after the  
voltage drop (see Fig.4).  
3. When the amplifier start-up cycle is completed (after  
1.5 s), apply an AC signal to the input, and DC-load  
bits D5 of each data byte should be read and stored by  
the microcontroller.  
At a certain supply voltage drop, the headroom voltage will  
be insufficient for correct operation of the amplifier.  
To prevent unwanted audible noises at the output, the  
headroom protection mode will be activated (see Fig.13).  
This protection discharges the capacitors connected to  
pins SVR and ACGND to increase the headroom voltage.  
4. After at least 3 periods of the input signal, the load  
status can be checked by reading AC-detect bits D4 of  
each data byte.  
The AC-load peak current counter can be reset by  
setting bit D1 of instruction byte IB1 to logic 0 and then  
to logic 1. Note that this will also reset the DC-load  
detection bits D5 in each data byte.  
Low headroom protection  
The normal DC output voltage of the amplifier is set to half  
the supply voltage and is related to the voltage on  
pin SVR. An external capacitor is connected to pin SVR to  
suppress power supply ripple. If the supply voltage drops  
(at vehicle engine start), the DC output voltage will follow  
slowly due to the affect of the SVR capacitor.  
V
(V)  
vehicle engine start  
V
P
14  
headroom voltage  
SVR voltage  
8.4  
7
amplifier  
DC output voltage  
t (sec)  
mdb515  
Fig.4 Amplifier output during supply voltage.  
2004 Feb 24  
10  
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
VOLTAGE REGULATORS  
Backup function  
The voltage regulator section contains:  
The backup function is implemented by a switch function,  
which behaves like an ideal diode between pins VP  
and BUCAP; the forward voltage of this ideal diode  
depends on the current flowing through it. The backup  
function supplies regulator 2 during brief periods when no  
supply voltage is present on pin VP. It requires an external  
capacitor to be connected to pin BUCAP and ground.  
When the supply voltage is present on pin VP this  
Four switchable regulators and one permanent active  
regulator  
Two power switches with loss-of-ground protection  
Reset push-pull output  
Backup functionality.  
The quiescent current condition has a very low current  
level of 150 µA typical with only regulator 2 active. The  
TDA8589 uses low dropout voltage regulators for use in  
low voltage applications.  
capacitor will be charged to a level of VP 0.3 V. When the  
supply voltage is absent from pin VP, this charge can then  
be used to supply regulator 2 for a brief period (tbackup  
)
calculated using the formula:  
All of the voltage regulators except for the standby  
regulator can be controlled via the I2C-bus. The voltage  
regulator section of this device has two power switches  
which are capable of delivering unregulated 400 mA  
continuous current, and has several fail-safe protection  
modes. It conforms to peak transient tests and protects  
against continuous high voltage (24 V), short-circuits and  
thermal stress. A reset warning signal is asserted if  
regulator 2 is out of regulation. Regulator 2 will try to  
maintain output for as long as possible even if a thermal  
shut-down or any other fault condition occurs. During  
overvoltage stress conditions, all outputs except  
VP (V  
0.5)  
--------------------O----(--R----E---G----2---)-----------------  
VO(REG2)  
tbackup = Cbackup × RL ×  
Example: VP = 14.4 V, VO(REG2) = 5 V, RL = 1 kand  
backup = 100 µF provides a tbackup of 177 ms.  
C
When an overvoltage condition occurs, the voltage on  
pin BUCAP is limited to approximately 24 V; see Fig.5.  
regulator 2 will switch off and the device will be able to  
supply a minimum current for an indefinite amount of time  
sufficient for powering the memory of a microcontroller.  
Provision is made for an external reserve supply capacitor  
to be connected to pin BUCAP which can store enough  
energy to allow regulator 2 to supply a microcontroller for  
a period long enough for it to prepare for a loss-of-voltage.  
Regulator 2  
Regulator 2 is intended to supply the microcontroller and  
has a low quiescent current. This supply cannot be shut  
down in response to overvoltage stress conditions, and is  
not I2C-bus controllable to prevent the microcontroller from  
being damaged by overvoltage which could occur during a  
disturbance of the I2C-bus. This supply will not shut down  
during load dump transients or during a high  
thermal-protection condition.  
Backup capacitor  
The backup capacitor is used as a backup supply for the  
regulator 2 output when the battery supply voltage (VP)  
cannot support the regulator 2 voltage.  
2004 Feb 24  
11  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
V
(V)  
V
P
V
BUCAP  
V
O(REG2)  
t (sec)  
t
out of regulation  
backup  
mdb512  
VP VO(REG2) 0.5  
----------------------------------------------------  
IL  
tbackup = Cbackup  
×
Fig.5 Backup capacitor function.  
Reset output  
Power switches  
A reset pulse is generated at pin RST when the output  
voltage of regulator 2 rises above the reset threshold  
value. The reset output is a push-pull output that both  
sources and sinks current. The output voltage can switch  
between ground and VO(REG2), and operates at a low  
regulator 2 voltage or VBUCAP. The RST signal is controlled  
by a low-voltage detection circuit which, when activated,  
pulls pin RST LOW (reset active) when VO(REG2) is  
Vth(rst). If VO(REG2) Vth(rst), pin RST goes HIGH. The  
reset pulse is delayed by 40 µs internally. To extend the  
delay and to prevent oscillations occurring at the threshold  
voltage, an external capacitor can be connected to  
pin RESCAP. Note that a reset pulse is not generated  
when VO(REG2) falls below the reset threshold value.  
There are two power switches that provide an unregulated  
DC voltage output for amplifiers and an aerial motor  
respectively. The switches have internal protection for  
over-temperature conditions and are activated by setting  
bits D2 and D3 of instruction byte IB1 to logic 1. The  
regulated outputs will supply pulsed current loads that can  
contaminate the line with high frequency noise, so it is  
important to prevent any cross-coupling between the  
regulated outputs, particularly with the 8.3 V audio supply,  
and the unregulated outputs.  
In the ON state, the switches have a low impedance to the  
battery voltage. When the battery voltage is higher than  
22 V, the switches are switched off. When the battery  
voltage is below 22 V the switches are set to their original  
condition.  
Reset delay capacitor  
A Reset Delay Capacitor (RDC) connected to  
pin RESCAP can be used to extend the delay period of the  
reset pulse and to ensure that a clean reset signal is sent  
to the microcontroller. The RDC is charged by a current  
source. The reset output (pin RST) will be released  
(pin RST goes HIGH) when the RDC voltage crosses the  
RDC threshold value.  
2004 Feb 24  
12  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
Protection  
Temperature protection  
All regulator and switch outputs are fully protected by  
foldback current limiting against load dumps and  
short-circuits; see Fig.6. During a load dump all regulator  
outputs, except the output of regulator 2, will go low.  
If the junction temperature of a regulator becomes too  
high, the amplifier(s) are switched off to prevent unwanted  
noise signals being audible. A regulator junction  
temperature that is too high is indicated by pin DIAG going  
LOW and is also indicated by setting bit D6 in data byte 2.  
The power switches can withstand ‘loss-of-ground’. This  
means that if pin GND becomes disconnected, the switch  
is protected by automatically connecting its outputs to  
ground.  
If the junction temperature of the regulator continues to  
rise and reaches the maximum temperature protection  
level, all regulators and switches will be disabled except  
regulator 2.  
V
O(REGn)  
I
I
I
limit  
O(REGn)  
sc  
MDB513  
Fig.6 Foldback current protection.  
2004 Feb 24  
13  
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
I2C-BUS SPECIFICATION  
0 = write  
1 = read  
handbook, halfpage  
MSB  
LSB  
R/W  
1
1
0
1
1
0
0
MDB516  
Fig.7 Address byte.  
If address byte bit R/W = 0, the TDA8589 expects 3 instruction bytes: IB1, IB2 and IB3; see Table 1 to Table 6.  
After a power-on, all instruction bits are set to zero.  
If address byte bit R/W = 1, the TDA8589 will send 4 data bytes to the microcontroller: DB1, DB2, DB3 and DB4; see  
Table 7 to Table 10.  
SDA  
SCL  
SDA  
SCL  
S
P
STOP condition  
START condition  
MBA608  
Fig.8 Definition of start and stop conditions.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBA607  
Fig.9 Bit transfer.  
14  
2004 Feb 24  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
2
I C-WRITE  
SCL  
1
2
7
8
9
1
2
7
8
9
MSB MSB 1  
LSB + 1  
MSB MSB 1  
LSB + 1  
LSB  
ACK  
ACK  
SDA  
S
ADDRESS  
A
WRITE DATA  
A
P
W
To stop the transfer, after the last acknowledge (A)  
a stop condition (P) must be generated  
2
I C-READ  
SCL  
SDA  
1
2
7
8
9
1
2
7
8
9
MSB MSB 1  
LSB + 1  
MSB MSB 1  
LSB + 1  
LSB  
ACK  
A
ACK  
S
ADDRESS  
R
READ DATA  
A
P
To stop the transfer, the last byte must not be acknowledged  
and a stop condition (P) must be generated  
: generated by master (microcontroller)  
: generated by slave (TDA8589)  
S
P
A
: start  
mdb517  
: stop  
: acknowledge  
R/W : read / write  
Fig.10 I2C-bus read and write modes.  
2004 Feb 24  
15  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
Table 1 Instruction byte IB1  
Table 3 Instruction byte IB2  
BIT  
DESCRIPTION  
BIT  
DESCRIPTION  
D7  
D6  
D5  
D4  
D3  
regulator 5 output voltage control  
(see Table 2)  
D7  
D6  
D5  
D4  
regulator 4 output voltage control (see  
Table 4)  
regulator 3 (mechanical digital) control  
0 = regulator 3 off  
SW2 control  
0 = SW2 off  
1 = regulator 3 on  
1 = SW2 on  
D3  
D2  
D1  
regulator 1 output voltage control (see  
Table 5)  
D2  
D1  
SW1 control  
0 = SW1 off  
soft mute all amplifier channels (mute delay  
20 ms)  
1 = SW1 on  
0 = mute off  
1 = mute on  
AC- or DC-load detection switch  
0 = AC- or DC-load detection off; resets  
DC-load detection bits and AC-load  
detection peak current counter  
D0  
hard mute all amplifier channels (mute delay  
0.4 ms)  
1 = AC- or DC-load detection on  
0 = mute off  
1 = mute on  
D0  
amplifier start enable (clear power-on reset  
flag; D7 of DB2)  
Table 4 Regulator 4 (mechanical drive) output voltage  
0 = amplifier OFF; pin DIAG remains LOW  
control  
1 = amplifier ON; when power-on occurs,  
bit D7 of DB2 is reset and pin DIAG is  
released  
BIT  
OUTPUT (V)  
D7  
0
D6  
0
D5  
0
Table 2 Regulator 5 (display) output voltage control  
0 (off)  
0
0
1
5
BIT  
OUTPUT (V)  
0
1
0
6
D7  
0
D6  
0
D5  
0
D4  
0
0
1
1
7
0 (off)  
6.0  
1
0
0
8.6  
0
0
0
1
0
0
1
0
7.0  
Table 5 Regulator 1 (audio) output voltage control  
0
0
1
1
8.2  
BIT  
OUTPUT (V)  
0
1
0
0
9.0  
D3  
D2  
0
1
0
1
9.5  
0
0
1
1
0
1
0
1
0 (off)  
8.3  
0
1
1
0
10.0  
10.4  
12.5  
0
1
1
1
8.5  
1
0
0
0
8.7  
1
0
0
1
VP 1  
(switch)  
2004 Feb 24  
16  
 
 
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
Table 6 Instruction byte IB3  
Table 7 Data byte DB1  
BIT  
D7  
BIT  
DESCRIPTION  
clip detection level  
DESCRIPTION  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
amplifier thermal protection pre-warning  
0 = no warning  
0 = 3 % detection level  
1 = 1 % detection level  
amplifier channels 1 and 2 gain select  
0 = 26 dB gain (normal mode)  
1 = 20 dB gain (line driver mode)  
amplifier channels 3 and 4 gain select  
0 = 26 dB gain (normal mode)  
1 = 20 dB gain (line driver mode)  
amplifier thermal protection pre-warning  
0 = warning at 145 °C  
1 = junction temperature above pre-warning  
level  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
amplifier maximum thermal protection  
0 = junction temperature below 175 °C  
1 = junction temperature above 175 °C  
channel 4 DC load detection  
0 = DC load detected  
1 = no DC load detected  
channel 4 AC load detection  
0 = no AC load detected  
1 = AC load detected  
1 = warning at 122 °C  
disable channel 1  
channel 4 load short-circuit  
0 = normal load  
0 = enable channel 1  
1 = disable channel 1  
1 = short-circuit load  
disable channel 2  
channel 4 output offset  
0 = enable channel 2  
0 = no output offset  
1 = disable channel 2  
1 = output offset  
disable channel 3  
channel 4 VP short-circuit  
0 = no short-circuit to VP  
1 = short-circuit to VP  
0 = enable channel 3  
1 = disable channel 3  
disable channel 4  
channel 4 ground short-circuit  
0 = no short-circuit to ground  
1 = short-circuit to ground  
0 = enable channel 4  
1 = disable channel 4  
2004 Feb 24  
17  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
Table 8 Data byte DB2  
Table 9 Data byte DB3  
BIT  
D7  
BIT  
D7  
DESCRIPTION  
DESCRIPTION  
Power-on reset occurred or amplifier status  
0 = amplifier on  
D6  
D5  
1 = POR has occurred; amplifier off  
regulator thermal protection pre-warning  
0 = no warning  
channel 2 DC load detection  
0 = DC load detected  
D6  
1 = no DC load detected  
channel 2 AC load detection  
0 = no AC load detected  
1 = AC load detected  
1 = regulator temperature too high; amplifier  
off  
D4  
D3  
D2  
D1  
D0  
D5  
D4  
D3  
D2  
D1  
D0  
channel 3 DC load detection  
0 = DC load detected  
channel 2 load short-circuit  
0 = normal load  
1 = no DC load detected  
channel 3 AC load detection  
0 = no AC load detected  
1 = AC load detected  
1 = short-circuit load  
channel 2 output offset  
0 = no output offset  
channel 3 load short-circuit  
0 = normal load  
1 = output offset  
channel 2 VP short-circuit  
0 = no short-circuit to VP  
1 = short-circuit to VP  
1 = short-circuit load  
channel 3 output offset  
0 = no output offset  
channel 2 ground short-circuit  
0 = no short-circuit to ground  
1 = short-circuit to ground  
1 = output offset  
channel 3 VP short-circuit  
0 = no short-circuit to VP  
1 = short-circuit to VP  
channel 3 ground short-circuit  
0 = no short-circuit to ground  
1 = short-circuit to ground  
2004 Feb 24  
18  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
Table 10 Data byte DB4  
BIT  
D7  
DESCRIPTION  
D6  
D5  
channel 1 DC load detection  
0 = DC load detected  
1 = no DC load detected  
channel 1 AC load detection  
0 = no AC load detected  
1 = AC load detected  
D4  
D3  
D2  
D1  
D0  
channel 1 load short-circuit  
0 = normal load  
1 = short-circuit load  
channel 1 output offset  
0 = no output offset  
1 = output offset  
channel 1 VP short-circuit  
0 = no short-circuit to VP  
1 = short-circuit to VP  
channel 1 ground short-circuit  
0 = no short-circuit to ground  
1 = short-circuit to ground  
2004 Feb 24  
19  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
PARAMETER  
supply voltage  
CONDITION  
MIN.  
MAX.  
18  
UNIT  
VP  
operating  
V
V
V
V
V
not operating  
with load dump protection  
operating  
1  
0
+50  
50  
7
VSDA, VSCL voltage on pins SDA and SCL  
0
VIN, VSVR  
VACGND  
VDIAG  
VSTB  
IOSM  
,
voltage on pins INn, SVR,  
ACGND and DIAG  
operating  
0
13  
,
voltage on pin STB  
operating  
0
24  
10  
V
A
non-repetitive peak output  
current  
IORM  
Vsc  
repetitive peak output current  
6
A
V
AC and DC short-circuit voltage short-circuit of output pins across  
loads and to ground or supply  
18  
Vrp  
reverse polarity voltage  
total power dissipation  
junction temperature  
storage temperature  
ambient temperature  
voltage regulator only  
18  
80  
V
Ptot  
Tj  
Tcase = 70 °C  
W
150  
+150  
+85  
2000  
200  
°C  
°C  
°C  
V
Tstg  
Tamb  
Vesd  
55  
40  
electrostatic discharge voltage note 1  
note 2  
V
Notes  
1. Human body model: Rs = 1.5 k; C = 100 pF; all pins have passed all tests to 2500 V to guarantee 2000 V,  
according to class II.  
2. Machine model: Rs = 10 ; C = 200 pF; L = 0.75 mH; all pins have passed all tests to 250 V to guarantee 200 V,  
according to class II.  
2004 Feb 24  
20  
 
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
Rth(j-a)  
Rth(j-c)  
thermal resistance from junction to ambient in free air  
40  
K/W  
K/W  
thermal resistance from junction to case  
see Fig.11  
0.75  
Virtual junction  
Amplifier  
Voltage regulator  
handbook, halfpage  
0.5 K/W  
1 K/W  
0.2 K/W  
Case  
MDB514  
Fig.11 Equivalent thermal resistance network.  
QUALITY SPECIFICATION  
In accordance with “General Quality Specification for Integrated Circuits SNW-FQ-611D”.  
2004 Feb 24  
21  
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
CHARACTERISTICS  
Amplifier section  
Tamb = 25 °C; VP = 14.4 V; RL = 4 ; measured in the test circuit Fig.28; unless otherwise specified.  
SYMBOL PARAMETER CONDITION MIN. TYP. MAX. UNIT  
Supply voltage behaviour  
VP1, VP2  
operating supply voltage  
RL = 4 Ω  
RL = 2Ω  
no load  
8
14.4 18  
14.4 16  
280 400  
V
8
V
Iq(tot)  
Istb  
total quiescent current  
standby current  
mA  
µA  
V
10  
7.2  
7
50  
VO  
DC output voltage  
low supply voltage mute  
headroom voltage  
VP(mute)  
Vhr  
6.5  
8
V
when headroom protection is  
activated; see Fig.3  
1.4  
V
VPOR  
VOO  
power-on reset voltage  
output offset voltage  
see Fig.13  
5.5  
0
V
mute mode and power on  
100  
+100 mV  
Mode select (pin STB)  
Vstb  
Voper  
Vmute  
II  
standby mode voltage  
4
1.3  
5.5  
VP  
25  
V
operating mode voltage  
mute mode voltage  
input current  
2.5  
8
V
V
VSTB = 5 V  
µA  
Start-up, shut-down and mute timing  
twake  
wake-up time from standby  
before first I2C-bus transmission  
is recognised  
via pin STB; see Fig.12  
300 500  
µs  
tmute(off)  
time from amplifier switch-on to  
mute release  
via I2C-bus (IB1 bit D0);  
CSVR = 22 µF; see Fig.12  
soft mute; via I2C-bus  
(IB2 bit D1 = 1 to 0)  
hard mute; via I2C-bus  
(IB2 bit D0 = 1 to 0)  
250  
25  
ms  
ms  
ms  
td(mute-on)  
delay from mute to on  
10  
10  
40  
40  
25  
via pin STB; VSTB = 4 to 8 V  
soft mute; via I2C-bus  
(IB2 bit D1 = 0 to 1)  
10  
10  
25  
25  
40  
40  
ms  
ms  
td(on-mute)  
delay from on to mute  
hard mute; via I2C-bus  
(IB2 bit D0 = 0 to 1)  
0.4  
0.4  
1
1
ms  
ms  
via pin STB; VSTB = 4 to 8 V  
I2C-bus interface  
VIL  
LOW-level input voltage on pins  
SCL and SDA  
1.5  
5.5  
0.4  
V
V
V
VIH  
VOL  
HIGH-level input voltage on pins  
SCL and SDA  
2.3  
LOW-level output voltage on  
pin SDA  
IL = 3 mA  
2004 Feb 24  
22  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
SYMBOL  
fSCL  
PARAMETER  
CONDITION  
MIN. TYP. MAX. UNIT  
SCL clock frequency  
400  
kHz  
Diagnostic  
VDIAG  
diagnostic pin LOW output  
voltage  
fault condition; IDIAG = 200 µA  
0.8  
V
V
Vo(offset)  
THDclip  
output voltage when offset is  
detected  
± 1.5 ± 2  
± 2.5  
THD clip detection level  
IB3 bit D7 = 0  
IB3 bit D7 = 1  
3
1
%
%
Tj(warn)  
average junction temperature for IB3 bit D4 = 0  
135  
112  
150  
145 155  
122 132  
160 170  
°C  
°C  
°C  
pre-warning  
IB3 bit D4 = 1  
Tj(mute)  
Tj(off)  
average junction temperature for VIN = 0.05 V  
3 dB muting  
average junction temperature  
when all outputs are switched off  
165  
175 185  
°C  
Zo(load)  
Zo(open)  
Io(load)  
Io(open)  
impedance when a DC load is  
detected  
6
impedance when an open DC  
load is detected  
500  
550  
amplifier current when AC load  
detection is detected  
mA  
mA  
amplifier current when an open  
AC load is detected  
150  
Amplifier  
Po  
output power  
RL = 4 ; VP = 14.4 V; THD = 0.5 % 18  
RL = 4 ; VP = 14.4 V; THD = 10 % 25  
19  
26  
41  
W
W
W
RL = 4 ; VP = 14.4 V;  
VIN = 2 V RMS square wave  
(maximum power)  
39  
RL = 4 ; VP = 15.2 V;  
VIN = 2 V RMS square wave  
(maximum power)  
44  
46  
W
RL = 2 ; VP = 14.4 V; THD = 0.5 % 27  
RL = 2 ; VP = 14.4 V; THD = 10 % 40  
31  
44  
69  
W
W
W
RL = 2 ; VP = 14.4 V;  
VIN = 2 V RMS square wave  
(maximum power)  
64  
THD  
total harmonic distortion  
Po = 1 W to 12 W; f = 1 kHz;  
RL = 4 Ω  
0.01 0.1  
0.2 0.5  
%
Po = 1 W to 12 W; f = 10 kHz  
Po = 4 W; f = 1 kHz  
%
%
%
0.01 0.03  
0.01 0.03  
line driver mode; Vo = 2 V (RMS);  
f = 1 kHz; RL = 600 Ω  
2004 Feb 24  
23  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
SYMBOL  
αcs  
PARAMETER  
CONDITION  
MIN. TYP. MAX. UNIT  
channel separation (crosstalk)  
f = 1 Hz to 10 kHz; Rsource = 600 50  
60  
80  
70  
dB  
dB  
dB  
Po = 4 W; f = 1 kHz  
SVRR  
CMRR  
supply voltage ripple rejection  
common mode ripple rejection  
f = 100 Hz to 10 kHz;  
Rsource = 600 Ω  
55  
amplifier mode;  
40  
70  
dB  
V
common = 0.3 V (p-p);  
f = 1 kHz to 3 kHz; Rsource = 0 Ω  
Vcm(max)(rms) maximum common mode voltage f = 1 kHz  
level (rms value)  
0.6  
35  
70  
V
Vn(o)(LN)  
noise output voltage in line driver filter 20 Hz to 22 kHz;  
25  
50  
µV  
µV  
mode  
Rsource = 600 Ω  
Vn(o)(amp)  
noise output voltage in amplifier  
mode  
filter 20 Hz to 22 kHz;  
Rsource = 600 Ω  
Gv(amp)  
Gv(LN)  
Zi  
voltage gain in amplifier mode  
voltage gain in line driver mode  
input impedance  
single-ended in to differential out  
single-ended in to differential out  
CIN = 220 nF  
25  
19  
55  
80  
26  
20  
70  
90  
70  
20  
27  
21  
dB  
dB  
kΩ  
dB  
µV  
kHz  
αmute  
Vo(mute)  
Bp  
mute attenuation  
VO(on)/VO(mute)  
output voltage mute  
VIN = 1 V (RMS)  
power bandwidth  
1 dB; THD = 1 %  
Voltage regulator section  
Tamb = 25 °C; VP = 14.4 V; measured in the test circuit Fig.28; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supply  
VP  
supply voltage  
regulator 1, 3, 4 and 5 on  
regulator 2  
10.0  
14.4  
18  
V
switched on  
4
V
in regulation  
6.3  
50  
V
overvoltage for shut-down 18.1  
22  
150  
V
Iq(tot)  
total quiescent supply  
current  
standby mode; note 1  
190  
µA  
Reset output (push-pull stage, pin RST)  
VREG2(th)(r) rising threshold voltage  
of regulator 2  
VP is rising;  
IO(REG2) = 50 mA  
VO(REG2)  
0.2  
VO(REG2)  
0.1  
VO(REG2)  
0.04  
V
V
VREG2(th)(f) falling threshold voltage VP is falling;  
VO(REG2)  
VO(REG2)  
VO(REG2)  
of regulator 2  
IO(REG2) = 50 mA  
0.25  
0.15  
0.1  
Isink(L)  
LOW-level sink current  
V
RST 0.8 V  
1
mA  
Isource(H)  
HIGH-level source  
current  
VRST = VO(REG2) 0.5 V;  
VP = 14.4 V  
200  
600  
µA  
tr  
tf  
rise time  
fall time  
note 2  
note 2  
2
50  
50  
µs  
µs  
10  
2004 Feb 24  
24  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Reset delay (pin RESCAP)  
Ich  
charge current  
VRESCAP = 0 V  
1
4
7
3
8
µA  
mA  
V
Idch  
discharge current  
VRESCAP = 3 V; VP 4.3 V  
1
Vth(rst)  
reset signal threshold  
voltage  
TDA8588AJ and  
TDA8588J  
2.5  
3.5  
TDA8588BJ  
1.6  
2.1  
40  
35  
2.6  
V
td(rst)  
reset signal delay  
without CRESCAP; note 3  
µs  
ms  
CRESCAP = 47 nF; note 3;  
see Fig.15  
15  
100  
Regulator 1: REG1 (audio; IO = 5 mA)  
VO(REG1)  
output voltage  
0.5 mA IO 400 mA;  
12 V < VP < 18 V  
IB2[D3:D2] = 01  
IB2[D3:D2] = 10  
IB2[D3:D2] = 11  
12 V VP 18 V  
5 mA IO 400 mA  
7.9  
8.1  
8.3  
8.3  
8.5  
8.7  
8.7  
8.9  
9.1  
50  
V
V
V
VO(LN)  
VO(load)  
SVRR  
line regulation voltage  
load regulation voltage  
mV  
mV  
dB  
100  
supply voltage ripple  
rejection  
fripple = 120 Hz;  
Vripple = 2 V (p-p)  
50  
60  
Vdrop  
dropout voltage  
VP = 7.5 V; note 4  
IO = 200 mA  
0.4  
0.6  
700  
190  
0.8  
2.5  
V
IO = 400 mA4  
V
Ilimit  
Isc  
current limit  
V
O 7 V; note 5  
400  
70  
mA  
mA  
short-circuit current  
RL 0.5 ; note 6  
Regulator 2: REG2 (microprocessor; IO = 5 mA)  
VO(REG2)  
output voltage  
0.5 mA IO 350 mA;  
10 V VP 18 V  
TDA8589AJ and  
TDA8589J  
4.75  
5.0  
5.25  
V
TDA8589BJ  
3.1  
3.3  
3
3.5  
50  
100  
V
VO(LN)  
VO(load)  
SVRR  
line regulation voltage  
load regulation voltage  
10 V VP 18 V  
0.5 mA IO 300 mA  
mV  
mV  
dB  
supply voltage ripple  
rejection  
fripple = 120 Hz;  
40  
50  
Vripple = 2 V (p-p)  
2004 Feb 24  
25  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
SYMBOL  
PARAMETER  
dropout voltage  
CONDITIONS  
IO = 200 mA  
MIN.  
TYP.  
MAX.  
UNIT  
Vdrop  
VBUCAP = 4.75 V; note 7  
TDA8589AJ and  
TDA8589J  
0.5  
0.8  
2
V
V
TDA8589BJ  
1.75  
0.5  
IO = 350 mA;  
VBUCAP = 4.75 V; note 7  
TDA8589AJ and  
TDA8589J  
1.3  
V
TDA8589BJ  
1.75  
1000  
300  
2.7  
V
Ilimit  
Isc  
current limit  
V
O 2.8 V; note 5  
400  
160  
mA  
mA  
short-circuit current  
RL 0.5 ; note 6  
Regulator 3: REG3 (mechanical digital; IO = 5 mA)  
VO(REG3)  
output voltage  
0.5 mA IO 300 mA;  
10 V VP 18 V  
TDA8589AJ and  
TDA8589BJ  
3.1  
3.3  
3.5  
V
TDA8589J  
4.75  
5.0  
3
5.25  
50  
V
VO(LN)  
VO(load)  
SVRR  
line regulation voltage  
load regulation voltage  
10 V VP 18 V  
0.5 mA IO 300 mA  
mV  
mV  
dB  
100  
supply voltage ripple  
rejection  
fripple = 120 Hz;  
50  
65  
Vripple = 2 V (p-p)  
Vdrop  
dropout voltage  
VP = 4.75 V; IO = 200 mA;  
note 4  
TDA8589AJ and  
TDA8589BJ  
1.45  
0.4  
1.65  
0.8  
V
V
TDA8589J  
VP = 4.75 V; IO = 300 mA;  
note 4  
TDA8589AJ and  
TDA8589BJ  
1.45  
1.65  
V
TDA8589J  
0.4  
1.5  
V
Ilimit  
Isc  
current limit  
V
O 2.8 V; note 5  
400  
135  
700  
210  
mA  
mA  
short-circuit current  
RL 0.5 ; note 6  
Regulator 4: REG4 (mechanical drive; IO = 5 mA)  
VO(REG4)  
output voltage  
0.5 mA IO 800 mA;  
10 V VP 18 V  
IB2[D7:D5] = 001  
IB2[D7:D5] = 010  
IB2[D7:D5] = 011  
IB2[D7:D5] = 100  
10 V VP 18 V  
4.75  
5.7  
6.6  
8.1  
5.0  
6.0  
7.0  
8.6  
3
5.25  
6.3  
7.4  
9.1  
50  
V
V
V
V
VO(LN)  
line regulation voltage  
mV  
2004 Feb 24  
26  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
100  
UNIT  
VO(load)  
SVRR  
load regulation voltage  
0.5 mA IO 400 mA  
mV  
dB  
supply voltage ripple  
rejection  
fripple = 120 Hz;  
Vripple = 2 V (p-p)  
50  
65  
Vdrop  
dropout voltage  
VP = VO(REG4) 0.5 V;  
0.6  
1
V
IO = 800 mA; note 4  
IO(peak)  
Ilimit  
peak output current  
current limit  
t 3 s; VO = 4 V  
1
1.5  
2
A
A
VO 4 V; t 100 ms;  
1.5  
VP 11.5 V; note 5  
Isc  
short-circuit current  
RL 0.5 ; note 6  
240  
400  
mA  
Regulator 5: REG5 (display; IO = 5 mA)  
VO(REG5)  
output voltage  
0.5 mA IO 400 mA;  
10 V VP 18 V;  
IB1[D7:D4] = 0001  
5.7  
6.0  
7.0  
8.2  
9.0  
9.5  
6.3  
V
V
V
V
V
V
V
V
V
10 V VP 18 V;  
IB1[D7:D4] = 0010  
6.65  
7.8  
7.37  
8.6  
10 V VP 18 V;  
IB1[D7:D4] = 0011  
10.5 V VP 18 V;  
IB1[D7:D4] = 0100  
8.55  
9.0  
9.45  
10.0  
10.5  
10.9  
13.2  
11 V VP 18 V;  
IB1[D7:D4] = 0101  
11.5 V VP 18 V;  
IB1[D7:D4] = 0110  
9.5  
10.0  
10.4  
12.5  
13 V VP 18 V;  
IB1[D7:D4] = 0111  
9.9  
14.2 V VP 18 V;  
IB1[D7:D4] = 1000  
11.8  
VP 1  
12.5 V VP 18 V;  
IB1[D7:D4] = 1001  
VO(LN)  
VO(load)  
SVRR  
line regulation voltage  
load regulation voltage  
10 V VP 18 V  
3
50  
100  
mV  
mV  
dB  
0.5 mA IO 400 mA  
supply voltage ripple  
rejection  
fripple = 120 Hz;  
Vripple = 2 V (p-p)  
50  
60  
Vdrop  
dropout voltage  
VP = VO(REG5) 0.5 V;  
note 4  
IO = 300 mA  
IO = 400 mA  
0.4  
0.5  
950  
200  
0.8  
2.3  
V
V
Ilimit  
Isc  
current limit  
V
O 5.5 V; note 5  
400  
100  
mA  
mA  
short-circuit current  
RL 0.5 ; note 6  
Power switch 1: SW1 (antenna)  
Vdrop(SW1) dropout voltage  
IO = 300 mA  
IO = 400 mA  
V 8.5 V  
0.6  
0.6  
1
0.8  
1.1  
V
V
A
Ilimit  
current limit  
0.5  
2004 Feb 24  
27  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Power switch 2: SW2 (amplifier)  
Vdrop(SW2) dropout voltage  
IO = 300 mA  
IO = 400 mA  
0.6  
0.6  
1
0.8  
1.1  
V
V
A
Ilimit  
current limit  
VO 8.5 V  
0.5  
Backup switch  
IDC(BU)  
continuous current  
V
BUCAP 6 V  
0.4  
1.5  
24  
A
V
Vclamp(BU) clamping voltage  
VP = 30 V;  
28  
IO(REG2) = 100 mA  
Vdrop  
dropout voltage  
IO = 500 mA;  
0.6  
0.8  
V
(VP VBUCAP  
)
Notes  
1. The quiescent current is measured in standby mode when RL = .  
2. The rise and fall times are measured with a 50 pF load capacitor.  
3. The reset delay time depends on the value of the reset delay capacitor:  
C
td(rst)  
=
RESCAP × V  
= CRESCAP × (750 × 103)[s]  
th(rst)  
------------------------  
Ich  
4. The dropout voltage of a regulator is the voltage difference between VP and VO(REGn)  
5. At current limit, VO(REGn) is held constant (see Fig.6).  
.
6. The foldback current protection limits the dissipation power at short-circuit (see Fig.6).  
7. The dropout voltage of regulator 2 is the voltage difference between VBUCAP and VO(REG2)  
.
2004 Feb 24  
28  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
V
p
DIAG  
V
O(REG3)  
Regulator switched off  
when amplifier is  
completely muted  
Amplifier status  
DB2 bit D7  
IB1 bit D0  
IB2 bit D4  
t
wake  
STB  
SVR  
t
mute(off)  
Soft  
mute  
Amplifier  
output  
Soft  
mute  
mrc350  
Fig.12 Start-up and shut-down timing.  
2004 Feb 24  
29  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
V
Headroom protection activated:  
O
1) fast mute  
2) discharge of SVR  
(V)  
V
p
14.4  
Low V mute activated  
p
8.8  
Output  
voltage  
Headroom voltage  
SVR voltage  
8.6  
7.2  
Low V mute released  
p
3.5  
DIAG  
DB2 bit D7  
V
O(REG3)  
MRC348  
Fig.13 Low VP behaviour at VP > 5.5 V.  
2004 Feb 24  
30  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
V
O
(V)  
V
p
Low V mute activated  
p
14.4  
POR activated  
8.8  
8.6  
7.2  
5.5  
3.5  
SVR voltage  
DIAG  
POR has occured  
DB2 bit D7  
V
O(REG3)  
mrc349  
Fig.14 Low VP behaviour at VP < 5.5 V.  
2004 Feb 24  
31  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
V
(V)  
V
P
V
th(rst)  
V
O(REG2)  
V
RST  
t (sec)  
t
d(rst)  
mdb511  
Fig.15 Reset delay function.  
2004 Feb 24  
32  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
Performance diagrams  
THD AS A FUNCTION OF OUTPUT POWER Po AT DIFFERENT FREQUENCIES  
MRC339  
2
10  
THD  
(%)  
10  
1
(1)  
1  
10  
(2)  
2  
10  
(3)  
(4)  
3  
10  
2  
1  
2
10  
10  
1
10  
10  
P
(W)  
o
(1) f = 10 kHz (channels 1 to 4).  
(2) f = 100 Hz and 1 kHz (channels 1 and 2).  
(3) f = 1 kHz (channels 3 and 4).  
VP = 14.4 V.  
L = 4 .  
R
(4) f = 100 Hz (channels 3 and 4).  
Fig.16 THD as a function of Po.  
2004 Feb 24  
33  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
THD AS A FUNCTION OF FREQUENCY AT DIFFERENT OUTPUT POWERS  
MRC340  
10  
THD  
(%)  
1
1  
10  
(1)  
(2)  
2  
10  
3  
10  
2  
1  
2
10  
10  
1
10  
10  
f (kHz)  
VP = 14.4 V.  
(1)  
(2)  
P
o = 1 W.  
RL = 4 .  
Po = 10 W.  
Fig.17 THD as a function of frequency (channels 1 and 2).  
2004 Feb 24  
34  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
MRC336  
10  
THD  
(%)  
1
1  
10  
(1)  
(2)  
2  
10  
3  
10  
2  
1  
2
10  
10  
1
10  
10  
f (kHz)  
(1) Po = 1 W.  
(2) o = 10 W.  
VP = 14.4 V.  
P
RL = 4 .  
Fig.18 THD as a function of frequency (channels 3 and 4).  
2004 Feb 24  
35  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
LINE DRIVER MODE  
MRC337  
1
THD  
(%)  
1  
10  
2  
10  
3  
10  
1  
2
10  
1
10  
10  
V
(V)  
o(rms)  
VP = 14.4 V.  
RL = 600 .  
f = 1 kHz.  
Fig.19 THD as a function of Vo in balanced line driver mode.  
2004 Feb 24  
36  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
OUTPUT POWER AS A FUNCTION OF FREQUENCY AT DIFFERENT THD LEVELS  
MRC346  
30  
P
o
(W)  
(1)  
25  
(2)  
20  
(3)  
15  
10  
2  
1  
2
10  
1
10  
10  
f (kHz)  
(1) THD = 10 %.  
(2) THD = 5 %.  
(3) THD = 0.5 %.  
VP = 14.4 V.  
Fig.20 Po as a function of frequency; RL = 4 .  
2004 Feb 24  
37  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
MRC347  
45  
(1)  
(2)  
P
o
(W)  
40  
35  
30  
25  
(3)  
2  
1  
2
10  
10  
1
10  
10  
f (kHz)  
(1) THD = 10 %.  
(2) THD = 5 %.  
(3) THD = 0.5 %.  
VP = 14.4 V.  
Fig.21 Po as a function of frequency; RL = 2 .  
2004 Feb 24  
38  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
OUTPUT POWER (PO) AS A FUNCTION OF SUPPLY VOLTAGE (VP)  
mdb532  
100  
P
o
(W)  
80  
60  
40  
20  
0
(1)  
(2)  
(3)  
8
10  
12  
14  
16  
18  
20  
V
(V)  
P
(1) Maximum power.  
(2) THD = 10 %.  
(3) THD = 0.5 %.  
f = 1 kHz.  
Fig.22 Po as a function of supply voltage; RL = 4 .  
2004 Feb 24  
39  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
MRC334  
100  
P
o
(W)  
80  
(1)  
60  
40  
20  
0
(2)  
(3)  
8
12  
16  
20  
V
(V)  
p
(1) Maximum power.  
(2) THD = 10 %.  
(3) THD = 0.5 %.  
f = 1 kHz.  
Fig.23 Po as a function of supply voltage; RL = 2 .  
2004 Feb 24  
40  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
SUPPLY VOLTAGE RIPPLE REJECTION IN OPERATING AND MUTE MODES  
MRC341  
84  
SVRR  
(dB)  
80  
(1)  
76  
72  
(2)  
68  
64  
60  
10  
1  
10  
1
f (kHz)  
VP = 14.4 V.  
RL = 4 .  
(1) Operating mode.  
(2) Mute mode.  
Vripple = 2 V (p-p).  
Rsource = 600 .  
Fig.24 SVRR as a function of frequency.  
2004 Feb 24  
41  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
CHANNEL SEPARATION AS A FUNCTION OF FREQUENCY  
MRC338  
100  
α
cs  
(dB)  
90  
80  
70  
60  
50  
2  
1  
2
10  
10  
1
10  
10  
f (kHz)  
VP = 14.4 V.  
RL = 4 .  
Po = 4 W.  
Rsource = 600 .  
Fig.25 Channel separation.  
2004 Feb 24  
42  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
POWER DISSIPATION AND EFFICIENCY  
MRC342  
50  
P
tot  
(W)  
40  
30  
20  
10  
0
0
10  
20  
30  
P
(W)  
o
VP = 14.4 V.  
RL = 4 .  
f = 1 kHz.  
Fig.26 Amplifier dissipation as a function of output power; all channels driven.  
2004 Feb 24  
43  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
MRC343  
100  
η
(%)  
80  
60  
40  
20  
0
0
8
16  
24  
32  
40  
P
(W)  
o
VP = 14.4 V.  
RL = 4 .  
f = 1 kHz.  
Fig.27 Amplifier efficiency as a function of output power; all channels driven.  
2004 Feb 24  
44  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
APPLICATION AND TEST INFORMATION  
BUCAP  
37 REG2  
microcontroller  
REGULATOR 2  
36  
1000 µF  
(16 V)  
10 µF  
(50 V)  
100 nF  
220 nF  
TEMPERATURE &  
LOAD DUMP  
PROTECTION VOLTAGE  
REGULATOR  
REFERENCE  
VOLTAGE  
BACKUP  
SWITCH  
V
P
35  
14.4 V  
30 REG1  
audio  
REGULATOR 1  
220 µF  
(16 V)  
220 nF  
10 µF  
100 nF  
(50 V)  
mechanical  
digital  
31 REG3  
10 µF  
REGULATOR 3  
REGULATOR 4  
TDA8589  
100 nF  
100 nF  
100 nF  
100 nF  
100 nF  
(50 V)  
mechanical  
drive  
33 REG4  
ENABLE  
LOGIC  
10 µF  
(50 V)  
34 REG5  
REGULATOR 5  
SWITCH 1  
display  
V
reg2  
10 µF  
(50 V)  
29 SW1  
amplifiers  
10 µF  
(50 V)  
SWITCH 2  
27 SW2  
aerial  
motor  
40 µs  
10 µF  
(50 V)  
RESCAP 28  
26 RST  
32 GND  
47 nF  
microcontroller  
14.4 V  
V
V
P1  
20  
6
2
SDA  
P2  
4
SCL  
10 kΩ  
25 DIAG  
2
22  
I C-BUS  
INTERFACE  
STB  
STANDBY/ MUTE  
(1)  
CLIP DETECT/ DIAGNOSTIC  
220  
nF  
2200 µF  
(16 V)  
220  
nF  
microcontroller  
R
R
R
R
9
7
OUT1+  
OUT1−  
S
S
S
S
IN1 11  
470 nF  
MUTE  
26 dB/  
20 dB  
PROTECTION/  
DIAGNOSTIC  
17 OUT2+  
19 OUT2−  
IN2 15  
470 nF  
MUTE  
26 dB/  
20 dB  
PROTECTION/  
DIAGNOSTIC  
5
3
OUT3+  
OUT3−  
IN3 12  
470 nF  
MUTE  
26 dB/  
20 dB  
PROTECTION/  
DIAGNOSTIC  
21 OUT4+  
23 OUT4−  
IN4 14  
470 nF  
MUTE  
26 dB/  
20 dB  
V
P
PROTECTION/  
DIAGNOSTIC  
TEMPERATURE & LOAD  
DUMP PROTECTION  
AMPLIFIER  
10  
13  
16  
8
1
18  
24  
SVR  
SGND  
ACGND PGND1 PGND2/TAB PGND3 PGND4  
2.2 µF  
(4 × 470 nF)  
22 µF  
mdb539  
ACGND capacitor value must be close to 4 × input capacitor value.  
(1) See “Supply decoupling”.  
For EMC reasons, a capacitor of 10 nF can be connected between each amplifier output and ground.  
Fig.28 Test and application diagram.  
2004 Feb 24  
45  
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
Supply decoupling  
(see Fig.28)  
The high frequency 220 nF decoupling capacitors connected to power supply voltage pins 6 and 20 should be located  
as close as possible to these pins.  
It is important to use good quality capacitors. These capacitors should be able to suppress high voltage peaks that can  
occur on the power supply if several audio channels are accidentally shorted to the power supply simultaneously, due to  
the activation of current protection. Good results have been achieved using 0805 case-size capacitors (X7R material,  
220 nF) located close to power supply voltage pins 6 and 20.  
2004 Feb 24  
46  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
PCB layout  
MDB533  
Fig.29 Top of printed-circuit board layout of test and application circuit showing copper layer viewed from top.  
MDB534  
Fig.30 Bottom of printed-circuit board layout of test and application circuit showing copper layer viewed from top.  
2004 Feb 24  
47  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
Sense  
DZ 5.6 V  
on  
V
GND  
1000 µF  
220 µF  
P
CBU  
Mode  
2200 µF  
10 µF (50 V)  
10 µF (50 V)  
10 µF (50 V)  
TDA8589J  
RGND  
REG2  
REG5  
REG4  
4.7 kΩ  
off  
22 µF 2.2 µF  
GND  
V
P
470 nF 470 nF  
REG3  
REG1  
SW1  
47 nF  
on  
off  
10 µF  
SDA  
+ 5 V  
GND  
SCL  
OUT  
OUT  
RESCAP  
SGND  
IN  
DIAG  
I C supply  
SW2  
2
RST  
RESCAP  
mdb535  
Fig.31 Top of printed-circuit board layout of test and application circuit showing components viewed from top.  
100 nF  
220 nF  
220 nF  
220 nF  
47 kΩ  
10 kΩ  
100 nF  
100 nF  
100 nF  
MDB536  
Fig.32 Bottom of printed-circuit board layout of test and application circuit showing components viewed from  
bottom.  
2004 Feb 24  
48  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
Beep input circuit  
Beep input circuit to amplify the beep signal from the microcontroller to all 4 amplifiers (gain = 0 dB). Note that this circuit  
will not affect amplifier performance.  
TDA8589  
ACGND  
2.2 µF  
0.22 µF  
1.7 kΩ  
From  
microcontroller  
100 Ω  
47 pF  
mdb537  
Fig.33 Application diagram for beep input.  
Noise  
The outputs of regulators 1 to 5 are designed to give very low noise with good stability. The noise output voltage depends  
on output capacitor Co. Table 11 shows the affect of the output capacitor on the noise figure.  
Table 11 Regulator noise figures  
NOISE FIGURE (µV) at IREG = 10 mA; note 1  
REGULATOR  
Co = 10 µF  
Co = 47 µF  
Co = 100 µF  
1
2
3
4
5
225  
750  
120  
225  
320  
195  
550  
100  
195  
285  
185  
530  
95  
185  
270  
Note  
1. Measured in the frequency range 20 Hz to 80 kHz.  
Stability  
The regulators are made stable by connecting capacitors to the regulator outputs. The stability can be guaranteed with  
almost any output capacitor if its Electric Series Resistance (ESR) stays below the ESR curve shown in Fig.34. If an  
electrolytic capacitor is used, its behaviour with temperature can cause oscillations at extremely low temperature.  
Oscillation problems can be avoided by adding a 47 nF capacitor in parallel with the electrolytic capacitor. The following  
example describes how to select the value of output capacitor.  
2004 Feb 24  
49  
 
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
EXAMPLE REGULATOR 2  
Regulator 2 (BU5V) is stabilized with an electrolytic output capacitor of 10 µF which has an ESR of 4 . At Tamb = 30 °C  
the capacitor value decreases to 3 µF and its ESR increases to 28 which is above the maximum allowed as shown  
in Fig.34, and which will make the regulator unstable. To avoid problems with stability at low temperatures, the  
recommended solution is to use tantalum capacitors. Either use a tantalum capacitor of 10 µF, or an electrolytic capacitor  
with a higher value.  
MGL912  
handbook, halfpage  
20  
ESR  
()  
15  
maximum ESR  
10  
5
0
stable region  
10  
0.1  
1
100  
C (µF)  
Fig.34 Curve for selecting the value of output capacitors for regulators 1 to 5.  
2004 Feb 24  
50  
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
PACKAGE OUTLINE  
DBS37P: plastic DIL-bent-SIL power package; 37 leads (lead length 6.8 mm)  
SOT725-1  
non-concave  
x
D
h
D
E
h
view B: mounting base side  
A
2
d
B
j
E
A
L
4
L
3
L
L
2
1
37  
e
w
M
Z
1
c
v
M
Q
b
p
e
e
2
m
0
10  
scale  
20 mm  
DIMENSIONS (mm are the original dimensions)  
(1)  
(1)  
(1)  
UNIT  
A
A
b
c
D
d
D
E
e
e
e
E
j
L
L
L
L
4
m
Q
v
w
x
Z
2
p
h
1
2
h
2
3
4.65 0.60 0.5 42.2 37.8  
4.35 0.45 0.3 41.7 37.4  
15.9  
15.5  
3.4  
3.1  
3.9 1.15 22.9  
3.1 0.85 22.1  
3.30  
2.65  
2.1  
1.8  
8
6.8  
mm  
12  
2
1
4
19  
4
0.6 0.25 0.03  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-11-14  
02-11-22  
SOT725-1  
- - -  
- - -  
- - -  
2004 Feb 24  
51  
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
SOLDERING  
The total contact time of successive solder waves must not  
exceed 5 seconds.  
Introduction to soldering through-hole mount  
packages  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
This text gives a brief insight to wave, dip and manual  
soldering. A more in-depth account of soldering ICs can be  
found in our “Data Handbook IC26; Integrated Circuit  
Packages” (document order number 9398 652 90011).  
Wave soldering is the preferred method for mounting of  
through-hole mount IC packages on a printed-circuit  
board.  
Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
Soldering by dipping or by solder wave  
Driven by legislation and environmental forces the  
worldwide use of lead-free solder pastes is increasing.  
Typical dwell time of the leads in the wave ranges from  
3 to 4 seconds at 250 °C or 265 °C, depending on solder  
material applied, SnPb or Pb-free respectively.  
300 and 400 °C, contact may be up to 5 seconds.  
Suitability of through-hole mount IC packages for dipping and wave soldering methods  
SOLDERING METHOD  
PACKAGE  
DIPPING  
WAVE  
DBS, DIP, HDIP, RDBS, SDIP, SIL  
PMFP(2)  
suitable  
suitable(1)  
not suitable  
Notes  
1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
2. For PMFP packages hot bar soldering or manual soldering is suitable.  
2004 Feb 24  
52  
 
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2004 Feb 24  
53  
 
 
Philips Semiconductors  
Product specification  
I2C-bus controlled 4 × 45 Watt power  
amplifier and multiple voltage regulator  
TDA8589J; TDA8589xJ  
PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
2004 Feb 24  
54  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2004  
SCA76  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R32/01/pp55  
Date of release: 2004 Feb 24  
Document order number: 9397 750 11402  

相关型号:

TDA8589BJ

I2C-bus controlled 4 45 Watt power amplifier and multiple voltage regulator
NXP

TDA8589J

I2C-bus controlled 4 45 Watt power amplifier and multiple voltage regulator
NXP

TDA8589J/N1,112

IC SPECIALTY CONSUMER CIRCUIT, PZFM37, PLASTIC, SOT725-1, 37 PIN, Consumer IC:Other
NXP

TDA8591

4 X 44 W into 4 or 4 X 75 W into 2 quad BTL car radio power amplifier
NXP

TDA8591J

4 X 44 W into 4 or 4 X 75 W into 2 quad BTL car radio power amplifier
NXP

TDA8592J

IC 87 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM27, POWER, PLASTIC, SOT-767-1, DIL-BENT-SIL, 27 PIN, Audio/Video Amplifier
NXP

TDA8593J

IC 69 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM27, POWER, PLASTIC, SOT-767-1, DIL-BENT-SIL, 27 PIN, Audio/Video Amplifier
NXP

TDA8594

I2C-bus controlled 4 X 50 W power amplifier
NXP

TDA8594J

I2C-bus controlled 4 X 50 W power amplifier
NXP

TDA8594J/N1

TDA8594 - I²C-bus controlled 4 x 50 W power amplifier ZIP 27-Pin
NXP

TDA8594J/N1S

TDA8594 - I²C-bus controlled 4 x 50 W power amplifier ZIP 27-Pin
NXP

TDA8594SD

I2C-bus controlled 4 X 50 W power amplifier
NXP