TDA8591 [NXP]

4 X 44 W into 4 or 4 X 75 W into 2 quad BTL car radio power amplifier; 4× 44 W功率4或4× 75瓦到2个四BTL汽车收音机功率放大器
TDA8591
型号: TDA8591
厂家: NXP    NXP
描述:

4 X 44 W into 4 or 4 X 75 W into 2 quad BTL car radio power amplifier
4× 44 W功率4或4× 75瓦到2个四BTL汽车收音机功率放大器

放大器 功率放大器
文件: 总36页 (文件大小:295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8591J  
4 × 44 W into 4 or 4 × 75 W  
into 2 quad BTL car radio power  
amplifier  
Preliminary specification  
2002 Jan 14  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
CONTENTS  
15  
PACKAGE OUTLINE  
16  
SOLDERING  
1
2
3
4
5
6
7
FEATURES  
16.1  
Introduction to soldering through-hole mount  
packages  
Soldering by dipping or by solder wave  
Manual soldering  
Suitability of through-hole mount IC packages  
for dipping and wave soldering methods  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
QUICK REFERENCE DATA  
BLOCK DIAGRAM  
16.2  
16.3  
16.4  
PINNING  
17  
18  
19  
DATA SHEET STATUS  
DEFINITIONS  
FUNCTIONAL DESCRIPTION  
7.1  
7.2  
7.3  
7.4  
Diagnostic facility  
DISCLAIMERS  
Diagnostic output (DIAG)  
Mute timer and single-pin mute control  
Output power  
8
LIMITING VALUES  
9
THERMAL CHARACTERISTICS  
QUALITY SPECIFICATION  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
Performance curves  
10  
11  
12  
12.1  
13  
13.1  
14  
TEST INFORMATION  
Protection circuit testing  
APPLICATION INFORMATION  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
14.8  
Special attention for SMD input capacitors  
Capacitors on outputs  
EMC precautions  
Offset detection  
Channel selection  
Detection of short-circuits  
PCB layout  
PCB design advice  
2002 Jan 14  
2
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
1
FEATURES  
All outputs can withstand short-circuits to ground, to the  
positive supply voltage and across the load  
Low quiescent current  
Pin CP can withstand short-circuits to its adjacent pins,  
all other pins can withstand short-circuits to ground and  
to the positive supply voltage  
Low distortion  
Low output offset voltage  
Soft thermal clipping to prevent audio holes  
ESD protection on all pins  
External mute timer for low start-up plop (also allows a  
fast mute function)  
Thermal protection against junction temperatures  
exceeding 150 °C  
High output power  
Load dump protection  
Operating, mute and standby mode selection by two-pin  
or single-pin operation  
Protected against open ground pins (loss of ground) and  
outputs short-circuited to supply ground  
Diagnostic information available:  
– Dynamic Distortion Detection (DDD)  
– High temperature detection  
– Short-circuit detection  
All negative outputs are protected against open supply  
voltage and output short-circuited to supply voltage  
Reverse-polarity safe.  
2
GENERAL DESCRIPTION  
– Detection of output offset due to leakage current at  
the input  
The TDA8591J is a quad BTL audio power amplifier  
comprising four independent amplifiers in Bridge Tied  
Load (BTL) configuration. Each amplifier has a gain of  
26 dB and supplies an output power of 75 W (EIAJ) into a  
2 load. The TDA8591J has low quiescent current and is  
primarily developed for car audio applications.  
No switch-on/switch-off plops when switching between  
standby and mute modes or between mute and  
operating modes  
Fast mute with supply voltage drops  
Package with flexible leads  
3
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA8591J  
DBS27P  
plastic DIL-bent-SIL power package; 27 leads (lead length 7.7 mm)  
SOT521-1  
2002 Jan 14  
3
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
4
QUICK REFERENCE DATA  
SYMBOL  
VP  
PARAMETER  
CONDITIONS  
MIN.  
8.0  
TYP.  
14.4  
MAX.  
18.0  
UNIT  
supply voltage  
V
Iq(tot)  
Istb  
Zi  
total quiescent current  
standby supply current  
input impedance  
output power  
120  
200  
2
290  
50  
mA  
µA  
kΩ  
70  
Po  
THD + N = 0.5%  
RL = 4 Ω  
19  
22  
34  
W
W
RL = 2 Ω  
THD + N = 10%  
RL = 4 Ω  
27  
28  
47  
W
W
RL = 2 Ω  
EAIJ values  
RL = 4 Ω  
41.5  
44  
75  
W
RL = 2 Ω  
W
VOO  
output offset voltage  
voltage gain  
mute mode  
30  
60  
27  
0.1  
mV  
mV  
dB  
%
DC operating mode  
Vi = 40 mV (RMS)  
Po = 1 W; f = 1 kHz; RL = 4 Ω  
Gv  
25  
26  
0.03  
THD + N  
total harmonic distortion  
plus noise  
αcs  
channel separation  
noise output voltage  
Vi = 40 mV (RMS); Rs = 0 Ω  
Rs = 0 ; see Fig.29  
56  
68  
70  
68  
dB  
µV  
dB  
Vn(o)  
SVRR  
supply voltage ripple  
rejection  
Vripple = 2 V (p-p); mute or  
54  
operating mode; Rs = 0 ;  
see Fig.29  
2002 Jan 14  
4
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
5
BLOCK DIAGRAM  
V
P
V
1
V
V
P1  
P2  
13  
P3  
15  
10  
3
5
IN1  
OUT1−  
26 dB  
OUT1+  
9
OUT2+  
OUT2−  
26 dB  
11  
12  
IN2  
V
P
14  
CHARGE  
PUMP  
CP  
TDA8591J  
22  
CIN  
2
SGND  
IN3  
16  
19  
17  
OUT3+  
OUT3−  
26 dB  
25  
23  
OUT4−  
OUT4+  
26 dB  
18  
20  
8
IN4  
STBY  
INTERFACE  
MUTE/ON  
6
OFFSET  
DETECTION  
DIAGNOSTIC  
27  
DIAG  
26  
OFFCAP  
4
7
21  
24  
MGW449  
PGND1 PGND2 PGND3 PGND4 GNDHS  
Fig.1 Block diagram.  
5
2002 Jan 14  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
6
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
handbook, halfpage  
VP1  
1
2
3
4
5
6
7
8
power supply to channels 1 and 4  
signal ground  
V
1
2
3
4
5
6
7
8
9
P1  
SGND  
SGND  
OUT1−  
OUT1−  
PGND1  
OUT1+  
DIAG  
channel 1 negative output  
channel 1 power ground  
channel 1 positive output  
diagnostic output  
PGND1  
OUT1+  
PGND2  
MUTE/ON  
channel 2 power ground  
DIAG  
mode select input: mute/amplifier  
operating (via mute timer)  
PGND2  
MUTE/ON  
OUT2+  
OUT2+  
IN1  
9
channel 2 positive output  
10 channel 1 input  
IN1 10  
OUT2−  
IN2  
11 channel 2 negative output  
12 channel 2 input  
OUT211  
VP2  
13 channel 2 power supply  
14 charge pump capacitor  
15 channel 3 power supply  
16 channel 3 input  
IN2  
12  
13  
CP  
V
P2  
VP3  
CP 14  
TDA8591J  
IN3  
V
15  
16  
P3  
OUT3−  
IN4  
17 channel 3 negative output  
18 channel 4 input  
IN3  
OUT317  
OUT3+  
STBY  
PGND3  
CIN  
19 channel 3 positive output  
20 standby select input  
IN4  
OUT3+  
STBY  
18  
19  
20  
21 channel 3 power ground  
22 common input voltage  
23 channel 4 positive output  
24 channel 4 power ground  
25 channel 4 negative output  
26 offset detection capacitor  
27 ground (heatsink of encapsulation)  
OUT4+  
PGND4  
OUT4−  
OFFCAP  
GNDHS  
PGND3 21  
22  
CIN  
OUT4+ 23  
PGND4 24  
OUT425  
OFFCAP 26  
GNDHS 27  
MGW450  
Fig.2 Pin configuration.  
2002 Jan 14  
6
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
7
FUNCTIONAL DESCRIPTION  
All outputs protected are against open power supply  
pins and outputs short-circuited to power supply voltage  
(see Fig.31)  
The TDA8591J is an audio power amplifier with four  
independent Bridge Tied Load (BTL) amplifiers with high  
output power and low distortion. The gain of each amplifier  
is fixed at 26 dB. The TDA8591J has two-pin mode control  
which allows the amplifiers to be switched to standby (off)  
with the STBY pin, and the MUTE/ON pin to be used to  
switch between mute mode (input signal suppressed) and  
amplifier operating mode.  
With a reversed polarity power supply an external diode  
conducts and a fuse blows and therefore the reversed  
polarity voltage will not damage the device (see Fig.32).  
7.1  
Diagnostic facility  
A diagnostic facility is available from the status of pin DIAG  
for the following conditions:  
Special attention is paid to dynamic behaviour:  
In normal operation, the level on the DIAG pin is  
continuously HIGH (see Fig.3)  
A fast mute that switches all amplifiers to mute mode at  
low supply voltage and suppresses noise during engine  
start  
When a temperature pre-warning occurs due to the  
junction temperature Tvj reaching 145 °C, the DIAG pin  
goes continuously LOW  
No plops when switching between standby and mute  
modes  
When there is distortion over 2.5% because of clipping,  
the DIAG pin has a pulsed output as shown in Fig.4  
Slow offset change when switching from mute mode to  
operating mode (can be adjusted by an external  
capacitor)  
When a short-circuit is detected, the short-circuit  
protection becomes active and DIAG goes continuously  
LOW for the period of the short-circuit (see Figs 5 and 6)  
A fast mute function by discharging the external mute  
capacitor quickly  
With an extreme output offset, input leakage current  
causes a DC output offset voltage and results in power  
dissipation in the loudspeakers. Therefore, if the  
DC output offset voltage of a bridge is larger than 2 V,  
DIAG is pulled LOW to indicate an error condition.  
The following protection circuits are included to prevent  
the IC from being damaged:  
Thermal shutdown:  
At junction temperature Tvj > 170 °C, all power stages  
are switched off to prevent a further increase in  
temperature  
The DIAG pin has an open-drain output to allow several  
devices to be tied together. An external pull-up resistor is  
needed.  
Soft thermal clipping:  
At junction temperature Tvj > 155 °C, the gain reduces  
as temperature increases, resulting in less output power  
and decreasing temperature and therefore no thermal  
shutdown (no break in the audio)  
Short-circuit protection:  
If a short-circuit to ground or supply voltage occurs at  
one or more of the output pins, or across the load of one  
or more of the channels, the following action occurs to  
reduce power dissipation and case temperature  
(see Figs 5 and 6):  
– All amplifiers switch off for approximately 20 ms  
– After 20 ms the amplifiers switch on again  
– If the short-circuit persists, the amplifiers switch off for  
another 20 ms period and the action repeats  
ESD protection:  
– Human body model 2000 V  
– Machine model 200 V  
Protection against open ground pins and outputs  
short-circuited to supply ground (see Fig.30)  
2002 Jan 14  
7
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
MGU489  
handbook, halfpage  
DIAG  
MGT605  
handbook, halfpage  
play normal  
operating  
active  
DDD  
normal  
normal  
DIAG  
mute  
MUTE/ON  
STBY  
standby  
amplifier  
output  
amplifier  
output  
t (ms)  
t (ms)  
Pull-up resistor = 47 kΩ.  
Pull-up resistor = 47 kΩ.  
Fig.3 Diagnostic waveforms: standby, mute and  
operating mode sequence.  
Fig.4 Diagnostic waveforms: dynamic distortion  
detection function.  
MGT604  
handbook, halfpage  
MGU498  
short-circuit  
across load  
ndbook, halfpage  
DIAG  
short to  
GND  
short to  
V
P
DIAG  
20 ms  
V
P
amplifier  
output  
20 ms  
amplifier  
output  
20 ms  
GND  
t (ms)  
t (ms)  
Pull-up resistor = 47 kΩ.  
Pull-up resistor = 47 kΩ.  
Fig.5 Diagnostic waveforms: short-circuit across  
load.  
Fig.6 Diagnostic waveforms: short-circuit to  
VP pin or GND.  
2002 Jan 14  
8
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
7.2  
Diagnostic output (DIAG)  
With reference to Figs 7 and 8c, the truth table in Table 1  
can be made:  
The internal circuit of the diagnostic open-drain output is  
shown in Fig.7.  
Table 1 Truth table.  
A pull-up resistor is required if the diagnostic output is  
connected to a microcontroller. Figure 8 shows four  
possible solutions for fault diagnosis.  
HIGH TEMPERATURE  
OR SHORT-CIRCUIT OR  
DDD  
OFFSET  
IN1  
IN2  
Figures 8a and 8b show simple configurations. The output  
offset diagnostic cannot trigger the microcontroller  
because of the 4-diode stack, only the temperature,  
short-circuit and dynamic distortion diagnostic will give an  
input LOW level for the microcontroller.  
no  
no  
no  
yes  
1
0
0
1
1
0
yes  
don’t care  
In Fig.8c, the diagnostic output is connected to an external  
level shifter. Now DIAG pin output can also generate an  
input LOW level for the microcontroller.  
Assuming that a microcontroller HIGH input level must be  
equal to, or greater than 2 V, the following equations are  
used to calculate values for resistors R1 and R2:  
DIAG  
handbook, halfpage  
temperature diagnostic  
short-circuit diagnostic  
1  
5 V 4 × Vd  
VIN1 > 2 V and VIN1 = 5 V 4 × Vd R2 ×  
------------------------------  
dynamic distortion detection  
R1 + R2  
where:  
output offset diagnostic  
5 V is the pull-up supply voltage  
Vd is the forward voltage of a diode (0.6 V)  
R1 and R2 are the resistors in the level shifter.  
PGND  
MGT610  
2 × R2  
5 V 4 × Vd 2  
Using both equations: R1 >  
----------------------------------------  
Fig.7 Internal circuit diagnostic output pin DIAG.  
thus R1 > 3.3 R2  
Therefore, R1 can be 47 kand R2 can be 10 k.  
The level shifter shown in Fig.8d is used as a 2-bit  
analog-to-digital converter.  
2002 Jan 14  
9
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
handbook, halfpage  
handbook, halfpage  
MICRO-  
CONTROLLER  
V
V
MICRO-  
CONTROLLER  
R
R
DIAG  
DIAG  
MGU514  
MGU513  
a. Internal pull-up.  
b. External pull-up.  
5 V  
5 V  
R2  
handbook, halfpage  
handbook, halfpage  
R2  
DIAG  
DIAG  
IN2  
MICRO-  
CONTROLLER  
MICRO-  
CONTROLLER  
IN1  
IN1  
R1  
R1  
MGU515  
MGU516  
c. Level shifter.  
d. Two-pin diagnostics.  
Fig.8 Connecting the DIAG output to a microcontroller input.  
2002 Jan 14  
10  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
7.3  
Mute timer and single-pin mute control  
The reason for using a square wave input signal for EIAJ  
power measurement is illustrated in Fig.9.  
The transition time from mute mode to operating mode can  
be used to hide plops that occur during switching. This  
transition time is determined by the value of the external  
capacitor at the MUTE/ON input (see Fig.33). To  
guarantee the mute suppression, the resistor value may  
not be more than 15 k. The switching can be controlled  
by a transistor switch with an open-drain output or a  
voltage output with a minimum high level of 5.5 V.  
Figure 9a shows a square wave signal with  
Vtop  
slew rate =  
---------  
tr  
Assuming this square wave is the output signal of an  
amplifier, the EIAJ output power is given by  
8
3
When controlling with an open-drain output, the high  
voltage level also must be at least 5.5 V and should not be  
clamped on a lower value by the ESD diode of the  
microcontroller. If the minimum high voltage cannot be  
guaranteed, an external open-drain transistor or switch to  
ground can be used. Charging of the external capacitor at  
the MUTE/ON input is done by an internal current source.  
1 –  
× Vtop × f  
2
--  
Vtop  
P EIAJ  
=
×
------------- ------------------------------------------  
RL slew rate  
where:  
RL = load resistor in Ω  
Vtop = maximum voltage across the load in V  
f = frequency of the square wave in Hz  
tr = rise time of the slope in s.  
If muting is performed by the microcontroller, the mute  
connection to the microcontroller can be omitted. The  
mute on and off transitions during start-up and switch-off  
are controlled by an internal push-pull current source and  
the external capacitor at pin 8 (MUTE/ON).  
A sine wave has a lower slew rate than a square wave as  
shown in Fig.9b, therefore EIAJ power measurement with  
a sine wave will give a lower power value. The maximum  
slew rate of a sine wave output signal is given by  
Fast mute can be achieved by quickly discharging the  
mute capacitor by means of an open-drain transistor  
without a series resistor.  
δ U out  
δ (A × sin(2πf × t))  
------------------------------------------------  
δt max  
=
= 2 π f × A  
-----------------  
δt max  
7.4  
Output power  
where:  
EIAJ power is a power rating which indicates the maximum  
possible output power of a specific application at a nominal  
supply voltage. The power losses caused by PCB layout,  
copper area, connector block, coil, loudspeaker wires, etc.  
depend on the applications.  
A = amplitude of the output sinewave in V  
f = frequency of the output sinewave in Hz.  
For a non-clipping sinewave output with amplitude  
A = 13 V and frequency f = 1 kHz, the slew rate is  
Therefore, the EIAJ power is defined and measured at the  
pins of the IC using the following test conditions:  
δUout  
= 823 V/s  
-----------------  
δt max  
The supply voltage is 14.4 V measured on the pins of  
the TDA8591J  
A faster slew rate can be obtained by increasing the  
amplitude: for an amplitude of 28 V, the slew rate will  
increase to 1.85 V/s. A supply voltage of VP = 14.4 V will  
result in a clipped output with a shape similar to a square  
wave but with a slower slew rate.  
All channels are loaded with 4 and are driven  
simultaneously  
The input signal is a continuous (no burst) square wave:  
V = 1 V (RMS); f = 1 kHz  
Figure 9c shows the dependency of PEIAJ on slew rate.  
Using a square wave input signal, the EIAJ output power  
is determined by the drop voltage and bandwidth of the  
output stage.  
RMS output power is measured immediately at the start  
(cold heatsink) and after 1 minute of operation. The  
mean value is the rated EIAJ power.  
To have optimum output power performance, the external  
heatsink should be chosen carefully. A small heatsink  
causes a high junction temperature, resulting in an  
increase of the drain-source on-state resistance (RDSon) of  
the power amplifiers and a decrease of the maximum  
output power.  
2002 Jan 14  
11  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
handbook, halfpage  
V
top  
t
r
a.  
MGT612  
T = 1/f  
handbook, halfpage  
V
top  
t
r
b.  
MGT613  
T = 1/f  
MGT614  
45  
handbook, halfpage  
(1)  
P
EIAJ  
(W)  
44  
43  
(2)  
42  
41  
0
2
4
6
8
10  
c.  
SR (V/µs)  
(1) PEIAJ(max) (infinite slew rate).  
(2) Maximum slew rate of TDA8591J.  
Fig.9 Comparison of sine wave and square wave  
RMS powers.  
2002 Jan 14  
12  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
8
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL PARAMETER CONDITIONS  
VP supply voltage  
MIN.  
MAX.  
18  
UNIT  
operating  
V
not operating  
1  
+45  
45  
V
V
V
A
with load dump protection (see Fig.10)  
VDIAG  
IOSM  
voltage on pin DIAG  
45  
non-repetitive peak output  
current  
10  
IORM  
Vsc  
repetitive peak output current  
6
A
V
AC and DC short-circuit voltage short-circuit of output pins across  
loads and to ground or supply  
18  
Vrp  
reverse polarity voltage  
total power dissipation  
virtual junction temperature  
storage temperature  
t 1 ms  
6
V
Ptot  
Tvj  
Tcase = 70 °C  
80  
150  
+150  
+85  
W
°C  
°C  
°C  
V
Tstg  
Tamb  
Vesd  
55  
40  
2000  
200  
ambient temperature  
electrostatic handling voltage  
note 1  
note 2  
V
Notes  
1. Human body model: C = 100 pF; Rs = 1500 ; all pins have passed all tests to 2500 V to guarantee 2000 V,  
according to “General Quality Specification SNW-FQ-611D”, class II, except pin GND, which passed 2200 V,  
class Ia.  
2. Machine model: C = 200 pF; Rs = 10 ; L = 0.75 mH.  
MGT601  
handbook, halfpage  
45  
V
P
(V)  
14.4  
t
t
t
f
r
>2.5 ms  
>47.5 ms  
Fig.10 Load dump pulse definition.  
2002 Jan 14  
13  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
9
THERMAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
in free air  
see Fig.11  
VALUE  
UNIT  
Rth(j-a)  
Rth(j-c)  
thermal resistance from junction to ambient  
thermal resistance from junction to case  
40  
1
K/W  
K/W  
virtual junction  
OUT2 OUT3  
handbook, halfpage  
OUT1  
OUT4  
2 K/W  
2 K/W  
2 K/W  
2 K/W  
0.5 K/W  
case  
MGT602  
Fig.11 Equivalent thermal resistance network.  
10 QUALITY SPECIFICATION  
Quality according to “SNW-FQ-611E”.  
11 DC CHARACTERISTICS  
Tamb = 25 °C; RL = ; VP = VP1 = VP2 = VP3 = 14.4 V; measured in the circuit of Fig.29; unless otherwise specified.  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VP  
supply voltage  
8.0  
14.4  
18.0  
V
Iq(tot)  
Istb  
total quiescent current  
standby current  
120  
200  
2
290  
50  
mA  
µA  
V
VO  
DC output voltage  
7.2  
7.0  
7.0  
0.4  
VP(mute)  
low supply voltage mute  
operating to mute mode  
mute to operating mode  
6.0  
6.3  
8.0  
8.5  
V
V
VP(mute)(hys)  
VOO  
low supply voltage mute  
hysteresis  
V
output offset voltage  
mute mode; VMUTE/ON = 0 V  
0
0
30  
60  
mV  
mV  
operating mode; VMUTE/ON = 5 V −  
2002 Jan 14  
14  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
STBY and MUTE/ON inputs (see Table 2)  
VSTBY  
control voltage on pin STBY standby mode  
0
0.8  
V
VSTBY(hys)  
voltage hysteresis on  
pin STBY  
0.2  
V
VMUTE/ON  
voltage on pin MUTE/ON  
mute mode; VSTBY > 2.5 V  
0.8  
VP  
V
V
operating mode; VSTBY > 2.5 V; 5.5  
note 1  
ISTBY  
STBY pin current  
VSTBY = 5 V  
80  
µA  
µA  
IMUTE/ON  
MUTE/ON pin current  
VMUTE/ON = 5.5 V  
25  
DIAG output (see Figs 3 to 6)  
VDIAG  
diagnostic output voltage  
IDIAG(sink) = 250 µA  
DDD, protection circuits and  
temperature pre-warning  
active  
0.3  
0.8  
V
offset diagnostic active  
VDIAG = 14.4 V  
2.0  
2.8  
3.2  
1
V
IL  
leakage current  
µA  
%
THD  
total harmonic distortion at VDIAG < 0.8 V  
clip detection  
1.5  
VOO(det)  
Tvj  
output offset voltage  
detection; note 2  
2.0 < VDIAG < 3.2 V  
2.5  
135  
4.5  
6.5  
V
virtual junction temperature temperature pre-warning;  
145  
155  
170  
°C  
°C  
°C  
VDIAG < 0.8 V  
soft thermal clipping;  
Gv = 3 to 23 dB  
temperature shut-down  
Notes  
1. With open MUTE/ON pin, the TDA8591J will switch to operating mode (see Section 7.3)  
2. VOO(det) is the offset voltage across the load. Pin OFFCAP should never be left open-circuit. If pin OFFCAP is  
connected to one of the PGND pins, the offset detection is switched off (see Section 14.4).  
Table 2 Mode selection  
STBY  
MUTE/ON  
AMPLIFIER MODE  
standby (off)  
0
1
1
don’t care  
0
1
mute (DC settled)  
operating  
2002 Jan 14  
15  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
12 AC CHARACTERISTICS  
VP = VP1 = VP2 = VP3 = 14.4 V; RL = 4 ; f = 1 kHz; Tamb = 25 oC; measured in the circuit of Fig.29; unless otherwise  
specified.  
SYMBOL  
Po  
PARAMETER  
output power  
CONDITIONS  
THD + N = 0.5 %  
MIN.  
TYP.  
MAX.  
UNIT  
RL = 4 Ω  
20  
22  
W
RL = 2 Ω  
34  
35  
W
W
THD + N = 1 %; RL = 2 Ω  
THD + N = 10 %  
RL = 4 Ω  
27  
28  
47  
W
W
RL = 2 Ω  
EIAJ values  
RL = 4 Ω  
41.5  
44  
75  
26  
0.03  
0.2  
68  
W
RL = 2 Ω  
W
Gv  
voltage gain  
Vi = 40 mV (RMS)  
Po = 1 W; f = 1 kHz  
Po = 10 W; f = 10 kHz  
25  
27  
0.1  
dB  
%
THD + N  
total harmonic distortion plus  
noise  
%
αcs  
channel separation  
channel unbalance  
noise output voltage  
Vi = 40 mV (RMS); Rs = 0 56  
dB  
dB  
Gv  
Vn(o)  
1
Rs = 0 ; note 1  
operating mode  
mute mode  
70  
16  
16  
68  
110  
µV  
µV  
µV  
dB  
Vo(mute)  
SVRR  
output voltage in mute mode  
supply voltage ripple rejection  
mute mode; Vi = 1 V (RMS)  
30  
V
ripple = 2 V (p-p); mute or  
54  
operating mode; Rs = 0 Ω  
Zi  
input impedance  
Vi 3 V (RMS)  
60  
70  
70  
kΩ  
CMRR  
common mode rejection ratio  
Rs = 0 ;  
dB  
Vcm = 0.35 V (RMS)  
BP  
power bandwidth  
THD + N = 0.5%; Po = 1 dB  
20 to  
Hz  
with respect to 17 W  
20000  
fro(l)  
low frequency roll-off  
high frequency roll-off  
at 1 dB; note 2  
at 1 dB  
25  
Hz  
fro(h)  
150  
300  
kHz  
Notes  
1. The noise output voltage is measured in a bandwidth of 20 Hz to 20 kHz.  
2. The frequency response is fixed with external components.  
2002 Jan 14  
16  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
12.1 Performance curves  
Conditions for Figs 12 to 28 unless otherwise specified are: VP = 14.4 V; RL = 4 : f = 1 kHz; 80 kHz filter.  
MGW458  
MGW457  
30  
300  
handbook, halfpage  
handbook, halfpage  
G
v
(dB)  
28  
I
P
(mA)  
200  
26  
24  
22  
100  
20  
10  
0
0
2
3
4
5
6
10  
10  
10  
10  
10  
10  
20  
30  
V
(V)  
f (Hz)  
P
RL = .  
Vi = 10 mV.  
Fig.12 Supply current as a function of supply  
voltage.  
Fig.13 Voltage gain as a function of frequency.  
MGW459  
MGW460  
80  
120  
handbook, halfpage  
handbook, halfpage  
P
o
P
o
(W)  
(W)  
100  
80  
60  
40  
20  
0
60  
(1)  
(1)  
40  
(2)  
(3)  
(2)  
20  
(3)  
0
9
10 11 12 13 14 15 16 17 18  
(V)  
9
10 11 12 13 14 15 16 17 18  
V
V (V)  
P
P
One channel driven.  
(1) EIAJ values.  
One channel driven.  
(1) EIAJ values.  
(2) THD + N = 10%.  
(3) THD + N = 1%.  
(2) THD + N = 10%.  
(3) THD + N = 1%.  
Fig.14 Output power as a function of supply  
Fig.15 Output power as a function of supply  
voltage; RL = 4 .  
voltage; RL = 2 .  
2002 Jan 14  
17  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
MGW461  
MGW462  
0
0
handboαok, halfpage  
handboαok, halfpage  
cs  
cs  
(dB)  
(dB)  
20  
20  
40  
40  
60  
80  
(1)  
(1)  
(2)  
60  
(3)  
(2)  
(3)  
80  
100  
100  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
Po = 1 W.  
Po = 1 W.  
(1) Separation between channels 1 and 3.  
(2) Separation between channels 1 and 4.  
(3) Separation between channels 1 and 2.  
(1) Separation between channels 2 and 1.  
(2) Separation between channels 2 and 3.  
(3) Separation between channels 2 and 4.  
Fig.16 Channel separation as a function of  
frequency; channel 1 driven.  
Fig.17 Channel separation as a function of  
frequency; channel 2 driven.  
MGW463  
MGW464  
0
0
handboαok, halfpage  
handboαok, halfpage  
cs  
cs  
(dB)  
(dB)  
20  
20  
(1) (2)  
(3)  
40  
60  
80  
40  
60  
80  
(1)  
(2)  
(3)  
100  
100  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
Po = 1 W.  
Po = 1 W.  
(1) Separation between channels 3 and 1.  
(2) Separation between channels 3 and 2.  
(3) Separation between channels 3 and 4.  
(1) Separation between channels 4 and 1.  
(2) Separation between channels 4 and 2.  
(3) Separation between channels 4 and 3.  
Fig.18 Channel separation as a function of  
frequency; channel 3 driven.  
Fig.19 Channel separation as a function of  
frequency; channel 4 driven.  
2002 Jan 14  
18  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
MGW465  
MGW467  
2
2
10  
10  
handbook, halfpage  
handbook, halfpage  
THD + N  
THD + N  
(%)  
(%)  
10  
10  
1
1
(1)  
(1)  
1  
1  
10  
10  
(2)  
(3)  
(2)  
(3)  
2  
2  
10  
10  
2  
1  
2
2  
1  
2
10  
10  
1
10  
10  
10  
10  
1
10  
10  
P
(W)  
P
(W)  
o
o
(1) f = 10 kHz.  
(2) f = 1 kHz.  
(3) f = 100 Hz.  
(1) f = 10 kHz.  
(2) f = 1 kHz.  
(3) f = 100 Hz.  
Fig.20 Total harmonic distortion plus noise as a  
Fig.21 Total harmonic distortion plus noise as a  
function of output power; RL = 4 .  
function of output power; RL = 2 .  
MGW468  
MGW466  
2
2
10  
10  
handbook, halfpage  
handbook, halfpage  
THD + N  
THD + N  
(%)  
(%)  
10  
1
10  
1
1  
1  
10  
10  
10  
(1)  
(1)  
(2)  
(2)  
2
2  
2  
10  
2
3
4
5
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
(1) Po = 1 W.  
(2) Po = 10 W.  
(1) Po = 1 W.  
(2) Po = 10 W.  
Fig.22 Total harmonic distortion plus noise as a  
Fig.23 Total harmonic distortion plus noise as a  
function of frequency; RL = 4 .  
function of frequency; RL = 2 .  
2002 Jan 14  
19  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
MGW469  
MGW470  
15  
30  
handbook, halfpage  
handbook, halfpage  
P
P
(W)  
(W)  
10  
20  
10  
0
5
0
10  
3  
2  
1  
2
3  
2  
1  
2
10  
10  
1
10  
(W)  
10  
10  
10  
10  
1
10  
P (W)  
o
10  
P
o
Sine wave input; one channel driven.  
Sine wave input; one channel driven.  
Fig.24 Power dissipation as a function of output  
Fig.25 Power dissipation as a function of output  
power; RL = 4 .  
power; RL = 2 .  
MGW471  
MGW472  
15  
30  
handbook, halfpage  
handbook, halfpage  
P
P
(W)  
(W)  
10  
20  
10  
0
5
0
10  
3  
2  
1  
2
3  
2  
1  
2
10  
10  
1
10  
(W)  
10  
10  
10  
10  
1
10  
P (W)  
o
10  
P
o
IEC60268 filtered noise; one channel driven.  
IEC60268 filtered noise; one channel driven.  
Fig.26 Power dissipation as a function of output  
Fig.27 Power dissipation as a function of output  
power; RL = 4 .  
power; RL = 2 .  
2002 Jan 14  
20  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
MGW473  
0
handbook, halfpage  
SVRR  
(dB)  
20  
40  
60  
80  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
Vripple = 2 V (p-p).  
Fig.28 Supply voltage ripple rejection as a function  
of frequency.  
2002 Jan 14  
21  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
13 TEST INFORMATION  
V
P
100  
nF  
V
cm  
2200 µF  
(16 V)  
V
1
V
V
P1  
P2  
13  
P3  
15  
220 nF  
R
s
IN1 10  
22 nF  
OUT1−  
OUT1+  
3
4 Ω  
26 dB  
V
in1  
5
22 nF  
22 nF  
OUT2+  
OUT2−  
9
4 Ω  
26 dB  
220 nF  
R
s
11  
IN2 12  
22 nF  
V
P
V
in2  
14 CP  
CHARGE  
PUMP  
TDA8591J  
220 nF  
CIN 22  
100 µF  
(6.3 V)  
SGND  
2
220 nF  
R
s
IN3 16  
22 nF  
OUT3+  
19  
17  
4 Ω  
26 dB  
V
in3  
OUT3−  
22 nF  
22 nF  
OUT4−  
OUT4+  
25  
23  
4 Ω  
26 dB  
220 nF  
R
s
IN4  
18  
20  
8
22 nF  
STBY  
V
in4  
INTERFACE  
MUTE/ON  
+5 V  
10 kΩ  
6
OFFSET  
DETECTION  
DIAGNOSTIC  
27  
DIAG  
26 OFFCAP  
4
7
21  
24  
PGND1 PGND2 PGND3 PGND4 GNDHS  
MGW451  
Fig.29 Test circuit.  
22  
2002 Jan 14  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
13.1 Protection circuit testing  
>
100 µH  
V
P
(1)  
TDA8591J  
OUT−  
OUT+  
IN  
4700 µF  
STBY  
+
14.4 V  
battery  
GND  
MGW453  
One channel output shown.  
At the start of the test, the 4700 µF capacitor should be discharged.  
The amplifier is in standby during test.  
(1) Cable length is 1 metre, cable diameter is 1.5 mm.  
Fig.30 Open ground pin test set-up.  
>
100 µH  
V
P
TDA8591J  
(1)  
OUT−  
OUT+  
IN  
4700 µF  
STBY  
+
14.4 V  
battery  
GND  
MGW454  
One channel output shown.  
At the start of the test, the 4700 µF capacitor should be discharged.  
The amplifier is in standby during test.  
(1) Cable length is 1 metre, cable diameter is 1.5 mm.  
Fig.31 Open power supply (pin VP) test set-up.  
23  
2002 Jan 14  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
>
100 µH  
V
P
fuse  
(1)  
TDA8591J  
OUT−  
OUT+  
IN  
e.g.BZW03C18  
4700 µF  
+
14.4 V  
battery  
GND  
MGW455  
(1) Cable length is 1 metre, cable diameter is 1.5 mm.  
Fig.32 Reversed polarity power supply test set-up.  
2002 Jan 14  
24  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
14 APPLICATION INFORMATION  
V
P
2200 µF  
(16 V)  
100 nF  
V
1
V
V
P1  
P2  
13  
P3  
15  
220 nF  
R
s
IN1 10  
22 nF  
OUT1−  
3
2 or 4 Ω  
26 dB  
V
in1  
OUT1+  
5
22 nF  
22 nF  
OUT2+  
OUT2−  
9
2 or 4 Ω  
26 dB  
220 nF  
R
s
11  
IN2 12  
22 nF  
V
P
V
in2  
14 CP  
CHARGE  
PUMP  
TDA8591J  
220 nF  
CIN 22  
100 µF  
(6.3 V)  
SGND  
2
220 nF  
R
s
IN3 16  
22 nF  
OUT3+  
19  
17  
2 or 4 Ω  
26 dB  
V
in3  
OUT3−  
22 nF  
22 nF  
OUT4−  
OUT4+  
25  
23  
2 or 4 Ω  
26 dB  
220 nF  
R
s
IN4  
18  
20  
8
22 nF  
STBY  
V
in4  
INTERFACE  
MUTE/ON  
standby  
mute  
DIAG  
6
OFFSET  
DETECTION  
to microcontroller  
DIAGNOSTIC  
27  
from  
microcontroller  
26 OFFCAP  
(1)  
fast mute  
2.2  
µF  
(10 V)  
4
7
21  
24  
PGND1 PGND2 PGND3 PGND4 GNDHS  
MGW452  
(1) Not needed with single-pin mute control.  
Fig.33 Quad BTL application without offset detection circuit.  
25  
2002 Jan 14  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
V
P
2200 µF  
100 nF  
(16 V)  
V
1
V
V
P1  
P2  
13  
P3  
15  
220 nF  
R
s
IN1 10  
22 nF  
OUT1−  
OUT1+  
3
2 or 4 Ω  
26 dB  
V
in1  
5
22 nF  
22 nF  
220 kΩ  
220 kΩ  
OUT2+  
OUT2−  
9
2 or 4 Ω  
22 nF  
26 dB  
220 nF  
R
s
11  
IN2 12  
V
P
V
in2  
14 CP  
CHARGE  
PUMP  
TDA8591J  
220 nF  
CIN 22  
100 µF  
(6.3 V)  
SGND  
2
220 nF  
R
s
IN3 16  
22 nF  
OUT3+  
19  
17  
2 or 4 Ω  
26 dB  
V
in3  
OUT3−  
22 nF  
22 nF  
220 kΩ  
220 kΩ  
OUT4−  
OUT4+  
25  
23  
2 or 4 Ω  
22 nF  
26 dB  
220 nF  
R
s
IN4  
18  
20  
8
STBY  
V
in4  
INTERFACE  
2 kΩ  
2 kΩ  
MUTE/ON  
standby  
mute  
DIAG  
6
OFFSET  
DETECTION  
to microcontroller  
DIAGNOSTIC  
27  
from  
microcontroller  
1 µF  
26 OFFCAP  
(1)  
fast mute  
2.2  
µF  
(10 V)  
MGW476  
4
7
21  
24  
PGND1 PGND2 PGND3 PGND4 GNDHS  
(1) Not needed with single-pin mute control.  
Fig.34 Quad BTL application with offset detection circuit.  
26  
2002 Jan 14  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
14.1 Special attention for SMD input capacitors  
The loop area of the capacitor connected to pins CP and  
PGND2 should be kept as small as possible. For optimum  
performance the capacitor used should have a good  
frequency performance, for example an SMD ceramic  
capacitor. See Figs 35 and 36 for a good PCB layout.  
When SMD capacitors are used as input capacitors, low  
frequency noise can occur due to stress on the PCB. The  
SMD capacitors can operate like small microphones with  
sensitivity of 1f. Special attention should be paid to this  
issue when selecting SMD capacitors at the four inputs  
(MKT capacitors are recommended).  
14.4 Offset detection  
As shown in Fig.34, to obtain the DC offset information, an  
output from each bridge is summed and filtered through  
external 220 kresistors and a 1 µF capacitor at  
pin OFFCAP. The low frequency roll-off can be chosen  
with the resistor/capacitor combination. Because of the  
random phase of the DC offset voltage, the capacitor on  
pin OFFCAP should not be a conventional electrolytic  
capacitor as leakage current in this capacitor would cause  
a shift in low frequency roll-off because of no pre-biasing.  
14.2 Capacitors on outputs  
The TDA8591J is optimized for a capacitor of 22 nF from  
each output to ground for RF immunity and ESD. These  
capacitors can be replaced by the capacitors on the  
connector block.  
14.3 EMC precautions  
The TDA8591J has an all N-type DMOS output stage. The  
main advantage of having the same type of power  
transistors in the output stage is symmetrical behaviour for  
positive and negative signals (sound quality).  
If the offset detection is not used, pin OFFCAP can be  
connected to ground, the external components (resistors  
of 220 kand 2 kand the capacitor of 1µF) are not  
needed and the circuit is as shown in Fig.33.  
A charge pump (DC to DC converter with capacitors only)  
is used to generate a voltage above the battery voltage to  
drive the high-side power. The clock frequency of the  
charge pump (2.9 MHz) is chosen above the AM  
frequency band. To prevent possible crosstalk in the FM  
frequency band, a SIL pad can be used between the rear  
of the TDA8591J and the heatsink. This SIL pad is an  
electrical isolator and thermal conductor. It is advisable to  
connect the power supply lines of the TDA8591J directly to  
the power supply on the printed circuit board of the radio,  
so that a one-point earth bonding with the tuner supply is  
achieved.  
14.5 Channel selection  
The following recommendation for a four channel  
application is given on the basis of the results of the  
channel separation measurements and the dissipation  
spread within the package:  
Front-left = OUT1  
Rear-left = OUT2  
Rear-right = OUT3  
Front-right = OUT4.  
The external capacitor of the charge pump (connected to  
pin CP) filters and buffers the voltage generated internally.  
14.6 Detection of short-circuits  
Table 3 Detection of short-circuits in standby, mute and operating modes.  
SHORT-CIRCUIT TO SUPPLY  
OR GROUND  
AMPLIFIER MODE  
Standby  
SHORT-CIRCUIT ACROSS LOAD  
no diagnosis  
no diagnosis  
Mute (no output signal)  
the value of short-circuit that activates no diagnosis and no active protection if  
diagnosis and protection depends on  
the output offset voltage  
short-circuit >100 Ω  
Operating (output signal present)  
diagnosis and active protection if  
no diagnosis and no active protection if  
short-circuit <0.4 Ω  
short-circuit >100 Ω  
2002 Jan 14  
27  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
14.7 PCB layout  
85.1  
39.4  
GND  
8-18V  
V
2.2 µF  
P
Out1  
float  
Out2  
Out3  
Out4  
diag  
gnd  
On  
Mute  
TDA8591J  
In1 In2  
In3 In4  
Off  
gnd  
MGW474  
Dimensions in mm.  
Fig.35 PCB layout (component side).  
28  
2002 Jan 14  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
85.1  
39.4  
220 nF  
220 nF  
22 nF 22 nF 22 nF 22 nF  
47 kΩ  
27  
GND  
22 nF 22 nF 22 nF 22 nF  
V
P
1 µF  
220 kΩ  
2 k2 kΩ  
220 kΩ  
220 kΩ  
220 kΩ  
15 k47 kΩ  
MGW475  
Dimensions in mm.  
Fig.36 PCB layout (soldering side).  
29  
2002 Jan 14  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
14.8 PCB design advice  
V
P
GND  
8 to 18 V  
2200 µF  
(16 V)  
(1)  
(2)  
220 nF  
220 nF  
15  
kΩ  
2.2 µF  
(6.3 V)  
47  
kΩ  
47  
kΩ  
(4)  
(3)  
1
13 15  
14  
7
4 21 24 27  
3.3  
nF  
(5)  
20  
6
8
3
5
DIAG  
(6)  
OUT1−  
(8)  
22 nF  
OUT1+  
22 nF  
(7)  
2
100 µF  
PCB SGND  
22  
9
OUT2+  
(6.3 V)  
22 nF  
OUT2−  
22 nF  
TDA8591J  
11  
220 nF  
IN1  
10  
12  
16  
18  
220 nF  
220 nF  
220 nF  
19  
17  
OUT3+  
IN2  
IN3  
IN4  
22 nF  
OUT3−  
22 nF  
25  
23  
OUT4+  
22 nF  
OUT4−  
26  
2
2
R
R
R
R
22 nF  
kkΩ  
MGW456  
(9)  
0.22  
R
C =  
(1) Power supply high frequency capacitor to be mounted close to the IC. An SMD component is recommended.  
(2) Charge pump capacitor to be mounted close to the IC between pins 14 and 7.  
(3) Switch closed is the mute mode.  
(4) Switch open is the standby mode.  
(5) A 3.3 nF capacitor has been added to provide a smooth offset detection diagnostic.  
(6) Diagnostic output is less than 0.8 V when DDD or temperature pre-warning or protection circuits are activated.  
(7) Signal ground switch is closed if the source is floating. Avoid ground loops in the input signal path. Keep inputs and signal ground close together.  
(8) The 22 nF capacitors on the outputs can be replaced by the capacitor on the connector block to ground, where it is often used for RF immunity and  
ESD suppression.  
(9) Offset detection: if R = 100 kthen C = 2.2 nF; if R = 220 kthen C = 1 µF. An electrolytic capacitor is not allowed because of the random phase  
of the DC offset.  
Fig.37 PCB design advice.  
2002 Jan 14  
30  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
15 PACKAGE OUTLINE  
DBS27P: plastic DIL-bent-SIL power package; 27 leads (lead length 7.7 mm)  
SOT521-1  
non-concave  
x
D
h
D
E
h
view B: mounting base side  
A
2
d
A
A
5
4
β
B
j
E
E
1
A
L
3
L
Q
c
2
v
M
1
27  
e
e
m
w
M
1
Z
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
A
b
c
D
d
D
E
e
e
e
E
E
j
L
L
m
Q
v
w
x
β
Z
2
4
5
p
h
1
2
h
1
3
17.0 4.6 1.15 1.65 0.60 0.5 30.4 28.0  
15.5 4.3 0.85 1.35 0.45 0.3 29.9 27.5  
12.2  
11.8  
10.15 1.85 8.4 2.4  
9.85 1.65 7.0 1.6  
2.4  
1.8  
2.1  
1.8  
6
mm  
12  
2.0 1.0 4.0  
4.3  
0.6 0.25 0.03 45°  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
SOT521-1  
99-01-05  
2002 Jan 14  
31  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
16 SOLDERING  
The total contact time of successive solder waves must not  
exceed 5 seconds.  
16.1 Introduction to soldering through-hole mount  
packages  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
This text gives a brief insight to wave, dip and manual  
soldering. A more in-depth account of soldering ICs can be  
found in our “Data Handbook IC26; Integrated Circuit  
Packages” (document order number 9398 652 90011).  
Wave soldering is the preferred method for mounting of  
through-hole mount IC packages on a printed-circuit  
board.  
16.3 Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
16.2 Soldering by dipping or by solder wave  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds.  
300 and 400 °C, contact may be up to 5 seconds.  
16.4 Suitability of through-hole mount IC packages for dipping and wave soldering methods  
SOLDERING METHOD  
PACKAGE  
DIPPING  
WAVE  
DBS, DIP, HDIP, SDIP, SIL  
suitable  
suitable(1)  
Note  
1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
2002 Jan 14  
32  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
17 DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS(1)  
STATUS(2)  
DEFINITIONS  
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Changes will be  
communicated according to the Customer Product/Process Change  
Notification (CPCN) procedure SNW-SQ-650A.  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
18 DEFINITIONS  
19 DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2002 Jan 14  
33  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
NOTES  
2002 Jan 14  
34  
Philips Semiconductors  
Preliminary specification  
4 × 44 W into 4 or 4 × 75 W into 2 Ω  
quad BTL car radio power amplifier  
TDA8591J  
NOTES  
2002 Jan 14  
35  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2002  
SCA74  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
753503/01/pp36  
Date of release: 2002 Jan 14  
Document order number: 9397 750 08682  

相关型号:

TDA8591J

4 X 44 W into 4 or 4 X 75 W into 2 quad BTL car radio power amplifier
NXP

TDA8592J

IC 87 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM27, POWER, PLASTIC, SOT-767-1, DIL-BENT-SIL, 27 PIN, Audio/Video Amplifier
NXP

TDA8593J

IC 69 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM27, POWER, PLASTIC, SOT-767-1, DIL-BENT-SIL, 27 PIN, Audio/Video Amplifier
NXP

TDA8594

I2C-bus controlled 4 X 50 W power amplifier
NXP

TDA8594J

I2C-bus controlled 4 X 50 W power amplifier
NXP

TDA8594J/N1

TDA8594 - I²C-bus controlled 4 x 50 W power amplifier ZIP 27-Pin
NXP

TDA8594J/N1S

TDA8594 - I²C-bus controlled 4 x 50 W power amplifier ZIP 27-Pin
NXP

TDA8594SD

I2C-bus controlled 4 X 50 W power amplifier
NXP

TDA8594SD/N1,112

TDA8594 - I²C-bus controlled 4 x 50 W power amplifier ZIP 27-Pin
NXP

TDA8594SD/N1S,112

TDA8594 - I²C-bus controlled 4 x 50 W power amplifier ZIP 27-Pin
NXP

TDA8595

I2C-bus controlled 4 ⅴ 45 W power amplifier
NXP

TDA8595J

I2C-bus controlled 4 ⅴ 45 W power amplifier
NXP