TDA8705A [NXP]

6-bit high-speed dual Analog-to-Digital Converter ADC; 6位高速双模拟数字转换器ADC
TDA8705A
型号: TDA8705A
厂家: NXP    NXP
描述:

6-bit high-speed dual Analog-to-Digital Converter ADC
6位高速双模拟数字转换器ADC

转换器
文件: 总16页 (文件大小:114K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8705A  
6-bit high-speed dual  
Analog-to-Digital Converter (ADC)  
1996 Jan 12  
Product specification  
Supersedes data of November 1994  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
FEATURES  
APPLICATIONS  
High-speed analog-to-digital conversion for:  
2 times 6-bit resolution  
Sampling rate up to 80 MHz  
DBS (Digital Broadcast Satellite)  
QPSK (Quadrature Phase Shift Keying) demodulation  
Video.  
High signal-to-noise ratio over a large analog input  
frequency range (5.5 effective bits at 20 MHz full-scale  
input at fclk = 80 MHz)  
TTL output  
GENERAL DESCRIPTION  
Two separated inputs (AC-coupling)  
TTL compatible digital inputs  
Low-level AC clock input signal allowed  
The TDA8705A is a 6-bit high-speed dual analog-to-digital  
converter (ADC) for satellite video and other applications.  
It converts the two analog input signals into two 6-bit  
binary-coded digital words at a maximum sampling rate of  
80 MHz. All digital inputs and outputs are TTL compatible,  
although a low-level sine wave clock input signal is  
allowed.  
Internal reference voltage regulator  
(external reference regulation possible)  
Power dissipation only 250 mW (typical)  
Low analog input capacitance, no buffer amplifier  
required  
No sample-and-hold circuit required.  
QUICK REFERENCE DATA  
SYMBOL  
VCCA  
PARAMETER  
CONDITIONS  
MIN.  
4.75  
TYP.  
5.0  
MAX.  
5.25  
UNIT  
analog supply voltage  
V
V
V
VCCD  
VCCO  
ICCA  
digital supply voltage  
4.75  
4.75  
20  
10  
10  
5.0  
5.0  
27  
5.25  
5.25  
32  
output stages supply voltage  
analog supply current  
mA  
ICCD  
ICCO  
ILE  
digital supply current  
14  
18  
mA  
output stages supply current  
DC integral linear error  
DC differential linearity error  
AC integral linearity error  
maximum clock frequency  
total power dissipation  
14  
18  
mA  
±0.25  
±0.25  
±0.5  
±0.5  
±0.5  
±1.0  
LSB  
LSB  
LSB  
MHz  
mW  
DLE  
AILE  
fclk(max)  
Ptot  
note 1  
80  
250  
Note  
1. Full-scale sine wave (fi = 20 MHz; fclk = 80 MHz).  
ORDERING INFORMATION  
TYPE  
PACKAGE  
DESCRIPTION  
plastic small outline package; 28 leads; body width 7.5 mm  
NUMBER  
NAME  
VERSION  
TDA8705AT  
SO28  
SOT136-1  
1996 Jan 12  
2
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
V
V
V
DEC  
10  
CCA  
8
CCD  
2
CCO  
21  
REGULATOR  
reference  
voltage TOP  
A
5
6
28 D5A  
27 D4A  
26 D3A  
25 D2A  
24 D1A  
23 D0A  
V
MSB  
RTA  
analog  
voltage input  
A
V
6
ANALOG -TO-DIGITAL  
IA  
data  
outputs  
LATCHES  
TTL OUTPUTS  
CONVERTER  
A
R
INTA  
reference  
voltage BOTTOM  
A
4
V
LSB  
RBA  
reference  
voltage MIDDLE  
A
9
V
RMA  
reference  
voltage TOP  
B
TDA8705A  
12  
14  
V
RTB  
V
RMB  
reference  
voltage MIDDLE  
B
R
INTB  
20 D5B  
19 D4B  
18 D3B  
17 D2B  
16 D1B  
15 D0B  
MSB  
analog  
voltage input  
11  
13  
V
6
ANALOG -TO-DIGITAL  
IB  
data  
outputs  
LATCHES  
TTL OUTPUTS  
CONVERTER  
B
B
reference  
voltage BOTTOM  
B
V
LSB  
RBB  
CLOCK DRIVER  
1
22  
7
3
OGND  
AGND  
DGND  
MLC374  
CLK  
output ground  
analog ground  
digital ground  
ahdnbok,uflapegwidt  
Fig.1 Block diagram.  
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
PINNING  
SYMBOL PIN  
DESCRIPTION  
CLK  
1
2
3
4
clock input  
VCCD  
DGND  
VRBA  
digital supply voltage (+5 V)  
digital ground  
reference voltage BOTTOM for  
ADC A (decoupling)  
VRTA  
5
reference voltage TOP for ADC A  
(decoupling)  
VIA  
6
7
8
9
analog input voltage for ADC A  
analog ground  
handbook, halfpage  
CLK  
1
2
3
4
5
6
7
8
9
D5A  
27 D4A  
28  
AGND  
VCCA  
VRMA  
V
CCD  
analog supply voltage (+5 V)  
D3A  
D2A  
DGND  
26  
25  
reference voltage MIDDLE for ADC A  
(decoupling)  
V
RBA  
DEC  
VIB  
10 decoupling input  
V
24 D1A  
23 D0A  
22 OGND  
RTA  
11 analog input voltage for ADC B  
V
IA  
VRTB  
12 reference voltage TOP for ADC B  
(decoupling)  
AGND  
TDA8705A  
V
V
21  
VRBB  
VRMB  
13 reference voltage BOTTOM for  
ADC B (decoupling)  
CCO  
CCA  
V
20 D5B  
19 D4B  
RMA  
14 reference voltage MIDDLE for ADC B  
(decoupling)  
DEC 10  
V
D3B  
D2B  
D1B  
11  
18  
17  
16  
IB  
D0B  
D1B  
D2B  
D3B  
D4B  
D5B  
VCCO  
15 data output; bit 0 (LSB), ADC B  
16 data output; bit 1, ADC B  
17 data output; bit 2, ADC B  
18 data output; bit 3, ADC B  
19 data output; bit 4, ADC B  
20 data output; bit 5 (MSB), ADC B  
V
V
RTB 12  
13  
14  
RBB  
V
15 D0B  
RMB  
MLC375  
21 supply voltage for output stages  
(+5 V)  
OGND  
D0A  
D1A  
D2A  
D3A  
D4A  
D5A  
22 output ground  
23 data output; bit 0 (LSB), ADC A  
24 data output; bit 1, ADC A  
25 data output; bit 2, ADC A  
26 data output; bit 3, ADC A  
27 data output; bit 4, ADC A  
28 data output; bit 5 (MSB), ADC A  
Fig.2 Pin configuration.  
1996 Jan 12  
4
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VCCA  
PARAMETER  
analog supply voltage  
CONDITIONS  
note 1  
MIN.  
0.3  
MAX.  
+7.0  
UNIT  
V
V
V
V
VCCD  
VCCO  
VCC  
digital supply voltage  
note 1  
note 1  
0.3  
0.3  
1.0  
+7.0  
+7.0  
+1.0  
output stages supply voltage  
supply voltage differences between VCCA  
and VCCD  
VCC  
VCC  
supply voltage differences between VCCO  
and VCCD  
1.0  
1.0  
+1.0  
+1.0  
V
V
supply voltage differences between VCCA  
and VCCO  
VI  
input voltage  
referenced to AGND  
referenced to DGND  
0.3  
+7.0  
V
V
Vclk(p-p)  
AC input voltage for switching  
(peak-to-peak value)  
VCCD  
IO  
output current  
10  
mA  
°C  
°C  
°C  
Tstg  
Tamb  
Tj  
storage temperature  
operating ambient temperature  
junction temperature  
55  
0
+150  
+70  
+150  
Note  
1. The supply voltages VCCA, VCCO and VCCD may have any value between 0.3 V and +7 V provided the difference  
between VCCA, VCCO and VCCD is between 1 V and +1 V.  
HANDLING  
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling integrated circuits.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth j-a  
PARAMETER  
VALUE  
UNIT  
thermal resistance from junction to ambient in free air  
70  
K/W  
1996 Jan 12  
5
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
CHARACTERISTICS  
V
CCA = V8 to V7 = 4.75 to 5.25 V; VCCD = V2 to V3 = 4.75 to 5.25 V; VCCO = V21 to V22 = 4.75 to 5.25 V; AGND, OGND  
and DGND shorted together; VCCA to VCCD = 0.25 to +0.25 V; VCCO to VCCD = 0.25 to +0.25 V;  
CCA to VCCO = 0.25 to +0.25 V; Tamb = 0 to +70 °C; typical values measured at VCCA = VCCD = VCCO = 5 V and  
Tamb = 25 °C; CL = 15 pF; unless otherwise specified.  
V
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supply  
VCCA  
VCCD  
VCCO  
ICCA  
analog supply voltage  
4.75  
4.75  
4.75  
20  
5.0  
5.25  
5.25  
5.25  
32  
V
V
V
digital supply voltage  
5.0  
5.0  
27  
14  
14  
output stages supply voltage  
analog supply current  
mA  
mA  
mA  
ICCD  
digital supply current  
10  
18  
ICCO  
output stages supply current  
10  
18  
Inputs  
CLOCK INPUT CLK; REFERENCED TO DGND; note 1  
VIL  
VIH  
IIL  
LOW level input voltage  
HIGH level input voltage  
LOW level input current  
HIGH level input current  
input impedance  
0
2
2
0.8  
VCCD  
+1  
20  
V
2.0  
1  
V
Vclk = 0.4 V  
µA  
µA  
kΩ  
pF  
IIH  
ZI  
Vclk = 2.7 V  
fclk = 80 MHz  
fclk = 80 MHz  
CI  
input capacitance  
VI ANALOG INPUT VOLTAGE FOR A AND B; REFERENCED TO AGND  
RI  
DC parallel input resistance  
parallel input capacitance  
crosstalk between VIA and VIB  
20  
kΩ  
pF  
dB  
CI  
fi = 20 MHz  
fi = 20 MHz  
1.5  
αCT  
40  
Reference voltages for the resistor ladder (A and B); see Table 1  
VRB  
reference voltage BOTTOM  
reference voltage TOP  
1.9  
2.8  
0.85  
2.0  
2.1  
3.0  
0.95  
V
VRT  
2.9  
V
Vdiff  
differential reference voltage VRT VRB  
reference current  
0.90  
2
V
Iref  
mA  
RLAD  
TCRLAD  
VosB  
VosT  
Vi(p-p)  
resistor ladder  
450  
3280  
200  
200  
0.50  
temperature coefficient of the resistor ladder  
offset voltage BOTTOM  
ppm  
mV  
mV  
V
note 2  
note 2  
offset voltage TOP  
input voltage amplitude (peak-to-peak value)  
0.45  
0.55  
Outputs (A and B)  
DIGITAL OUTPUTS D5 TO D0 (REFERENCED TO DGND)  
VOL  
VOH  
LOW level output voltage  
HIGH level output voltage  
IO = 1 mA  
0
0.4  
V
V
IO = 1 mA  
2.4  
VCCD  
1996 Jan 12  
6
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Switching characteristics  
CLOCK INPUT CLK; note 1; see Fig.3  
fclk(max)  
tCPH  
maximum clock frequency  
clock pulse width HIGH  
clock pulse width LOW  
80  
MHz  
5.5  
5.5  
ns  
ns  
tCPL  
Analog signal processing  
LINEARITY  
ILE  
DC integral linearity error  
±0.25 ±0.5  
±0.25 ±0.5  
LSB  
LSB  
LSB  
LSB  
DLE  
AILE  
OFE  
DC differential linearity error  
AC integral linearity error  
offset error between A and B  
note 3  
fi = 10 MHz;  
clk = 40 MHz; note 4  
±0.5  
±1.0  
±2  
±1  
f
GE  
gain error between A and B  
fi = 10 MHz;  
fclk = 40 MHz; note 4  
±1  
±2  
LSB  
MID  
middle scale output code (A and B)  
31  
32  
BANDWIDTH; fclk = 80 MHz  
B
0.5 dB analog bandwidth  
full-scale sine  
wave; note 5  
50  
8
MHz  
ns  
tSTLH  
tSTHL  
analog input settling time LOW-to-HIGH  
analog input settling time HIGH-to-LOW  
full-scale square  
wave; Fig.4; note 6  
full-scale square  
5
ns  
wave; Fig.4; note 6  
HARMONICS; fclk = 40 MHZ; see Fig.5  
h1  
fundamental harmonics (full scale)  
fi = 20 MHz  
fi = 20 MHz  
0
dB  
hall  
harmonics (full scale);  
all components  
second harmonics  
third harmonics  
45  
41  
39  
dB  
dB  
dB  
THD  
total harmonic distortion  
fi = 20 MHz  
34  
SIGNAL-TO-NOISE RATIO; note 7; see Fig.5  
S/N signal-to-noise ratio (full scale)  
without harmonics;  
33  
36  
dB  
fclk = 80 MHz;  
fi = 20 MHz  
EFFECTIVE BITS; note 7; see Fig.5  
EB  
effective bits  
f
clk = 80 MHz  
fi = 10 MHz  
fi = 20 MHz  
fi = 30 MHz  
5.7  
5.5  
5.1  
bits  
bits  
bits  
1996 Jan 12  
7
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
TWO-TONE; note 8  
TTIR  
two-tone intermodulation rejection  
fclk = 80 MHz  
48  
dB  
BIT ERROR RATE  
BER  
bit error rate  
fclk = 80 MHz;  
fi = 20 MHz;  
VI = ±16 LSB at  
code 32  
1012  
times/  
samples  
Timing (fclk = 80 MHz; CL = 15 pF); note 9; see Fig.3  
tds  
th  
sampling delay time  
output hold time  
5
2
ns  
ns  
ns  
td  
output delay time  
11  
Notes  
1. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock  
must not be less than 1 ns.  
2. Analog input voltages producing code 00 up to and including 3F:  
a) VosB (voltage offset BOTTOM) is the difference between the analog input which produces data equal to 00 and  
the reference voltage BOTTOM (VRB) at Tamb = 25 °C.  
b) VosT (voltage offset TOP) is the difference between VRT (reference voltage TOP) and the analog input which  
produces data outputs equal to 3F at Tamb = 25 °C.  
3. Full-scale sine wave (fi = 20 MHz; fclk = 80 MHz).  
4. The Offset Error (OFE) and Gain Error (GE) are determined by taking results from a simultaneous acquisition on both  
ADCs of a sine wave greater than full-scale. The occurrences of code 0 and 63 are used to calculate the OFE  
(mid-scale-to-mid-scale) and the GE (amplitude difference) between the two converters A and B.  
5. The 0.5 dB analog bandwidth is determined by the 0.5 dB reduction in the reconstructed output, the input being a  
full-scale sine wave. It is determined with a beat frequency method; no glitches occurrence.  
6. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale  
input (square-wave signal) in order to sample the signal and obtain correct output data.  
7. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8K acquisition points per period.  
The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency).  
Conversion to signal-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.  
8. Intermodulation measured relative to either tone with analog input frequencies of 20.0 MHz and 20.1 MHz. The two  
input signals have the same amplitude and the total amplitude of both signals provides full scale to the converter.  
9. Output data acquisition: the output data is available after the maximum delay time of td.  
1996 Jan 12  
8
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
Table 1 Output coding and input voltage (typical values; referenced to AGND)  
BINARY OUTPUT BITS  
STEP  
VI(p-p) A or B (V)  
D5  
D4  
D3  
D2  
D1  
D0  
Underflow  
<2.2  
2.2  
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
1
.
0
1
2.208  
.
.
.
62  
.
.
.
.
.
.
.
2.692  
2.7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
63  
Overflow  
>2.7  
t
CPL  
t
CPH  
1.4 V  
CLK  
sample N  
sample N + 1  
sample N + 2  
V
l(n)  
t
t
ds  
h
2.4 V  
1.4 V  
0.4 V  
DATA  
D0 to D5  
DATA  
N - 2  
DATA  
N - 1  
DATA  
N
DATA  
N + 1  
t
d
MLC115  
Fig.3 Timing diagram for data output.  
t
t
STLH  
STHL  
50 %  
code 63  
V
I(n)  
50 %  
code 0  
2 ns  
2 ns  
CLK  
50 %  
50 %  
MLC116  
0.5 ns  
0.5 ns  
Fig.4 Analog input settling-time diagram.  
9
1996 Jan 12  
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
MLC376  
0
amplitude  
(dB)  
20  
40  
60  
80  
100  
120  
40.2  
45.2  
50.2  
55.2  
60.3  
65.3  
70.3  
75.3  
80.4  
f (MHz)  
Effective bits: 5.54; THD = 39.89 dB;  
Harmonic levels (dB): 2nd = 46.51; 3rd = 41.21; 4th = 80.65; 5th = 60.16; 6th = 54.51.  
Fig.5 Typical Fast Fourier Transform (fclk = 80 MHz; fi = 20 MHz).  
1996 Jan 12  
10  
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
APPLICATION INFORMATION  
100 nF  
CLK  
D5A  
D4A  
D3A  
D2A  
D1A  
D0A  
OGND  
1
2
3
4
5
6
7
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
V
CCD  
5 V  
DGND  
V
100 nF  
RBA  
V
100 nF  
(1)  
RTA  
C
V
LA  
IA  
input A  
AGND  
5 V  
TDA8705A  
8
V
V
CCO  
CCA  
5 V  
100 nF  
100 nF  
V
D5B  
D4B  
D3B  
D2B  
D1B  
D0B  
RMA  
9
(2)  
1 nF  
DEC  
100 nF  
10  
11  
12  
13  
14  
(1)  
C
V
LB  
IB  
input B  
V
100 nF  
100 nF  
100 nF  
RTB  
V
RBB  
V
RMB  
15  
MLC377  
The analog and digital supplies should be separated and decoupled.  
VRT(n), VRM(n) and VRB(n) and DEC inputs are decoupled to AGND.  
(1) In the event of AC-coupling, CLA and CLB values are chosen in accordance with the classical low frequencies cut-off formulae  
1
fCL  
=
where input resistance R is the value measured under DC conditions.  
I
-------------------------------------  
2 × π × RI × CL  
In the event of DC-coupling, CLA and CLB capacitors are omitted. The DC biassing and AC modulation signal directly applied to inputs (pin 6 and 11),  
must be in the range of VRT(n) VRB(n)  
.
(2) When pin 10 (DEC) is short-circuited to AGND, an external regulator can be connected to VRT(n) and VRB(n)  
.
Fig.6 Application diagram.  
1996 Jan 12  
11  
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
PACKAGE OUTLINE  
SO28: plastic small outline package; 28 leads; body width 7.5 mm  
SOT136-1  
D
E
A
X
c
y
H
v
M
A
E
Z
28  
15  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
14  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
18.1  
17.7  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
1.27  
0.050  
1.4  
0.25  
0.01  
0.25  
0.1  
0.25  
0.01  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.71  
0.014 0.009 0.69  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT136-1  
075E06  
MS-013AE  
1996 Jan 12  
12  
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
SOLDERING  
Introduction  
Wave soldering  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The package footprint must incorporate solder thieves at  
the downstream end.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering  
Reflow soldering techniques are suitable for all SO  
packages.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
1996 Jan 12  
13  
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1996 Jan 12  
14  
Philips Semiconductors  
Product specification  
6-bit high-speed dual Analog-to-Digital  
Converter (ADC)  
TDA8705A  
NOTES  
1996 Jan 12  
15  
Philips Semiconductors – a worldwide company  
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)  
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. (63) 2 816 6380, Fax. (63) 2 817 3474  
Tel. (02)805 4455, Fax. (02)805 4466  
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,  
Tel. (01)60 101-1236, Fax. (01)60 101-1211  
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,  
Portugal: PHILIPS PORTUGUESA, S.A.,  
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,  
Apartado 300, 2795 LINDA-A-VELHA,  
Tel. (01)4163160/4163333, Fax. (01)4163174/4163366  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. (65)350 2000, Fax. (65)251 6500  
South Africa: S.A. PHILIPS Pty Ltd.,  
Tel. (31)40-2783749, Fax. (31)40-2788399  
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,  
CEP: 04552-903-SÃO PAULO-SP, Brazil,  
P.O. Box 7383 (01064-970),  
195-215 Main Road Martindale, 2092 JOHANNESBURG,  
P.O. Box 7430, Johannesburg 2000,  
Tel. (011)470-5911, Fax. (011)470-5494  
Tel. (011)821-2333, Fax. (011)829-1849  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:  
Tel. (800) 234-7381, Fax. (708) 296-8556  
Chile: Av. Santa Maria 0760, SANTIAGO,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. (03)301 6312, Fax. (03)301 42 43  
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,  
Tel. (0)8-632 2000, Fax. (0)8-632 2745  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. (02)773 816, Fax. (02)777 6730  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. (852)2319 7888, Fax. (852)2319 7700  
Tel. (01)488 2211, Fax. (01)481 77 30  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West  
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,  
TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444  
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,  
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,  
Fax. (571)217 4549  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong,  
Bangkok 10260, THAILAND,  
Tel. (66) 2 745-4090, Fax. (66) 2 398-0793  
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. (0212)279 27 70, Fax. (0212)282 67 07  
Ukraine: Philips UKRAINE, 2A Akademika Koroleva str., Office 165,  
Denmark: Prags Boulevard 80, PB 1919, DK-2300  
COPENHAGEN S, Tel. (45)32 88 26 36, Fax. (45)31 57 19 49  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. (358)0-615 800, Fax. (358)0-61580 920  
France: 4 Rue du Port-aux-Vins, BP317,  
92156 SURESNES Cedex,  
Tel. (01)4099 6161, Fax. (01)4099 6427  
Germany: P.O. Box 10 51 40, 20035 HAMBURG,  
252148 KIEV, Tel. 380-44-4760297, Fax. 380-44-4766991  
United Kingdom: Philips Semiconductors LTD.,  
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,  
Tel. (0181)730-5000, Fax. (0181)754-8421  
United States:811 East Arques Avenue, SUNNYVALE,  
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556  
Uruguay: Coronel Mora 433, MONTEVIDEO,  
Tel. (040)23 53 60, Fax. (040)23 53 63 00  
Greece: No. 15, 25th March Street, GR 17778 TAVROS,  
Tel. (01)4894 339/4894 911, Fax. (01)4814 240  
India: Philips INDIA Ltd, Shivsagar Estate, A Block,  
Dr. Annie Besant Rd. Worli, Bombay 400 018  
Tel. (022)4938 541, Fax. (022)4938 722  
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,  
P.O. Box 4252, JAKARTA 12950,  
Tel. (02)70-4044, Fax. (02)92 0601  
Tel. (021)5201 122, Fax. (021)5205 189  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. (01)7640 000, Fax. (01)7640 200  
Italy: PHILIPS SEMICONDUCTORS S.r.l.,  
Piazza IV Novembre 3, 20124 MILANO,  
Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557  
Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, TOKYO 108,  
Tel. (03)3740 5130, Fax. (03)3740 5077  
Korea: Philips House, 260-199 Itaewon-dong,  
Internet: http://www.semiconductors.philips.com/ps/  
For all other countries apply to: Philips Semiconductors,  
International Marketing and Sales, Building BE-p,  
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,  
Telex 35000 phtcnl, Fax. +31-40-2724825  
Yongsan-ku, SEOUL, Tel. (02)709-1412, Fax. (02)709-1415  
SCDS47  
© Philips Electronics N.V. 1996  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,  
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,  
Tel. 9-5(800)234-7381, Fax. (708)296-8556  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. (040)2783749, Fax. (040)2788399  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
All rights are reserved. Reproduction in whole or in part is prohibited without the  
prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation  
or contract, is believed to be accurate and reliable and may be changed without  
notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent- or  
other industrial or intellectual property rights.  
Tel. (09)849-4160, Fax. (09)849-7811  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. (022)74 8000, Fax. (022)74 8341  
Printed in The Netherlands  
Pakistan: Philips Electrical Industries of Pakistan Ltd.,  
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,  
KARACHI 75600, Tel. (021)587 4641-49,  
Fax. (021)577035/5874546  
537021/1100/02/pp16  
Date of release: 1996 Jan 12  
9397 750 00569  
Document order number:  

相关型号:

TDA8705AT

6-bit high-speed dual Analog-to-Digital Converter ADC
NXP

TDA8705AT-T

暂无描述
NXP

TDA8705ATD-T

Analog-to-Digital Converter, 6-Bit
ETC

TDA8705T

6-bit high-speed dual Analog-to-Digital Converter ADC
NXP

TDA8705T-T

暂无描述
NXP

TDA8705TD-T

Analog-to-Digital Converter, 6-Bit
ETC

TDA8706

6-bit analog-to-digital converter with multiplexer and clamp
NXP

TDA8706A

6-bit analog-to-digital converter with multiplexer and clamp
NXP

TDA8706AM

6-bit analog-to-digital converter with multiplexer and clamp
NXP

TDA8706AM/C3

IC 3-CH 6-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO24, PLASTIC, SOT-340-1, SSOP-24, Analog to Digital Converter
NXP

TDA8706AMDB

IC 3-CH 6-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO24, PLASTIC, SOT-340-1, SSOP-24, Analog to Digital Converter
NXP

TDA8706AMDB-T

IC 3-CH 6-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO24, PLASTIC, SOT-340-1, SSOP-24, Analog to Digital Converter
NXP