TDA8732 [NXP]

NICAM-728 demodulator NIDEM; NICAM - 728解调NIDEM
TDA8732
型号: TDA8732
厂家: NXP    NXP
描述:

NICAM-728 demodulator NIDEM
NICAM - 728解调NIDEM

消费电路 商用集成电路 光电二极管
文件: 总14页 (文件大小:97K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8732  
NICAM-728 demodulator (NIDEM)  
April 1993  
Product specification  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
FEATURES  
GENERAL DESCRIPTION  
5 V supplies for analog and digital circuitry  
Low cost application  
The NIDEM is a dedicated device providing a DQPSK  
(Differential Quadrature Phase Shift Keying) demodulator  
for a NICAM-728 system.  
The device interfaces with NICAM-728 decoders and  
provides data synchronized to a 728 kHz clock (either  
supplied externally or by the on-board clock).  
The device consists of a costas loop quadrature  
demodulator, a bit-rate clock recovery and differential  
decoder with parallel-to-serial conversion.  
Improved noise behaviour  
Limiting amplifier for QPSK input  
Suitable with PAL B, G and I NICAM-728 systems.  
APPLICATIONS  
The Voltage Controlled Oscillator (VCO) used in the  
costas loop is achieved with a single-pin crystal oscillator.  
A second single-pin crystal oscillator with a divider chain  
provides signals at 5.824 MHz and at 728 kHz.  
The NIDEM is suitable for PAL B and G (carrier oscillator  
crystal at 11.7 MHz) and PAL I (carrier oscillator crystal at  
13.104 MHz).  
NICAM-728 systems.  
QUICK REFERENCE DATA  
Measured over full voltage and temperature ranges.  
SYMBOL  
VCCA  
PARAMETER  
analog supply voltage  
MIN.  
TYP.  
MAX.  
UNIT  
4.5  
4.5  
4.5  
5
5.5  
5.5  
5.5  
0.5  
V
VCCD  
digital supply voltage  
analog supply voltage  
5
V
VCCA  
5
V
VCCAVCCD differential supply voltage  
0.5  
V
ICCA  
ICCD  
V3  
analog supply current  
digital supply current  
QPSK input level (peak-to-peak value)  
input resistance  
12.5  
14.5  
100  
2.5  
2
mA  
mA  
mV  
kΩ  
pF  
30  
1.75  
300  
3.25  
RI  
CI  
input capacitance  
fCAROSC  
fXTAL  
carrier oscillator frequency  
crystal frequency  
11.5  
13.5  
MHz  
PAL B, G  
11.7  
MHz  
MHz  
MHz  
PAL I  
13.104  
11.648  
fCLKOSC  
fC5M  
clock oscillator frequency  
C5M output frequency  
5.824  
MHz  
ORDERING INFORMATION  
EXTENDED  
TYPE  
NUMBER  
PACKAGE  
PINS  
PIN POSITION  
MATERIAL  
CODE  
SOT146(1)  
TDA8732  
20  
DIL  
plastic  
Note  
1. SOT146-1; 1996 December 3.  
April 1993  
2
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
Fig.1 Block diagram.  
April 1993  
3
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
PINNING  
SYMBOL PIN  
DESCRIPTION  
CLKLPF  
VEEA  
1
2
3
4
5
6
7
8
9
transconductance output for bit-rate loop low-pass filter  
ground for analog circuitry  
QPSKIN  
VCCA  
QPSK modulated data input  
power supply for analog circuitry  
CFI  
baseband cosine channel input after filtering  
demodulated cosine channel output to low-pass filter  
demodulated sine channel output to low-pass filter  
baseband sine channel input after filtering  
transconductance output for carrier loop low-pass filter  
CFO  
SFO  
SFI  
CARLPF  
CAROSC 10  
crystal input for carrier oscillator (frequency is 11.7 MHz  
or 13.104 MHz)  
QMC  
11  
monostable components connection for quadrature data  
transition detector  
VCCD  
IMC  
12  
13  
power supply for digital circuitry  
monostable components connection for in-phase data  
transition detector  
VEED  
14  
15  
ground for digital circuitry  
DATA  
728 kbit/s demodulated and differentially decoded serial  
data output  
CLKIN  
CLK  
16  
17  
18  
bit-rate clock input at 728 kHz, phase-locked to the data  
output clock frequency at 728 kHz  
C5M  
reference frequency output at  
5.824 MHz (8 x CLK)  
TEST  
19  
20  
input for test purpose (grounded for normal operation)  
crystal input for clock oscillator (frequency is 11.648 MHz)  
Fig.2 Pin configuration.  
CLKOS  
April 1993  
4
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
FUNCTIONAL DESCRIPTION  
QPSK demodulator  
Clock oscillator and timing generator  
A voltage-controlled oscillator on-board the NIDEM  
operates at 11.648 MHz and is divided down to produce a  
728 kHz (bit-rate) clock output (CLK) which is phase  
locked to the pulse stream and may be used as an  
alternative clock input for NIDEM. A reference clock at  
5.824 MHz is provided at pin C5M (TTL levels).  
The DQPSK signal input to the demodulator (QPSKIN) is  
limited and fed into the costas loop demodulator. A  
single-pin carrier oscillator (CAROSC), at twice the carrier  
frequency, supplies a differential signal to the divider  
circuitry, which drives the demodulators with both 0° and  
90° phase shift. This produces cosine and sine signals  
which are required for the carrier recovery. Cosine  
(in-phase) and sine (in Quadrature) channel baseband  
filters are then provided externally between pins CFO and  
CFI, and SFO and SFI respectively. The two filtered  
baseband signals are then processed to provide an error  
signal, the magnitude and which of which bear a fixed  
relationship to the phase error of the carrier, regardless of  
which of the four rest-states the signal occupies. The  
carrier recovery loop is closed with the aid of a single pin  
loop filter connection at CARLPF, which filters the error  
voltage signal to control the 728 kHz as shown in  
application diagrams Fig.4 and 5.  
Differential decoder and parallel-to-serial converter  
The recovered symbol-rate clocking-signal (364 kHz)  
produced internally is passed to the demodulator where it  
samples the sliced raised cosine pulse stream. The  
recovered bit-rate clocking-signal is passed to the decoder  
and is used to differentially decode the demodulated data  
signal and reform it into a serial bit-stream.  
Bit-rate clock recovery loop  
The CFI and SFI channels are processed using edge  
detectors and monostables, with externally derived time  
constants (see Fig.3), to generate a signal with a coherent  
component at the data bit symbol rate. This signal is  
compared with the clock derived from CLKIN and used to  
produce an error signal at the transconductance output  
CLKLPF. This error signal is loop-filtered and used to  
control the clock generator (at CLKOSC if the on-board  
clock is used; see Fig.5).  
April 1993  
5
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
analog supply voltage  
MIN.  
0.3  
MAX.  
UNIT  
VCCA  
VCCD  
6
6
V
digital supply voltage  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0
V
QPSKIN  
CFI  
modulated data input voltage  
baseband cosine channel input voltage  
baseband sine channel input voltage  
demodulated cosine channel output voltage  
demodulated sine channel output voltage  
crystal input voltage for carrier oscillator  
crystal input voltage for clock oscillator  
monostable output voltage  
5.5  
VCCA  
VCCA  
5.5  
5.5  
5.5  
5.5  
VCCD  
5.5  
5.5  
5.5  
6
V
V
SFI  
V
CFO  
V
SFO  
V
CAROSC  
CLKOSC  
QMC,IMC  
DATA  
CLK  
V
V
V
data output voltage  
V
clock output voltage  
V
C5M  
reference frequency output voltage  
bit-rate clock input voltage  
V
CLKIN  
TEST  
CLKLPF  
CARLPF  
Tamb  
V
input voltage for test purpose  
bit-rate loop output voltage  
6
V
5.5  
5.5  
70  
V
carrier loop output voltage  
V
operating ambient temperature  
storage temperature  
°C  
°C  
°C  
Tstg  
40  
+125  
+125  
Tj  
maximum junction temperature  
THERMAL RESISTANCE  
SYMBOL  
PARAMETER  
THERMAL RESISTANCE  
80 K/W  
Rth j-a  
from junction to ambient in free air  
April 1993  
6
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
CHARACTERISTICS  
VCCA = 5 V ± 10%; VCCD = 5 V ± 10%; 0.5 V < VCCA VCCD < 0.5 V; Tamb = 0 to 70 °C; unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VCCA  
VCCD  
analog supply voltage  
digital supply voltage  
4.5  
4.5  
5
5
5.5  
V
5.5  
0.5  
17  
V
VCCAVCCD differential supply voltage  
0.5  
V
ICCA  
ICCD  
Ptot  
analog supply current  
digital supply current  
total power dissipation  
13  
mA  
mA  
mW  
13  
17  
130  
187  
Inputs  
CLKIN  
VIH  
VIL  
IIH  
HIGH level input voltage  
LOW level input voltage  
HIGH level input current  
LOW level input current  
2
VCCD  
0.8  
10  
V
V
VI = 5 V  
µA  
µA  
IIL  
VI = 0 V  
400  
QPSKIN  
fQPSKIN  
RI  
input frequency  
input resistance  
input capacitance  
5
7
MHz  
kΩ  
f = 6 MHz  
f = 6 MHz  
1.75  
2.5  
2
3.25  
CI  
pF  
SFI, CFI  
Ib  
input bias current  
VSFI = 4.3 V;  
VCFI = 4.3 V  
5
µA  
RI  
CI  
input resistance  
f = 364 kHz  
f = 364 kHz  
70  
100  
2
130  
kΩ  
input capacitance  
pF  
CAROSC  
fcar  
oscillator frequency  
11.5  
13.5  
MHz  
CARRIER OSCILLATOR CRYSTAL  
holder  
RW 43  
nominal frequency with specified  
load  
PAL I  
CL = 15 pF  
fPAL I  
13.104  
11.7  
MHz  
MHz  
fPAL B, G  
PAL B, G  
vibration mode  
circuit condition  
fundamental  
series resonance  
adjustment tolerance on frequency  
30  
+30  
106  
at 25 °C  
temperature  
0
70  
°C  
106  
frequency stability over  
temperature  
30  
+30  
CL  
load capacitance  
15  
pF  
April 1993  
7
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
SYMBOL  
Rs  
PARAMETER  
CONDITIONS  
note 1  
MIN.  
TYP.  
MAX.  
40  
UNIT  
resonance resistance  
motional capacitance  
parallel capacitance  
drive power level  
15  
Cm  
Cp  
21  
fF  
5
pF  
mW  
0.5  
CLKOSC  
fclk  
oscillator frequency  
Cl = 15 pF  
CL = 15 pF  
11.648  
RW 43  
MHz  
BIT-RATE OSCILLATOR CRYSTAL  
holder  
nominal frequency with specified  
load  
PAL I  
fPAL I  
11.648  
11.648  
MHz  
MHz  
fPAL B, G  
PAL B, G  
vibration mode  
circuit condition  
fundamental  
series resonance  
adjustment tolerance on frequency  
30  
+30  
106  
at 25 °C  
temperature  
0
70  
°C  
106  
frequency stability over  
temperature  
30  
+30  
CL  
Rs  
Cm  
Cp  
load capacitance  
resonance resistance  
motional capacitance  
parallel capacitance  
drive level  
15  
pF  
kΩ  
fF  
note 1  
15  
40  
21  
5
pF  
mW  
0.5  
Outputs  
CFO, SFO  
RO  
output impedance  
f = 364 kHz  
110  
1
200  
Vamp  
signal amplitude (peak-to-peak  
value)  
0.8  
V
CARLPF  
VOL  
LOW level output voltage  
HIGH level output voltage  
IOL = 100 µA  
IOH = 100 µA  
VO = 0.4 V to  
0.4  
V
VOH  
V
CCD1 V  
V
gm φ1  
phase comparator  
100  
125  
µA/rd  
transconductance gain  
VCCD 1 V  
ILO  
output leakage current for π/4  
phase shift  
5  
5
µA  
CLKLPF  
VOL  
LOW level output voltage  
IOL = 100 µA  
0.4  
V
April 1993  
8
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
SYMBOL  
VOH  
PARAMETER  
CONDITIONS  
IOH = 100 µA  
VO = 0.4 V to  
VCCD1 V  
MIN.  
TYP.  
MAX.  
UNIT  
HIGH level output voltage  
V
CCD1 V  
V
gm φ2  
phase comparator  
transconductance gain  
50  
65  
µA/rd  
ILO  
off-state output leakage current  
5  
5
µA  
IMC, QMC (TYPICAL RC NETWORK; R = 22 K; C = 150 PF)  
tREC  
ton  
monostable recovery time  
monostable time  
600  
ns  
1.37  
µs  
CLK, C5M  
VOL  
VOH  
tr  
LOW level output voltage  
HIGH level output voltage  
rise time  
IOL = 1 mA  
0.4  
VCCD  
V
IOH = 100 µA  
2.4  
V
CL = 15 pF; see Fig.3  
CL = 15 pF; see Fig.3  
20  
20  
5.824  
ns  
ns  
MHz  
tf  
fall time  
fC5M  
C5M reference frequency  
DATA  
VOL  
VOH  
tr  
LOW level output voltage  
HIGH level output voltage  
rise time  
IOL = 1 mA  
0.4  
VCCD  
V
IOH = 100 µA  
2.4  
V
CL = 15 pF; see Fig.3  
CL = 15 pF; see Fig.3  
30  
30  
ns  
ns  
tf  
fall time  
CLOCK TIMING  
td  
td  
CLK to C5M delay (pin 17 to 18)  
15  
ns  
ns  
CLKIN to DATA delay (pin 16 to 15) VCCD = 4.5 V  
520  
585  
Note  
1. Only the maximum value is relevant with a 15 resistor in series with the crystal (due to the application  
requirements).  
April 1993  
9
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
Fig.3 Data timing diagram.  
April 1993  
10  
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
April 1993  
11  
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
April 1993  
12  
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
PACKAGE OUTLINE  
DIP20: plastic dual in-line package; 20 leads (300 mil)  
SOT146-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
M
H
20  
11  
pin 1 index  
E
1
10  
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
(1)  
(1)  
Z
1
2
UNIT  
mm  
b
b
c
D
E
e
e
1
L
M
M
H
w
1
E
max.  
min.  
max.  
max.  
1.73  
1.30  
0.53  
0.38  
0.36  
0.23  
26.92  
26.54  
6.40  
6.22  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
2.0  
0.068  
0.051  
0.021  
0.015  
0.014  
0.009  
1.060  
1.045  
0.25  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.078  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-05-24  
SOT146-1  
SC603  
April 1993  
13  
Philips Semiconductors  
Product specification  
NICAM-728 demodulator (NIDEM)  
TDA8732  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
SOLDERING  
Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Repairing soldered joints  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
Soldering by dipping or by wave  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
April 1993  
14  

相关型号:

TDA8732N

IC SPECIALTY CONSUMER CIRCUIT, PDIP20, Consumer IC:Other
NXP

TDA8735

PLL frequency synthesizer
NXP

TDA8735T

PLL frequency synthesizer
NXP

TDA8735TD-T

PLL/Frequency Synthesis Circuit, BIPolar, PDSO16,
PHILIPS

TDA8735TD-T

IC PLL FREQUENCY SYNTHESIZER, 30 MHz, PDSO16, PLL or Frequency Synthesis Circuit
NXP

TDA8740

Satellite sound circuit with noise reduction
NXP

TDA8740H

Satellite sound circuit with noise reduction
NXP

TDA8740H-T

IC FM, AUDIO DEMODULATOR, PQFP44, Receiver IC
NXP

TDA8740NB

TV/Video Sound Circuit
ETC

TDA8741

Satellite sound circuit with noise reduction
NXP

TDA8741H

Satellite sound circuit with noise reduction
NXP

TDA8741H-T

IC FM, AUDIO DEMODULATOR, PQFP44, Receiver IC
NXP