TDA8754HL/21 [NXP]

IC 3-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, LOW PROFILE, PLASTIC, SOT-486-1, MS-026, QFP-144, Analog to Digital Converter;
TDA8754HL/21
型号: TDA8754HL/21
厂家: NXP    NXP
描述:

IC 3-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, LOW PROFILE, PLASTIC, SOT-486-1, MS-026, QFP-144, Analog to Digital Converter

转换器
文件: 总57页 (文件大小:264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8754  
Triple 8-bit video ADC up to 270 Msample/s  
Rev. 06 — 16 June 2005  
Product data sheet  
1. General description  
The TDA8754 is a complete triple 8-bit ADC with an integrated PLL running up to  
270 Msample/s and analog preprocessing functions (clamp and PGA) optimized for  
capturing RGB/YUV graphic signals.  
The PLL generates a pixel clock from inputs HSYNC and COAST.  
The TDA8754 offers full sync processing for sync-on-green applications. A clamp signal  
may be generated internally or provided externally.  
The clamp levels, gains and other settings are controlled via the I2C-bus interface.  
This IC supports display resolutions up to QXGA (2048 × 1536) at 85 Hz.  
2. Features  
3.3 V power supply  
Temperature range from 10°C to +70°C  
Triple 8-bit ADC:  
0.25 LSB Differential Non-Linearity (DNL)  
0.6 LSB Integral Non-Linearity (INL)  
Analog sampling rate from 12 Msample/s up to 270 Msample/s  
Maximum data rate:  
Single port mode: 140 MHz  
Dual port mode: 270 MHz  
3.3 V LV-TTL outputs  
PLL control via I2C-bus:  
390 ps PLL jitter peak to peak at 270 MHz  
Low PLL drift with temperature (2 phase steps maximum)  
PLL generates the ADC sampling clock which can be locked on the line frequency  
from 15 kHz to 150 kHz  
Integrated PLL divider  
Programmable phase clock adjustment cells  
Three clamp circuits for programming a clamp code from 24 to +136 by steps of  
1 LSB (mid-scale clamping for YUV signal)  
Internal generation of clamp signal  
Three independent blanking functions  
Input:  
700 MHz analog bandwidth  
Two independent analog inputs selectable via I2C-bus  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Analog input from 0.5 V to 1 V (p-p) to produce a full-scale ADC input of 1 V (p-p)  
Three controllable amplifiers: gain control via I2C-bus to produce full-scale  
peak-to-peak output with a half LSB resolution  
Synchronization:  
Frame and field detection for interlaced video signal  
Parasite synchronization pulse detection and suppression  
Sync processing for composite sync, 3-level sync and sync-on-green signals  
Polarity and activity detection  
IC control via I2C-bus serial interface  
Power-down mode  
LQFP144 and LBGA208 package:  
LBGA208 package pin-to-pin compatible with TDA8756  
3. Applications  
LCD panels drive  
RGB/YUV high-speed digitizing  
LCD projection system  
New TV concept  
4. Quick reference data  
Table 1:  
Quick reference data  
Symbol Parameter  
Conditions  
Min  
3.0  
3.0  
3.0  
10  
-
Typ  
3.3  
3.3  
3.3  
-
Max  
3.6  
3.6  
3.6  
270  
-
Unit  
V
VCCA  
VCCD  
VCCO  
fPLL  
analog supply voltage  
digital supply voltage  
output supply voltage  
output clock frequency  
effective number of bits  
V
V
MHz  
bits  
ENOB  
fclk = 270 MHz;  
fi = 10 MHz  
7.6  
INL  
DNL  
Ptot  
integral non-linearity  
differential non-linearity  
total power dissipation  
fclk = 270 MHz;  
fi = 10 MHz  
-
-
-
±0.6  
±1.3  
bits  
bits  
W
fclk = 270 MHz;  
fi = 10 MHz  
±0.25 ±0.6  
1.0 1.3  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
2 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
5. Ordering information  
Table 2:  
Ordering information  
Type number  
Package  
Name  
Sampling  
frequency  
Description  
Version  
TDA8754HL/11  
TDA8754HL/14  
TDA8754HL/17  
TDA8754HL/21  
TDA8754HL/27  
TDA8754EL/11  
TDA8754EL/14  
TDA8754EL/17  
TDA8754EL/21  
TDA8754EL/27  
LQFP144  
plastic low profile quad flat package;  
144 leads; body 20 × 20 × 1.4 mm  
SOT486-1 110 MHz  
140 MHz  
170 MHz  
210 MHz  
270 MHz  
LBGA208[1] plastic low profile ball grid array package; 208 balls; body  
SOT774-1 110 MHz  
140 MHz  
17 × 17 × 1.05 mm  
170 MHz  
210 MHz  
270 MHz  
[1] Values are not yet guaranteed.  
6. Block diagram  
3×  
RGB  
output A  
LV-TTL  
BUFFERS  
3×  
3×  
RGB1  
input  
CLAMP  
AGC  
DMX  
ADC  
RGB2  
input  
RGB  
output B  
LV-TTL  
BUFFERS  
ACTIVITY  
DETECTION  
HPDO  
TDA8754  
SOGIN1  
SOGIN2  
CKDATA  
SYNC  
SEPARATOR  
HSYNC1  
CLKDMX  
HCOUNTER  
DEO  
CHSYNC1  
HSYNC2  
CHSYNC2  
COAST  
POWER  
MANAGEMENT  
PLL  
VSYNC1  
VSYNC2  
2
I C-BUS  
SLAVE  
mgu895  
VSYNCO  
HSYNCO  
CKEXT CKREFO SDA SCL A0  
FIELDO  
Fig 1. Block diagram  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
3 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
7. Pinning information  
7.1 Pinning  
1
108  
TDA8754HL  
36  
73  
001aac980  
Fig 2. Pin configuration LQFP144 package  
ball A1  
index area  
2
4
6
8
10 12 14 16  
11 13 15  
1
3
5
7
9
A
B
C
D
E
F
G
H
J
TDA8754EL  
K
L
M
N
P
R
T
001aac981  
Transparent top view  
Fig 3. Pin configuration LBGA208 package  
7.2 Pin description  
Table 3:  
Pin description for LQFP144 package  
Symbol  
Pin  
1
Description  
GNDD(TTL)  
VCCD(TTL)  
HSYNC2  
CHSYNC2  
VCCA(PLL)  
HSYNC1  
CHSYNC1  
TTL input digital ground  
TTL input digital supply voltage  
2
3
horizontal synchronization pulse input 2  
composite horizontal synchronization pulse input 2  
PLL analog supply voltage  
4
5
6
horizontal synchronization pulse input 1  
composite horizontal synchronization pulse input 1  
7
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
4 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 3:  
Symbol  
Pin description for LQFP144 package …continued  
Pin  
8
Description  
GNDA(PLL)  
PLL analog ground  
PLL filter input  
CZ  
9
GNDA(CPO)  
CP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CPO analog ground  
PLL filter input  
PMO  
phase measurement output (test)  
SUB analog ground  
GNDA(SUB)  
CAPSOGIN1  
CAPSOGO  
CAPSOGIN2  
GNDA(SOG)  
SOGIN1  
VCCA(SOG)  
SOGIN2  
VCCA(R)  
decoupling SOG input 1  
decoupling SOG output  
decoupling SOG input 2  
SOG analog ground  
sync-on-green input 1  
SOG analog supply voltage  
sync-on-green input 2  
red channel analog supply voltage  
red channel analog input 1  
red channel 1 analog ground  
red channel analog input 2  
red channel 2 analog ground  
main regulator decoupling input  
red channel ladder decoupling input  
red channel clamp capacitor input  
green channel analog supply voltage  
green channel analog input 1  
green channel 1 analog ground  
green channel analog input 2  
green channel 2 analog ground  
green channel ladder decoupling input  
green channel clamp capacitor input  
blue channel analog supply voltage  
blue channel analog input 1  
blue channel 1 analog ground  
blue channel analog input 2  
blue channel 2 analog ground  
blue channel ladder decoupling input  
blue channel clamp capacitor input  
AGC output  
RIN1  
GNDA(R1)  
RIN2  
GNDA(R2)  
DEC  
RBOT  
RCLPC  
VCCA(G)  
GIN1  
GNDA(G1)  
GIN2  
GNDA(G2)  
GBOT  
GCLPC  
VCCA(B)  
BIN1  
GNDA(B1)  
BIN2  
GNDA(B2)  
BBOT  
BCLPC  
AGCO  
GNDD(ADC)  
VCCD(ADC)  
GNDD(SUB)  
PWD  
ADC digital ground  
ADC digital supply voltage  
SUB digital ground  
power-down control input  
TEST  
test input; must be connected to ground  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
5 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 3:  
Symbol  
BB0  
Pin description for LQFP144 package …continued  
Description  
Pin  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
blue channel ADC output B bit 0  
blue channel ADC output B bit 1  
blue channel ADC output B bit 2  
blue channel ADC output B bit 3  
blue channel ADC output B bit 4  
blue channel ADC output B bit 5  
blue channel ADC output B bit 6  
blue channel ADC output B bit 7  
blue channel B output supply voltage  
blue channel B output ground  
BB1  
BB2  
BB3  
BB4  
BB5  
BB6  
BB7  
VCCO(BB)  
GNDO(BB)  
BOR  
blue channel ADC output bit out of range  
blue channel ADC output A bit 0  
blue channel ADC output A bit 1  
blue channel ADC output A bit 2  
blue channel ADC output A bit 3  
blue channel ADC output A bit 4  
blue channel ADC output A bit 5  
blue channel ADC output A bit 6  
blue channel ADC output A bit 7  
blue channel A output supply voltage  
blue channel A output ground  
BA0  
BA1  
BA2  
BA3  
BA4  
BA5  
BA6  
BA7  
VCCO(BA)  
GNDO(BA)  
GB0  
green channel ADC output B bit 0  
green channel ADC output B bit 1  
green channel ADC output B bit 2  
green channel ADC output B bit 3  
green channel ADC output B bit 4  
green channel ADC output B bit 5  
green channel ADC output B bit 6  
green channel ADC output B bit 7  
green channel B output supply voltage  
green channel B output ground  
green channel ADC output bit out of range  
green channel ADC output A bit 0  
green channel ADC output A bit 1  
green channel ADC output A bit 2  
green channel ADC output A bit 3  
green channel ADC output A bit 4  
green channel ADC output A bit 5  
green channel ADC output A bit 6  
green channel ADC output A bit 7  
green channel A output supply voltage  
GB1  
GB2  
GB3  
GB4  
GB5  
GB6  
GB7  
VCCO(GB)  
GNDO(GB)  
GOR  
GA0  
GA1  
GA2  
GA3  
GA4  
GA5  
GA6  
GA7  
VCCO(GA)  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
6 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 3:  
Symbol  
GNDO(GA)  
RB0  
Pin description for LQFP144 package …continued  
Pin  
90  
Description  
green channel A output ground  
red channel ADC output B bit 0  
red channel ADC output B bit 1  
red channel ADC output B bit 2  
red channel ADC output B bit 3  
red channel ADC output B bit 4  
red channel ADC output B bit 5  
red channel ADC output B bit 6  
red channel ADC output B bit 7  
red channel B output supply voltage  
red channel B output ground  
red channel ADC output bit out of range  
red channel ADC output A bit 0  
red channel ADC output A bit 1  
red channel ADC output A bit 2  
red channel ADC output A bit 3  
red channel ADC output A bit 4  
red channel ADC output A bit 5  
red channel ADC output A bit 6  
red channel ADC output A bit 7  
red channel A output supply voltage  
red channel A output ground  
clock output digital supply voltage  
data clock output  
91  
RB1  
92  
RB2  
93  
RB3  
94  
RB4  
95  
RB5  
96  
RB6  
97  
RB7  
98  
VCCO(RB)  
GNDO(RB)  
ROR  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
VCCO(RA)  
GNDO(RA)  
VCCO(CLK)  
CKDATA  
GNDO(CLK)  
GNDD(I2C)  
VCCD(I2C)  
A0  
clock output digital ground  
I2C-bus lines digital ground  
I2C-bus lines digital supply voltage  
I2C-bus address control input  
I2C-bus serial data input and output  
I2C-bus serial clock input  
SDA  
SCL  
DIS  
I2C-bus disable control input  
TDO  
scan test output  
TCK  
scan test mode input; must be connected to ground  
clamp pulse input  
CLP  
STBDVI  
GNDD(MCF)  
VCCD(MCF)  
HSYNCO  
DEO  
DVI standby output  
MCF digital ground  
MCF digital supply voltage  
horizontal synchronization pulse output  
data enable output  
HPDO  
GNDO(TTL)  
hot plug detector output  
TTL output digital ground  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
7 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 3:  
Symbol  
VCCO(TTL)  
VSYNCO  
FIELDO  
CLPO  
Pin description for LQFP144 package …continued  
Description  
Pin  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
TTL output digital supply voltage  
vertical synchronization pulse output  
field information output  
clamp output  
CKREFO  
CSYNCO  
ACRX2  
reference output clock; re-synchronized horizontal negative pulse  
composite synchronization output  
test pin; should be connected to ground  
test pin; should be connected to ground  
SLC digital ground  
ACRX1  
GNDD(SLC)  
VCCD(SLC)  
CKEXT  
SLC output digital supply voltage  
external clock input  
COAST  
PLL coast control input  
VSYNC2  
VSYNC1  
vertical synchronization pulse input 2  
vertical synchronization pulse input 1  
Table 4:  
Symbol  
SOGIN1  
GNDA(PLL)  
SOGIN2  
GNDA(PLL)  
HSYNC2  
CHSYNC2  
COAST  
CSYNCO  
FIELDO  
HSYNCO  
SCL  
Pin description for LBGA208 package  
Ball  
A1  
Description  
sync-on-green input 1  
A2  
PLL analog ground  
A3  
sync-on-green input 2  
A4  
PLL analog ground  
A5  
horizontal synchronization pulse input 2  
composite horizontal synchronization pulse input 2  
PLL coast control input  
A6  
A7  
A8  
composite synchronization output  
field information output  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
horizontal synchronization pulse output  
I2C-bus serial clock input  
not connected  
n.c.  
n.c.  
not connected  
DIS  
I2C-bus disable control input  
I2C-bus address control input  
data clock output  
A0  
CKDATA  
GNDA(PLL)  
PMO  
PLL analog ground  
B2  
phase measurement output (test)  
PLL analog ground  
GNDA(PLL)  
GNDA(PLL)  
VCCA(PLL)  
CLP  
B3  
B4  
PLL analog ground  
B5  
PLL analog supply voltage  
clamp pulse input  
B6  
CKEXT  
CKREFO  
B7  
external clock input  
B8  
reference output clock; re-synchronized horizontal negative pulse  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
8 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 4:  
Symbol  
VSYNCO  
DEO  
Pin description for LBGA208 package …continued  
Ball  
B9  
Description  
vertical synchronization pulse output  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
data enable output  
SDA  
I2C-bus serial data input and output  
not connected  
n.c.  
n.c.  
not connected  
n.c.  
not connected  
GNDO(CLK)  
VCCO(CLK)  
RIN1  
clock output digital ground  
clock output digital supply voltage  
red channel analog input 1  
analog ground  
GNDA  
CAPSOGIN1  
CAPSOGIN2  
CAPSOGO  
HSYNC1  
VSYNC1  
CLPO  
C2  
C3  
decoupling SOG input 1  
decoupling SOG input 2  
decoupling SOG output  
horizontal synchronization pulse input 1  
vertical synchronization pulse input 1  
clamp output  
C4  
C5  
C6  
C7  
C8  
n.c.  
C9  
not connected  
n.c.  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
not connected  
TCK  
scan test mode input  
TDO  
scan test output  
VCCD(I2C)  
n.c.  
I2C-bus lines digital supply voltage  
not connected  
n.c.  
not connected  
n.c.  
not connected  
GNDA  
GNDA  
CZ  
analog ground  
D2  
analog ground  
D3  
PLL filter input  
CP  
D4  
PLL filter input  
GNDA(CPO)  
CHSYNC1  
VSYNC2  
HPDO  
n.c.  
D5  
CPO analog ground  
D6  
composite horizontal synchronization pulse input 1  
vertical synchronization pulse input 2  
hot plug detector output  
not connected  
D7  
D8  
D9  
n.c.  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
not connected  
VCCO(TTL)  
GNDO(TTL)  
GNDD(I2C)  
n.c.  
TTL output digital supply voltage  
TTL output digital ground  
I2C-bus lines digital ground  
not connected  
n.c.  
not connected  
n.c.  
not connected  
RIN2  
red channel analog input 2  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
9 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 4:  
Symbol  
GNDA  
Pin description for LBGA208 package …continued  
Ball  
E2  
Description  
analog ground  
analog ground  
analog ground  
GNDA  
E3  
GNDA  
E4  
GNDD(TTL)  
E7  
TTL input digital ground  
TTL input digital supply voltage  
SLC digital ground  
SLC output digital supply voltage  
not connected  
VCCD(TTL)  
GNDD(SLC)  
VCCD(SLC)  
n.c.  
E8  
E9  
E10  
E13  
E14  
E15  
E16  
F1  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
GNDA  
GNDA  
RBOT  
GNDA  
n.c.  
analog ground  
F2  
analog ground  
F3  
red channel ladder decoupling input  
analog ground  
F4  
F13  
F14  
F15  
F16  
G1  
not connected  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
GIN1  
GNDA  
DEC  
VCCA  
VCCA  
n.c.  
green channel analog input 1  
analog ground  
G2  
G3  
main regulator decoupling input  
analog supply voltage  
analog supply voltage  
not connected  
G4  
G5  
G12  
G13  
G14  
G15  
G16  
H1  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
GNDA  
GNDA  
GNDA  
RCLPC  
VCCA  
n.c.  
analog ground  
H2  
analog ground  
H3  
analog ground  
H4  
red channel clamp capacitor input  
analog supply voltage  
not connected  
H5  
H12  
H13  
H14  
H15  
H16  
J1  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
GIN2  
GNDA  
green channel analog input 2  
analog ground  
J2  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
10 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 4:  
Symbol  
GBOT  
GNDA  
GCLPC  
n.c.  
Pin description for LBGA208 package …continued  
Ball  
J3  
Description  
green channel ladder decoupling input  
analog ground  
J4  
J5  
green channel clamp capacitor input  
not connected  
J12  
J13  
J14  
J15  
J16  
K1  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
GNDA  
GNDA  
GNDA  
BCLPC  
VCCA  
n.c.  
analog ground  
K2  
analog ground  
K3  
analog ground  
K4  
blue channel clamp capacitor input  
analog supply voltage  
not connected  
K5  
K12  
K13  
K14  
K15  
K16  
L1  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
BIN1  
GNDA  
BBOT  
VCCA  
n.c.  
blue channel analog input 1  
analog ground  
L2  
L3  
blue channel ladder decoupling input  
analog supply voltage  
not connected  
L4  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
M7  
M8  
M9  
M10  
M13  
M14  
M15  
M16  
N1  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
GNDA  
GNDA  
AGCO  
TEST  
VCCO  
VCCO  
GNDO  
GNDO  
n.c.  
analog ground  
analog ground  
AGC output  
test input  
data output digital supply voltage  
data output digital supply voltage  
data output digital ground  
data output digital ground  
not connected  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
BIN2  
GNDA  
blue channel analog input 2  
analog ground  
N2  
GNDD(ADC)  
N3  
ADC digital ground  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
11 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 4:  
Symbol  
Pin description for LBGA208 package …continued  
Ball  
N4  
Description  
GNDD(ADC)  
ADC digital ground  
BA2  
N5  
blue channel ADC output A bit 2  
data output digital supply voltage  
green channel ADC output B bit 4  
green channel ADC output B bit 0  
green channel ADC output A bit 4  
green channel ADC output A bit 0  
data output digital ground  
VCCO  
GB4  
GB0  
GA4  
GA0  
GNDO  
PWD  
n.c.  
N6  
N7  
N8  
N9  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
power-down control input  
not connected  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
VCCD(ADC)  
VCCD(ADC)  
BB1  
ADC digital supply voltage  
P2  
ADC digital supply voltage  
P3  
blue channel ADC output B bit 1  
blue channel ADC output A bit 6  
blue channel ADC output A bit 3  
blue channel ADC output bit out of range  
green channel ADC output B bit 5  
green channel ADC output B bit 1  
green channel ADC output A bit 5  
green channel ADC output A bit 1  
red channel ADC output B bit 6  
red channel ADC output B bit 3  
red channel ADC output B bit 0  
red channel ADC output A bit 5  
red channel ADC output A bit 2  
red channel ADC output bit out of range  
blue channel ADC output B bit 6  
blue channel ADC output B bit 4  
blue channel ADC output B bit 2  
blue channel ADC output A bit 7  
blue channel ADC output A bit 4  
blue channel ADC output A bit 0  
green channel ADC output B bit 6  
green channel ADC output B bit 2  
green channel ADC output A bit 6  
green channel ADC output A bit 2  
red channel ADC output B bit 7  
red channel ADC output B bit 4  
BA6  
P4  
BA3  
P5  
BOR  
GB5  
GB1  
GA5  
GA1  
RB6  
RB3  
RB0  
RA5  
RA2  
ROR  
BB6  
P6  
P7  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
BB4  
R2  
BB2  
R3  
BA7  
R4  
BA4  
R5  
BA0  
R6  
GB6  
GB2  
GA6  
GA2  
RB7  
RB4  
R7  
R8  
R9  
R10  
R11  
R12  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
12 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 4:  
Symbol  
RB1  
RA6  
RA3  
RA0  
BB7  
Pin description for LBGA208 package …continued  
Ball  
R13  
R14  
R15  
R16  
T1  
Description  
red channel ADC output B bit 1  
red channel ADC output A bit 6  
red channel ADC output A bit 3  
red channel ADC output A bit 0  
blue channel ADC output B bit 7  
blue channel ADC output B bit 5  
blue channel ADC output B bit 3  
blue channel ADC output B bit 0  
blue channel ADC output A bit 5  
blue channel ADC output A bit 1  
green channel ADC output B bit 7  
green channel ADC output B bit 3  
green channel ADC output A bit 7  
green channel ADC output A bit 3  
green channel ADC output bit out of range  
red channel ADC output B bit 5  
red channel ADC output B bit 2  
red channel ADC output A bit 7  
red channel ADC output A bit 4  
red channel ADC output A bit 1  
BB5  
T2  
BB3  
T3  
BB0  
T4  
BA5  
T5  
BA1  
T6  
GB7  
GB3  
GA7  
GA3  
GOR  
RB5  
RB2  
RA7  
RA4  
RA1  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
8. Functional description  
8.1 Functional description  
This triple high-speed 8-bit ADC is designed to convert RGB/YUV signals coming from an  
analog source into digital data used by a LCD driver (pixel clock up to 270 MHz with  
analog source) or projections systems.  
8.1.1 Power management  
It is possible to put the TDA8754 in Standby mode by setting bit STBY = 1 or to put the  
whole device in Power-down mode by setting pin PWD to HIGH level.  
8.1.1.1 Standby mode  
In Standby mode, the status of the blocks is as follows:  
Activity detection, I2C-bus slave, sync separator and SOG are still active  
Pixel counter, ADCs, demultiplexers, AGC and clamp cells are inactive  
Output buffers to the RGB block (RGB 0 to 7, CKDATA, DEO, HSYNCO and  
VSYNCO) are in high-impedance state  
Output HPDO is still active  
Output buffers (ROR, BOR, GOR, CKREFO, CSYNCO, CLPO and FIELDO) are in a  
LOW-level state.  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
13 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
8.1.1.2 Power-down mode  
In Power-down mode the status of the blocks is as follows:  
All digital inputs and outputs are in high-impedance state  
All blocks are inactive (I2C-bus, activity detection, ADCs, etc.)  
Analog output is left uncontrolled  
I2C-bus is left in high-impedance state.  
8.2 Analog video input  
The RGB/YUV video inputs are externally AC coupled and are internally DC polarized.  
The synchronization signals are also used by the device as input for the internal PLL and  
the automatic clamp.  
8.2.1 Analog multiplexers  
The TDA8754 has two analog inputs (RGB input 1 and RGB input 2) selectable via the  
I2C-bus.  
The sync management can be achieved in several ways:  
Choice between two analog inputs HSYNC and two analog inputs VSYNC  
Choice between two analog inputs CHSYNC  
Choice between two analog inputs SOG.  
8.2.2 Activity detection  
When a signal is connected or disconnected on pins HSYNC1(2), CHSYNC1(2),  
VSYNC1(2) and SOG1(2), then bit HPDO is set to logic 1 and pin HPDO is set to HIGH to  
advise the user of a change. Bit HPDO is set to logic 0 and pin HPDO is set to LOW when  
register ACTIVITY2 has been read.  
When the synchronization pulse on pin SOG is 3-level, the system will automatically be  
able to detect that a 3-level sync is present and will force bit 3LEVEL to logic 1. It is  
possible to disable this function with bit FTRILEVEL.  
When an interlaced signal is detected, bit ACFIELD is set to logic 1. When the signal  
detected is progressive, this bit is set to logic 0. Any change in this bit results into setting  
bit HPDO = 1 and pin HPDO = HIGH.  
A field detection unit is available on pin FIELDO which output is given by the sync  
separator. The field identity is given by pin FIELDO. This pin gives the field of interlaced  
signal input.  
An automatic polarity detection is also available on pins HSYNC1(2), VSYNC1(2) and  
CHSYNC1(2). The output on pin HPDO is not affected by the change of polarity of these  
inputs.  
8.2.3 ADC  
The three ADCs are designed to convert R, G and B (or Y, U and V) signals at a  
maximum frequency of 270 Msample/s. The ADC input range is 1 V (p-p) full-scale and  
the pipeline delay is 2 ADC clock cycles from the input sampling to the data output.  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
14 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
The reference ladders regulators are integrated.  
8.2.4 Clamp  
Three independent parallel clamping circuits are used to clamp the video input signals on  
programmable black levels. The clamp levels may be set from 24 to +136 LSBs in steps  
of 1 LSB. They are controlled by three 9-bit I2C-bus registers (OFFSETR, OFFSETG and  
OFFSETB).  
The clamp pulse can be generated internally (based on the PLL clock reference) or can  
be externally applied on pin CLP.  
By setting correctly the I2C-bus bits, it is possible to inhibit the clamp request with the  
Vsync signal. This inhibition will be effected by forcing logic 0 on the clamp request output.  
It should be noted that the clamp period can start on the falling edge of the clamp request  
and that the high level of the clamp request sets the ADC outputs in the blanking mode.  
This means that by forcing the clamp signal request to logic 0 by using Vsync, a falling  
edge may happen on the clamp request if this signal was at logic 1 before enforcing the  
inhibition. To avoid this, the user has to guarantee that the Vsync signal used for the clamp  
inhibition will not be set during a high level of the clamp request signal.  
Remark: If signal Vsync is coming from the external pin VSYNC, this signal may be used  
to coast the PLL. In order to properly do the coast, the edge of signal Vsync (COAST)  
must not appear at the same time as the edge of signal Hsync. This condition is similar to  
the pin CLP inhibition condition.  
8.2.5 AGC  
Three independent variable gain amplifiers are used to provide, for each channel, a  
full-scale input signal to the 8-bit ADC. The gain adjustment range is designed in such a  
way that for an input range varying from 0.5 to 1 V (p-p), the output signal corresponds to  
the ADC full-scale input of 1 V (p-p).  
8.3 HSOSEL, DEO and SCHCKREFO  
Bit HSOSEL allows to have a full correlation phase behavior between outputs CKDATA  
and HSYNCO when bit HSOSEL = 0 (Hsync from counter). If HSOSEL = 0 and bits PA4  
to PA0 of register PHASE are changed to chose the best sampling time, the phase  
relationship between outputs CKDATA and HSYNCO will stay unchanged. After the video  
standard is determined, bit HSOSEL must be set to a logic 0 for normal operation mode.  
To use the Hsync from the counter the registers HSYNCL, HBACKL, HDISPLMSB and  
HDISPLLSB should be set properly in order to create the correct HSYNCO and DEO  
output signals (see Figure 5 and Figure 6), which is depending on video standard. Output  
signal DEO should be used to determine the first active pixel.  
The demultiplexed mode should be used (bit DMX = 1) and the output flow is alternated  
between port A and port B in case the sampling frequency is over 140 Msample/s (clock  
frequency). It is necessary, in order to warrant that the outputs HSYNCO and DEO are  
always changing on CKDATA output rising edge (see Figure 7), that the values HSYNCL,  
HBACKL and HDISPL (see Figure 5) are even value. If an odd value is entered the  
outputs HSYNCO and DEO can change state during falling edge, which is not compliant  
with the th(o) and td(o) specified output timing.  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
15 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Bit SCHCKREFO is used if in demultiplexed mode one pixel shift is needed in the DEO  
signal (to move the screen one vertical line). By setting bit SCHCKREFO from a logic 0 to  
a logic 1 a left move is obtained, also the timing relationship between HSYNCO, DEO and  
CKDATA stays unchanged. An even number of pixel moves is done by changing the value  
of HBACKL and HSYNCL. The correct combination of bits HBACKL, HSYNCL and  
SCHCKREFO places the first active pixel at the beginning of the screen with always the  
correct phase relationship between outputs DEO, HSYNCO and CKDATA.  
Bit HSOSEL should be set to a logic 0 only after the PLL is stable, so only after the video  
standard has been found and correct PLL parameters have been set in the TDA8754. Bit  
HSOSEL should be set to a logic 1 to have a stable HSYNCO signal during the video  
recognition. The video standard can be recognized by using the signals FIELDO,  
VSYNCO and HSYNCO. The phase relation between CKDATA and HSYNCO (or DEO) is  
undefined if bit HSOSEL = 1.  
8.4 PLL  
The ADCs are clocked by either the internal PLL locked to the reference clock (Hsync  
from input or Hsync from sync separator) or to an external clock connected to pin CKEXT.  
This selection is performed via the I2C-bus by setting bit CKEXT. To use the external  
clock, bit CKEXT must be reset to logic 1.  
The PLL phase frequency detector can be disconnected during the frame flyback (vertical  
blanking) or the unavailability of the Ckref signal by using the coast function. The coast  
signal can be derived from the VSYNC1(2) input, from the Vsync extracted by the sync  
separator or from the coast input. The coast function can be disabled with bit COE.  
The coast signal may be active either HIGH or LOW by setting bit COS.  
It is possible to control the phase of the ADC clock via the I2C-bus with the included digital  
phase-shift controller. The phase register (5 bits) enables to shift the phase by steps of  
11.25 deg.  
The PLL also provides a CKDATA clock. This clock is synchronized with the data outputs  
whatever the output mode is.  
It is possible to delay the CKDATA clock with a constant delay (t = 2 ns compared to the  
outputs) by setting bit CKDD = 1. Moreover, it is possible to invert this output by setting  
bit CKDATINV = 1.  
When the PLL reference signal comes from the separator, the PLL rising edge must be  
preferably used in order to not use the PLL coast mode. It should be noted that the  
HSYNCO output of the sync separator is always a mostly low signal, whatever is the  
polarity of the composite sync input. The VSYNCO output signal of the sync separator is  
also mostly low signal. It is at a high state during the vertical blanking.  
8.5 Sync-on-green  
When the SOG input is selected (bit SOGSEL = 1), the SOG charge pump current bits  
SOGI[1:0] should be programmed in function of the input signal; see Table 5.  
A hum remover is implemented in the SOG. It removes completely the hum perturbation  
on the first or second edge of the horizontal sync pulse for digital video input like VESA,  
and on the second edge only for analog video input signal like TV or HDTV.  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
16 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
The maximum hum perturbation is 250 mV (p-p) at 60 Hz to have a correct SOG  
functionality.  
Table 5:  
Charge pump current programming; see note 1  
BITS SOGI[1:0]  
Maximum value  
Tvideo/ Tline  
83.5 %  
Standard  
Tsync/ Tline  
00  
14.8 %  
TV standards and non-VESA  
standards  
01  
10  
86.0 %  
90.5 %  
12.6 %  
8.6 %  
all TV, HDTV and VESA standards  
HDTV standards or non-VESA  
standards  
11  
test mode  
[1] Definitions:  
Tvideo = total time in 2 frames when video signal is strictly superior to black level.  
Tline = total time of 2 frames.  
Tsync = total time in 2 frames when the video signal is strictly inferior to black level.  
8.6 Programmable coast  
When the values of PRECOAST[2:0] = 0 and POSTCOAST[4:0] = 0, the coast pulse  
equals the Vsync input.  
When an interlaced signal is used, the regenerated coast pulse width may vary from one  
frame to another of one Hsync pulse. In that case, the programmed value of  
PRECOAST[2:0] needs to be increased by one compared to the expected minimum  
number of Hsync coast pulses before the vertical sync signal.  
8.7 Data enable  
This signal qualifies the active data period on the horizontal line. Pin DEO = HIGH during  
the active display time and LOW during the blank time. The start of this signal can be  
adjusted with bits HSYNCL[9:0] and HBACKL[9:0]. The length of this signal can be  
adjusted with bits HDISPL[11:0].  
8.8 Sync separator  
The sync separator is compatible with TV, HDTV and VESA standards.  
If the green video signal has composite sync on it (sync-on-green), the SOG function  
allows to separate the Chsync and the active video part. The Chsync signal coming from  
this SOG function is accessible through pin CSYNCO.  
It is possible to extract the Hsync and the Vsync signals by using the sync separator from  
this (C)Hsync signal coming from SOG or coming from the (C)Hsync input.  
This function is able to get rid of the additional synchronization pulses in vertical blanking  
like equalization or serration pulses.  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
17 of 57  
TDA8754  
Philips Semiconductors  
8.9 3-level  
Triple 8-bit video ADC up to 270 Msps  
When the synchronization pulse of the input of the SOG is 3-level, the system will be able  
to detect that a 3-level sync is present and will advise the customer if a change is  
observed by setting bit HPDO = 1 and pin HPDO = HIGH. It is possible to disable this  
function with bit FTRILEVEL. When this automatic function is disabled, the manual mode  
will only influence the separator circuitry.  
9. I2C-bus register description  
9.1 I2C-bus formats  
9.1.1 Write 1 register  
Each register is programmed independently by giving its subaddress and its data content.  
Table 6:  
SDA line Description  
I2C-bus sequence for writing 1 register  
S
master starts with a start condition  
Byte 1  
master transmits device address (7 bits) plus write command bit (R/W = 0)  
slave generates an acknowledge  
A
Byte 2  
master transmits programming mode and register subaddress to write to  
slave generates an acknowledge  
A
Byte 3  
master transmits data 1  
A
P
slave generates an acknowledge  
master generates a stop condition  
Table 7:  
Bits  
Byte format for writing 1 register  
7
6
5
4
3
2
1
0
R/W  
-
Byte 1  
device address  
A6  
1
A5  
0
A4  
0
A3  
1
A2  
1
A1  
0
A0  
X
0
Byte 2  
Byte 3  
programming mode  
register subaddress  
-
-
MODE  
SA4  
-
SA3  
SA2  
-
SA1  
SA0  
-
X
X
0
-
-
data 1  
D4  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
18 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 8:  
Bit  
Write format bit description  
Symbol  
Description  
Byte 1  
7 to 1  
A[6:0]  
R/W  
Device address; the TDA8754 address is 1001 10X; bit A0 relates  
with the voltage level on pin A0  
0
Write command bit; if R/W = 0, then write action  
Byte 2  
7 to 6  
5
-
not used  
MODE  
Mode selection bit; if MODE = 0, then each register can be written  
independently  
4 to 0  
SA[4:0]  
D[7:0]  
Register subaddress; subaddress of the selected register (from  
0 0000 to 1 1111)  
Byte 3  
7 to 0  
Data 1; this value is written in the selected register  
9.1.2 Write all registers  
All registers are programmed one after the other, by giving this initial condition  
(XX11 1111) as the subaddress state; thus, the registers are charged following the  
predefined sequence of 32 bytes (from subaddress 0 0000 to 1 1111).  
Table 9:  
SDA line Description  
I2C-bus sequence for writing all registers  
S
master starts with a start condition  
Byte 1  
master transmits device address (7 bits) plus write command bit (R/W = 0)  
slave generates an acknowledge  
A
Byte 2  
master transmits programming mode and register subaddress to write to  
slave generates an acknowledge  
A
Byte 3  
master transmits data 1  
A
slave generates an acknowledge  
:
:
Byte 34  
master transmits data 32  
A
P
slave generates an acknowledge  
master generates a stop condition  
Table 10: Byte format for writing all registers  
Bits  
7
6
5
4
3
2
1
0
R/W  
-
Byte 1  
device address  
A6  
1
A5  
0
A4  
0
A3  
1
A2  
1
A1  
0
A0  
X
0
Byte 2  
programming mode  
register subaddress  
-
-
MODE  
SA4  
1
SA3  
SA2  
1
SA1  
SA0  
1
X
X
0
1
1
Byte (2 + n)  
data n  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
19 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 11: Write format bit description  
Bit  
Symbol  
Description  
Byte 1  
7 to 1  
A[6:0]  
R/W  
Device address; the TDA8754 address is 1001 10X; bit A0 relates  
with the voltage level on pin A0  
0
Write command bit; if R/W = 0, then write action  
Byte 2  
7 to 6  
5
-
not used  
MODE  
Mode selection bit; if MODE = 1, then all registers can be written one  
after the other  
4 to 0  
SA[4:0]  
Register subaddress; initial condition is XX11 to 1111  
Data n; this value is written in register 00h + n  
Byte (2 + n)  
7 to 0  
D[7:0]  
9.1.2.1 Read register  
Table 12: I2C-bus sequence for reading one register  
SDA line Description  
S
master starts with a start condition  
Byte 1  
master transmits device address (7 bits) plus write command bit (R/W = 0)  
slave generates an acknowledge  
A
Byte 2  
master transmits programming mode and register subaddress to read from  
slave generates an acknowledge  
A
Byte 3  
master transmits read register subaddress  
A
slave generates an acknowledge  
Byte 4  
master transmits device address (7 bits) plus read command bit (R/W = 1)  
slave generates an acknowledge  
A
Byte 5  
slave transmits data to master  
A
P
master generates an not-acknowledge after reading the data byte  
master generates a stop condition  
Table 13: Byte format for reading register  
Bits  
7
6
5
4
3
2
1
0
R/W  
-
Byte 1  
device address  
A6  
1
A5  
0
A4  
0
A3  
1
A2  
1
A1  
0
A0  
X
0
Byte 2  
Byte 3  
programming mode  
register subaddress  
-
-
MODE  
SA4  
1
SA3  
SA2  
1
SA1  
SA0  
1
X
X
0
1
1
read subaddress  
-
-
-
-
-
-
RA1  
-
RA0  
-
0
0
0
0
0
0
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
20 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 13: Byte format for reading register …continued  
Bits  
7
6
5
4
3
2
1
0
R/W  
-
Byte 4  
device address  
A6  
1
A5  
0
A4  
0
A3  
A2  
1
A1  
0
A0  
X
1
1
Byte 5  
data 1  
D4  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
Table 14: Read format bit description  
Bit  
Symbol Description  
Byte 1  
7 to 1  
A[6:0]  
R/W  
Device address; the TDA8754 address is 1001 10X; bit A0 relates to the  
voltage level on pin A0  
0
Write command bit; if R/W = 0, then write action  
Byte 2  
7 to 6  
5
-
not used  
MODE  
Mode selection bit; if MODE = 0, then each register can be written  
independently  
4 to 0  
Byte 3  
7 to 0  
Byte 4  
7 to 1  
SA[4:0]  
RA[1:0]  
Register subaddress; subaddress of the read register (1 1111)  
Read address; this is the value of the read register to be selected  
A[6:0]  
R/W  
Device address; the TDA8754 address is 1001 10X. Bit A0 relates with the  
voltage level on pin A0  
0
Read command bit; if R/W = 1, then read action  
Byte 5  
7 to 0  
D[7:0]  
Data 1; the value from read register is sent from the slave to the master  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
21 of 57  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
9.2 I2C-bus registers overview  
Table 15: I2C-bus analog write registers  
Addr Name  
Bit  
Reset value  
MSB  
7
LSB  
0
6
5
4
3
2
1
00h OFFSETR  
01h COARSER  
02h FINER  
OR7  
OR8  
-
OR6  
CR6  
-
OR5  
CR5  
-
OR4  
CR4  
-
OR3  
CR3  
-
OR2  
CR2  
FR2  
OG2  
CG2  
FG2  
OB2  
CB2  
FB2  
OR1  
CR1  
FR1  
OG1  
CG1  
FG1  
OB1  
CB1  
FB1  
OR0  
CR0  
FR0  
OG0  
CG0  
FG0  
OB0  
CB0  
FB0  
0000 0000  
0100 0110  
XXXX X000  
0000 0000  
0100 0110  
XXXX X000  
0000 0000  
0100 0110  
XXXX X000  
0000 0001  
0101 1100  
0000 0101  
0000 0110  
03h OFFSETG  
04h COARSEG  
05h FINEG  
OG7  
OG8  
-
OG6  
CG6  
-
OG5  
CG5  
-
OG4  
CG4  
-
OG3  
CG3  
-
06h OFFSETB  
07h COARSEB  
08h FINEB  
OB7  
OB8  
-
OB6  
CB6  
-
OB5  
CB5  
-
OB4  
CB4  
-
OB3  
CB3  
-
09h SOG  
DO  
IP1  
PA4  
UP  
FTRILEVEL  
Z2  
STRILEVEL  
Z1  
CKREFS  
Z0  
SOGSEL  
DR2  
SOGI1  
DR1  
SOGI0  
DR0  
0Ah PLLCTRL  
0Bh PHASE  
0Ch DIVMSB  
IP0  
PA3  
SCH  
PA2  
PA1  
PA0  
VCO2  
DI10  
VCO1  
DI9  
VCO0  
DI8  
CKEXT  
EPSI1  
EPSI0  
DI11  
CKREFO  
0Dh DIVLSB  
0Eh HSYNCL  
0Fh HBACKL  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
1001 1000  
0010 0100  
0000 1111  
1000 0101  
0000 0000  
0000 0000  
HSYNCL9  
HSYNCL1  
HSYNCL8  
HSYNCL0  
HBACKL2  
HDISPL6  
HSYNCL7  
HBACKL9  
HBACKL1  
HDISPL5  
HSYNCL6  
HBACKL8  
HBACKL0  
HDISPL4  
HSYNCL5  
HBACKL7  
HDISPL11  
HDISPL3  
HSYNCL4  
HBACKL6  
HDISPL10  
HDISPL2  
HSYNCL3  
HBACKL5  
HDISPL9  
HDISPL1  
HSYNCL2  
HBACKL4  
HDISPL8  
HDISPL0  
10h HDISPLMSB HBACKL3  
11h HDISPLLSB  
12h COAST  
HDISPL7  
PRE  
PRE  
PRE  
POST  
POST  
POST  
POST  
POST  
COAST2  
COAST1  
COAST0  
COAST4  
COAST3  
COAST2  
COAST1  
COAST0  
13h HSYNCSEL  
14h VSYNCSEL  
15h CLAMP  
-
-
-
-
-
-
-
TESTCNT  
COE  
BYSEPA  
VSS  
HSSEL  
COSSEL2  
ICLP  
HSS  
XXX X0100  
XXX0 0000  
X010 0000  
-
-
TSTCOAST  
CLPSEL1  
COSSEL1  
CLPT  
HSOSEL  
COS  
CLPSEL2  
CLPS  
CLPH  
CLPENL  
16h INVERTER  
CKREFO INV DEO  
INVRGB  
HSO  
INVRGB  
VSO INVRGB FIELDO INV X000 0000  
17h OUTPUT  
RGBSEL  
-
TEN  
-
AGCSEL1  
-
AGCSEL0  
BOENRGB  
BLKEN  
DMXRGB  
OROEN  
ODDARGB  
SHIFTRGB  
0000 0000  
18h OUTPUTEN1  
AOENRGB  
TOUTERGB TOUTSRGB XXX1 1100  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 15: I2C-bus analog write registers …continued  
Addr Name  
Bit  
Reset value  
MSB  
7
LSB  
0
6
5
4
3
2
1
19h OUTPUTEN2 CKROEN  
CSOEN  
DEOEN RGB HSOEN RGB HPDOEN  
VSOEN RGB CLPOEN  
CKSEL RGB DLYCLK RGB CKDAT INV OUT OSCILL CKOEN RGB XXX0 0001  
FIELDOEN  
1111 1111  
1Ah CLKOUTPUT  
1Bh INTOSC  
-
-
-
-
-
-
-
-
-
SWITCH  
OSC  
INTOSC OFF XXXX XX00  
1Ch reserved  
1Dh reserved  
1Eh PWRMGT  
1Fh READADDR  
-
-
-
-
-
-
-
-
SHCKDMX  
-
SHCKADC  
-
STBY  
DVIRGB  
ADDR0  
XXXX 0000  
XXXX XX00  
ADDR1  
Table 16: I2C-bus analog read registers; see note 1  
Addr  
Name  
Bit  
Reset value  
MSB  
7
LSB  
0
6
5
4
3
VER3  
2
1
VER1  
ADDR[0:0] VERSION  
ADDR[0:1] SIGN  
-
-
-
-
-
-
VER2  
VER0  
XXXX 0000  
XX00 0000  
0000 0000  
X000 0000  
POLVS2  
ACSOG2  
3LEVEL  
POLVS1  
ACSOG1  
ACFIELD  
POLCHS2  
ACCHS2  
HPDO  
POLCHS1  
ACCHS1  
ACVSSEP  
POLHS2  
ACHS2  
ACRXC1  
POLHS1  
ACHS1  
ACRXC0  
ADDR[1:0] ACTIVITY1  
ADDR[1:1] ACTIVITY2  
ACVS2  
-
ACVS1  
ASD  
[1] The read register address is specified with bits ADDR1 and ADDR0 of register READADDR.  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
9.3 Offset registers (R, G and B)  
The offset registers contain a 9-bit value which controls the clamp level for the RGB  
channels. The 8 LSBs are in the offset registers and the 1 MSB is in the coarse gain  
control register. The relationship between the programming code and the level of the  
clamp code is given in Table 19. The reset value is: clamp code = 0 and ADC output = 0.  
Table 17: Offset registers (00h, 03h, 06h) bit allocation  
Register  
7
6
5
4
3
2
1
0
OFFSETR (00h)  
OFFSETG (03h)  
OFFSETB (06h)  
Reset  
OR7  
OG7  
OB7  
0
OR6  
OG6  
OB6  
0
OR5  
OG5  
OB5  
0
OR4  
OG4  
OB4  
0
OR3  
OG3  
OB3  
0
OR2  
OG2  
OB2  
0
OR1  
OG1  
OB1  
0
OR0  
OG0  
OB0  
0
Table 18: Offset registers (00h, 03h, 06h) bit description  
Bit Symbol Description  
OFFSETR (address: 00h)  
7 to 0 OR[7:0]  
offset R channel; LSB in this register and MSB bit OR8 in register  
COARSER  
OFFSETG (address: 03h)  
7 to 0 OG[7:0]  
offset G channel; LSB in this register and MSB bit OG8 in register  
COARSEG  
OFFSETB (address: 06h)  
7 to 0 OB[7:0]  
offset B channel; LSB in this register and MSB bit OB8 in register  
COARSEB  
Table 19: Coding for clamp level and ADC output  
Value OR8 OR7 OR6 OR5 OR5 OR3 OR2 OR1 OR0 Clamp  
ADC output  
code  
(decimal)  
(code transition)  
OG8 OG7 OG6 OG5 OG4 OG3 OG2 OG1 OG0  
OB8 OB7 OB6 OB5 OB4 OB3 OB2 OB1 OB0  
1E9h  
1EAh  
:
1
1
1
1
1
1
1
1
0
0
1
1
0
0
0
0
0
1
24  
23  
:
24/23  
23/22  
:
1FFh  
000h  
001h  
:
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1  
0
1/0  
0/1  
+1  
:
1/2  
:
03Fh  
040h  
:
0
0
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
63  
64  
:
63/64  
64/65  
:
078h  
079h  
:
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
120  
121  
:
120/121  
121/122  
:
080h  
0
1
0
0
0
0
0
0
0
128  
128/129  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
24 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 19: Coding for clamp level and ADC output …continued  
Value OR8 OR7 OR6 OR5 OR5 OR3 OR2 OR1 OR0 Clamp  
ADC output  
code  
(decimal)  
(code transition)  
OG8 OG7 OG6 OG5 OG4 OG3 OG2 OG1 OG0  
OB8 OB7 OB6 OB5 OB4 OB3 OB2 OB1 OB0  
:
:
:
086h  
087h  
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
1
134  
135  
134/135  
135/136  
9.4 Coarse registers (R, G and B)  
The coarse gain of the AGC is controlled with 7 bits. The code gain can vary from  
32 to 95; see Table 22.  
Table 20: Coarse gain registers (01h, 04h, 07h) bit allocation with reset  
Register  
7
6
5
4
3
2
1
0
COARSER (01h)  
COARSEG (04h)  
COARSEB (07h)  
Reset  
OR8  
OG8  
OB8  
0
CR6  
CG6  
CB6  
1
CR5  
CG5  
CB5  
0
CR4  
CG4  
CB4  
0
CR3  
CG3  
CB3  
0
CR2  
CG2  
CB2  
1
CR1  
CG1  
CB1  
1
CR0  
CG0  
CB0  
0
Table 21: Coarse gain registers (01h, 04h, 07h) bit description  
Bit  
Symbol  
Description  
COARSER (address: 01h)  
7
OR8  
offset R channel; MSB bit of offset value  
coarse gain of the AGC for R channel  
6 to 0  
CR[6:0]  
COARSEG (address: 04h)  
7
OG8  
offset G channel; MSB bit of offset value  
coarse gain of the AGC for G channel  
6 to 0  
CG[6:0]  
COARSEB (address: 07h)  
7
OB8  
offset B channel; MSB bit of offset value  
coarse gain of the AGC for B channel  
6 to 0  
CB[6:0]  
Table 22: Coarse register  
Value  
CR6 CR5 CR4 CR3 CR2 CR1 CR0 Vi (full-scale)  
CG6 CG5 CG4 CG3 CG2 CG1 CG0  
Gain ADC  
CB6 CB5 CB4 CB3 CB2 CB1 CB0  
32  
33  
:
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1.000  
0.992  
:
1.000  
1.008  
:
63  
64  
65  
:
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
0.753  
0.746  
0.738  
:
1.328  
1.340  
1.355  
:
69  
1
0
0
0
1
0
1
0.706  
1.416  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
25 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 22: Coarse register …continued  
Value  
CR6 CR5 CR4 CR3 CR2 CR1 CR0 Vi (full-scale)  
Gain ADC  
CG6 CG5 CG4 CG3 CG2 CG1 CG0  
CB6 CB5 CB4 CB3 CB2 CB1 CB0  
70  
:
1
0
0
0
1
1
0
0.698  
:
1.432  
:
95  
1
0
1
1
1
1
1
0.500  
2.000  
9.5 Fine registers (R, G and B)  
Fine gain control is done with 3 bits allowing 8 intermediate values between two values of  
consecutive coarse gain.  
Table 23: Fine gain registers (02h, 05h, 08h) bit allocation with reset  
Register  
7
-
6
-
5
-
4
-
3
-
2
1
0
FINER (02h)  
FINEG (05h)  
FINEB (08h)  
Reset  
FR2  
FG2  
FB2  
0
FR1  
FG1  
FB1  
0
FR0  
FG0  
FB0  
0
-
-
-
-
-
-
-
-
-
-
X
X
X
X
X
Table 24: Fine gain registers (02h, 05h, 08h) bit description  
Bit  
Symbol  
Description  
FINER (address: 02h)  
7 to 3  
2 to 0  
-
not used  
FR[2:0]  
fine gain of the AGC for R channel  
FINEG (address: 05h)  
7 to 3  
2 to 0  
-
not used  
FG[2:0]  
fine gain of the AGC for G channel  
FINEB (address: 08h)  
7 to 3  
2 to 0  
-
not used  
FB[2:0]  
fine gain of the AGC for B channel  
Table 25: Fine gain control bits (example for coarse register value 32)  
Value  
FR2  
FR1  
FR0  
Fine steps of  
gain ADC  
FG2  
FG1  
FG0  
FB2  
0
FB1  
0
FB0  
0
0
1
2
3
4
5
6
7
1.000  
1.001  
1.002  
1.003  
1.004  
1.005  
1.006  
1.007  
0
0
1
0
1
0
0
1
1
0
0
0
0
0
1
0
1
0
1
1
1
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
26 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
9.6 Sync-on-green register  
Table 26: SOG - sync-on-green register (address 09h) bit allocation  
Bit  
7
DO  
0
6
UP  
0
5
4
3
2
1
SOGI1  
0
0
SOGI0  
1
Symbol  
Reset  
Access  
FTRILEVEL STRILEVEL  
CKREFS  
SOGSEL  
0
0
0
0
W
W
W
W
W
W
W
W
Table 27: SOG - sync-on-green register (address 09h) bit description  
Bit  
Symbol  
Description  
7
DO  
test bit for forcing charge pump current down  
0 = reset value  
1 = forcing down  
6
UP  
test bit for forcing charge pump current up  
0 = reset value  
1 = forcing up  
5
FTRILEVEL  
STRILEVEL  
CKREFS  
SOGSEL  
SOGI[1:0]  
defines the 3-level function mode  
0 = automatic 3-level  
1 = level selection with bit STRILEVEL  
forces the state of 3-level function  
0 = not 3-level mode  
4
1 = 3-level mode  
3
enables the PLL Ckref signal to be selected  
0 = same as input  
1 = input inverted  
2
enables the reference PLL between HSYNC input and SOG input to be selected  
0 = HSYNC input  
1 = SOG input  
1 to 0  
defines the SOG charge pump current; values are given in % of sync pulse/line length  
00 = 14.8 % maximum (TV standards) and non-VESA standards  
01 = 12.6 % maximum (all standards)  
10 = 8.6 % maximum (HDTV standards) and non-VESA standards  
11 = 0 test mode  
9.7 PLL control register  
Table 28: PLLCTRL- PLL control register (address 0Ah) bit allocation  
Bit  
7
IP1  
0
6
IP0  
1
5
Z2  
0
4
Z1  
1
3
Z0  
1
2
DR2  
1
1
DR1  
0
0
DR0  
0
Symbol  
Reset  
Access  
W
W
W
W
W
W
W
W
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
27 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 29: PLLCTRL - PLL control register (address 0Ah) bit description  
Bit  
Symbol  
Description  
7 to 6  
IP[1:0]  
charge pump current value to increase the bandwidth of the PLL  
00 = 800 µA  
01 = 1200 µA  
10 = 1600 µA  
11 = 2000 µA  
5 to 3  
Z[2:0]  
internal resistance value for the VCO filter to be selected  
000 = not used  
001 = 1.56 kΩ  
010 = 1.25 kΩ  
011 = 1.00 kΩ  
100 = 0.80 kΩ  
101 = 0.64 kΩ  
110 = 0.51 kΩ  
111 = 0.41 kΩ  
3 to 0  
DR[2:0]  
PLL temperature phase drift to be compensated. The optimized value of this register is 001. These  
bits add a delay on the clock reference input of the PLL as a function of the temperature of the die.  
000 = +1.75 step phase  
001 = 0.3 step phase  
010 = 4.3 step phase  
011 = 6.2 step phase  
100 = 2.2 step phase  
9.8 Phase register  
Table 30: PHASE - phase register (address 0Bh) bit allocation  
Bit  
7
PA4  
0
6
PA3  
0
5
PA2  
0
4
PA1  
0
3
PA0  
0
2
VCO2  
1
1
VCO1  
0
0
VCO0  
1
Symbol  
Reset  
Access  
W
W
W
W
W
W
W
W
Table 31: PHASE - phase register (address 0Bh) bit description  
Bit  
Symbol  
Description  
7 to 4  
3 to 0  
PA[4:0]  
phase shift value for the clock pixel; see Table 32  
VCO[2:0] VCO gain control; see Table 33  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
28 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 32: Phase registers bits  
PA4  
PA3  
PA2  
PA1  
PA0  
Phase shift (deg)  
0
0
:
0
0
:
0
0
:
0
0
:
0
1
:
0
11.25  
:
1
1
1
1
1
1
1
1
0
1
337.50  
348.75  
Table 33: VCO gain control  
VCO2  
VCO1  
VCO0  
VCO gain  
(MHz/V)  
Pixel clock frequency  
(MHz)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
13  
12 to 22  
22 to 45  
45 to 62  
62 to 85  
85 to 120  
120 to 176  
176 to 270  
-
30  
60  
60  
105  
105  
135  
no oscillation  
9.9 PLL divider registers  
Table 34: DIVMSB - PLL divider ratio (MSB) register (address 0Ch) bit allocation  
Bit  
7
CKEXT  
0
6
5
EPSI1  
0
4
EPSI0  
0
3
DI11  
0
2
DI10  
1
1
DI9  
1
0
DI8  
0
Symbol  
Reset  
Access  
SCH CKREFO  
0
W
W
W
W
W
W
W
W
Table 35: DIVMSB - PLL divider ratio (MSB) register (address 0Ch) bit description  
Bit  
Symbol  
Description  
7
CKEXT  
external clock selection  
0 = internal PLL  
1 = external clock  
6
SCH  
shift of pixel counter reference (Ckref) with one clock pixel period  
CKREFO  
0 = not active  
1 = active  
5 to 4  
3 to 0  
EPSI[1:0] enables the resynchronization edge of CKREFO to be selected; they are test bits  
00 = reset value for proper operation  
DI[11:8]  
PLL divider ratio; these are the 4 MSBs of the 12-bit value; see Table 38  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
29 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 36: DIVLSB - PLL divider ratio (LSB) register (address 0Dh) bit allocation  
Bit  
7
DI7  
1
6
DI6  
0
5
DI5  
0
4
DI4  
1
3
DI3  
1
2
DI2  
0
1
DI1  
0
0
D0  
0
Symbol  
Reset  
Access  
W
W
W
W
W
W
W
W
Table 37: DIVLSB - PLL divider ratio (LSB) register (address 0Dh) bit description  
Bit  
Symbol Description  
DI[7:0] PLL divider ratio; these are the 8 LSBs of the 12-bit value; see Table 38  
7 to 0  
Table 38: PLL divider ratio  
DI11  
VDI10  
VDI9  
VDI8  
VDI7  
VDI6  
VDI5  
VDI4  
DI3 DI2 DI1 DI0 PLL divider ratio  
0
:
0
:
0
:
0
:
0
:
1
:
1
:
0
:
0
:
1
:
0
:
0
:
100  
1
1
1
1
1
1
1
1
1
1
1
1
4095  
9.10 Horizontal sync registers  
Remark: The sum of HSYNCL[9:0] + HBACKL[9:0] + HDISPL[9:0] + 16 needs to be  
smaller than the PLL divider.  
Table 39: HSYNCL, HBACKL and HDISPL (address 0Eh, 0Fh, 10h, 11h) bit allocation  
7
6
5
4
3
2
1
0
Register address 0Eh  
HSYNCL9  
0
HSYNCL8  
0
HSYNCL7  
1
HSYNCL6  
0
HSYNCL5  
0
HSYNCL4  
1
HSYNCL3  
0
HSYNCL2  
0
Register address 0Fh  
HSYNCL1  
0
HSYNCL0  
0
HBACKL9  
0
HBACKL8  
0
HBACKL7  
1
HBACKL6  
1
HBACKL5  
1
HBACKL4  
1
Register address 10h  
HBACKL3  
1
HBACKL2  
0
HBACKL1  
0
HBACKL0  
0
HDISPL11  
0
HDISPL10  
1
HDISPL9  
0
HDISPL8  
1
Register address 11h  
HDISPL7  
0
HDISPL6  
0
HDISPL5  
0
HDISPL4  
0
HDISPL3  
0
HDISPL2  
0
HDISPL1  
0
HDISPL0  
0
Table 40: Sync registers (0Eh to 11h) bit description  
Bit Symbol Description  
9 to 0 HSYNCL[9:0] length of the Hsync signal; in number of pixel clock cycles; minimum value is 16  
9 to 0 HBACKL[9:0] interval between the Hsync active edge and the first active pixel; in number of pixels; minimum  
value is 16  
11 to 0 HDISPL[11:0] number of active pixels for one line; length of the data enable signal; minimum value is 16  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
30 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
9.11 Coast register  
Remark: When POSTCOAST[4:0] = PRECOAST[2:0] = 0, then the coast pulse equals  
the VSYNC input.  
Table 41: COAST - coast register (address 12h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
PRE  
PRE  
PRE  
POST  
POST  
POST  
POST  
POST  
COAST2  
COAST1  
COAST0  
COAST4  
COAST3  
COAST2  
COAST1  
COAST0  
Reset  
0
0
0
0
0
0
0
0
Access  
W
W
W
W
W
W
W
W
Table 42: COAST - coast register (address 12h) bit description  
Bit Symbol Description  
7 to 5 PRECOAST[2:0] programs the length (in numbers of pixel clocks) of the coast pulse before the edge of the  
vertical sync signal  
4 to 0 POSTCOAST[4:0] programs the length (in numbers of pixel clocks) of the coast pulse after the edge of the vertical  
sync signal  
9.12 Horizontal sync selection register  
Table 43: HSYNCSEL - horizontal sync selection register (address 13h) bit allocation  
Bit  
7
-
6
-
5
-
4
-
3
2
1
HSSEL  
0
0
HSS  
0
Symbol  
Reset  
Access  
TESTCNT  
BYSEPA  
X
W
X
W
X
W
X
W
0
1
W
W
W
W
Table 44: HSYNCSEL - horizontal sync selection register (address 13h) bit description  
Bit  
7 to 4  
3
Symbol  
-
Description  
not used  
TESTCNT  
this bit is used to test the pixel counter  
0 = normal mode  
1 = test mode  
2
1
0
BYSEPA  
HSSEL  
HSS  
enables the sync separator for the PLL reference to be bypassed  
0 = Hsync from the separator  
1 = bypass of the sync separator  
enables either the HSYNC or CHSYNC input signal to be selected  
0 = HSYNC input  
1 = CHSYNC input  
enables either the HSYNC or CHSYNC input signal to be inverted  
0 = non-inverted  
1 = inverted  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
31 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
9.13 Vertical sync selection register  
Table 45: VSYNCSEL - vertical sync selection register (address 14h) bit allocation  
Bit  
7
-
6
-
5
-
4
3
COE  
0
2
VSS  
0
1
0
Symbol  
Reset  
Access  
TSTCOAST  
COSSEL2 COSSEL1  
X
W
X
W
X
W
0
0
0
W
W
W
W
W
Table 46: VSYNCSEL - vertical sync selection register (address 14h) bit description  
Bit  
7 to 5  
4
Symbol  
Description  
-
not used  
TSTCOAST  
switches a multiplexer to select the output signal on pin VSYNCO  
0 = output of the separator function  
1 = output of the coast function  
enables coast mode  
3
2
1
0
COE  
0 = coast mode  
1 = no coast mode  
VSS  
enables VSYNC input signal to be inverted  
0 = non-inverted  
1 = inverted  
COSSEL2  
COSSEL1  
selects signal for coast PLL mode  
0 = signal selected with bit COSSEL1  
1 = pin coast  
can be used for the coast PLL mode; see bit COSSEL2  
0 = VSYNC input  
1 = VSYNC from the sync separator  
9.14 Clamp register  
Table 47: CLAMP - clamp register (address 15h) bit allocation  
Bit  
7
-
6
5
4
3
CLPH  
0
2
1
ICLP  
0
0
CLPT  
0
Symbol  
Reset  
Access  
HSOSEL  
CLPSEL2  
CLPSEL1  
CLPENL  
X
W
0
1
0
0
W
W
W
W
W
W
W
Table 48: CLAMP - clamp register (address 15h) bit description  
Bit  
7
Symbol  
-
Description  
not used  
6
HSOSEL  
defines the signal on the output HSYNCO; see Section 8.3  
0 = Hsync from the Hcounter  
1 = Ckref is reference of the PLL  
5
CLPSEL2  
can be used to select the clamp signal  
0 = Hsync signal generated by the pixel counter  
1 = signal selected with bit CLPSEL1  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
32 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 48: CLAMP - clamp register (address 15h) bit description …continued  
Bit  
Symbol  
Description  
4
CLPSEL1  
can be used to select the clamp signal; see bit CLPSEL2  
0 = PLL reference signal  
1 = clamp input  
3
2
CLPH  
inhibits the clamp signal during the Vsynco or coast signal; see bit TSTCOAST (Table 46)  
0 = clamp inhibited during Vsynco  
1 = clamp active during Vsynco  
CLPENL  
defines if clamp input works on edge or on level  
0 = on edge; for all frequencies (must be preferably chosen)  
1 = on level; only for frequencies below 45 MHz to have proper clamp function  
dedicated for test mode; should be forced to logic 0  
defines if the test mode of the clamp is active  
0 = not active  
1
0
ICLP  
CLPT  
1 = active  
9.15 Inverter register  
Table 49: INVERTER - inverter register (address 16h) bit allocation  
Bit  
7
-
6
COS  
0
5
CLPS  
0
4
3
2
1
0
Symbol  
Reset  
Access  
CKREFOINV DEOINVRGB HSOINVRGB VSOINVRGB FIELDOINV  
X
W
0
0
0
0
0
W
W
W
W
W
W
W
Table 50: INVERTER - inverter register (address 16h) bit description  
Bit  
7
Symbol  
Description  
-
not used  
6
COS  
enables the COAST input signal to be inverted  
0 = non-inverted  
1 = inverted  
5
4
3
2
CLPS  
enables the CLAMP input signal to be inverted  
0 = non-inverted  
1 = inverted  
CKREFOINV  
DEOINVRGB  
HSOINVRGB  
enables the output CKREFO to be inverted  
0 = non-inverted  
1 = inverted  
enables the output DEO to be inverted  
0 = non-inverted  
1 = inverted  
enables the output HSYNCO to be inverted  
0 = non-inverted  
1 = inverted  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
33 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 50: INVERTER - inverter register (address 16h) bit description …continued  
Bit  
Symbol  
Description  
1
VSOINVRGB  
enables the output VSYNCO to be inverted  
0 = non-inverted  
1 = inverted  
0
FIELDOINV  
enables the output FIELDO to be inverted  
0 = non-inverted  
1 = inverted  
9.16 Output register  
Table 51: OUTPUT - output register (address 17h) bit allocation  
Bit  
7
6
TEN  
0
5
4
3
BLKEN  
0
2
1
0
Symbol  
Reset  
Access  
RGBSEL  
AGCSEL1  
AGCSEL0  
DMXRGB ODDARGB SHIFTRGB  
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Table 52: OUTPUT- output register (address 17h) bit description  
Bit  
Symbol  
Description  
7
RGBSEL  
defines which RGB input will be used  
0 = input 1  
1 = input 2  
6
TEN  
enables the track and hold operating mode to be selected  
0 = mode enable; must be set to logic 0 for proper operation  
1 = mode disable  
define the output on pin AGCO  
00 = RAGC  
5 to 4  
AGCSEL[1:0]  
01 = GAGC  
10 = BAGC  
11 = not used  
3
2
BLKEN  
inhibits the blanking mode during clamp  
0 = blanking active; during the blanking period, the RGB outputs of the ADC are fixed at  
the values of registers OFFSETR, OFFSETG and OFFSETB if these values are greater  
or equal to 0, or forced to 0 if these values are negative.  
1 = blanking not active  
DMXRGB  
determines whether all pixels go to port A or if pixels go alternately to port A and B. The  
maximum data rate for single port mode is 140 MHz and it is 270 MHz in dual port mode.  
0 = port A  
1 = port A and B  
1
ODDARGB  
SHIFTRGB  
defines the parity of the pixels  
0 = even pixel on port A  
1 = odd pixel on port A  
defines output on port A and B  
0 = synchronous  
0
1 = interleaved  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
34 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
9.17 Output enable register 1  
Table 53: OUTPUTEN1 - output enable 1 register (address 18h) bit allocation  
Bit  
7
-
6
-
5
-
4
3
2
1
0
Symbol  
Reset  
Access  
BOENRGB AOENRGB  
OROEN  
TOUTERGB TOUTSRGB  
X
W
X
W
X
W
1
1
1
0
0
W
W
W
W
W
Table 54: OUTPUTEN1 - output enable 1 register (address 18h) bit description  
Bit  
7 to 5  
4
Symbol  
Description  
-
not used  
BOENRGB  
enables output port B to be set to high-impedance  
0 = active signal  
1 = high-impedance  
3
2
1
0
AOENRGB  
OROEN  
enables output port A to be set to high-impedance  
0 = active signal  
1 = high-impedance  
enables outputs Out Of Range to be set to high-impedance  
0 = active signal  
1 = high-impedance  
TOUTERGB  
TOUTSRGB  
defines if the test mode of the output buffer is active or not  
0 = mode normal  
1 = mode test  
defines the state of the output in test mode  
0 = forces output to LOW  
1 = forces output to HIGH  
9.18 Output enable register 2  
Table 55: OUTPUTEN2 - output enable 2 register (address 19h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
CKROEN  
CSOEN DEOENRGB HSOENRGB HPDOEN VSOENRGB CLPOEN FIELDOEN  
1
1
1
1
1
1
1
1
W
W
W
W
W
W
W
W
Table 56: OUTPUTEN2 - output enable 2 register (address 19h) bit description  
Bit  
Symbol  
Description  
7
CKROEN  
enables the output CKREFO to be set to high-impedance  
0 = active signal  
1 = high-impedance  
6
CSOEN  
enables the output CSYNCO to be set to high-impedance  
0 = active signal  
1 = high-impedance  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
35 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 56: OUTPUTEN2 - output enable 2 register (address 19h) bit description …continued  
Bit  
Symbol  
Description  
5
DEOENRGB  
enables the output DEO to be set to high-impedance  
0 = active signal  
1 = high-impedance  
4
3
2
1
0
HSOENRGB  
HPDOEN  
enables the output HSYNCO to be set to high-impedance  
0 = active signal  
1 = high-impedance  
enables the output HPDO to be set to high-impedance  
0 = active signal  
1 = high-impedance  
VSOENRGB  
CLPOEN  
enables the output VSYNCO to be set to high-impedance  
0 = active signal  
1 = high-impedance  
enables the output CLPO to be set to high-impedance  
0 = active signal  
1 = high-impedance  
FIELDOEN  
enables the output FIELDO to be set to high-impedance  
0 = active signal  
1 = high-impedance  
9.19 Clock output register  
Table 57: CLKOUTPUT - clock output register (address 1Ah) bit allocation  
Bit  
7
-
6
-
5
-
4
3
2
1
0
Symbol  
Reset  
Access  
CKSELRGB DLYCLKRGB CKDATINV OUTOSCILL CKOENRGB  
X
E
X
W
X
W
0
0
0
0
1
W
W
W
W
W
Table 58: CLKOUTPUT - clock output register (address 1Ah) bit description  
Bit  
7 to 5  
4
Symbol  
Description  
-
not used  
CKSELRGB  
enables the selection of the signal on the pin CKDATA  
0 = clock of output buffers; signal Ckdata  
1 = pixel clock of the converter; signal Ckadco  
enables a delay of 2 ns to be added to the clock Ckdata  
0 = no delay  
3
2
DLYCLKRGB  
CKDATINV  
1 = 2 ns delay  
enables the polarity of the output CKDATA to be inverted  
0 = non-inverted  
1 = inverted  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
36 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 58: CLKOUTPUT - clock output register (address 1Ah) bit description …continued  
Bit  
Symbol  
Description  
1
OUTOSCILL  
enables pin CKDATA to be switched with a multiplexer to have signal Ckdata or the internal  
oscillator on the output  
0 = Ckdata  
1 = for test  
0
CKOENRGB  
enables the output CKDATA to be set to high-impedance  
0 = active signal  
1 = high-impedance  
9.20 Internal oscillator register  
Table 59: INTOSC - internal oscillator register (address 1Bh) bit allocation  
Bit  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
Symbol  
Reset  
Access  
SWITCHOSC INTOSCOFF  
X
W
X
W
X
W
X
W
X
W
X
W
0
0
W
W
Table 60: INTOSC - internal oscillator register (address 1Bh) bit description  
Bit  
7 to 2  
1
Symbol  
Description  
-
not used  
SWITCHOSC  
enables a multiplexer to be switched; signal insertion on the input of the separator and  
coast block, between the internal oscillator and pin CKEXT  
0 = normal case; if this bit is switched from logic 1 to logic 0, then an internal reset of the  
coast, activity detection and sync separator is done  
1 = test mode  
0
INTOSCOFF  
disables the internal oscillator for the separator function, the coast gate and activity  
detection  
0 = active; if this bit is switched from logic 1 to logic 0, then an internal reset of the coast,  
activity detection and sync separator is done  
1 = disabled  
9.21 Power management register  
Table 61: PWRMGT - power management register (address 1Eh) bit allocation  
Bit  
7
-
6
-
5
-
4
-
3
2
1
STBY  
0
0
Symbol  
Reset  
Access  
SHCKDMX SHCKADC  
DVIRGB  
X
W
X
W
X
W
X
W
0
0
0
W
W
W
W
Table 62: PWRMGT - power management register (address 1Eh) bit description  
Bit  
7 to 4  
3
Symbol  
-
Description  
not used  
SHCKDMX  
SHCKADC  
test bits; should be set to logic 0 for proper operation  
2
test bits; should be set to logic 1 for better performances  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
37 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 62: PWRMGT - power management register (address 1Eh) bit description …continued  
Bit  
Symbol  
Description  
1
STBY  
enables the RGB block to be forced into the Standby mode, except activity detection,  
I2C-bus registers. In the Standby mode, all outputs are in high-impedance state, except  
pin HPDO which is still active. If the IC is in the Power-down mode, this bit has no effect  
0 = IC active  
1 = Standby mode  
0
DVIRGB  
this bit must be set to logic 0 for proper operation  
9.22 Read register  
Table 63: READADDR - read register (address 1Fh) bit allocation  
Bit  
7
-
6
-
5
-
4
-
3
-
2
-
1
ADDR1  
0
0
ADDR0  
0
Symbol  
Reset  
Access  
X
W
X
W
X
W
X
W
X
W
X
W
W
W
Table 64: READADDR - read register (address 1Fh) bit description  
Bit  
Symbol  
-
Description  
7 to 2  
1 to 0  
not used  
ADDR[1:0]  
register address to be read  
00 = read register 0  
01 = read register 1  
10 = read register 2  
11 = read register 3  
9.23 Version register  
Table 65: VERSION - version register (read register 0) bit allocation  
Bit  
7
-
6
-
5
-
4
-
3
VER3  
0
2
VER2  
0
1
VER1  
0
0
VER0  
0
Symbol  
Reset  
Access  
X
R
X
R
X
R
X
R
R
R
R
R
Table 66: VERSION - version register (read register 0) bit description  
Bit  
Symbol  
-
Description  
not used  
7 to 4  
3 to 0  
VER[3:0]  
version of the IC  
9.24 Sign detection register  
The sign bits are set at logic 0 when the input is a mostly low input signal.  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
38 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 67: SIGN - sign register (read register 1) bit allocation  
Bit  
7
-
6
-
5
4
3
2
1
0
Symbol  
Reset  
Access  
POLVS2  
POLVS1  
POLCHS2 POLCHS1  
POLHS2  
POLHS1  
X
R
X
R
0
0
0
0
0
0
R
R
R
R
R
R
Table 68: SIGN - sign register (read register 1) bit description  
Bit  
7 to 6  
5
Symbol  
-
Description  
not used  
POLVS2  
sign of VSYNC2 input  
0 = non inverted  
1 = inverted  
4
3
2
1
0
POLVS1  
sign of VSYNC1 input  
0 = non inverted  
1 = inverted  
POLCHS2  
POLCHS1  
POLHS2  
POLHS1  
sign of CHSYNC2 input  
0 = non inverted  
1 = inverted  
sign of CHSYNC1 input  
0 = non inverted  
1 = inverted  
sign of HSYNC2 input  
0 = non inverted  
1 = inverted  
sign of HSYNC1 input  
0 = non inverted  
1 = inverted  
9.25 Activity detection 1 register  
Table 69: ACTIVITY1 - activity detection 1 register (read register 2) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
ACVS2  
ACVS1  
ACSOG2  
ACSOG1  
ACCHS2  
ACCHS1  
ACHS2  
ACHS1  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
39 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 70: ACTIVITY1 - activity detection 1 register (read register 2) bit description  
Bit  
Symbol  
Description  
7
ACVS2  
activity of VSYNC2 input  
0 = not active  
1 = active  
6
5
4
3
2
1
0
ACVS1  
activity of VSYNC1 input  
0 = not active  
1 = active  
ACSOG2  
ACSOG1  
ACCHS2  
ACCHS1  
ACHS2  
activity of SOGIN2 input  
0 = not active  
1 = active  
activity of SOGIN1 input  
0 = not active  
1 = active  
activity of CHSYNC2 input  
0 = not active  
1 = active  
activity of CHSYNC1 input  
0 = not active  
1 = active  
activity of HSYNC2 input  
0 = not active  
1 = active  
ACHS1  
activity of HSYNC2 input  
0 = not active  
1 = active  
9.26 Activity detection register 2  
Remark: It should be noted that activity, sign and polarity detection will be correctly set  
after a maximum delay of: 6 frame periods + 50 ms.  
Table 71: ACTIVITY2 - activity detection 2 register (read register 3) bit allocation  
Bit  
7
-
6
ASD  
0
5
4
3
HPDO  
0
2
1
0
Symbol  
Reset  
Access  
3LEVEL  
ACFIELD  
ACVSSEP  
ACRXC1  
ACRXC0  
X
R
0
0
0
0
0
R
R
R
R
R
R
R
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
40 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 72: ACTIVITY2 - activity detection 2 register (read register 3) bit description  
Bit  
7
Symbol  
Description  
-
not used  
6
ASD  
indicates if parasite sync pulses have been detected  
0 = not detected  
1 = detected  
5
4
3
2
3LEVEL  
ACFIELD  
HPDO  
state of the sync separator input  
0 = Hsync  
1 = 3-level Hsync  
activity of the sync separator FIELDO output  
0 = not active  
1 = active  
copy of the HPDO output state  
0 = stable state on input  
1 = new input  
ACVSSEP  
activity of the sync separator (Vsync output)  
0 = not active  
1 = active  
1
0
ACRXC1  
ACRXC0  
test bit  
test bit  
10. Limiting values  
Table 73: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VCC  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
0.5  
0.5  
-
Max  
+5  
Unit  
V
supply voltage  
VCC  
Vi  
supply voltage differences  
+0.5  
+4.5  
+6.5  
+6.5  
50  
V
input voltage  
referred to GNDA  
referred to GNDD  
referred to GNDD  
V
Vi(SCL)  
Vi(SDA)  
Io  
I2C-bus clock input voltage  
I2C-bus data input voltage  
output current  
V
V
mA  
°C  
°C  
°C  
V
Tstg  
storage temperature  
ambient temperature  
junction temperature  
electrostatic discharge voltage  
55  
10  
-
+150  
+70  
Tamb  
Tj  
150  
Vesd  
human body model,  
LQFP144 package  
3000  
+3000  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
41 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
11. Thermal characteristics  
Table 74: Thermal Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rth(j-a)  
thermal resistance from junction in free air; JEDEC4L  
to ambient  
LQFP144 package  
-
-
-
35  
30  
8.1  
-
K/W  
K/W  
K/W  
LBGA208 package  
-
Rth(j-c)  
thermal resistance from junction LQFP144 package  
to case  
8.5  
12. Characteristics  
Table 75: Characteristics  
Tamb = 25 °C unless otherwise specified.  
Symbol  
Supplies  
VCCA  
Parameter  
Conditions  
Min  
Typ [1]  
Max  
Unit  
analog supply voltage  
digital supply voltage  
output stage supply voltage  
analog supply current  
digital supply current  
output stage supply current  
supply voltage difference  
VCCA to VCCD  
3.0  
3.0  
3.0  
-
3.3  
3.3  
3.3  
180  
125  
1
3.6  
3.6  
3.6  
-
V
VCCD  
V
VCCO  
ICCA  
V
mA  
mA  
mA  
ICCD  
-
-
ICCO  
-
-
VCC  
100  
-
+100  
+165  
+165  
1.3  
-
mV  
mV  
mV  
W
VCCO to VCCD  
165  
-
VCCA to VCCO  
165  
-
Ptot  
P
total power dissipation  
power dissipation  
-
-
-
1.0  
10  
120  
Power-down mode  
Standby mode  
mW  
mW  
-
R, G and B amplifiers  
RGB inputs: pins RIN1, GIN1, BIN1, RIN2, GIN2 and BIN2  
Vi(p-p)  
input voltage range  
(peak-to-peak value)  
0.5  
-
1.0  
V
Ii  
input current  
40  
-
-
+40  
µA  
pF  
kΩ  
Ci  
input capacitance  
input resistance  
3
-
-
-
Ri  
50  
Amplifiers  
B
bandwidth  
3 dB; Tamb = 25 °C  
-
-
700  
0
-
-
MHz  
dB  
Gc  
coarse gain  
minimum coarse gain;  
code = 32  
maximum coarse gain;  
code = 95  
-
-
6
2
-
-
dB  
%
G/T  
amplifier gain stability variation minimum coarse gain;  
with temperature code = 32  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
42 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 75: Characteristics …continued  
Tamb = 25 °C unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ [1]  
Max  
Unit  
GE(rms)  
full-scale channel-to-channel  
matching (RMS value)  
minimum coarse gain;  
code = 32  
-
-
2.5  
%
R, G and B clamp  
Nclamp  
clamp level accuracy  
fCLK = 25 MHz, clamp code =  
20  
-
-
-
1
bit  
ps  
Phase-Locked Loop (PLL); see Table 76  
JPLL(p-p)  
long term PLL phase jitter  
(peak-to-peak value)  
fclk = 270 MHz; DR = 2160  
390  
480  
DR  
divider ratio  
100  
10  
15  
-
-
-
-
-
4095  
270  
150  
2
fPLL  
fref  
output clock frequency  
reference clock frequency  
MHz  
kHz  
∆ϕstep  
number of phase shift steps  
from drift  
ϕstep  
phase shift step  
-
11.25  
-
deg  
Analog-to-Digital Converters (ADCs); minimum coarse gain  
fs(max)  
INL  
maximum sampling frequency  
integral non-linearity  
differential non-linearity  
effective number of bits  
crosstalk  
270  
-
-
MHz  
bits  
bits  
bits  
dB  
fclk = 270 MHz; fi = 10 MHz  
fclk = 270 MHz; fi = 10 MHz  
fclk = 270 MHz; fi = 10 MHz  
fclk = 270 MHz  
-
±0.6  
±0.25  
7.6  
-
±1.3  
±0.6  
-
DNL  
ENOB  
αct  
-
-
-
45  
-
S/N  
signal-to-noise ratio  
fclk = 270 MHz; fi = 10 MHz  
fclk = 270 MHz; fi = 10 MHz  
fclk = 270 MHz; fi = 10 MHz  
-
48  
dB  
SFDR  
THD  
spurious free dynamic range  
total harmonic distortion  
48  
-
55  
-
dB  
55  
48  
dB  
Data timing; 10 pF load; see Figure 4  
td(o)  
th(o)  
tsu(o)  
output delay  
-
4
-
5.2  
-
ns  
ns  
ns  
output hold time  
output setup time  
1.9  
-
-
6
LV-TTL digital inputs and outputs  
Input pins CKEXT, COAST, VSYNC1, VSYNC2, HSYNC1, HSYNC2, CHSYNC1, CHSYNC2, PWD, A0, DIS, TCK and CLP  
VIL  
VIH  
LOW-level input voltage  
HIGH-level input voltage  
0
-
-
0.8  
V
V
2.0  
VCCD(TTL)  
Output pins RA[7:0], RB[7:0], GA[7:0], GB[7:0], BA[7:0], BB[7:0], ROR, BOR, GOR, CKDATA, TDO, DEO, HPDO, HSYNCO,  
VSYNCO, FIELDO, CLPO, CKREFO and CSYNCO  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
IOH = 1 mA  
-
-
-
0.4  
-
V
V
IOL = 1 mA  
2.4  
Data clock output  
Output pin CKDATA  
fCKDATA(max) maximum buffer frequency  
Data outputs  
-
140  
-
MHz  
MHz  
Output pins RA[7:0], RB[7:0], GA[7:0], GB[7:0], BA[7:0], BB[7:0], ROR, BOR, GOR, DEO, HSYNCO and CSYNCO  
fdata(max)  
maximum buffer frequency  
-
70  
-
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
43 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
Table 75: Characteristics …continued  
Tamb = 25 °C unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ [1]  
Max  
Unit  
Hsync inputs  
Input pins HSYNC1, HSYNC2, CHSYNC1 and CHSYNC2  
tW(Hsync)(min) minimum pulse width  
250  
-
-
-
-
ns  
%
tW(Hsync)(max) maximum pulse width  
SOG inputs  
in % of total horizontal line  
20  
Input pins SOGIN1 and SOGIN2  
Vsync(G)  
Vsync(G)  
sync-on-green pulse amplitude  
150  
-
-
-
-
mV  
%
high/low differential amplitude  
of 3-level pulse  
20  
I2C-bus (fast mode; 5 V tolerant)  
Pins SCL and SDA  
fSCL  
VIL  
VIH  
Cb  
clock frequency  
-
-
-
-
-
400  
0.8  
kHz  
V
LOW-level input voltage  
HIGH-level input voltage  
capacitive load  
0
2.0  
-
5.5  
V
400  
pF  
[1] Typical values are measured at VCCA = VCCA(SOG) to GNDA(SOG) or VCCA(R) to GNDA(R) or VCCA(G) to GNDA(G)  
or VCCA(B) to GNDA(B) = 3.3 V; VCCD = VCCD(TTL) to GNDD(TTL) or VCCD(ADC) to GNDD(ADC) or VCCD(I2C) to GNDD(I2C)  
or VCCD(MCF) to GNDD(MCF) or VCCD(TTL) to GNDD(TTL) or VCCD(SLC) to GNDD(SLC) = 3.3 V; VCCO = VCCO(BB) to GNDO(BB)  
or VCCO(BA) to GNDO(BA) or VCCO(GB) to GNDO(GB) or VCCO(GA) to GNDO(GA) or VCCO(RB) to GNDO(RB) or VCCO(RA) to GNDO(RA)  
or VCCO(CLK) to GNDO(CLK) = 3.3 V.  
Table 76: Examples of PLL settings and performance  
VCCA = VCCD = VCCO = 3.3 V; Tamb = 25 °C; see note 1.  
Video standard  
fref  
(kHz)  
fclk  
(MHz)  
DR  
Ko  
(MHz/V)  
Cz (nF) CP (pF) IP (µA) Z ()  
Long-term time  
jitter  
RMS  
(ps)  
p-p (ps)  
3000  
1980  
1320  
1110  
870  
VGA 60 Hz; VESA:  
640 × 480  
31.469 25.175 800  
30  
220  
220  
220  
220  
220  
220  
220  
220  
680  
680  
680  
680  
680  
680  
680  
680  
1200  
1200  
1600  
1600  
1600  
2000  
1600  
2000  
510  
510  
640  
510  
640  
640  
800  
640  
500  
370  
220  
185  
145  
135  
95  
SVGA 72 Hz; VESA: 48.08  
800 × 600  
50  
1040  
1312  
1688  
1688  
2160  
2160  
2160  
60  
XGA 75 Hz; VESA:  
1024 × 768  
60.02  
78.75  
108  
60  
SXGA 60 Hz; VESA: 63.98  
1280 × 1024  
105  
105  
105  
135  
135  
SXGA 75 Hz; VESA: 80.00  
1280 × 1024  
135  
UXGA 60 Hz; VESA: 75.00  
1600 × 1200  
162  
810  
UXGA 75 Hz; VESA: 93.75  
1600 × 1200  
202.5  
570  
UXGA 85 Hz; VESA: 106.25 229.5  
85  
510  
1600 × 1200  
[1] PLL long-term time jitter is measured at the end of the video line, where it is at its maximum.  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
44 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
13. Timing  
V
V
OH  
OL  
50 %  
CKDATA  
sample N  
sample N + 1  
sample N + 2  
RGB input  
t
h(o)  
t
d(o)  
RGB outputs  
V
V
OH  
OL  
A7 to A0, B7 to B0,  
DEO,  
DATA  
N 2  
DATA  
N 1  
DATA  
N
DATA  
N + 1  
50 %  
HSYNCO,  
CKREFO  
t
su(o)  
mce410  
Fig 4. Data timing diagram  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
45 of 57  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
R, G, B in  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  
1
2
3
4
ckdivo  
ϕ
ckphi  
ckrefin  
possibility to add a clock period with bit SCHCKREFO  
HBACKL  
HDISPL  
HSYNCL  
hcount  
hsyncin  
dein  
hs hs1 hs2  
1
hb hb1  
1
hd hd1 hd2  
ckadco  
ADC out  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  
mdb107  
HSYNCL, HBACKL and HDISPL must be long 16 (minimum value in number of pixel clock cycles).  
Fig 5. Timing diagram  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
ckrefin  
HSYNCO  
CKREFO  
DEO  
CKDATA  
RGB outputs  
A7 to A0  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
mdb201  
HSCYNCO, DEO, CKREFO and RGB outputs A7 to A0 are referred to the rising edge of ckrefin.  
CKREFO is LOW during 8 clock pulses.  
Fig 6. Output format port A  
ckrefin  
HSYNCO  
CKREFO  
DEO  
CKDATA  
bit SHIFTRGB = 0  
RGB outputs  
A7 to A0  
28  
27  
28  
2
1
2
4
3
4
6
8
10  
9
12  
11  
12  
14  
13  
14  
16  
15  
16  
18  
17  
18  
RGB outputs  
B7 to B0  
5
7
bit SHIFTRGB = 1  
RGB outputs  
A7 to A0  
6
8
10  
RGB outputs  
B7 to B0  
27  
1
3
5
7
9
11  
13  
15  
17  
19  
mdb108  
HSYNCO, DEO, CKREFO and RGB outputs A7 to A0 are referred to the rising edge of ckrefin.  
CKREFO is LOW during 8 clock pulses.  
Fig 7. Output formats ports A and B; even pixels port A and odd pixels port B  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
47 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
ckrefin  
HSYNCO  
CKREFO  
DEO  
CKDATA  
bit SHIFTRGB = 0  
RGB outputs  
A7 to A0  
27  
28  
1
2
3
4
5
7
9
11  
12  
13  
14  
15  
16  
17  
RGB outputs  
B7 to B0  
6
8
10  
18  
mdb200  
HSYNCO, DEO, CKREFO and RGB outputs A7 to A0 are referred to the rising edge of ckrefin.  
CKREFO is LOW during 8 clock pulses.  
Fig 8. Output formats ports A and B; odd pixels port A; bit SHIFTRGB = 0  
ckrefin  
HSYNCO  
CKREFO  
DEO  
CKDATA  
bit SHIFTRGB = 1  
RGB outputs  
27  
1
3
5
7
9
11  
13  
15  
17  
A7 to A0  
RGB outputs  
B7 to B0  
28  
2
4
6
8
10  
12  
14  
16  
18  
mce411  
HSYNCO, DEO, CKREFO and RGB outputs A7 to A0 are referred to the rising edge of ckrefin.  
CKREFO is LOW during 8 clock pulses.  
Fig 9. Output formats ports A and B; odd pixels port A; bit SHIFTRGB = 1  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
48 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
14. Application information  
V
CCD  
V
CCD  
SCL SDA  
R21  
4.7 k  
R20  
4.7 kΩ  
V
CCD  
V
CCO  
V
CCD  
V
CCD  
V
V
CCO CCO  
GNDD(TTL)  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
ROR  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
V
CCD(TTL)  
out red A  
V
CCD  
2
HSYNC2  
3
CHSYNC2  
4
V
CCA(PLL)  
V
CCA  
5
HSYNC1  
CHSYNC1  
GNDA(PLL)  
CZ  
6
7
8
C1  
GNDO(RB)  
9
V
GNDA(CPO)  
CP  
CCO(RB)  
220 nF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
V
CCO  
C2  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
98  
PMO  
680 pF  
97  
GNDA(SUB)  
CAPSOGIN1  
CAPSOGO  
CAPSOGIN2  
GNDA(SOG)  
SOGIN1  
96  
C3  
95  
out red B  
1 µF  
94  
C4  
93  
1 µF  
92  
C5  
SOGIN1  
SOGIN2  
91  
TDA8754HL  
V
CCA(SOG)  
GNDO(GA)  
330 pF  
C6  
90  
V
CCO(GA)  
SOGIN2  
89  
V
CCO  
V
CCA(R)  
330 pF  
C7  
GA7  
GA6  
GA5  
GA4  
GA3  
GA2  
GA1  
GA0  
GOR  
V
CCA  
88  
RIN1  
87  
RIN1  
1 µF  
GNDA(R1)  
86  
C8  
RIN2  
RIN2  
85  
out green A  
1 µF  
GNDA(R2)  
84  
C9 100 nF  
DEC  
RBOT  
83  
C10 100 nF  
C11 4.7 nF  
82  
RCLPC  
81  
V
CCA(G)  
80  
V
CCA  
C12  
GNDO(GB)  
GIN1  
79  
GIN1  
V
CCO(GB)  
1 µF  
GNDA(G1)  
GIN2  
78  
V
CCO  
C13  
GB7  
GB6  
GB5  
GB4  
GB3  
77  
GIN2  
1 µF  
GNDA(G2)  
76  
C14 100 nF  
C15 4.7 nF  
GBOT  
75  
GCLPC  
74  
V
out green B  
CCA(B)  
73  
V
CCA  
001aac978  
out blue B  
out blue A  
C19  
4.7  
nF  
C17  
1 µF  
C16  
1 µF  
V
CCD  
V
CCO  
V
CCO  
C18  
100  
nF  
BIN1 BIN2  
Fig 10. Application diagram  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
49 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
15. Package outline  
LQFP144: plastic low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm  
SOT486-1  
y
X
A
108  
109  
73  
72  
Z
E
e
H
A
E
2
A
E
(A )  
3
A
1
θ
w M  
p
L
p
b
L
pin 1 index  
detail X  
37  
144  
1
36  
v
M
A
Z
w M  
D
b
p
e
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 20.1 20.1  
0.17 0.09 19.9 19.9  
22.15 22.15  
21.85 21.85  
0.75  
0.45  
1.4  
1.1  
1.4  
1.1  
mm  
1.6  
0.25  
1
0.2 0.08 0.08  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-03-14  
03-02-20  
SOT486-1  
136E23  
MS-026  
Fig 11. Package outline SOT486-1 (LQFP144)  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
50 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
LBGA208: plastic low profile ball grid array package; 208 balls; body 17 x 17 x 1.05 mm  
SOT774-1  
B
A
D
ball A1  
index area  
A
2
A
E
A
1
detail X  
C
e
1
y
y
1/2 e  
v M  
b
C
C
A
B
C
1
e
w M  
T
R
N
L
P
M
K
H
F
e
J
e
2
G
E
C
A
1/2 e  
D
B
ball A1  
index area  
1
3
5
7
9
11  
13  
15  
2
4
6
8
10  
12  
14  
16  
X
5
10 mm  
0
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
e
e
e
2
y
D
E
v
w
y
1
1
2
1
max.  
0.45 1.20 0.55 17.2 17.2  
0.35 0.95 0.45 16.8 16.8  
mm 1.65  
0.12 0.35  
1
15  
15  
0.25  
0.1  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
- - -  
02-05-14  
SOT774-1  
- - -  
MO-192  
Fig 12. Package outline SOT774-1 (LBGA208)  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
51 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
16. Soldering  
16.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
16.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
16.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
52 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
16.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
16.5 Package related soldering information  
Table 77: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
53 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
54 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
17. Revision history  
Table 78: Revision history  
Document ID  
TDA8754_6  
Release date Data sheet status  
20050616 Product data sheet  
Change notice Doc. number  
Supersedes  
-
9397 750 14984 TDA8754_5  
Modifications:  
The format of this data sheet has been redesigned to comply with the new presentation and  
information standard of Philips Semiconductors.  
Section 2 “Features”: added “Temperature range from 10 °C to +70 °C”.  
Figure 1 “Block diagram”: added logic gate between sync separator block and output HSYNCO  
Section 7.1 “Pinning”: changed symbol for pin 124 from “STBYDIV” to “STBDVI”.  
Section 10 “Limiting values”: changed Tamb min. value from 0 °C to 10 °C and max. value from  
70 °C to +70 °C.  
Figure 10 “Application diagram”: changed symbol for pin 124 from “STBYDIV” to “STBDVI”.  
TDA8754_5  
TDA8754_4  
20040518  
Product specification  
-
9397 750 13199 TDA8754_4  
20030930  
Preliminary  
specification  
-
9397 75012016 TDA8754_3  
TDA8754_3  
TDA8754_2  
TDA8754_1  
20030716  
20030417  
19980930  
Objective specification  
Objective specification  
Objective specification  
-
-
-
9397 750 11551 TDA8754_2  
9397 750 10598 TDA8754_1  
9397 750 04134  
-
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
55 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
18. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
19. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
21. Trademarks  
Notice — All referenced brands, product names, service names and  
20. Disclaimers  
trademarks are the property of their respective owners.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
22. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14984  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 06 — 16 June 2005  
56 of 57  
TDA8754  
Philips Semiconductors  
Triple 8-bit video ADC up to 270 Msps  
23. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
9.16  
9.17  
9.18  
9.19  
9.20  
9.21  
9.22  
9.23  
9.24  
9.25  
9.26  
Output register . . . . . . . . . . . . . . . . . . . . . . . . 34  
Output enable register 1. . . . . . . . . . . . . . . . . 35  
Output enable register 2. . . . . . . . . . . . . . . . . 35  
Clock output register . . . . . . . . . . . . . . . . . . . 36  
Internal oscillator register. . . . . . . . . . . . . . . . 37  
Power management register . . . . . . . . . . . . . 37  
Read register . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Version register . . . . . . . . . . . . . . . . . . . . . . . 38  
Sign detection register . . . . . . . . . . . . . . . . . . 38  
Activity detection 1 register . . . . . . . . . . . . . . 39  
Activity detection register 2 . . . . . . . . . . . . . . 40  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
8
8.1  
Functional description . . . . . . . . . . . . . . . . . . 13  
Functional description. . . . . . . . . . . . . . . . . . . 13  
Power management . . . . . . . . . . . . . . . . . . . . 13  
Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power-down mode . . . . . . . . . . . . . . . . . . . . . 14  
Analog video input . . . . . . . . . . . . . . . . . . . . . 14  
Analog multiplexers. . . . . . . . . . . . . . . . . . . . . 14  
Activity detection. . . . . . . . . . . . . . . . . . . . . . . 14  
ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
HSOSEL, DEO and SCHCKREFO. . . . . . . . . 15  
PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Sync-on-green . . . . . . . . . . . . . . . . . . . . . . . . 16  
Programmable coast. . . . . . . . . . . . . . . . . . . . 17  
Data enable . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Sync separator . . . . . . . . . . . . . . . . . . . . . . . . 17  
3-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
I2C-bus register description . . . . . . . . . . . . . . 18  
I2C-bus formats. . . . . . . . . . . . . . . . . . . . . . . . 18  
Write 1 register . . . . . . . . . . . . . . . . . . . . . . . . 18  
Write all registers . . . . . . . . . . . . . . . . . . . . . . 19  
Read register . . . . . . . . . . . . . . . . . . . . . . . . . 20  
I2C-bus registers overview . . . . . . . . . . . . . . . 22  
Offset registers (R, G and B) . . . . . . . . . . . . . 24  
Coarse registers (R, G and B) . . . . . . . . . . . . 25  
Fine registers (R, G and B). . . . . . . . . . . . . . . 26  
Sync-on-green register . . . . . . . . . . . . . . . . . . 27  
PLL control register. . . . . . . . . . . . . . . . . . . . . 27  
Phase register. . . . . . . . . . . . . . . . . . . . . . . . . 28  
PLL divider registers. . . . . . . . . . . . . . . . . . . . 29  
Horizontal sync registers . . . . . . . . . . . . . . . . 30  
Coast register . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Horizontal sync selection register. . . . . . . . . . 31  
Vertical sync selection register . . . . . . . . . . . . 32  
Clamp register . . . . . . . . . . . . . . . . . . . . . . . . 32  
Inverter register. . . . . . . . . . . . . . . . . . . . . . . . 33  
10  
11  
12  
13  
14  
15  
16  
16.1  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 41  
Thermal characteristics . . . . . . . . . . . . . . . . . 42  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 42  
Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Application information . . . . . . . . . . . . . . . . . 49  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 50  
8.1.1  
8.1.1.1  
8.1.1.2  
8.2  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 52  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 52  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 53  
Package related soldering information. . . . . . 53  
16.2  
16.3  
16.4  
16.5  
17  
18  
19  
20  
21  
22  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 55  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 56  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Contact information . . . . . . . . . . . . . . . . . . . . 56  
9
9.1  
9.1.1  
9.1.2  
9.1.2.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
9.10  
9.11  
9.12  
9.13  
9.14  
9.15  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 16 June 2005  
Document number: 9397 750 14984  
Published in The Netherlands  

相关型号:

TDA8754HL/21/C1

IC 3-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, SOT486-1, LQFP-144, Analog to Digital Converter
NXP

TDA8754HL/21/C1,51

IC 3-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, PLASTIC, SOT-486-1, LQFP-144, Analog to Digital Converter
NXP

TDA8754HL/21/C1,55

IC 3-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, PLASTIC, SOT-486-1, LQFP-144, Analog to Digital Converter
NXP

TDA8754HL/27

IC 3-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, LOW PROFILE, PLASTIC, SOT-486-1, MS-026, QFP-144, Analog to Digital Converter
NXP

TDA8754HL/27/C1

IC 3-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, SOT486-1, LQFP-144, Analog to Digital Converter
NXP

TDA8754HL/27/C1,55

IC 3-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, PLASTIC, SOT-486-1, LQFP-144, Analog to Digital Converter
NXP

TDA8755

YUV 8-bit video low-power analog-to-digital interface
NXP

TDA8755-T

IC 3-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO32, Analog to Digital Converter
NXP

TDA8755T

YUV 8-bit video low-power analog-to-digital interface
NXP

TDA8755TD

IC 3-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO32, PLASTIC, SOT-287, SO-32, Analog to Digital Converter
NXP

TDA8755TD-T

IC 3-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO32, PLASTIC, SOT-287, SO-32, Analog to Digital Converter
NXP

TDA8757

Triple 8-bit ADC 170 Msps
NXP