TDA8757HL [NXP]

Triple 8-bit ADC 170 Msps; 三重8位ADC 170 Msps的
TDA8757HL
型号: TDA8757HL
厂家: NXP    NXP
描述:

Triple 8-bit ADC 170 Msps
三重8位ADC 170 Msps的

转换器 模数转换器
文件: 总37页 (文件大小:820K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8757  
Triple 8-bit ADC 170 Msps  
Rev. 07 — 28 February 2002  
Preliminary data  
1. General description  
The TDA8757 is a triple 8-bit ADC for the digitizing of large bandwidth RGB/YUV  
signals at a sampling rate up to 170 Msps.  
The IC supports display resolutions up to 1600 × 1200 (UXGA) at 60 Hz.  
The IC also includes a PLL that can be locked to the horizontal line frequency and  
generates the ADC clock. The PLL jitter is minimized for high resolution PC graphics  
applications. An external clock signal can also be used to clock the ADC.  
The outputs are available either on one port up to 110 Msps or on two ports up to  
170 Msps. The operating mode is selectable with the serial interface to for either  
I2C-bus or 3-wire serial bus (3W-bus) operation.  
The clamp level, the gain and the other settings are controllable through the serial  
interface.  
2. Features  
Triple 8-bit ADC  
Sampling rate up to 170 Msps  
IC controllable by a serial interface which can be I2C-bus or 3W-bus, selected by a  
TTL input pin  
Three clamps for programming a clamping code from 63.5 to +64 in steps of  
12 LSB (RGB) and from +120 to +136 in steps of 12 LSB (YUV)  
Three controllable amplifiers: gain controlled by the serial interface to produce a  
full-scale resolution of 12 LSB peak-to-peak  
Amplifier bandwidth of 250 MHz  
Low gain variation with temperature  
PLL controllable through the serial interface to generate the ADC clock which can  
be locked to any line frequency of 15 to 150 kHz  
Integrated PLL divider  
Programmable phase clock adjustment cells  
Internal voltage regulators  
TTL compatible digital inputs and outputs  
Outputs on one port or demultiplexed on two ports; selectable with the serial  
interface  
Chip enable, high-impedance ADC output  
Power-down mode  
1.5 W power dissipation  
Sync on green extractor.  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
3. Applications  
RGB/YUV high-speed digitizing  
LCD panels drive  
LCD projection systems  
VGA to UXGA (1600 × 1200 at 60 Hz) modes.  
4. Quick reference data  
Table 1: Quick reference data  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCCA  
analog supply voltage for PLL  
and the RGB channels  
4.75  
5.0  
5.25  
V
VDDD  
logic supply voltage for I2C-bus  
and 3W-bus  
4.75  
5.0  
5.25  
V
VCCD  
VCCO  
digital supply voltage  
4.75  
4.75  
5.0  
5.0  
5.25  
5.25  
V
V
output stages supply voltage  
for PLL and the RGB channels  
VCCA(PLL)  
VCCO(PLL)  
ICCA  
analog PLL supply voltage  
output PLL supply voltage  
4.75  
4.75  
5.0  
5.0  
135  
5.25  
5.25  
V
V
analog supply current for the  
RGB channels  
mA  
IDDD  
logic supply current for I2C-bus  
and 3W-bus  
1
mA  
ICCD  
digital supply current  
output stages supply current  
analog PLL supply current  
clock frequency  
95  
80  
34  
mA  
ICCO  
mA  
ICCA(PLL)  
fclk  
mA  
normal (Dmx = 0)  
110  
170  
150  
170  
±1.5  
MHz  
MHz  
kHz  
MHz  
LSB  
de-multiplexed (Dmx = 1)  
fref(PLL)  
fPLL  
PLL reference clock frequency  
output clock frequency range  
DC integral non-linearity  
15  
10  
INL  
from analog input to  
digital output; full-scale;  
sinusoidal input;  
±0.5  
fclk = 170 MHz  
DNL  
DC differential non-linearity  
from analog input to  
digital output; full-scale;  
sinusoidal input;  
±0.4  
±1  
LSB  
fclk = 170 MHz  
Gamp/T  
amplifier gain stability variation Vref = 2.5 V with  
325  
ppm/°C  
with temperature  
100 ppm/°C maximum  
B
amplifier bandwidth  
3 dB; Tamb = 25 °C  
250  
MHz  
ns  
tset(ADC+AGC)  
settling time of the block  
ADC + AGC  
input signal settling  
time <1 ns; settling to  
1%; fi = 85 MHz  
4
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
2 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 1: Quick reference data…continued  
Symbol  
DRPLL  
Ptot  
Parameter  
Conditions  
Min  
100  
Typ  
Max  
4095  
Unit  
PLL divider ratio  
total power dissipation  
fclk = 170 MHz;sinusoidal  
input  
1.5  
W
jPLL(max)(p-p)  
maximum PLL phase jitter  
(peak-to-peak value)  
fclk = 170 MHz  
360  
ps  
5. Ordering information  
Table 2: Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDA8757HL  
HLQFP144 plastic, heatsink low profile quad flat package; 144 leads;  
SOT612-1  
body 20 × 20 × 1.4 mm  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
3 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
6. Block diagram  
CLP  
131  
CLP  
R
AGC  
R
5
8
6
7
GAINC  
R
BOT  
R
11  
IN  
R
CLAMP  
114 to 121  
8
8
9
A0 to A7  
R
B0 to B7  
R
DEC  
R
R
R
100 to 107  
113  
OUTPUT  
MUX  
ADC  
OR  
R
3
VREF  
RED CHANNEL  
GREEN CHANNEL  
BLUE CHANNEL  
129  
18  
OE  
CLP  
G
15  
AGC  
G
16  
17  
GAINC  
G
BOT  
G
92 to 99  
79 to 86  
91  
8
8
A0 to A7  
G
21  
G
IN  
G
B0 to B7  
G
19  
G
DEC  
G
OR  
G
26  
29  
27  
AGC  
B
CLP  
B
28  
GAINC  
B
BOT  
B
8
8
71 to 78  
58 to 65  
70  
A0 to A7  
32  
B
B
B
IN  
B
B0 to B7  
B
30  
DEC  
B
OR  
B
HSYNCI  
23  
IN  
SOG  
CKADC  
SYNCHRO  
EXTRACTOR  
24  
SOG  
O
123  
124  
TDA8757  
CKDATA  
38  
39  
43  
47  
44  
42  
37  
A1  
A2  
SEN  
SCL  
SDA  
DIS  
CKREFO  
1-bit  
(Hlevel)  
SERIAL  
134  
133  
135  
136  
INTERFACE  
CKEXT  
INV  
COAST  
PLL  
2
I C-BUS  
REGULATOR  
or  
CKREF  
2
3W-BUS  
I C-bus  
2
I C/3W  
132  
4
2
130  
141  
CZ  
140  
CP  
FCE694  
HSYNC DEC1 DEC2 PD  
Fig 1. Block diagram.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
4 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
CLP  
OE  
AGC  
α
CKDMX  
CLP  
α
CLAMP  
CONTROL  
DAC  
8
8
2
I C-bus:  
A0 to A7  
V
P
α
α
8 bits  
(Oα)  
CKADC  
ADC  
8
150  
kΩ  
OUTPUTS A  
&
OUTPUTS B  
B0 to B7  
REGISTER  
α
α
IN  
α
MUX  
AGC  
OR  
α
VREF  
2
I C-bus:  
3 bits  
DAC  
(Dmx, Odda, Shift, Blk)  
8
D
R
D R  
5
8
7
BOT  
α
1
2
I C-bus:  
2
1
5 bits  
REGISTER  
FINE GAIN ADJUST  
REGISTER  
COARSE GAIN ADJUST  
I C-bus: 7 bits  
(Cα)  
(Fα)  
SERIAL  
2
I C-BUS  
FCE695  
GAINC  
α
SDA SCL  
HSYNC  
Fig 2. Channel diagram (where α stands for R, G or B).  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
5 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
C
C
2
Z
P
COAST  
CKEXT  
INV  
2
I C-bus: 1 bit  
(Vlevel)  
I C-bus: 3 bits  
(Z)  
+/−  
Z
CKADC  
2
CKREF  
I C-bus: 5 bits  
(P)  
0/180  
MUX  
PHASE  
VCO  
PHASE  
FREQUENCY  
DETECTOR  
2
I C-bus:  
1 bit  
CKDMX  
2
I C-bus:  
1 bit  
2
2
I C-bus: 5 bits  
(Edge)  
I C-bus: 2 bits  
2
I C-bus: 1 bit  
(Odda)  
(Ip, Up, Do)  
(Vco)  
(Ckext)  
+/−  
τ
CKDATA  
MUX  
2
I C-bus: 2 bits  
(Ckdd, Ckdp)  
DIV N (100 to 4095)  
÷ 2  
2
2
I C-bus: 12 bits  
I C-bus:  
(Di)  
1 bit (Dmx)  
SYNCHRO  
MUX  
+/−  
CKREFO  
2
I C-bus: 1 bit  
(Ckrp)  
2
I C-bus: 1 bit  
(Ckrs)  
MBL365  
(1)  
OE  
(1) Enable of CKDATA and CKREFO by OE. Available in C3 version only.  
Fig 3. PLL diagram.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
6 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
7. Pinning information  
7.1 Pinning  
n.c.  
n.c.  
B7  
1
108  
107  
DEC2  
2
R
3
106 B6  
105 B5  
VREF  
DEC1  
R
R
R
R
R
R
R
G
G
G
G
G
G
G
G
4
5
104  
AGC  
R
BOT  
R
GAINC  
R
CLP  
R
B4  
103 B3  
102  
6
7
B2  
101 B1  
100  
8
DEC  
R
9
B0  
99 A7  
A6  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
CCA(R)  
98  
97 A5  
96  
IN  
R
n.c.  
AGND  
R
A4  
n.c.  
95 A3  
94 A2  
93 A1  
92 A0  
AGC  
G
BOT  
G
GAINC  
G
91 OR  
CLP  
G
DEC  
G
G
TDA8757HL  
V
90  
89  
88  
87  
CCO(G)  
OGND  
V
G
CCA(G)  
V
IN  
G
CCO(G)  
OGND  
G
AGND  
G
IN  
86 B7  
G
G
G
G
G
G
G
G
B
B
B
B
B
B
SOG  
SOG  
B6  
B5  
85  
84  
O
n.c.  
83 B4  
82 B3  
81 B2  
AGC  
B
BOT  
B
GAINC  
B
CLP  
B
B1  
B0  
A7  
A6  
80  
79  
78  
77  
DEC  
B
V
CCA(B)  
IN  
B
AGND  
76 A5  
75 A4  
74 A3  
B
n.c.  
n.c.  
n.c.  
73  
A2  
GND  
DP  
FCE697  
Fig 4. Pin configuration.  
7.2 Pin description  
Table 3: Pin description  
Symbol  
n.c.  
Pin  
1
Description  
not connected  
DEC2  
VREF  
DEC1  
2
main regulator decoupling input 2  
gain stabilizer voltage reference input  
main regulator decoupling input 1  
3
4
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
7 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 3: Pin description…continued  
Symbol  
Pin  
5
Description  
AGCR  
BOTR  
GAINCR  
CLPR  
DECR  
VCCA(R)  
INR  
red channel AGC output  
6
red channel ladder decoupling input (BOT)  
red channel gain capacitor input  
red channel clamp capacitor input  
red channel regulator decoupling input  
red channel analog supply voltage  
red channel analog input  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
n.c.  
not connected  
AGNDR  
n.c.  
red channel gain analog ground  
not connected  
AGCG  
BOTG  
GAINCG  
CLPG  
DECG  
VCCA(G)  
ING  
green channel AGC output  
green channel ladder decoupling input (BOT)  
green channel gain capacitor input  
green channel clamp capacitor input  
green channel regulator decoupling input  
green channel analog supply voltage  
green channel analog input  
green channel gain analog ground  
sync on green channel input  
composite sync output  
AGNDG  
INSOG  
SOGO  
n.c.  
not connected  
AGCB  
BOTB  
GAINCB  
CLPB  
DECB  
VCCA(B)  
INB  
blue channel AGC output  
blue channel ladder decoupling input (BOT)  
blue channel gain capacitor input  
blue channel clamp capacitor input  
blue channel regulator decoupling input  
blue channel analog supply voltage  
blue channel analog input  
AGNDB  
n.c.  
blue channel gain analog ground  
not connected  
n.c.  
not connected  
n.c.  
I2C/3W  
not connected  
selection input between I2C-bus (active HIGH) and 3W-bus  
(active LOW)  
A1  
38  
39  
40  
41  
42  
I2C-bus address control input 1  
I2C-bus address control input 2  
scan test mode input (active HIGH)  
scan test output  
I2C-bus and 3W-bus disable control input (disable at HIGH  
level)  
A2  
TCK  
TDO  
DIS  
SEN  
43  
select enable input for 3W-bus  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
8 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 3: Pin description…continued  
Symbol  
Pin  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
Description  
I2C-bus/3W-bus serial data input  
logic I2C-bus/3W-bus digital supply voltage  
logic I2C-bus/3W-bus digital ground 1  
I2C-bus/3W-bus serial clock input  
not connected  
SDA  
VDDD  
VSSD1  
SCL  
n.c.  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
VCCD2  
DGND2  
n.c.  
digital supply voltage 2  
digital ground 2  
not connected  
VSSD2  
VSSD3  
n.c.  
logic I2C-bus/3W-bus digital ground 2  
logic I2C-bus/3W-bus digital ground 3  
not connected  
B0B  
blue channel ADC output B bit 0 (LSB)  
blue channel ADC output B bit 1  
blue channel ADC output B bit 2  
blue channel ADC output B bit 3  
blue channel ADC output B bit 4  
blue channel ADC output B bit 5  
blue channel ADC output B bit 6  
blue channel ADC output B bit 7 (MSB)  
blue channel ADC output B ground  
blue channel ADC output B supply voltage  
blue channel ADC output A ground  
blue channel ADC output A supply voltage  
blue channel ADC output bit out of range  
blue channel ADC output A bit 0 (LSB)  
blue channel ADC output A bit 1  
blue channel ADC output A bit 2  
blue channel ADC output A bit 3  
blue channel ADC output A bit 4  
blue channel ADC output A bit 5  
blue channel ADC output A bit 6  
blue channel ADC output A bit 7 (MSB)  
green channel ADC output B bit 0 (LSB)  
green channel ADC output B bit 1  
green channel ADC output B bit 2  
green channel ADC output B bit 3  
green channel ADC output B bit 4  
green channel ADC output B bit 5  
B1B  
B2B  
B3B  
B4B  
B5B  
B6B  
B7B  
OGNDB  
VCCO(B)  
OGNDB  
VCCO(B)  
ORB  
A0B  
A1B  
A2B  
A3B  
A4B  
A5B  
A6B  
A7B  
B0G  
B1G  
B2G  
B3G  
B4G  
B5G  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
9 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 3: Pin description…continued  
Symbol  
Pin  
85  
Description  
B6G  
green channel ADC output B bit 6  
B7G  
86  
green channel ADC output B bit 7 (MSB)  
green channel ADC output B ground  
green channel ADC output B supply voltage  
green channel ADC output A ground  
green channel ADC output A supply voltage  
green channel ADC output bit out of range  
green channel ADC output A bit 0 (LSB)  
green channel ADC output A bit 1  
green channel ADC output A bit 2  
green channel ADC output A bit 3  
green channel ADC output A bit 4  
green channel ADC output A bit 5  
green channel ADC output A bit 6  
green channel ADC output A bit 7 (MSB)  
red channel ADC output B bit 0 (LSB)  
red channel ADC output B bit 1  
red channel ADC output B bit 2  
red channel ADC output B bit 3  
red channel ADC output B bit 4  
red channel ADC output B bit 5  
red channel ADC output B bit 6  
red channel ADC output B bit 7 (MSB)  
not connected  
OGNDG  
VCCO(G)  
OGNDG  
VCCO(G)  
ORG  
87  
88  
89  
90  
91  
A0G  
92  
A1G  
93  
A2G  
94  
A3G  
95  
A4G  
96  
A5G  
97  
A6G  
98  
A7G  
99  
B0R  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
B1R  
B2R  
B3R  
B4R  
B5R  
B6R  
B7R  
n.c.  
OGNDR  
VCCO(R)  
OGNDR  
VCCO(R)  
ORR  
red channel ADC output B ground  
red channel ADC output B supply voltage  
red channel ADC output A ground  
red channel ADC output A supply voltage  
red channel ADC output A bit out of range  
red channel ADC output A bit 0 (LSB)  
red channel ADC output A bit 1  
red channel ADC output A bit 2  
red channel ADC output A bit 3  
red channel ADC output A bit 4  
red channel ADC output A bit 5  
red channel ADC output A bit 6  
red channel ADC output A bit 7 (MSB)  
PLL digital ground  
A0R  
A1R  
A2R  
A3R  
A4R  
A5R  
A6R  
A7R  
OGNDPLL  
CKDATA  
CKREFO  
TESTO  
output data clock  
output horizontal pulse synchronized to pixel clock  
output reserved for test  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
10 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 3: Pin description…continued  
Symbol  
Pin  
126  
127  
128  
129  
Description  
VCCO(PLL)  
n.c.  
PLL output supply voltage  
not connected  
DGND1  
OE  
digital ground 1  
output enable; active LOW (when OE is HIGH, the outputs are  
high-impedance)  
PD  
130  
power-down control input (IC is in Power-down mode when  
this pin is HIGH)  
CLP  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
clamp pulse input (clamp active HIGH)  
horizontal synchronization pulse input  
PLL clock output inverter control input (invert when HIGH)  
external clock input  
HSYNC  
INV  
CKEXT  
COAST  
CKREF  
VCCD1  
n.c.  
PLL coast control input  
PLL reference clock input  
digital supply voltage 1  
not connected  
AGNDPLL  
CP  
PLL analog ground  
PLL filter input  
CZ  
PLL filter input  
AGNDPLL  
VCCA(PLL)  
n.c.  
PLL analog ground  
PLL analog supply voltage  
not connected  
GNDDP  
exposed die pad connection  
8. Functional description  
This triple high-speed 8-bit ADC is designed to convert RGB/YUV signals, coming  
from an analog source, into digital data used by a LCD driver (pixel clock up to  
170 MHz).  
8.1 Analog video inputs  
The RGB/YUV video inputs are externally AC coupled and are internally  
DC polarized.  
The synchronization signals are also used for the internal PLL and the gain  
calibration.  
If the green video signal has composite sync (sync on green), it is possible to extract  
this composite sync by connecting the green signal to pin INSOG (AC coupled). When  
the sync pulse amplitude is below 300 mV, the I2C-bus bit ‘Slevel’ has to be set to  
logic 1 (see Figure 5). The maximum amplitude for the sync pulse is 600 mV.  
The composite sync is available at pin SOGO (TTL level compatible signal).  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
11 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
blank level  
300 mV  
to  
600 mV  
150 mV comparison level  
set by I C-bus bit Slevel = 0  
2
blank level  
150 mV  
to  
300 mV  
80 mV comparison level  
set by I C-bus bit Slevel = 1  
2
005aaa009  
Fig 5. Sync level diagram.  
If this function is not used, pin INSOG should be connected to the analog power  
supply. In this event, pin SOGO is at LOW-level TTL.  
8.2 Clamps  
Three independent parallel clamping circuits are used to clamp the video input  
signals on several black levels. The clamping levels may be set from  
63.5 to +64 LSBs (RGB) and from +120 to +136 LSBs in steps of 12 LSB (YUV).  
They are controlled by changing the values in three 8-bit registers: OFFSETR,  
OFFSETG and OFFSETB (see Table 5). Each clamp must be able to correct an  
offset from ±100 mV to ±10 mV within 300 ns, and correct the total offset in 10 lines.  
The clamping is done using the following principle: On the incoming of a TTL positive  
going pulse supplied on pin CLP, three external capacitors are loaded independently  
by the device in order to change the voltage level of each analog RGB input. The  
capacitors are connected to pins CLPR, CLPG and CLPB.  
video signal  
255  
constant level  
ADC  
Clamp  
+
128  
=
Clamp  
+
64  
=
clamp  
0
programming  
Clamp  
= 0  
constant level  
Clamp  
63.5  
=
FCE698  
CLP  
Fig 6. Clamp definition.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
12 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
8.2.1 Variable gain amplifiers  
Three independent variable gain amplifiers are used to provide a full-scale input  
signal to the 8-bit ADC for each channel. The gain adjustment range is designed so  
that for an input range varying from 0.4 to 1.2 V (p-p), the output signal corresponds  
to the ADC full-scale input of 1 V (p-p).  
To ensure that the gain does not vary over the whole operating temperature range, a  
reference voltage Vref = 2.5 V (DC) with a maximum variation of 100 ppm/°C, is  
supplied externally on pin VREF.  
The calibration of the gains is done using the following principle: On the incoming of a  
pulse supplied to pin HSYNC, an internal multiplexer switches from the RGB video  
signals to a reference voltage (116Vref). The ADCs inputs become this reference  
signal and the three corresponding outputs are compared to pre-set values loaded in  
three 7-bit registers: COARSER, COARSEG and COARSEB. Depending on the  
result of the comparisons, the three gains are adjusted such that the ADC outputs  
become equal to the pre-set values in the registers. The three gains are simply  
controlled by changing the values in the COARSE registers.  
The signal supplied on pin HSYNC, may be selected active HIGH or active LOW. The  
choice is done through the serial interface by setting bit ‘Hlevel’ in the control register  
(active HIGH when bit Hlevel = 0).  
This active part of the signal has to occur during the blanking period of the signal in  
order not to interrupt the active video. Normally the horizontal synchronization signal,  
provided by the video source, is connected to pin HSYNC.  
The values loaded in the gain registers (COARSER, COARSEG, COARSEB) are  
chosen among 68 values (see Table 6).  
A fine correction is also used to finely tune the gain on the three channels and to  
compensate the channel-to-channel gain mismatch. The fine correction is done using  
the following principle: the three binary codes, stored in the three 5-bit registers  
(FINER, FINEG and FINEB) are converted into three analog voltages (with three  
DACs) and are independently added to the reference voltage (116Vref). Thus, three  
different reference voltages are used for the gain calibration of the three channels.  
When the COARSE registers are set at full-scale, the resolution of the fine registers  
corresponds to 12 LSB peak-to-peak (see Equation 3).  
8.2.2 Important recommendations  
The clamping and the gain calibration requires two external signals (pulses). One  
signal is connected to pin CLP and the other is connected to pin HSYNC. It is very  
important that:  
The active part of these two signals occur during the blanking of the video signal,  
in order not to interrupt or disturb the active video.  
The active part of these two signals does not overlap on each other, in order to  
perform correctly the gain calibration and the clamping. Normally the clamp pulse  
is sent after the end of the horizontal synchronization pulse.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
13 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
8.2.3 ADCs  
Three ADCs convert analog signals into three series of 8-bit codes, with a maximum  
clock frequency of 170 Msps. The ADCs input range is 1 V (p-p) full-scale and the  
pipeline delay is 1 clock cycle from the sampling to the data output. The reference  
ladder regulators are integrated.  
8.2.4 Data outputs  
ADC outputs are straight binary. Pin OE switches the output status between active  
and high-impedance (OE = HIGH). It is possible to force the outputs with a maximum  
10 pF capacitive load. The timing must be checked very carefully if the capacitive  
loads are more than 10 pF.  
It is possible to force the outputs to logic 0 during the gain calibration (during HSYNC  
pulse) and during the clamping (CLP pulse). This mode is activated through the serial  
interface by setting bit ‘Blk’ to logic 1 in register DEMUX.  
The TDA8757 provides outputs either on one port (port A) or on two ports (ports A  
and B). The selection is made with the serial interface by setting bit ‘Dmx’ to logic 0 or  
logic 1 in register DEMUX. When just one port is used (Dmx = 0), the unused ports  
are forced to LOW level. When two ports are used (Dmx = 1), it is possible to select  
the port that would provide the odd pixel by setting bit ‘Odda’ to logic 1 or logic 0 in  
register DEMUX; when this bit is logic 1, the odd pixel is output on port A.  
One out-of-range bit exists per channel (ORR, ORG and ORB). It will be at logic 1  
when the signal is out-of-range of the ADC voltage ladder.  
Finally, two configurations are possible: either the port A outputs and the port B  
outputs are both synchronous or they are interleaved. The selection is done by  
setting bit ‘Shift’ to logic 0 or logic 1 in register DEMUX.  
CKREF  
CKADC  
CKREFO  
OUT A  
XXX  
XXX  
ODD  
EVEN  
FCE708  
Fig 7. Definition of odd and even pixels; Edge = 0, Dmx = 0 and Ckrp = 1.  
8.2.5 PLL  
The ADCs are clocked by either the internal PLL locked to the reference clock  
CKREF or an external clock connected to pin CKEXT. All parts of the PLL are on-chip  
except the loop filter capacitance. The selection is performed via the serial interface  
by setting bit ‘Ckext’ in register PHASE (Ckext = 1 when the external clock is used).  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
14 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
The reference clock (CKREF) range is between 15 and 150 kHz. Consequently, the  
VCO minimum frequency is 12 MHz and the maximum frequency is 170 MHz. The  
gain of the VCO part can be controlled through the serial interface, depending on the  
frequency range to which the PLL is locked.  
Moreover, the PLL may be locked either on the rising or on the falling edge of the  
CKREF signal pulses. This choice is made through the serial interface by setting  
bit ‘Edge’ in register CONTROL (rising edge when bit ‘Edge’ = 0).  
The charge pump current (Icp) enables an increase of PLL bandwidth. It is  
programmable through the serial interface by setting bits ‘Ip2’, ‘Ip1’ and ‘Ip0’ in the  
control register (see Table 8).  
Different resistance values (R) for the filter can also be programmed through the  
serial interface by setting the bits ‘Z2’, ‘Z1’ and ‘Z0’ in register VCO (see Table 9).  
To have optimal PLL performance, R and Icp must be chosen so that:  
The result of the product ‘R × I ’ is smaller than a determined limit (Lim)  
cp  
The result of the product ‘R × I ’ is as close as possible to this limit (Lim).  
cp  
0.3π × DRPLL × f ref  
Lim =  
(1)  
--------------------------------------------------  
K0  
where:  
DRPLL = the divider ratio, which is the ratio between the pixel frequency and the  
horizontal line frequency of the incoming signal. The setting of this parameter is  
performed through the serial interface with bits Di0 to Di11. These bits are present  
in the VCO-, divider- and phase registers.  
f
ref = the frequency of the signal.  
K = the VCO gain, which depends on the pixel frequency ranges given in  
Table 10.  
0
In the event that several combinations of R and Icp give the same result, a calculation  
of the damping factor (ξ) for each combination becomes necessary.  
The combination of R and Icp whose damping factor is the closest to 1.5, generates  
the optimal PLL performance.  
K0 Icp  
R CZ  
ξ =  
----------------------------------------------  
(2)  
--------------  
DRPLL (CZ + CP)  
2
where CZ and CP are the external capacitors of the PLL loop filter. The recommended  
values are: CZ = 68 nF and CP = 150 pF.  
The COAST signal is used to disconnect the PLL phase frequency detector during  
the frame flyback (vertical blanking) or during the unavailability of the CKREF signal.  
This signal can normally be derived from the VSYNC signal.  
COAST may be set either active HIGH or active LOW by setting bit ‘Vlevel’ in the  
control register through the serial interface (Vlevel = 0 when HIGH).  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
15 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
It is possible to control the phase of the ADC clock (CKADC) through the serial  
interface with the included digital phase-shift controller. The phase register (5 bits)  
enables the phase to shift by steps of 11.25 °.  
The CKREF signal is re-synchronized by the synchro-block on the CKADC clock. The  
new reference is available on pin CKREFO. This synchronization may be done with  
the CKREF signal directly, or with the output of the divider in the PLL (see Figure 3).  
The selection is done via the serial interface by setting bit ‘Ckrs’ in the phase register  
(Ckrs = 1 when the CKREF signal is used). The polarity of the signal on pin CKREFO  
is controlled through the serial interface by setting bit ‘Ckrp’ in register DEMUX  
(positive polarity if Ckrp = 0). The width of this signal is fixed to 8 clock cycles.  
The PLL also provides a CKDATA clock. This clock is synchronized on the data  
outputs whatever the output mode.  
It is possible to delay the CKDATA clock with a constant time (τ = 3 ns, compared to  
the outputs) by setting bit ‘Ckdd’ to logic 1 in register DEMUX. It is also possible to  
reverse the CKDATA clock, referenced to the outputs, by setting bit ‘Ckdp’ in  
register DEMUX.  
The maximum capacitive load for each clock output is 10 pF, and pin OE switches the  
output status between active and high impedance (OE = HIGH).  
If an external clock is used, it has to be connected to pin CKEXT. Bit ‘Ckext’ and  
bit ‘Ckrs’ in the phase register have to be set at logic 1, and it is also important to  
disconnect the internal PLL by using the following settings:  
Set bit ‘Do’ in the control register to logic 1.  
Set bits ‘Vco1’ and ‘Vco0’ in register VCO to logic 0.  
CKREF  
t
CKAO  
CKADC  
t
CKREFO  
CKREFO  
Ckrp = 0  
8 clock periods  
CKREFO  
Ckrp = 1  
FCE699  
Fig 8. Timing diagram; CKREFO; Dmx = 0.  
There is a delay between the input signal on pin CKREF and the corresponding  
output on pin CKREFO; see Figure 8. This delay is tCKREFO  
:
tCKREFO = either tCKAO (if clock phase >01000) or tCKAO + TCLK(pixel) (if phase <01000)  
tCKAO = tCLK(buffer) + tphase selector  
phase  
2π  
tCLK(buffer) = tbf and tphase selector  
=
TCLK(pixel)  
---------------  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
16 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
9. I2C-bus and 3W-bus interfaces  
9.1 Register definitions  
The configuration of the registers is given in Table 4.  
Table 4: I2C-bus and 3W-bus registers  
Function Subaddress  
name  
Bit definition  
Default  
value  
A7 A6 A5 A4 A3 A2 A1 A0 MSB  
LSB  
SUBADDR  
OFFSETR  
X
X
X
Mode Sa3  
Sa2  
Or2  
Cr2  
Fr2  
Sa1 Sa0  
Or1 Or0  
XXX1 0000  
0111 1111  
0010 0000  
XXX0 0000  
0111 1111  
0010 0000  
XXX0 0000  
0111 1111  
0010 0000  
XXX0 0000  
0000 0111  
1011 1011  
0100 1100  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
Or7  
Or8  
X
Or6  
Cr6  
X
Or5  
Cr5  
X
Or4  
Cr4  
Fr4  
Or3  
Cr3  
Fr3  
COARSER X  
Cr1  
Fr1  
Cr0  
Fr0  
FINER  
X
X
OFFSETG  
Og7  
Og8  
X
Og6  
Cg6  
X
Og5  
Cg5  
Og4  
Cg4  
Og3  
Cg3  
Fg3  
Ob3  
Cb3  
Fb3  
Do  
Og2  
Cg2  
Fg2  
Ob2  
Cb2  
Fb2  
Ip2  
Og1 Og0  
Cg1 Cg0  
Fg1 Fg0  
Ob1 Ob0  
Cb1 Cb0  
Fb1 Fb0  
COARSEG X  
FINEG  
X
X
Slevel Fg4  
OFFSETB  
Ob7  
Ob8  
X
Ob6  
Cb6  
X
Ob5  
Cb5  
X
Ob4  
Cb4  
Fb4  
COARSEB X  
FINEB  
CONTROL X  
X
Vlevel Hlevel Edge Up  
Ip1  
Ip0  
VCO  
X
X
Z2  
Z1  
Z0  
Vco1 Vco0 Di11 Di10 Di9  
DIVIDER  
(LSB)  
Di8  
Di7  
Di6  
Di5  
Di4  
Di3  
Di2  
Di1  
PHASE  
DEMUX  
X
X
X
X
X
X
X
X
1
1
1
1
0
0
0
1
Di0  
Blk  
Ckrs Ckext P4  
P3  
P2  
P1  
P0  
0000 0000  
Cken Ckrp Ckdp Ckdd Shift Odda Dmx 1000 0111  
9.1.1 Subaddress  
All the registers are defined by a subaddress of 7 bits: bit Mode refers to the mode  
which is used with the I2C-bus interface, bits ‘Sa3’ to ‘Sa0’ give the subaddress of  
each register.  
Bit Mode, used only with the I2C-bus, allows two modes for the programming:  
Mode 0  
Mode 1  
Each register is programmed independently, by giving its subaddress  
and its content.  
All the registers are programmed one after the other, by giving this initial  
condition (XXX1 1111) as the subaddress state; thus, the registers are  
changed following the predefined sequence of 16 bytes (from  
subaddress 0000 to 1101).  
The default values correspond to a VESA 1280 × 1024 at 75 Hz graphic mode.  
9.1.2 Offset register  
This register controls the clamp level for the RGB channels. The relationship between  
the programming code and the level of the clamp code is given in Table 5.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
17 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 5: Coding  
Programmed code  
Clamp code  
ADC output  
0
63.5  
63  
62.5  
...  
1
underflow  
2
...  
127  
...  
0
0
...  
...  
254  
255  
256  
...  
63.5  
64  
63 or 64  
64  
120  
...  
120  
...  
287  
136  
136  
The default programmed value is:  
Programmed code = 127  
Clamp code = 0  
ADC output = 0.  
9.1.3 Coarse and Fine registers  
These two registers enable the gain control: the AGC gain with the coarse register,  
and the reference voltage with the fine register. The coarse register programming  
equation is as follows:  
NCOARSE + 1  
N
COARSE + 1  
------------------------------------------------  
ref .(512 NFINE  
1
GAIN =  
×
=
× 32  
(3)  
-----------------------------------------------  
-----  
16  
V
)
NFINE  
Vref 1 –  
-----------------  
32 × 16  
Where: Vref = 2.5 V.  
The gain correspondence is given in Table 6. The gain is linear with reference to the  
programming code (NFINE = 0).  
Table 6: Typical gain correspondence (COARSE)  
NCOARSE  
32  
Gain  
0.825  
2.5  
Vi to be full-scale (V)  
1.212  
0.4  
99  
The default programmed value is as follows:  
N
COARSE = 32  
Gain = 0.825  
V to be full-scale = 1.212.  
i
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
18 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
To modulate this gain, the fine register is programmed using the above equation. With  
a full-scale ADC input, the fine register resolution is a 12 LSB peak-to-peak (see  
Table 7 for NCOARSE = 32).  
Table 7: Typical gain correspondence (FINE)  
NFINE  
0
Gain  
0.825  
0.878  
Vi to be full-scale (V)  
1.212  
1.139  
31  
The default programmed value is: NFINE = 0.  
9.1.4 Control register  
COAST and HSYNC signals can be derived by setting the I2C-bus control bits ‘Vlevel’  
and ‘Hlevel’ respectively. When bits ‘Vlevel’ and ‘Hlevel’ are set to zero, COAST and  
HSYNC are active HIGH.  
Bit ‘Edge’ defines the rising or falling edge of CKREF to synchronize the PLL. It will  
be on the rising edge if the bit is a logic 0 and on the falling edge if the bit is at logic 1.  
Bits ‘Up’ and ‘Do’ are used for the test, to force the charge pump current. These bits  
have to be logic 0 during normal use.  
Bit ‘Cken’ is used for the test to check the CKADC internal signal. This bit has to be  
logic 0 during normal use.  
Bits ‘Ip0’, ‘Ip1’ and ‘Ip2’ control the charge pump current, to increase the bandwidth of  
the PLL, as shown in Table 8.  
Table 8: Charge pump current control  
Ip2  
0
Ip1  
0
Ip0  
0
Current (µA)  
6.25  
12.5  
25  
0
0
1
0
1
0
0
1
1
50  
1
0
0
100  
200  
400  
700  
1
0
1
1
1
0
1
1
1
The default programmed value is as follows:  
Charge pump current = 700 µA  
Bits ‘Up’ and ‘Do’ are used for testing, normally they are set to logic 0  
Rising edge of CKREF: bit ‘Edge’ at logic 0  
COAST and HSYNC inputs are active HIGH: bits ‘Vlevel’ and ‘Hlevel’ at logic 0.  
9.1.5 VCO register  
Bits ‘Z2’, ‘Z1’ and ‘Z0’ enable the internal resistance for the VCO filter to be selected.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
19 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 9: VCO register bits  
Z2  
0
Z1  
0
Z0  
0
Resistance (k)  
high-impedance  
0
0
1
9
0
1
0
6.4  
4.5  
3.2  
2.25  
1.6  
1.1  
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Bits ‘Vco1’ and ‘Vco0’ control the VCO gain.  
Table 10: VCO gain control  
Vco1  
Vco0  
VCO gain (MHz/V)  
Pixel clock  
frequency range  
(MHz)  
0
0
1
1
0
1
0
1
12  
20  
40  
70  
10 to 20  
20 to 40  
40 to 85  
85 to 170  
The default programmed value is as follows:  
Internal resistance = 2.25 kΩ  
VCO gain = 70 MHz/V.  
9.1.6 Divider register  
This register controls the PLL frequency. Bits ‘Di8’ to ‘Di0’ are the LSB bits. The  
default programmed value is 0110 1001 1000 = 1688.  
The MSB bits (‘Di11’, ‘Di10’ and ‘Di9’) and the LSB bit ‘Di0’ have to be programmed  
before bits ‘Di8’ to ‘Di1’ in order to have the required divider ratio. Bit ‘Di0’ is used for  
the parity divider number (Di0 = 0: even number; Di0 = 1: odd number). It should be  
noted that if the I2C-bus programming is done in mode 1 and the bit ‘Di0’ has to be  
toggled, then the registers have to be loaded twice to update the divider ratio.  
9.1.7 Phase register  
Bit ‘Ckext’ is logic 0 when the PLL clock is used, and logic 1 when the external clock  
is used.  
Bit ‘Ckrs’ is logic 1 when the synchronization is done with CKREF (see Figure 3).  
Bits ‘P4’ to ‘P0’ are used to program the phase shift for the clock pixel.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
20 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 11: Phase registers bits  
P4  
0
P3  
0
P2  
0
P1  
0
P0  
0
Phase shift (deg)  
0
0
0
0
0
1
11.25  
...  
...  
1
...  
1
...  
1
...  
1
...  
0
337.5  
348.75  
1
1
1
1
1
The default programmed value is as follows:  
No external clock: bit ‘Ckext’ is logic 0  
Phase shift for CKDATA is 0 degrees.  
9.1.8 DEMUX register  
The default programming is:  
Outputs forced to logic 0 during CLP and HSYNC pulses: bit ‘Blk’ = 1  
CKREFO with positive polarity: bit ‘Ckrp’ = 0  
CKDATA not reversed: bit ‘Ckdp’ = 0  
CKDATA not delayed: bit ‘Ckdd’ = 0  
De-multiplexed outputs: bit ‘Dmx’ = 1  
Interleaved outputs: bit ‘Shift’ = 1  
Odd pixels on port A: bit ‘Odda’ = 1.  
9.1.9 Power-down mode  
When the supply is completely switched off, the registers are set to their default  
values; in that event they have to be reprogrammed if the required settings are  
different (e.g. through an EEPROM)  
When the device is in Power-down mode (pin PD = HIGH), the previously  
programmed register values remain unaffected.  
9.2 I2C-bus protocol  
Table 12: Register format  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
RW  
1
0
0
1
1
A2  
A1  
0
The address of the circuit for the I2C-bus is 1001 1XX0.  
Bits ‘A1’ and ‘A0’ are fixed by the potential on pins A2 and A1. Bit ‘RW’ must always  
be equal to logic 0 because it is not possible to read the data in the register. The  
timing and protocol for the I2C-bus are standard. Two sequences are available;  
see Table 13 and 14.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
21 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 13: Address sequence for mode 0  
S = START condition, A = acknowledge bit (generated by the device) and P = STOP condition.  
S
IC ADDRESS  
A
SUBADDRESS A  
REGISTER1  
DATA  
REGISTER1  
(see Table 4)  
A
SUBADDRESS  
REGISTER2  
A
A
...  
...  
P
P
Table 14: Address sequence for mode 1  
S = START condition, A = acknowledge bit (generated by the device) and P = STOP condition.  
S
IC ADDRESS  
A
SUBADDRESS A  
XX11 1111  
DATA  
REGISTER1  
(see Table 4)  
A
DATA  
REGISTER2  
9.3 3W-bus protocol  
For the 3W-bus, the first byte refers to the register address which is programmed. The  
second byte refers to the data to be sent to the chosen register (see Table 4).  
Using a 3W-bus interface, an indefinite number of ICs can operate on the same  
system. Pin SEN is used to validate the circuits.  
t
= 600 ns  
r3W  
100 ns  
SEN  
1
9
x
1
9
SCL  
SDA  
x
x
x
x
A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
x
FCE707  
t
= 100 ns  
t
= 100 ns  
h3W  
s3W  
Fig 9. 3W-bus protocol.  
10. Limiting values  
Table 15: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VCCA  
Parameter  
Conditions  
Min  
Max  
+7.0  
+7.0  
+7.0  
+7.0  
Unit  
V
analog supply voltage  
logic supply voltage  
digital supply voltage  
output stages supply voltage  
0.3  
0.3  
0.3  
0.3  
VDDD  
V
VCCD  
V
VCCO  
V
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
22 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 15: Limiting values…continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VCC  
supply voltage differences  
V
V
V
V
V
V
CCA VCCD  
CCO VCCD  
CCO VDDD  
CCA VDDD  
CCD VDDD  
CCA VCCO  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
0.3  
+1.0  
+1.0  
+1.0  
+1.0  
+1.0  
+1.0  
+7.0  
V
V
V
V
V
V
V
Vi(RGB)  
RGB input voltage range  
referenced  
to AGND  
Io  
output current  
10  
mA  
°C  
°C  
°C  
Tstg  
Tamb  
Tj  
storage temperature  
ambient temperature  
junction temperature  
55  
0
+150  
70  
150  
11. Thermal characteristics  
Table 16: Typical thermal characteristics  
Symbol  
Parameter  
Conditions  
Value  
Unit  
Rth(j-a)  
thermal resistance from junction to in free air  
ambient  
30  
K/W  
12. Characteristics  
Table 17: Characteristics  
VCCA = 4.75 V to 5.25 V (referenced to AGND); VCCD = 4.75 V to 5.25 V (referenced to DGND); VDDD = 4.75 V to 5.25 V  
(referenced to VSSD); VCCO = 4.75 V to 5.25 V (referenced to OGND); AGND, DGND, OGND and VSS connected together;  
Tamb = 0 to 70 °C; typical values measured at VCCA = VDDD = VCCD = VCCO = 5 V and Tamb = 25 °C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supplies  
VCCA(PLL)  
VCCA(R)  
VCCA(G)  
VCCA(B)  
VDDD  
,
analog supply voltage for PLL and  
the RGB channels  
4.75  
5.0  
5.25  
V
,
,
logic supply voltage for I2C-bus  
and 3W-bus  
4.75  
5.0  
5.25  
V
VCCD  
VCCO(PLL)  
VCCO(R)  
VCCO(G)  
VCCO(B)  
digital supply voltage  
4.75  
4.75  
5.0  
5.0  
5.25  
5.25  
V
V
,
output stages supply voltage for  
PLL and the RGB channels  
,
,
ICCA(PLL)  
analog PLL supply current  
34  
mA  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
23 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 17: Characteristics…continued  
VCCA = 4.75 V to 5.25 V (referenced to AGND); VCCD = 4.75 V to 5.25 V (referenced to DGND); VDDD = 4.75 V to 5.25 V  
(referenced to VSSD); VCCO = 4.75 V to 5.25 V (referenced to OGND); AGND, DGND, OGND and VSS connected together;  
Tamb = 0 to 70 °C; typical values measured at VCCA = VDDD = VCCD = VCCO = 5 V and Tamb = 25 °C; unless otherwise  
specified.  
Symbol  
ICCA(R)  
ICCA(G)  
ICCA(B)  
IDDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
,
,
analog supply current for the  
RGB channels  
135  
mA  
logic supply current for I2C-bus  
and 3W-bus  
1
mA  
ICCD  
ICCO(R)  
ICCO(G)  
ICCO(B)  
digital supply current  
95  
80  
mA  
mA  
,
,
,
output stages supply current for  
the RGB channels and PLL  
sinusoidal input  
ICCO(PLL)  
VCC  
supply voltage difference  
V
V
V
V
V
V
CCA VCCD  
CCO VCCD  
CCO VDDD  
CCA VDDD  
CCD VDDD  
CCA VCCO  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
+0.25  
+0.25  
+0.25  
+0.25  
+0.25  
+0.25  
V
V
V
V
V
V
Ptot  
Ppd  
total power dissipation  
sinusoidal input  
1.5  
55  
W
mW  
power dissipation in Power-down  
mode  
R, G and B amplifiers  
B
bandwidth  
3 dB; Tamb = 25 °C  
250  
MHz  
ns  
tset(ADC+AGC)  
settling time of the block  
ADC + AGC  
full-scale (black to white)  
transition; input signal  
settling time <1 ns; settling  
to within 2 LSB  
4
GCOARSE  
coarse gain range  
minimum coarse gain;  
code = 32  
1.67  
8
dB  
maximum coarse gain;  
code = 99  
dB  
GFINE  
fine gain correction range  
minimum fine input  
code = 0  
0
dB  
maximum fine input  
code = 31  
0.5  
325  
dB  
Gamp/T  
amplifier gain stability variation  
with temperature  
Vref with 100 ppm/°C  
maximum variation  
ppm/°C  
IGC  
gain current  
±20  
µA  
tstab  
amplifier gain adjustment speed HSYNC active; capacitors  
from minimum to maximum gain on pins 8, 16 and 24 are  
22 nF  
25  
mdB/µs  
Vref  
amplifier reference voltage  
2.5  
V
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
24 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 17: Characteristics…continued  
VCCA = 4.75 V to 5.25 V (referenced to AGND); VCCD = 4.75 V to 5.25 V (referenced to DGND); VDDD = 4.75 V to 5.25 V  
(referenced to VSSD); VCCO = 4.75 V to 5.25 V (referenced to OGND); AGND, DGND, OGND and VSS connected together;  
Tamb = 0 to 70 °C; typical values measured at VCCA = VDDD = VCCD = VCCO = 5 V and Tamb = 25 °C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Iref  
amplifier reference voltage  
current  
50  
µA  
Vi(p-p)  
input voltage  
(peak-to-peak value)  
corresponding to full-scale  
input at high gain  
0.4  
V
V
corresponding to full-scale  
output at low gain  
1.212  
Ci  
input capacitance  
10  
1
pF  
%
GE(rms)  
channel-to-channel gain  
matching (RMS value)  
maximum coarse gain;  
Tamb = 25 °C  
minimum coarse gain;  
Tamb = 25 °C  
5
%
Clamps  
PCLP  
precision  
maximum black level noise  
on RGB channels = 10 mV;  
Tamb = 25 °C  
0.5  
LSB  
tW(CLP)  
CLPE  
clamp pulse width  
500  
2000  
ns  
channel-to-channel clamp  
matching  
0.5  
LSB  
Aoff  
code clamp reference  
clamp register input  
code = 0  
63.5  
+64  
LSB  
LSB  
LSB  
LSB  
clamp register input  
code = 255  
clamp register input  
code = 256  
+120  
+135.5  
clamp register input  
code = 287  
Phase-locked loop (PLL)  
jPLL(max)(p-p)  
long term PLL phase jitter  
fclk = 170 MHz  
360  
ps  
(peak-to-peak value)  
DR  
divider ratio  
100  
15  
10  
4095  
150  
170  
2
fref  
reference clock frequency  
output clock frequency  
phase drift[1]  
kHz  
MHz  
step  
deg  
fPLL  
∆Φstep  
Φstep  
ADCs  
fs  
standard at 160 Msps  
phase shift step  
Tamb = 25 °C  
11.25  
maximum sampling frequency  
DC integral non-linearity  
170  
MHz  
LSB  
INL  
from IC analog input to  
digital output; sinusoidal  
input; fclk = 170 MHz  
±0.5  
±1.5  
DNL  
DC differential non-linearity  
from IC analog input to  
digital output; sinusoidal  
input; fclk = 170 MHz  
±0.4  
±1  
LSB  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
25 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 17: Characteristics…continued  
VCCA = 4.75 V to 5.25 V (referenced to AGND); VCCD = 4.75 V to 5.25 V (referenced to DGND); VDDD = 4.75 V to 5.25 V  
(referenced to VSSD); VCCO = 4.75 V to 5.25 V (referenced to OGND); AGND, DGND, OGND and VSS connected together;  
Tamb = 0 to 70 °C; typical values measured at VCCA = VDDD = VCCD = VCCO = 5 V and Tamb = 25 °C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ENOB[2]  
effective number of bits  
7.4  
bits  
Signal-to-noise ratio  
S/N  
signal-to-noise ratio  
fclk = 170 MHz  
fclk = 170 MHz  
46  
57  
dB  
dB  
Spurious free dynamic range  
SFDR  
spurious free dynamic range  
Clock timing output (CKDATA)  
ηext  
ADC clock duty factor  
maximum clock frequency  
45  
50  
55  
%
fclk(max)  
170  
MHz  
Clock timing input (CKEXT)  
fclk(max) maximum clock frequency  
tCPH  
170  
MHz  
ns  
clock pulse width HIGH  
clock pulse width LOW  
2.5  
2.5  
tCPL  
ns  
Data timing[3]  
td(s)  
sampling delay time  
output data set-up time  
output hold time  
all times referenced to 50% of  
the rising edge of CKDATA; see  
Figure 10  
7.5  
7  
1
ns  
ns  
ns  
tsu(d)(o)  
th(o)  
3-state output delay time  
tdZH  
tdZL  
tdHZ  
tdLZ  
output enable HIGH  
15  
18  
13  
10  
ns  
ns  
ns  
ns  
output enable LOW  
output disable HIGH  
output disable LOW  
Data and sync outputs  
VOL  
VOH  
IOL  
LOW-level output voltage  
Io = 1 mA  
0.4  
V
HIGH-level output voltage  
LOW-level output current  
HIGH-level output current  
load capacitance  
Io = 1 mA  
2.4  
V
VOL = 0.2 V  
VOH = 3.4 V  
0.2  
0.3  
10  
mA  
mA  
pF  
IOH  
CL  
TTL digital inputs (CKREF, COAST, INV, HSYNC, CLP, PD, DIS, I2C/3W, OE, CKEXT)  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
input impedance  
0.8  
V
2.0  
V
400  
35  
tbf  
tbf  
µA  
µA  
kΩ  
pF  
IIH  
Zi  
Ci  
input capacitance  
Sync on green input  
Vsync(G)  
sync on green pulse amplitude[4] Slevel = 0; see Figure 5  
300  
150  
600  
300  
mV  
mV  
Slevel = 1; see Figure 5  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
26 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 17: Characteristics…continued  
VCCA = 4.75 V to 5.25 V (referenced to AGND); VCCD = 4.75 V to 5.25 V (referenced to DGND); VDDD = 4.75 V to 5.25 V  
(referenced to VSSD); VCCO = 4.75 V to 5.25 V (referenced to OGND); AGND, DGND, OGND and VSS connected together;  
Tamb = 0 to 70 °C; typical values measured at VCCA = VDDD = VCCD = VCCO = 5 V and Tamb = 25 °C; unless otherwise  
specified.  
Symbol  
3W-bus  
trst  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
reset time of the chip before  
3-wire communication  
600  
100  
100  
ns  
ns  
ns  
tsu  
th  
data set-up time for 3-wire  
communication  
data hold time for 3-wire  
communication  
I2C-bus[5]  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
for SCL and SDA  
0.3VDD  
V
V
VIH  
for SCL and SDA;  
VPU = 5 V  
3
for SCL and SDA;  
VPU = 3 V  
0.7VDD  
fSCL  
tBUF  
clock frequency  
0
100  
kHz  
time the bus must be free before  
new transmission can start  
4.7  
µs  
tHD;STA  
tSU;STA  
tLOW  
tHIGH  
tSU;DAT  
tHD;DAT  
tr  
start condition hold time  
start condition set-up time  
LOW-level clock period  
HIGH-level clock period  
data set-up time  
4.0  
4.7  
4.7  
4.0  
250  
0
µs  
µs  
µs  
µs  
ns  
ns  
µs  
ns  
µs  
pF  
repeated start  
data hold time  
SDA and SCL rise time  
SDA and SCL fall time  
stop condition set-up time  
bus line capacitive loading  
fSCL = 100 kHz  
fSCL = 100 kHz  
1.0  
300  
tf  
tSU;STO  
Cb  
4.0  
400  
[1] From 25 to 70 °C, the edge of the clock CKDATA has a shift of 1 phase compared to CKREF.  
[2] Effective bits are obtained from a Fast Fourier Transform (FFT) treatment taking 8000 acquisition points per equivalent fundamental  
period. The calculation takes into account all harmonics and noise up to half clock frequency (NYQUIST frequency).  
Conversion-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.  
[3] Output data acquisition: the output data is available after the maximum sampling delay time td(s). All the timings are given for a 10 pF  
capacitive load.  
[4] Pulse relative to the blank level.  
[5] The I2C-bus timings are given for use of the bus at a frequency of 100 kbit/s (100 kHz). This bus could be used at a frequency of  
400 kbit/s (400 kHz).  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
27 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Table 18: Examples of PLL settings and performance  
VCCA = VDDD = VCCD = VCCO = 5 V; Tamb = 25 °C.  
Video standards  
fref  
fclk  
N
KO  
CZ  
CP  
IP  
Z
Long-term time jitter[1]  
(kHz) (MHz)  
(MHz/V) (nF) (nF) (µA) (k)  
RMS-value  
(ps)  
peak-to-peak  
value (ps)  
VGA: 640 × 480  
31.469 25.175 800  
20  
68  
68  
0.15 200 4.5 242  
1452  
1350  
VESA: 800 × 600  
(SVGA 72 Hz)  
48.08 50 1040 40  
0.15 700 1.6 225  
0.15 400 4.5 120  
0.15 400 3.2 98  
0.15 400 4.5 70  
0.15 400 4.5 65  
VESA: 1024 × 768  
(XGA 75 Hz)  
60.02 78.75 1312 40  
68  
68  
68  
68  
720  
588  
420  
390  
VESA: 1280 × 1024  
(SXGA 60 Hz)  
63.98 108  
80.00 135  
75.00 162  
1688 70  
1688 70  
2160 70  
VESA: 1280 × 1024  
(SXGA 75 Hz)  
VESA: 1600 × 1200  
(UXGA 60 Hz)  
[1] PLL long-term time jitter is measured at the end of the video line, where it is at its maximum.  
t
t
CPL  
CPH  
n
50%  
CKDATA  
DATA  
t
su(d)(o)  
2.4 V  
0.4 V  
I
I
I
n+1  
n1  
n
t
h(o)  
t
d(s)  
V
in  
Sample n+2  
Sample n+1  
Sample n+3  
Sample n  
FCE700  
Fig 10. Data timing; Dmx = 0; n = even pixel.  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
RGBIN  
CKADC  
CKDATA  
OUT A  
n-2  
n-1  
n
n+1  
n+2  
n+3  
n+4  
n+5  
FCE701  
Fig 11. Timing diagram; single port mode; Dmx = 0, Ckdd = 0, Ckdp = 0; n = even pixel.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
28 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
RGBIN  
CKADC  
CKDATA  
OUT A  
OUT B  
n-2  
n
n+2  
n+4  
n-1  
n+1  
n+3  
FCE702  
Fig 12. Timing diagram; dual port mode, interleaved outputs, even pixels on port A; Dmx = 1, Shift = 1, Odda = 0,  
Ckdd = 0, Ckdp = 0; n = even pixel.  
RGBIN  
CKADC  
CKDATA  
OUT A  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
n-1  
n+1  
n+3  
OUT B  
n-2  
n
n+2  
n+4  
FCE703  
Fig 13. Timing diagram; dual port mode, interleaved outputs, odd pixels on port A; Dmx = 1, Shift = 1, Odda = 1,  
Ckdd = 0, Ckdp = 0; n = even pixel.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
29 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
RGBIN  
CKADC  
CKDATA  
n-4  
n-3  
n-2  
n-1  
n
n+2  
n+3  
OUT A  
OUT B  
n+1  
FCE704  
Fig 14. Timing diagram; dual port mode, synchronized outputs, even pixels on port A; Dmx = 1, Shift = 0,  
Odda = 0, Ckdd = 0, Ckdp = 0; n = even pixel.  
RGBIN  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
CKADC  
CKDATA  
OUT A  
n-1  
n-2  
n+1  
n
n+3  
n+2  
n+5  
n+4  
OUT B  
FCE705  
Fig 15. Timing diagram; dual port mode, synchronized outputs, odd pixels on port A; Dmx = 1, Shift = 0, Odda = 1,  
Ckdd = 0, Ckdp = 0; n = even pixel.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
30 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
13. Application information  
150 pF  
68 nF  
n.c.  
108  
n.c.  
1
10 nF  
B7  
DEC2  
R
B6  
R
2
107  
VREF  
3
10 nF  
106  
B5  
DEC1  
R
4
105  
AGC  
R
B4  
R
5
104  
10 nF  
BOT  
R
B3  
R
6
103  
22 nF  
GAINC  
R
B2  
R
7
102  
4.7 nF  
CLP  
B1  
R
R
R
8
101  
10 nF  
DEC  
B0  
R
9
100  
V
A7  
CCA(R)  
IN  
R
G
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
99  
100 nF  
A6  
G
RIN  
98  
n.c.  
A5  
G
97  
AGND  
R
A4  
G
75 or 50  
96  
A3  
n.c.  
G
95  
AGC  
G
A2  
G
94  
10 nF  
BOT  
A1  
G
G
93  
22 nF  
10 nF  
GAINC  
G
A0  
G
OR  
92  
4.7 nF  
CLP  
G
G
G
91  
TDA8757HL  
V
DEC  
CCO(G)  
OGND  
90  
V
G
CCA(G)  
IN  
G
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
100 nF  
V
CCO(G)  
GIN  
GIN  
AGND  
IN  
OGND  
G
G
B7  
G
B6  
75 or 50Ω  
470 nF  
SOG  
SOG  
G
O
B5  
G
B4  
n.c.  
AGC  
B
B
B
B
B
G
10 nF  
BOT  
B3  
G
B2  
22 nF  
10 nF  
GAINC  
G
4.7 nF  
CLP  
DEC  
B1  
G
B0  
G
V
A7  
B
A6  
CCA(B)  
100 nF  
IN  
B
B
BIN  
AGND  
B
A5  
B
A4  
n.c.  
n.c.  
n.c.  
75 or 50Ω  
B
A3  
B
A2  
B
GND  
DP  
(tbf)  
10  
kΩ  
10  
kΩ  
005aaa010  
V
V
PU  
PU  
For interfacing the 5 V digital outputs of TDA8757 to devices with 3 V compliant inputs, a resistor bridge (220 in series,  
820 to ground) should be applied to each digital output.  
Fig 16. Application diagram.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
31 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
14. Package outline  
HLQFP144: plastic thermal enhanced low profile quad flat package; 144 leads;  
body 20 x 20 x 1.4 mm; exposed die pad  
SOT612-1  
y
X
A
D
h
108  
109  
73  
72  
Z
E
e
E
H
A
E
2
h
A
E
(A )  
3
A
1
θ
w M  
p
L
p
b
L
pin 1 index  
detail X  
37  
144  
1
36  
v
M
A
Z
w M  
D
b
p
e
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
D
E
E
e
H
H
E
L
L
v
w
y
Z
Z
θ
1
2
3
p
h
h
D
p
D
E
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 20.1 7.1 20.1 7.1  
0.17 0.09 19.9 6.9 19.9 6.9  
22.15 22.15  
21.85 21.85  
0.75  
0.45  
1.4  
1.1  
1.4  
1.1  
mm  
1.6  
0.25  
1
0.2 0.08 0.08  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-03-22  
02-01-25  
SOT612-1  
MS-026  
Fig 17. Package outline.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
32 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
15. Handling information  
Inputs and outputs are protected against electrostatic discharge in normal handling.  
However, to be completely safe, it is desirable to take normal precautions appropriate  
to handling integrated circuits.  
16. Soldering  
16.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account  
of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit  
Packages (document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine  
pitch SMDs. In these situations reflow soldering is recommended.  
16.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling  
or pressure-syringe dispensing before package placement.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 to 250 °C. The top-surface  
temperature of the packages should preferable be kept below 220 °C for thick/large  
packages, and below 235 °C small/thin packages.  
16.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging  
and non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal  
results:  
Use a double-wave soldering method comprising a turbulent wave with high  
upward pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
33 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle  
to the transport direction of the printed-circuit board. The footprint must  
incorporate solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the  
need for removal of corrosive residues in most applications.  
16.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low  
voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time  
must be limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 to 5 seconds between 270 and 320 °C.  
16.5 Package related soldering information  
Table 19: Suitability of surface mount IC packages for wave and reflow soldering  
methods  
Package  
Soldering method  
Wave  
Reflow[1]  
suitable  
suitable  
BGA, HBGA, LFBGA, SQFP, TFBGA  
not suitable  
not suitable[2]  
HBCC, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, HVQFN, SMS  
PLCC[3], SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
suitable  
suitable  
not recommended[3][4]  
not recommended[5]  
[1] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal  
or external package cracks may occur due to vaporization of the moisture in them (the so called  
popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated  
Circuit Packages; Section: Packing Methods.  
[2] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom  
side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with  
the heatsink on the top side, the solder might be deposited on the heatsink surface.  
[3] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[4] Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger  
than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[5] Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
34 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
17. Revision history  
Table 20: Revision history  
Rev Date  
CPCN  
-
Description  
07 20020228  
Preliminary data (9397 750 09457); seventh version  
9397 750 09457  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
Preliminary data  
Rev. 07 — 28 February 2002  
35 of 37  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
18. Data sheet status  
[1]  
[2]  
Data sheet status  
Product status  
Definition  
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips Semiconductors  
reserves the right to change the specification in any manner without notice.  
Preliminary data  
Product data  
Qualification  
Production  
This data sheet contains data from the preliminary specification. Supplementary data will be published at a  
later date. Philips Semiconductors reserves the right to change the specification without notice, in order to  
improve the design and supply the best possible product.  
This data sheet contains data from the product specification. Philips Semiconductors reserves the right to  
make changes at any time in order to improve the design, manufacturing and supply. Changes will be  
communicated according to the Customer Product/Process Change Notification (CPCN) procedure  
SNW-SQ-650A.  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
19. Definitions  
Short-form specification The data in  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
a short-form specification is  
Right to make changes — Philips Semiconductors reserves the right to  
make changes, without notice, in the products, including circuits, standard  
cells, and/or software, described or contained herein in order to improve  
design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
21. Licenses  
Purchase of Philips I2C components  
Purchase of Philips I2C components conveys a license  
under the Philips’ I2C patent to use the components in the  
I2C system provided the system conforms to the I2C  
specification defined by Philips. This specification can be  
ordered using the code 9398 393 40011.  
20. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
Contact information  
For additional information, please visit http://www.semiconductors.philips.com.  
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.  
36 of 37  
9397 750 09457  
Preliminary data  
Rev. 07 — 28 February 2002  
TDA8757  
Triple 8-bit ADC 170 Msps  
Philips Semiconductors  
Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
20  
21  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Licenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 7  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 7  
8
8.1  
8.2  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
Functional description . . . . . . . . . . . . . . . . . . 11  
Analog video inputs . . . . . . . . . . . . . . . . . . . . 11  
Clamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Variable gain amplifiers . . . . . . . . . . . . . . . . . 13  
Important recommendations. . . . . . . . . . . . . . 13  
ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
9
9.1  
I2C-bus and 3W-bus interfaces. . . . . . . . . . . . 17  
Register definitions . . . . . . . . . . . . . . . . . . . . . 17  
Subaddress. . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Offset register . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Coarse and Fine registers . . . . . . . . . . . . . . . 18  
Control register . . . . . . . . . . . . . . . . . . . . . . . . 19  
VCO register. . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Divider register . . . . . . . . . . . . . . . . . . . . . . . . 20  
Phase register. . . . . . . . . . . . . . . . . . . . . . . . . 20  
DEMUX register . . . . . . . . . . . . . . . . . . . . . . . 21  
Power-down mode . . . . . . . . . . . . . . . . . . . . . 21  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 21  
3W-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 22  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
9.1.6  
9.1.7  
9.1.8  
9.1.9  
9.2  
9.3  
10  
11  
12  
13  
14  
15  
16  
16.1  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 22  
Thermal characteristics. . . . . . . . . . . . . . . . . . 23  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 23  
Application information. . . . . . . . . . . . . . . . . . 31  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 32  
Handling information. . . . . . . . . . . . . . . . . . . . 33  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 33  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 33  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 34  
Package related soldering information . . . . . . 34  
16.2  
16.3  
16.4  
16.5  
17  
18  
19  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 35  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 36  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
© Koninklijke Philips Electronics N.V. 2002.  
Printed in The Netherlands  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 28 February 2002  
Document order number: 9397 750 09457  

相关型号:

TDA8758

YC 8-bit low-power analog-to-digital video interface
NXP

TDA8758G

YC 8-bit low-power analog-to-digital video interface
NXP

TDA8758G/C1

IC 2-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, PLASTIC, SOT-313-2, LQFP-48, Analog to Digital Converter
NXP

TDA8758GBE

IC 2-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, PLASTIC, SOT-313-2, LQFP-48, Analog to Digital Converter
NXP

TDA8758GBE-S

暂无描述
NXP

TDA8758GP

暂无描述
NXP

TDA8758GPB

暂无描述
NXP

TDA8760

10-bit high-speed analog-to-digital converter
NXP

TDA8760K

10-bit high-speed analog-to-digital converter
NXP

TDA8760K/2

10-bit high-speed analog-to-digital converter
NXP

TDA8760K/4

10-bit high-speed analog-to-digital converter
NXP

TDA8760K/4A

IC 1-CH 10-BIT DELTA-SIGMA ADC, PARALLEL ACCESS, PQCC44, Analog to Digital Converter
NXP