TDA8932BTW-T [NXP]

IC,AUDIO AMPLIFIER,DUAL,TSSOP,32PIN,PLASTIC;
TDA8932BTW-T
型号: TDA8932BTW-T
厂家: NXP    NXP
描述:

IC,AUDIO AMPLIFIER,DUAL,TSSOP,32PIN,PLASTIC

放大器 功率放大器
文件: 总40页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
OBJECTIVE  
DEVICE SPECIFICATION  
This Device Specification contains data for product  
developm ent. Philips Sem iconductors reserves the right to  
change the specification in any m anner without notice.  
TDA8932  
2x15W class D Power Amplifier  
Confidential  
Objective Device Specification  
Date:  
Version:  
Sept 13, 2005  
1.7  
Previous date: July 7, 2005  
Philips Semiconductors  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
Change history  
1.0 22-sep-04  
Initial version  
1.1  
1.2  
1.3  
21-oct-04  
17-nov-04  
24-nov-04  
Updated after feedback design team  
Redefinition of TDA8932: 1xBTL or 2xSE  
Updated after feedback design team  
Updated after feedback customer  
Updated with new pinning  
1.4 13-Dec-04  
1.5  
1.6  
1.7  
8-April-05  
7-July-05  
13-Sept-05 General update  
Updated with test results and pin configuration  
September 2005, version 1.7  
3
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
CONTENTS  
CONTENTS  
4
7
7
7
8
8
9
1
2
3
4
5
6
FEATURES  
APPLICATIONS  
GENERAL DESCRIPTION  
QUICK REFERENCE DATA  
ORDERING INFORMATION  
BLOCKDIAGRAM  
7
PINNING INFORMATION  
Pinning  
10  
10  
11  
7.1  
7.2  
Pin description  
8
FUNCTIONAL DESCRIPTION  
General  
12  
12  
12  
13  
8.1  
8.2  
8.3  
8.4  
Mode selection / interfacing  
Pulse width modulation frequency  
Protections  
13  
13  
13  
14  
14  
15  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
Thermal foldback  
Over temperature protection (OTP)  
Over current protection (OCP)  
Window protection (WP)  
Supply voltage protections  
8.5  
Diagnostic Output  
16  
16  
17  
8.6  
8.7  
Differential inputs  
Half supply voltage output  
9
INTERNAL CIRCUITRY  
18  
September 2005, version 1.7  
4
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
10  
11  
12  
13  
14  
15  
16  
17  
LIMITING VALUES  
25  
25  
25  
26  
28  
29  
30  
THERMAL CHARACTERISTICS  
QUALITY SPECIFICATION  
STATIC CHARACTERISTICS  
SWITCHING CHARACTERISTICS  
DYNAMIC SE AC CHARACTERISTICS  
DYNAMIC BTL AC CHARACTERISTICS  
APPLICATION INFORMATION  
32  
32  
32  
33  
33  
35  
36  
36  
36  
37  
17.1 Thermal behaviour (PCB considerations)  
17.2 Thermal foldback  
17.3 Output Power estimation  
17.4 External clock  
17.5 Pumping effects  
17.6 Gain setting  
17.7 Low pass filter considerations  
17.8 Curves measured in reference design  
17.9 Typical application schematics  
18  
19  
PACKAGE OUTLINE  
SOLDERING  
39  
40  
September 2005, version 1.7  
5
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
LIST OF FIGURES  
Figure 1: Block diagram  
Figure 2: Pin configuration  
Figure 3: Diagnostic Output for different kind of short circuit conditions.  
Figure 4: Input configuration for mono BTL application.  
9
10  
16  
17  
Figure 5: Output power stereo SE (@ THD=10%) and required Rth(j-a) versus supply voltage (Tj=125°C,  
dT=70°C)  
31  
Figure 6: Output power mono BTL application (@ THD=10%) and required Rth(j-a) versus supply voltage  
(Tj=125°C, dT=70°C)  
31  
34  
35  
36  
37  
37  
38  
Figure 7: Master slave concept in two chip application  
Figure 8: Input/speaker configuration for stereo SE application for reducing pumping effects.  
Figure 9: Input configuration for reducing gain.  
Figure 10: Typical application diagram for 2 x SE (asymmetrical supply)  
Figure 11: Typical application diagram for 1 x BTL (asymmetrical supply)  
Figure 12: Typical application diagram for 2 x SE + 1 x BTL (asymmetrical supply)  
LIST OF TABLES  
Table 1: Quick reference data  
Table 2: Ordering information  
8
8
Table 3: Pinning description  
11  
12  
15  
25  
25  
26  
28  
29  
30  
34  
36  
Table 4: Mode selection TDA8932  
Table 5: Overview protections TDA8932  
Table 6: Limiting values  
Table 7: Thermal characteristics  
Table 8: Static characteristics  
Table 9: Switching characteristics  
Table 10: Dynamic AC SE characteristics  
Table 11: Dynamic AC BTL characteristics  
Table 12: Master/Slave configuration  
Table 13: Filter components value  
September 2005, version 1.7  
6
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
1 FEATURES  
High efficiency  
Application without heatsink using thermally enhanced small outline package  
Operating voltage from 10V to 36V asymmetrical or +/-5V to +/-18V symmetrical  
Thermally protected  
Thermal foldback  
Full short circuit proof across load and to supply lines (using advanced current protection)  
Switchable internal / external oscillator (master-slave setting)  
No pop noise  
Low quiescent current  
Low sleep current  
Mono bridged tied load (full bridge) or stereo single ended (half bridge) application  
Full differential inputs  
2 APPLICATIONS  
Television sets CRT/LCD/plasma TV/projection TV  
Monitors  
3 GENERAL DESCRIPTION  
The TDA8932 is a high efficiency class-D amplifier with low dissipation.  
The maximum output power is 2x25W in stereo half-bridge application (Rl=4 ohm) or 1x50W in mono full  
bridge application (Rl=8 ohm). Due to the high efficiency the device can be used without any external heat  
sink when playing music. If proper cooling via the PCB is implemented, a continuous output power of 2 x  
15W is feasible. Due to the implementation of thermal foldback even for high supply voltages and/or lower  
load impedances the device can be operated with considerable music output power without the need for  
an external heat sink.  
The device has two full differential inputs driving four integrated power switches, combined in two  
independent outputs. It can be used as mono full bridge (BTL) or as stereo half bridge (SE).  
September 2005, version 1.7  
7
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
4 QUICK REFERENCE DATA  
Table 1: Quick reference data  
SYMBOL  
PARAMETER  
CONDITION  
MIN.  
TYP.  
MAX.  
UNIT  
General; Vp=29V  
Vp  
Isleep  
Operating supply voltage  
Sleep current  
10  
29  
80  
36  
V
µA  
Vpower up < 0.8 V  
Vengage < 0.8 V  
Ip  
Quiescent current  
Without load,  
20  
mA  
snubbers, output filter  
Stereo SE channel  
PoutSE Continuous-time RMS  
14  
14  
23  
15  
15  
25  
W
W
W
RL= 4; THD = 10%  
Vp=22V  
RL= 8; THD = 10%  
Vp=29V  
RL= 4; THD = 10%  
Vp=29V  
Output power per  
channel  
Peak output power  
(short-time)  
Mono BTL channel  
PoutBTL Continuous RMS Output  
28  
14  
48  
30  
15  
50  
W
W
W
RL= 8; THD = 10%  
Vp=22V  
RL= 4; THD = 10%  
Vp=12V  
RL= 8; THD = 10%  
Vp=29V  
power  
Peak output power  
(short-time)  
5 ORDERING INFORMATION  
Table 2: Ordering information  
TYPE  
NUMBER  
TDA8932T  
PACKAGE  
DESCRIPTION  
Plastic small outline package; 32 leads; body  
width 7.5 mm  
NAME  
SO32  
VERSION  
SOT287-1  
September 2005, version 1.7  
8
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
6 BLOCKDIAGRAM  
OSCREF  
VDDA  
OSCIO  
VDDP1  
29  
10  
8
31  
Oscillator  
28  
27  
BOOT1  
OUT1  
IN1P  
IN1N  
2
3
VSSD  
PWM  
Modulator  
Driver  
High  
CTRL  
Driver  
Low  
26 VSSP1  
25 STAB1  
Stabi12V  
VSSP  
Stabi12V  
12  
INREF  
Manager  
+
24 STAB2  
VSSP  
BOOT2  
21  
20  
15  
14  
IN2P  
IN2N  
VDDP2  
OUT2  
PWM  
Modulator  
Driver  
High  
22  
CTRL  
Driver  
Low  
VSSP2  
DREF  
23  
18  
DIAG  
4
PROTECTIONS  
OVP, OCP, OTP,  
UVP, TF, WP  
REG5V  
VSSD  
CGND 7  
VDDA  
VSSA  
11 HVPREF  
POWER UP  
6
Mode  
HVP1  
30  
ENGAGE 5  
19 HVP2  
TDA8932  
1, 16, 17, 32  
VSSD/HW  
9
13  
VSSA  
TEST  
Figure 1: Block diagram  
September 2005, version 1.7  
9
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
7 PINNING INFORMATION  
7.1 Pinning  
VSSD / HW  
OSCIO  
HVP1  
1
2
3
32  
31  
30  
29  
28  
VSSD / HW  
IN1P  
IN1N  
VDDP1  
BOOT1  
OUT1  
DIAG  
4
ENGAGE  
POWER UP  
CGND  
5
6
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSSP1  
STAB1  
STAB2  
VSSP2  
OUT2  
7
TDA8932  
8
VDDA  
VSSA  
9
SO32  
OSCREF  
HVPREF  
INREF  
10  
11  
12  
13  
14  
15  
16  
BOOT2  
VDDP2  
HVP2  
TEST  
IN2N  
DREF  
IN2P  
VSSD / HW  
VSSD / HW  
Figure 2: Pin configuration  
September 2005, version 1.7  
10  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
7.2 Pin description  
Table 3: Pinning description  
Pin name  
VSSD / HW  
IN1P  
Pin no. Description  
1
2
Negative digital supply voltage and handle wafer connection  
Positive audio input for channel 1  
IN1N  
3
Negative audio input for channel 1  
DIAG  
4
(Open-drain) diagnostic output  
ENGAGE  
POWER UP  
CGND  
5
6
7
8
Engage input; switch between mute and operating mode  
Power up input; switch between sleep and mute mode  
Control ground; reference for POWER UP, ENGAGE, DIAG  
Positive analog supply voltage  
VDDA  
VSSA  
9
Negative analog supply voltage  
OSCREF  
10  
Master/slave setting oscillator. Set internal oscillator  
frequency (only master-setting)  
HVPREF  
INREF  
TEST  
IN2N  
IN2P  
VSSD / HW  
VSSD / HW  
DREF  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Decoupling for internal half supply voltage reference  
Decoupling for input reference voltage  
Test signal input; for testing purpose only  
Negative audio input for channel 2  
Positive audio input for channel 2  
Negative digital supply voltage and handle wafer connection  
Negative digital supply voltage and handle wafer connection  
Decoupling internal 5V regulator for logic supply  
Half supply voltage output for charging single-ended  
capacitor for channel 2  
HVP2  
VDDP2  
BOOT2  
OUT2  
VSSP2  
STAB2  
STAB1  
VSSP1  
OUT1  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Positive power supply voltage for channel 2  
Bootstrap capacitor for channel 2  
PWM output channel 2  
Negative power supply voltage for channel 2  
Decoupling internal 12V regulator for the drivers channel 2  
Decoupling internal 12V regulator for the drivers channel 1  
Negative power supply voltage for channel 1  
PWM output channel 1  
BOOT1  
VDDP1  
HVP1  
Bootstrap capacitor for channel 1  
Positive power supply voltage for channel 1  
Half supply voltage output for charging single-ended  
capacitor for channel 1  
OSCIO  
VSSD / HW  
31  
32  
Input/output for external oscillator (slave-setting)  
Negative digital supply voltage and handle wafer connection  
September 2005, version 1.7  
11  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
8 FUNCTIONAL DESCRIPTION  
8.1 General  
The TDA8932 is a mono full bridge (BTL) or stereo half bridge (SE) audio power amplifier using class-D  
technology. The audio input signal is converted into a Pulse Width Modulated (PWM) signal via an analog  
input stage and PWM modulator. To enable the output power DMOS transistors to be driven, this digital  
PWM signal is applied to a control and handshake block and driver circuits for both the high side and low  
side. A 2nd-order low-pass filter converts the PWM signal to an analog audio signal across the  
loudspeakers.  
The TDA8932 contains two independent half bridges with full differential input stages. The loudspeakers  
can be connected in the following configurations:  
• Mono full bridge (Bridge-Tied Load, BTL)  
• Stereo half-bridge (Single-Ended, SE)  
The TDA8932 contains common circuits to both channels such as the oscillator, all reference sources, the  
mode functionality and a digital timing manager. The following protections are built-in: thermal fold back,  
temperature, current and voltage protections.  
8.2 Mode selection / interfacing  
The TDA8932 can be switched in three operating modes via POWER UP and ENGAGE inputs:  
• Sleep mode; with a very low supply current  
• Mute mode; the amplifiers are switching idle (50% duty cycle), but the audio signal at the output is  
suppressed by disabling the Vl-converter input stages. In this mode the reference currents and voltages  
are present. The HVP capacitors have been charged to half the supply voltage (asymmetrical supply  
only).  
• Operating mode; the amplifiers are fully operational with output signal.  
Both pins POWER UP and ENGAGE refer to pin CGND.  
In the table 4 below the different modes are given as function of the voltages on the POWER UP and  
ENGAGE pins.  
Mode selection  
Sleep  
POWER UP  
Vpower up< 0.8 V  
ENGAGE  
X (don’t care)  
Mute  
2 V < Vpower up < 6.5 V Note1  
Vengage< 0.8 V Note1  
Operating  
2 V < Vpower up < 6.5 V Note1 3 V < Vengage < 6.5 V Note1  
Table 4: Mode selection TDA8932  
Note 1 in case of symmetrical supply conditions the voltage applied on the POWER UP and ENGAGE inputs must  
never exceed the supply voltage VDDx  
September 2005, version 1.7  
12  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
If the transition between mute and operating mode is controlled via a time-constant, the start-up will be  
pop-free since the DC output offset voltage is applied gradually to the output between mute mode and  
operating mode. The bias current setting of the VI converters is related to the voltage on the ENGAGE  
pin; in mute mode the bias current setting of the VI converters is zero (VI converters disabled) and in  
operating mode the bias current is at maximum.  
The time constant required to apply the DC output offset voltage gradually between mute and  
operating can be generated by applying a decoupling capacitor on the ENGAGE pin.  
The value of the time-constant should be dimensioned for 500 ms using a capacitor of 1µF on the  
ENGAGE pin.  
8.3 Pulse width modulation frequency  
The output signal of the amplifier is a PWM signal with a carrier frequency of approximately 320 kHz.  
Using a 2nd-order LC demodulation filter in the application results in an analog audio signal across the  
loudspeaker. The PWM switching frequency can be set by an external resistor Rosc connected between  
pin OSCREF and VSSD. The carrier frequency can be set between 300 kHz and 500 kHz. Using an external  
resistor of 39kon the OSCREF pin, the carrier frequency is set to an optimized value of 320 kHz.  
If two or more TDA8932 devices are used in the same audio application, it is recommended to  
synchronize the switching frequency of all devices. This is described in chapter 17.4 External Clock.  
8.4 Protections  
The following protections are included in TDA8932:  
Thermal foldback (TF)  
Over temperature protection (OTP)  
Over current protection (OCP)  
Window protection (WP)  
Supply voltage protections  
-
-
-
Under voltage protection (UVP)  
Over voltage protection (OVP)  
Un Balance Protection (UBP)  
The reaction of the device on the different fault conditions differs per protection and is described in the  
following sections.  
8.4.1 Thermal foldback  
If the junction temperature Tj > 140 0C, then the gain is gradually reduced resulting in a smaller output  
signal and less dissipation. At Tj > 1500C the outputs are fully muted.  
8.4.2 Over temperature protection (OTP)  
If the junction temperature Tj > 1600C, then the power stage will shut down immediately.  
September 2005, version 1.7  
13  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
8.4.3 Over current protection (OCP)  
When the loudspeaker terminals are short-circuited or if one of the demodulated outputs of the amplifier is  
short-circuited to one of the supply lines, this will be detected by the over current protection (OCP).  
If the output current exceeds the maximum output current of 4A, this current will be limited by the amplifier  
to 4A while the amplifier outputs remain switching (the amplifier is NOT shut-down completely).  
The amplifier can distinguish between an impedance drop of the loudspeaker and low-ohmic short across  
the load or to one of the supply lines. This impedance threshold (Zth) depends on the supply voltage used.  
When a short is made across the load causing the impedance to drop below the threshold level (<Zth) the  
audio amplifier is switched off completely and after a time of 100ms it will try to restart again. If the short  
circuit condition is still present after this time this cycle will be repeated. The average dissipation will be  
low because of this low duty cycle.  
A short to one of the supply lines will trigger the over current protection (OCP) and the amplifier will be  
shut down. During restart the window protection will be activated. As a result the amplifier will not start-up  
after 100ms until the short to the supply lines is removed.  
In case of impedance drop (e.g. due to dynamic behavior of the loudspeaker) the same protection will be  
activated; the maximum output current is again limited to 4A, but the amplifier will NOT switch-off  
completely (thus preventing audio holes from occurring). Result will be a clipping output signal without any  
artifacts.  
8.4.4 Window protection (WP)  
The window protection (WP) checks the PWM output voltage before switching from sleep to mute mode  
(outputs switching) and is activated:  
During the start-up sequence, when pin POWER UP is switched from sleep to mute. In the event  
of a short-circuit at one of the output terminals to VDD or Vss the start-up procedure is interrupted  
and the TDA8932 waits for open-circuit outputs. Because the check is done before enabling the  
power stages, no large currents will flow in the event of a short-circuit.  
When the amplifier is completely shut-down due to activation of the over current protection (OCP)  
because a short to one of the supply lines is made, then during restart (after 100ms) the window  
protection will be activated. As a result the amplifier will not start-up until the short to the supply  
lines is removed.  
September 2005, version 1.7  
14  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
8.4.5 Supply voltage protections  
If the supply voltage drops below 10V, the under voltage protection circuit (UVP) is activated and the  
system will shut down correctly. If the internal clock is used, this switch-off will be silent and without pop  
noise. When the supply voltage rises above the threshold level, the system is restarted again after 100  
ms.  
If the supply voltage exceeds 36V the over voltage protection circuit (OVP) is activated and the power  
stages will shut down. It is re-enabled as soon as the supply voltage drops below the threshold level. So in  
this case no timer of 100ms is started.  
Note that supply voltages above the maximum voltage of 40V may damage the TDA8932. Two conditions  
should be distinguished:  
1. If the supply voltage is pumped to higher values by the TDA8932 application itself (see also section  
17.6), the OVP is triggered and the TDA8932 is shutdown. The supply voltage will decrease and the  
TDA8932 is protected against any overstress.  
2. If a supply voltage > 40V is caused by other/external causes than the TDA8932 will shut down, but the  
device can still be damaged since the supply voltage will remain > 40V in this case. The OVP protection is  
not a supply clamp.  
An additional Un Balance Protection (UBP) circuit compares the positive analog (VDDA) and the negative  
analog (VSSA) supply voltage and is triggered if the voltage difference between them exceeds a certain  
level. This level depends on the sum of both supply voltages. An expression for the unbalance threshold  
level is as follows:  
Vth(ubp) 0.25 x (VDDA + VSSA)  
In table 5 below an overview is given of all protections and the effect on the output signal  
Protection name  
Complete Restart  
Restart  
DIAG  
shut-down when fault every 100ms  
active LOW  
is removed  
minimal 50ms  
Thermal foldback (TF)  
N
Y
Y3)  
N
N
Y
N
Y
Over temperature protection (OTP)  
Over current protection (OCP)  
Window protection (WP)  
Under voltage protection (UVP)  
Over voltage protection (OVP)  
Un Balance Protection (UBP)  
N1)  
Y2)  
Y
Y1)  
Y
N1)  
N
Y1)  
Y
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Table 5: Overview protections TDA8932  
Notes:  
1. Only complete shutdown of amplifier if short-circuit impedance is below the threshold of TBF. In all other cases current limiting:  
resulting in clipping output signal.  
2. Fault condition detected during (every) transition between sleep-to-mute and during restart after activation of OCP (short to one of the supply lines)  
3. Amplifier gain will depend on junction temperature and heat sink size.  
September 2005, version 1.7  
15  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
8.5 Diagnostic Output  
Whenever one of the protections is triggered except for thermal foldback (TF) as summarized in table 5,  
the DIAG output is activated low. The diagnostic output signal during different short conditions is  
illustrated in figure 3. The DIAG pin refers to CGND. An internal reference supply will pull-up the open-  
drain DIAG output to approximately 2.4V. This internal reference supply can deliver approximately 50µA.  
Using the DIAG as input a voltage smaller than 0.8V will put the device into sleep mode.  
Shorted load  
Short to supply line  
No restart  
Amplifier  
restart  
2.4V  
CGND = 0V  
50ms 50ms  
Figure 3: Diagnostic Output for different kind of short circuit conditions.  
8.6 Differential inputs  
For a high common mode rejection ratio and a maximum of flexibility in the application, the audio inputs  
are fully differential. By connecting the inputs anti-parallel the phase of one of the two channels can be  
inverted, so that a load can be connected between the two sets of output filters. In this case the system  
operates as a mono BTL amplifier.  
The input configuration for a mono BTL application is illustrated in Fig.4.  
In single-ended configuration it is also recommended to connect the two differential inputs in anti-phase.  
This has advantages for the current handling of the power supply at low signal frequencies and minimizes  
supply pumping (see also section 17.6).  
OUT1  
IN1+  
+
-
IN1-  
AUDIO  
IN1  
OUT2  
+
-
IN2+  
IN2-  
September 2005, version 1.7  
16  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
Figure 4: Input configuration for mono BTL application.  
8.7 Half supply voltage output  
When the POWER UP is high the half supply voltage output charges the Single-Ended capacitor. The  
start-up will be pop free since the device starts switching when the SE capacitors are completely charged.  
The time required for charging the SE capacitor is depending on its value.  
The half supply voltage output is disabled when the TDA8932 is used in combination with a symmetrical  
supply.  
September 2005, version 1.7  
17  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
9 INTERNAL CIRCUITRY  
Pin  
Symbol  
Equivalent circuit  
1, 16  
VSSD/HW  
17, 32  
VDDA  
1, 16,  
17,32  
VSSA  
2, 15  
3, 14  
12  
IN1P, IN2P  
IN1N, IN2N  
INREF  
VDDA  
2k  
+/- 20%  
2, 15  
48k  
+/- 20%  
12  
HVPREF  
48k  
+/- 20%  
3, 14  
2k  
+/- 20%  
VSSA  
September 2005, version 1.7  
18  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
Pin  
Symbol  
Equivalent circuit  
4
DIAG  
VDDA  
Vref  
4
VSSA  
VDDA  
CGND  
5
ENGAGE  
Iref  
5
VSSA  
VDDA  
CGND  
6
POWERUP  
6
VSSA  
CGND  
September 2005, version 1.7  
19  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
Pin  
Symbol  
Equivalent circuit  
7
CGND  
VDDA  
7
VSSA  
8
VDDA  
8
VSSD  
VSSA  
9
VSSA  
VDDA  
9
VSSD  
September 2005, version 1.7  
20  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
Pin  
Symbol  
Equivalent circuit  
10  
OSCREF  
VDDA  
Iref  
10  
VSSA  
VDDA  
11  
HVPREF  
11  
VSSA  
VDDA  
12  
INREF  
11  
HVPREF  
VSSA  
September 2005, version 1.7  
21  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
Pin  
Symbol  
Equivalent circuit  
13  
TEST  
VDDA  
13  
VSSA  
18  
DREF  
18  
VSSD  
VDDA  
19, 30  
HVP1, 2  
19, 30  
VSSA  
September 2005, version 1.7  
22  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
Pin  
Symbol  
Equivalent circuit  
20, 29  
23, 26  
VDDP2, 1  
VSSP2, 1  
20, 29  
23, 26  
21, 28  
BOOT  
21, 28  
OUT1, 2  
22, 27  
OUT1, 2  
VDDP1, 2  
22, 27  
VSSP1, 2  
September 2005, version 1.7  
23  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
Pin  
Symbol  
Equivalent circuit  
24, 25  
STAB1, 2  
VDDA  
24, 25  
VSSP1, 2  
31  
OSCIO  
DREF  
31  
VSSD  
September 2005, version 1.7  
24  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
10 LIMITING VALUES  
Table 6: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
Vp  
PARAMETER  
Supply voltage  
CONDITION  
Asymmetrical  
operating mode  
Symmetrical  
MIN.  
10  
MAX.  
40  
UNIT  
V
+/-5  
4
+/-20  
V
A
operating mode  
Iorm  
repetitive peak current in output note 1; maximum  
pin  
output current  
limiting  
Tj  
Tstg  
Tamb  
Junction temperature  
Storage temperature range  
Ambient temperature range  
150  
150  
85  
°C  
°C  
°C  
-55  
-40  
Notes  
1.  
Current limiting concept.  
11 THERMAL CHARACTERISTICS  
Table 7: Thermal characteristics  
SYMBOL  
Rth(j-a) SO32  
Rth(j-l) SO32  
Rth(j-c) SO32  
PARAMETER  
Thermal resistance junction to ambient  
Thermal resistance junction to leadfinger In free air [1]  
Thermal resistance junction to case In free air [2]  
CONDITION  
In free air [1]  
MAX. UNIT  
35  
16  
3
K/W  
K/W  
K/W  
[1] Measured in the application board  
[2] Strongly depends on where you measure on the case  
12 QUALITY SPECIFICATION  
In accordance with ‘SNW-FQ-611-D’. The number of the quality specification can be found in the “Quality  
Reference Handbook”. The handbook can be ordered using the code 9398 510 63011.  
September 2005, version 1.7  
25  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
13 STATIC CHARACTERISTICS  
Table 8: Static characteristics  
Vp = 22V; fosc =320 kHz; Tamb = 25 °C; unless otherwise specified.  
SYMBOL  
Supply  
Vp  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
Single (a-symmetrical supply Operating mode  
voltage note 1  
10  
22  
36  
V
V
Symmetrical supply voltage Operating mode  
note 1  
+/- 5 +/-11 +/-18  
Sleep mode  
Isleep  
Iq(tot)  
Sleep supply current  
-
-
80 TBF  
µA  
Total quiescent supply  
Operating mode  
40  
80  
mA  
current in operating mode  
No load, snubbers and  
filter connected  
Series resistance output switches  
Tj=25 °C  
Rds,on25  
Drain-source resistance  
power switch  
-
-
150  
234  
-
-
mΩ  
mΩ  
Tj=125 °C  
Rds,on125  
Drain-source resistance  
power switch  
Power up input: POWER UP w.r.t. CGND  
V
Input voltage  
Reference to CGND  
note 5  
0
-
6.5  
V
POWER UP  
I
Input current  
VPOWER UP = 3 V  
-
1
-
20  
µA  
V
POWER UP  
Vlow  
Input voltage low level  
Reference to CGND  
0
0.8  
Vhigh  
Input voltage high level  
mode  
Reference to CGND  
note 5  
2
0
-
6.5  
6.5  
V
V
Engage input: ENGAGE w.r.t. CGND  
V
Input voltage  
Reference to CGND  
note 5  
-
ENGAGE  
I
Input current  
VENGAGE = 3 V  
-
20  
-
40  
µA  
ENGAGE  
Vlow  
Input voltage low level  
Reference to CGND  
note 3  
0
0.8  
V
Vhigh  
Input voltage high level  
mode  
Reference to CGND  
Notes 3 and 5  
3
-
6.5  
V
Diagnostic output: DIAG w.r.t. CGND  
VDIAG-LOW  
Voltage on DIAG pin  
Voltage on DIAG pin  
Activated protection  
(see table 5).  
Reference to CGND.  
-
2
-
-
0.8  
5
V
V
V
VDIAG-HIGH  
Operating mode  
Reference to CGND.  
Audio inputs; pins IN1M, IN1P, IN2M and IN2P  
Vi  
DC input voltage  
Note 2  
2.9  
-
September 2005, version 1.7  
26  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
Half supply voltage: HVP1, HVP2, HVPREF  
VHVP1,2  
Half supply voltage to  
charge SE-capacitor  
Mute and operating  
mode  
½Vp- ½ Vp ½Vp+  
0.5V 0.5V  
V
mA  
V
IHVP1,2  
Charge current for HVP  
capacitor  
Mute mode  
HVP = ½ Vp – 1V  
45  
VHVPREF  
Half supply reference  
voltage  
Mute and operating  
½Vp- ½ Vp ½Vp+  
0.5V  
-
0.5V  
15  
Amplifier outputs; pins OUT1 and OUT2  
|Voo(SE)  
|
Output offset voltage with  
respect to HVPx  
SE; mute;  
-
mV  
SE; operating; note 4  
BTL; mute;  
BTL; operating; note 4  
-
-
-
-
-
-
150  
20  
210  
mV  
mV  
mV  
|Voo(BTL)  
|
Output offset voltage  
Stabilizer output; pin STAB1, STAB2  
Vo(stab) Stabilizer output voltage  
Mute and operating;  
with respect to \/SSPX  
10  
11  
12  
V
Voltage protections  
VUVP  
VOVP  
VUBP  
Under voltage protection  
7.5  
8.5  
9.5  
V
V
V
Over voltage protection  
Un balance protection  
36 38.5 40  
Operating when  
HVPREF within VUBP  
levels  
8
4
11  
-
14  
-
Current protections  
IOCPlim  
Over current protection  
Current limiting  
A
Temperature protection  
Tprot  
Temperature protection  
activation  
155  
140  
-
-
160  
150  
°C  
°C  
TTF  
Thermal foldback activation  
Oscillator reference  
Voscio_high Oscillator I/O level voltage  
4.0  
0
-
-
5
V
V
high  
Voscio_low  
Oscillator I/O level voltage  
low  
0.8  
Smax  
Number of slaves driven by  
one master  
12  
-
-
-
Notes  
1. The circuit is DC adjusted at Vp = 10V to 36V.  
2. With respect to VSSA and with asymmetrical supply.  
3. The transition between mute and operating mode is determined by the time-constant on the ENABLE pin.  
4. DC output offset voltage is applied to the output during the transition between mute and operating mode in a gradual way. The dVoo/dt caused by any  
DC output offset is determined by the time-constant on the ENGAGE pin.  
5. The maximum voltage applied on POWER UP and ENGAGE pin must never exceed the supply voltage VDDx  
September 2005, version 1.7  
27  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
14 SWITCHING CHARACTERISTICS  
Table 9: Switching characteristics  
Vp=22V; Tamb = 25 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Internal oscillator  
fosc  
Typical internal  
oscillator frequency  
-
320  
-
kHz  
kHz  
R
osc = 39kΩ  
fosc(int)  
Internal oscillator  
frequency range  
300  
-
500  
Timing  
Iout=0  
Iout=0  
Iout=0  
trise  
Rise-time PWM output  
Fall-time PWM output  
Minimum pulse width  
-
-
-
10  
10  
80  
-
-
-
ns  
ns  
ns  
tfall  
tmin  
September 2005, version 1.7  
28  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
15 DYNAMIC SE AC CHARACTERISTICS  
Table 10: Dynamic AC SE characteristics  
Vp = 22V; RL = 2 x 4; f = 1kHz; fosc = 320 kHz; RSL < 0.05(note 1); Tamb = 25°C; unless otherwise  
specified.  
SYMBOL PARAMETER  
Output power per  
CONDITIONS  
MIN. TYP. MAX. UNIT  
RL = 4; Vp = 22V; note 2  
Continuous-time output power  
THD = 0.5%, f = 1kHz  
THD = 0.5%, f = 100Hz  
THD =10%, f = 1kHz  
channel  
Po  
11  
-
12  
12  
15  
15  
-
-
-
-
W
W
W
W
14  
-
THD =10%, f = 100Hz  
RL = 8; Vp = 30V; note 2  
Continuous-time output power  
THD = 0.5%, f = 1kHz  
THD = 0.5%, f = 100Hz  
THD = 10%, f = 1kHz  
THD = 10%, f = 100Hz  
11  
-
14  
-
12  
12  
15  
15  
-
-
-
-
W
W
W
W
RL = 4; Vp = 29V; note 2  
Maximum output power (short-time)  
THD = 0.5%  
THD =10%  
19  
23  
20  
25  
-
-
W
W
RL = 8; Vp = 24V; note 2  
Continuous-time output power  
THD = 0.5%  
7
9
8
10  
-
-
W
W
THD =10%  
THD  
Total harmonic distortion Po = 1W; note 3  
fi = 1kHz  
fi= 10kHz  
-
-
0.04 0.1  
0.04 0.1  
%
%
Vi=100mV; no load  
fi = 1kHz, Po=1W  
Gv(cl)  
αcs  
Closed loop voltage gain  
Channel separation  
29  
56  
30  
70  
31  
-
dB  
dB  
SVRR  
Supply voltage ripple  
rejection  
Operating; note 4  
fi=100Hz  
fi = 1kHz  
Differential  
-
-
50  
45  
-
-
dB  
dB  
|Z
i
|  
Vno  
input impedance  
Noise output voltage  
70  
-
100  
70  
k
Ω  
µV  
100  
Operating, Rs=0, note 5  
mute; note 6  
-
-
-
-
50  
1
-
70  
-
500  
-
µV  
dB  
µV  
dB  
|DGV|  
Vo(mute)  
CMRR  
Channel unbalance  
Output signal in mute  
Mute; Vi=TBF  
Common mode rejection Vi(CM) = 1VRMS  
ratio  
75  
Notes  
1. RSL is the series resistance of inductor of low-pass LC filter in the application.  
2. Output power is measured indirectly; based on RDSon measurement.  
3. Total harmonic distortion is measured in a bandwidth of 22 Hz to 20 kHz, AES17 brick wall. Maximum limit is guaranteed but not 100% tested.  
4. Vripple = Vripple(max) = 2V(p-p); Rs=0ohm.  
5. B = 22Hz – 20kHz, AES17 brick wall  
6. B = 22Hz – 20kHz, AES17 brick wall, independent on Rs  
September 2005, version 1.7  
29  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
16 DYNAMIC BTL AC CHARACTERISTICS  
Table 11: Dynamic AC BTL characteristics  
Vp = 22V; RL = 4; f = 1kHz; fosc = 320 kHz; RsL < 0.05(note 1); Tamb = 25 °C; unless otherwise  
specified.  
SYMBOL PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
Po  
Output power  
RL = 4; Vp = 12V; note 2  
Continuous-time output power  
THD = 0.5%, f = 1kHz  
THD = 0.5%, f = 100Hz  
THD =10%, f = 1kHz  
11  
-
14  
-
12  
12  
15  
15  
-
-
-
-
W
W
W
W
THD =10%, f = 100Hz  
RL = 8; Vp = 22V; note 2  
Continuous-time output power  
THD = 0.5%, f = 1kHz  
THD = 0.5%, f = 100Hz  
THD =10%, f = 1kHz  
23  
-
28  
-
24  
24  
30  
30  
-
-
-
-
W
W
W
W
THD =10%, f = 100Hz  
RL = 4; Vp = 15V; note 2  
Maximum output power (short-time)  
THD = 0.5%  
THD =10%  
19  
23  
20  
25  
-
-
W
W
RL = 8; Vp = 30V; note 2  
Maximum output power (short-time)  
THD = 0.5%  
38  
47  
40  
50  
-
-
W
W
THD =10%  
THD  
Total harmonic distortion Po = 1W; note 3  
fi = 1kHz  
fi= 10kHz  
-
-
0.04 0.1  
0.04 0.1  
%
%
Gv(cl)  
SVRR  
Closed loop voltage gain  
Supply voltage ripple  
rejection  
35  
36  
37  
dB  
Operating; note 4  
fi=100Hz  
fi = 1kHz  
Sleep; fi = 100Hz; note 4  
-
-
-
50  
45  
80  
-
-
-
dB  
dB  
dB  
Differential  
Operating, 18V, Rs=0 ohm, note 5  
Mute; 18V, note 6  
|Zi|  
Vno  
Input impedance  
Noise output voltage  
35  
-
-
-
-
50  
kΩ  
µV  
µV  
dB  
µV  
100 150  
70  
1
100  
-
500  
|DGV|  
Vo(mute)  
Channel unbalance  
Output signal in mute  
Mute; Vi=TBF  
-
CMRR  
Common mode rejection Vi(CM) = 1 VRMS  
ratio  
-
75  
-
dB  
Notes  
1. RSL is the series resistance of inductor of low-pass LC filter in the application.  
2. Output power is measured indirectly; based on RDSon measurement.  
3. Total harmonic distortion is measured in a bandwidth of 22 Hz to 20 kHz, AES17 brick wall. Maximum limit is guaranteed but may not be 100%  
tested.  
4. Vripple = Vripple(max) = 2V(p-p); Rs=0ohm.  
5. B = 22Hz – 20kHz, AES17 brick wall  
6. B = 22Hz – 20kHz, AES17 brick wall, independent on Rs  
September 2005, version 1.7  
30  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
2xSE : THD=10%  
Rl=4ohm  
Rl=6ohm  
Rl=8ohm  
Rl=16ohm  
80.00  
40  
35  
30  
25  
20  
15  
10  
5
60.00  
40.00  
20.00  
0.00  
0
8
12  
16  
20  
24  
28  
32  
36  
Vp (V)  
Figure 5: Output power stereo SE (@ THD=10%) and required Rth(j-a) versus supply voltage  
(Tj=125°C, dT=70°C)  
1xBTL : THD=10%  
Rl=4ohm  
Rl=6ohm  
Rl=8ohm  
Rl=16ohm  
80.00  
70  
60  
50  
40  
30  
20  
10  
60.00  
40.00  
20.00  
0.00  
0
8
12  
16  
20  
24  
28  
32  
36  
Vp (V)  
Figure 6: Output power mono BTL application (@ THD=10%) and required Rth(j-a) versus supply  
voltage (Tj=125°C, dT=70°C)  
September 2005, version 1.7  
31  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
17 APPLICATION INFORMATION  
17.1 Thermal behaviour (PCB considerations)  
The heat sink in the application with the TDA8932 is made with the copper on the Printed Circuit Board  
(PCB). The TDA8932T uses the four corner leads (pins 1, 16, 17 and 32) for heat transfer from die to  
PCB. The limiting factor is the maximum junction temperature [Tj(max)]. In case of thermal foldback this  
maximum junction temperature is limited to 140 degrees for full gain. The formula below shows the  
relation between the maximum allowable power dissipation and the thermal resistance from junction to  
ambient.  
Tj (max) Ta  
Rth  
=
P
( ja)  
diss  
Pdiss is determined by the efficiency of the TDA8932.  
In figures 5 and 6 the output power (for stereo SE and mono BTL application, both for THD=10%) is given  
as a function of supply voltage for different load impedances (4, 6, 8 and 16 ohm). The y-axis to the left in  
combination with solid lines applies to the output power levels. In the same figures the secondary y-axis  
on the right in combination with the dashed lines indicates the required Rth(j-a) value to apply these  
output powers continuously. All values are calculated taking into account a maximum temperature  
difference of 70 degrees between ambient and junction, while at the same time the maximum junction  
temperature is 125 degrees.  
Example:  
Vp=22V  
Pout = 2 x 15W into 4 ohm (THD=10%)  
Tj(max) = 125°C  
Tamb = 55°C  
The required Rth(j-a) = 22 K/W.  
If music output power instead of continuous sine wave output power is considered the maximum  
achievable output power with the same Rth(j-a) can be much higher.  
17.2 Thermal foldback  
The TDA8932 has a built-in thermal foldback protection. In case the junction temperature of the TDA8932  
exceeds the threshold level (e.g. 140°C) the gain of the amplifier is decreased to a level were the  
combination of dissipation and Rth(j-a) result in a junction temperature around the threshold level.  
This means that the device will not completely switch off, but remains operational at lower output power  
levels. Especially with music output signals this feature enables high peak output powers while still  
operating without any external heat sink other than the PCB area.  
If the junction temperature still increases due to external causes a second temperature protection  
threshold level is built in which shuts down the amplifier completely.  
September 2005, version 1.7  
32  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
17.3 Output Power estimation  
The achievable output powers in several applications (SE and BTL) can be estimated using the following  
expressions:  
2
RL  
x1/ 2VP x  
(
1tmin xfosc  
)
RL + Rs  
SE : P  
=
o(0.5%)  
2xRL  
2
RL  
xVP x  
(
1tmin xfosc  
)
RL + 2xRs  
BTL : P  
=
o(0.5%)  
2xRL  
Maximum current internally limited to 4A:  
1/ 2VP x  
(
1tmin xfosc  
)
SE : Io( peak)  
=
RL + Rs  
VP x  
(
1tmin xfosc  
)
BTL : Io( peak)  
=
RL + 2xRs  
Variables:  
RL  
= load impedance  
fosc  
tmin  
VP  
= oscillator frequency (typical 350 kHz)  
= minimum pulse width (typical 80 ns)  
= single sided supply voltage (or 0.5*(VDD + |VSS|))  
PO(0.5%) = output power at the onset of clipping  
Rs  
= total series resistance consisting of bond wires, leads, Rdson_switch, series resistance of coil (typical 0.3Ω  
@ Tj=25°C)  
Note that Io(peak) should be below 4 A (section 9). Io(peak) is the sum of the current through the load and the  
ripple current. The value of the ripple current is dependent on the coil inductance and voltage drop over  
the coil.  
17.4 External clock  
If two or more class D amplifiers are used it is recommended that all devices run at the same switching  
frequency. This can be realized by connecting all OSCIO pins together and configure one of the TDA8932  
in the application as CLOCK MASTER, while the other TDA8932 devices are configured in SLAVE  
MODE.  
The OSCIO pin is a tri-state input output buffer.  
September 2005, version 1.7  
33  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
In MASTER MODE the OSCIO pin is configured as oscillator OUTPUT. In SLAVE MODE the OSCIO pin  
is configured as oscillator INPUT.  
MASTER MODE is enabled by applying a resistor between OSCREF pin and VSSD, while SLAVE MODE  
is entered by directly connecting the OSCREF pin to VSSD (so without any resistor). This is illustrated in  
figure 7.  
The value of the resistor also sets the frequency of the carrier and can be estimated by following  
12.45x109  
expression: fosc  
=
ROSC  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
300  
350  
400  
450  
500  
fosc [kHz]  
The table below summarizes how to configure the TDA8932 in Master or Slave configuration.  
Table 12: Master/Slave configuration  
Configuration  
Master  
OSCREF  
Rosc > 25kΩ  
Rosc=0;  
OSCIO  
OUTPUT  
INPUT  
Slave  
Shorted to VSSD  
MASTER  
SLAVE  
IC1  
IC2  
TDA8932  
TDA8932  
OSCREF  
OSCIO  
OSCIO  
OSCREF  
COSCREF  
100nF  
ROSCREF  
39kΩ  
VSSD  
VSSD  
Figure 7: Master slave concept in two chip application  
September 2005, version 1.7  
34  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
17.5 Pumping effects  
When the amplifier is used in a SE configuration, a so-called 'pumping effect' can occur. During one  
switching interval, energy is taken from one supply (e.g. VDD), while a part of that energy is delivered back  
to the other supply line (e.g. Vss) and visa versa. When the power supply cannot sink energy, the voltage  
across the output capacitors of that power supply will increase.  
The voltage increase caused by the pumping effect depends on:  
• Speaker impedance  
• Supply voltage  
• Audio signal frequency  
• Value of decoupling capacitors on supply lines  
• Source and sink currents of other channels.  
The pumping effect should not cause a malfunction of either the audio amplifier and/or the power supply.  
For instance, this malfunction can be caused by triggering of the under voltage or over voltage protection  
of the amplifier. Best remedy for pumping effects is to use the TDA8932 in the mono full-bridge application  
or in case of stereo half-bridge application, adapt the power supply (e.g. increase supply decoupling  
capacitors).  
In a stereo half bridge application pumping effects can be minimized by connecting audio inputs in anti-  
phase and change the polarity of one speaker. This is illustrated in figure 8.  
OUT1  
IN1+  
+
-
AUDIO  
IN1  
IN1-  
+
-
OUT2  
IN2-  
-
+
AUDIO  
IN2  
IN2+  
-
+
Figure 8: Input/speaker configuration for stereo SE application  
for reducing pumping effects.  
September 2005, version 1.7  
35  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
17.6 Gain setting  
The input signal in combination with the speaker impedance determines the required gain. The TDA8932  
has a fixed gain of 30dB for SE applications. By adding a resistor of 12kthe gain is reduced by 6dB.  
5k6  
470nF  
12k  
100k  
Audio in  
5k6  
470nF  
Figure 9: Input configuration for reducing gain.  
17.7 Low pass filter considerations  
For a flat frequency response (second order Butterworth filter) it is necessary to change the LC-filter  
components (Lx and Cx) according the speaker impedance. Table 13 shows the required components  
values in case of a 4, 6or 8speaker impedance.  
Table 13: Filter components value  
Speaker impedance  
Lx value  
[µH]  
22  
Cx value  
[nF]  
[]  
4
680  
6
33  
470  
8
47  
330  
17.8 Curves measured in reference design  
tbd  
September 2005, version 1.7  
36  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
17.9 Typical application schematics  
1 VSSD/HW  
470nF  
VSSD/HW 32  
OSCIO 31  
100nF  
VDDP  
2 IN1P  
470nF  
3 IN1TN DA8932  
HVP1 30  
VDDP1 29  
BOOT1 28  
OUT1 27  
Audio in 1  
4 DIAG  
22k  
OUT1  
100nF  
5 ENGAGE  
15nF  
470nF  
6 POWER UP  
3V3  
7 CGND  
VSSP1 26  
STAB1 25  
STAB2 24  
VSSP2 23  
OUT2 22  
470pF  
10R  
10R  
8 VDDA  
VP  
100nF  
9 VSSA  
100nF  
470pF  
10R  
VDDP  
10 OSCREF  
100nF  
39k  
47µF  
11 HVPREF  
12 INREF  
13 TEST  
14 IN2N  
220uF  
15nF  
BOOT2 21  
VDDP2 20  
HVP2 19  
OUT2  
VDDP  
100nF  
470nF  
470nF  
15 IN2P  
DREF 18  
Audio in 2  
100nF  
100nF  
16 VSSD/HW VSSD/HW 17  
Figure 10: Typical application diagram for 2 x SE (asymmetrical supply)  
1 VSSD/HW  
2 IN1P  
VSSD/HW 32  
OSCIO 31  
470nF  
470nF  
Audio in 1  
3 IN1TN DA8932  
HVP1 30  
4 DIAG  
VDDP1 29  
BOOT1 28  
OUT1 27  
VDDP  
22k  
100nF  
15nF  
5 ENGAGE  
6 POWER UP  
7 CGND  
470nF  
3V3  
10R  
VSSP1 26  
STAB1 25  
STAB2 24  
VSSP2 23  
OUT2 22  
470pF  
10R  
8 VDDA  
VP  
100nF  
VDDP  
9 VSSA  
100nF  
470pF  
10 OSCREF  
11 HVPREF  
12 INREF  
13 TEST  
Out 1  
100nF 39k  
10R  
47µF  
220uF  
15nF  
BOOT2 21  
VDDP2 20  
HVP2 19  
VDDP  
100nF  
470nF  
470nF  
14 IN2N  
15 IN2P  
DREF 18  
100nF  
16 VSSD/HW VSSD/HW 17  
Figure 11: Typical application diagram for 1 x BTL (asymmetrical supply)  
September 2005, version 1.7  
37  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
1 VSSD/HW  
2 IN1P  
VSSD/HW 32  
OSCIO 31  
470nF  
470nF  
100nF  
Synchronize  
3 IN1TN DA8932  
HVP1 30  
100nF  
220µF  
Audio in 1  
4 DIAG  
VDDP1 29  
BOOT1 28  
OUT1 27  
VDDP  
22k  
470nF  
Out 1  
5 ENGAGE  
6 POWER UP  
7 CGND  
15nF  
3V3  
10R  
VSSP1 26  
STAB1 25  
STAB2 24  
VSSP2 23  
OUT2 22  
470pF  
10R  
8 VDDA  
VP  
100nF  
9 VSSA  
100nF  
470pF  
10 OSCREF  
11 HVPREF  
12 INREF  
13 TEST  
VDDP  
220uF  
39k  
100nF  
47µF  
10R  
15nF  
BOOT2 21  
VDDP2 20  
HVP2 19  
Out 2  
VDDP  
100nF  
470nF  
470nF  
14 IN2N  
15 IN2P  
DREF 18  
Audio in 2  
100nF  
100nF  
16 VSSD/HW VSSD/HW 17  
1 VSSD/HW  
2 IN1P  
VSSD/HW 32  
OSCIO 31  
470nF  
Synchronize  
470nF  
3 IN1TN DA8932  
HVP1 30  
100nF  
220µF  
4 DIAG  
VDDP1 29  
BOOT1 28  
OUT1 27  
VDDP  
5 ENGAGE  
6 POWER UP  
7 CGND  
15nF  
VSSP1 26  
STAB1 25  
STAB2 24  
VSSP2 23  
OUT2 22  
470pF  
470pF  
10R  
8 VDDA  
100nF  
Out 3  
9 VSSA  
100nF  
10 OSCREF  
11 HVPREF  
12 INREF  
13 TEST  
10R  
47µF  
15nF  
BOOT2 21  
VDDP2 20  
HVP2 19  
VDDP  
100nF  
470nF  
470nF  
14 IN2N  
15 IN2P  
DREF 18  
Audio in 3  
100nF  
16 VSSD/HW VSSD/HW 17  
Figure 12: Typical application diagram for 2 x SE + 1 x BTL (asymmetrical supply)  
September 2005, version 1.7  
38  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
18 PACKAGE OUTLINE  
SO32: plastic small outline package; 32 leads; body width 7.5 mm  
SOT287-1  
D
E
A
X
c
y
H
v
M
A
E
Z
17  
32  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
16  
1
detail X  
w
M
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
3
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
p
p
1
2
E
max.  
0.3  
0.1  
2.45  
2.25  
0.49  
0.36  
0.27 20.7  
0.18 20.3  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.2  
1.0  
0.95  
0.55  
mm  
2.65  
0.25  
0.01  
1.27  
0.05  
1.4  
0.25  
0.01  
0.25  
0.01  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.02 0.011 0.81  
0.01 0.007 0.80  
0.30  
0.29  
0.419  
0.394  
0.043 0.047  
0.016 0.039  
0.037  
0.022  
inches  
0.1  
0.004  
0.055  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-08-17  
03-02-19  
SOT287-1  
MO-119  
September 2005, version 1.7  
39  
Philips Semiconductors  
Objective Device Specification  
Confidential  
2 × 10..25 W class-D amplifier  
TDA8932  
19 SOLDERING  
September 2005, version 1.7  
40  

相关型号:

TDA8932BTW/N2

TDA8932BTW
NXP

TDA8932BTW/N2,112

TDA8932B - Class-D audio amplifier TSSOP 32-Pin
NXP

TDA8932T

IC 25 W, 1 CHANNEL, AUDIO AMPLIFIER, PDSO32, 7.50 MM , PLASTIC, MO-119, SOT287-1, SOP-32, Audio/Video Amplifier
NXP

TDA8932T/N1,112

IC 25 W, 1 CHANNEL, AUDIO AMPLIFIER, PDSO32, 7.50 MM , PLASTIC, MO-119, SOT287-1, SOP-32, Audio/Video Amplifier
NXP

TDA8932T/N1,118

IC 25 W, 1 CHANNEL, AUDIO AMPLIFIER, PDSO32, 7.50 MM , PLASTIC, MO-119, SOT287-1, SOP-32, Audio/Video Amplifier
NXP

TDA8933

Class-D audio amplifier
NXP

TDA8933B

Class D audio amplifier
NXP

TDA8933BTW

Class D audio amplifier
NXP

TDA8933BTW/N2,112

TDA8933B - Class D Audio Amplifier TSSOP 32-Pin
NXP

TDA8933BTW/N2,118

TDA8933B - Class D Audio Amplifier TSSOP 32-Pin
NXP

TDA8933BTW/N2,512

TDA8933B - Class D Audio Amplifier TSSOP 32-Pin
NXP

TDA8933BTW/N2,518

TDA8933B - Class D Audio Amplifier TSSOP 32-Pin
NXP