TDA8933BTW/N2,518 [NXP]

TDA8933B - Class D Audio Amplifier TSSOP 32-Pin;
TDA8933BTW/N2,518
型号: TDA8933BTW/N2,518
厂家: NXP    NXP
描述:

TDA8933B - Class D Audio Amplifier TSSOP 32-Pin

放大器 光电二极管 商用集成电路
文件: 总42页 (文件大小:245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8933B  
Class D audio amplifier  
Rev. 01 — 23 October 2008  
Preliminary data sheet  
1. General description  
The TDA8933B is a high-efficiency class D amplifier with low power dissipation.  
The continuous time output power is 2 × 10 W in a stereo half-bridge application  
(RL = 8 ) or 1 × 20 W in a mono full-bridge application (RL =16 ). Due to the low power  
dissipation the device can be used without any external heat sink when playing music.  
Due to the implementation of Thermal Foldback (TF) the device remains operating with  
considerable music output power without the need for an external heat sink, even for high  
supply voltages and/or lower load impedances.  
The device has two full differential inputs driving two independent outputs. It can be used  
in a mono full-bridge configuration (Bridge-Tied Load (BTL)) or as stereo half-bridge  
configuration (Single-Ended (SE)).  
2. Features  
I Operating voltage from 10 V to 36 V asymmetrical or ±5 V to ±18 V symmetrical  
I Mono bridge-tied load (full-bridge) or stereo single-ended (half-bridge) application  
I Application without heat sink using thermally enhanced small outline package  
I High efficiency and low-power dissipation  
I Thermal foldback to avoid audio holes  
I Current limiting to avoid audio holes  
I Full short circuit proof across load and to supply lines (using advanced current  
protection)  
I Internal or external oscillator (master-slave setting) that can be switched  
I No pop noise  
I Full differential inputs  
3. Applications  
I Flat-panel television sets  
I Flat-panel monitor sets  
I Multimedia systems  
I Wireless speakers  
I Mini/micro systems  
I Home sound sets  
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
4. Quick reference data  
Table 1.  
Quick reference data  
General; Vp = 25 V, fosc = 320 kHz, Tamb = 25 °C unless specified otherwise  
Symbol Parameter  
Conditions  
Min  
Typ  
25  
Max  
36  
Unit  
V
VP  
supply voltage  
supply current  
asymmetrical supply  
Sleep mode  
10  
-
IP  
0.6  
40  
1.0  
50  
mA  
mA  
Iq(tot)  
total quiescent  
current  
Operating mode; no load; no  
snubbers or filter connected  
-
Stereo SE channel; Rs < 0.1 [1]  
Po(RMS) RMS output power continuous time output power per channel[2]  
RL = 4 ; VP = 17 V  
THD+N = 10 %, fi = 1 kHz  
RL = 8 ; VP = 25 V  
7.5  
9.3  
8.5  
-
-
W
W
THD+N = 10 %, fi = 1 kHz  
10.3  
Mono BTL channel; Rs < 0.1 [1]  
Po(RMS) RMS output power continuous time output power[2]  
RL = 8 ; VP = 17 V  
THD+N = 10 %, fi = 1 kHz  
15.4  
18.9  
17.1  
20.6  
-
-
W
W
RL = 16 ; VP = 25 V  
THD+N = 10 %, fi = 1 kHz  
[1] Rs is the total series resistance of an inductor and an ESR single-ended capacitor in the application.  
[2] Output power is measured indirectly, based on RDSon measurement.  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDA8933BTW  
HTSSOP32 plastic thermal enhanced thin shrink small outline package; 32 leads;  
body width 6.1 mm; lead pitch 0.65 mm; exposed die pad  
SOT549-1  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
2 of 42  
 
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
6. Block diagram  
OSCREF OSCIO  
V
DDA  
8
10  
31  
28  
BOOT1  
OSCILLATOR  
29  
2
V
DDP1  
IN1P  
DRIVER  
HIGH  
27  
26  
PWM  
MODULATOR  
OUT1  
V
SSD  
CTRL  
DRIVER  
LOW  
V
SSP1  
3
IN1N  
INREF  
IN2P  
21  
20  
22  
23  
12  
15  
MANAGER  
BOOT2  
V
DDP2  
DRIVER  
HIGH  
PWM  
MODULATOR  
OUT2  
CTRL  
DRIVER  
LOW  
V
SSP2  
14  
4
IN2N  
DIAG  
PROTECTIONS:  
OVP, OCP, OTP,  
UVP, TF, WP  
V
DDA  
25  
24  
18  
STABILIZER 11 V  
STAB1  
STAB2  
DREF  
V
SSP1  
V
DDA  
STABILIZER 11 V  
V
7
6
CGND  
SSP2  
POWERUP  
REGULATOR 5 V  
V
SSD  
MODE  
5
ENGAGE  
11  
30  
19  
V
V
DDA  
HVPREF  
HVP1  
SSA  
TDA8933BTW  
13  
TEST  
HVP2  
HALF SUPPLY VOLTAGE  
9
1, 16, 17, 32  
010aaa455  
V
V
SSD(HW)  
SSA  
Fig 1. Block diagram  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
3 of 42  
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
7. Pinning information  
7.1 Pinning  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
V
V
SSD(HW)  
SSD(HW)  
IN1P  
OSCIO  
HVP1  
3
IN1N  
DIAG  
4
V
DDP1  
5
ENGAGE  
POWERUP  
CGND  
BOOT1  
OUT1  
6
7
V
SSP1  
8
V
STAB1  
STAB2  
DDA  
TDA8933BTW  
9
V
SSA  
10  
11  
12  
13  
14  
15  
16  
OSCREF  
HVPREF  
INREF  
TEST  
V
SSP2  
OUT2  
BOOT2  
V
DDP2  
IN2N  
HVP2  
DREF  
IN2P  
V
V
SSD(HW)  
SSD(HW)  
010aaa456  
Fig 2. Pin configuration diagram (HTSSOP32 package)  
7.2 Pin description  
Table 3.  
Symbol  
Pinning description  
Pin Description  
VSSD(HW)  
IN1P  
1
negative digital supply voltage and handle wafer connection  
positive audio input for channel 1  
2
IN1N  
3
negative audio input for channel 1  
DIAG  
4
diagnostic output; open-drain  
ENGAGE  
POWERUP  
CGND  
VDDA  
5
engage input to switch between Mute mode and Operating mode  
power-up input to switch between Sleep mode and Mute mode  
control ground; reference for POWERUP, ENGAGE and DIAG  
positive analog supply voltage  
6
7
8
VSSA  
9
negative analog supply voltage  
OSCREF  
HVPREF  
INREF  
TEST  
10  
11  
12  
13  
14  
15  
16  
17  
18  
input internal oscillator setting (only master setting)  
decoupling of internal half supply voltage reference  
decoupling for input reference voltage  
test signal input; for testing purpose only  
IN2N  
negative audio input for channel 2  
IN2P  
positive audio input for channel 2  
VSSD(HW)  
VSSD(HW)  
DREF  
negative digital supply voltage and handle wafer connection  
negative digital supply voltage and handle wafer connection  
decoupling of internal (reference) 5 V regulator for logic supply  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
4 of 42  
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
Table 3.  
Pinning description …continued  
Symbol  
Pin  
Description  
HVP2  
19  
half supply output voltage 2 for charging single-ended capacitor for  
channel 2  
VDDP2  
BOOT2  
OUT2  
VSSP2  
STAB2  
STAB1  
VSSP1  
OUT1  
BOOT1  
VDDP1  
HVP1  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
positive power supply voltage for channel 2  
bootstrap high-side driver channel 2  
Pulse Width Modulated (PWM) output channel 2  
negative power supply voltage for channel 2  
decoupling of internal 11 V regulator for channel 2 drivers  
decoupling of internal 11 V regulator for channel 1 drivers  
negative power supply voltage for channel 1  
PWM output channel 1  
bootstrap high-side driver for channel 1  
positive power supply voltage for channel 1  
half supply output voltage 1 for charging single-ended capacitor for  
channel 1  
OSCIO  
31  
oscillator input in slave configuration or oscillator output in master  
configuration  
VSSD(HW)  
32  
-
negative digital supply voltage and handle wafer connection  
Exposed die  
pad[1]  
[1] The exposed die pad has to be connected to VSSD(HW)  
.
8. Functional description  
8.1 General  
The TDA8933B is a mono full-bridge or stereo half-bridge audio power amplifier using  
class D technology. The audio input signal is converted into a PWM signal via an analog  
input stage and a PWM modulator. To enable the output power Diffusion Metal Oxide  
Semiconductor (DMOS) transistors to be driven, this digital PWM signal is applied to a  
control and handshake block and driver circuits for both the high side and low side. A  
2nd-order low-pass filter in the application converts the PWM signal to an analog audio  
signal across the loudspeakers.  
The TDA8933B contains two independent half bridges with full differential input stages.  
The loudspeakers can be connected in the following configurations:  
Mono full-bridge: Bridge-Tied Load (BTL)  
Stereo half-bridge: Single-Ended (SE)  
The TDA8933B contains circuits common to both channels such as the oscillator, all  
reference sources, the mode functionality and a digital timing manager. The following  
protections are built-in: thermal foldback and overtemperature, current and voltage  
protections.  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
5 of 42  
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
8.2 Mode selection and interfacing  
The TDA8933B can be switched to one of four operating modes using pins POWERUP  
and ENGAGE:  
Sleep mode: with low supply current.  
Mute mode: the amplifiers are switching to idle (50 % duty cycle), but the audio signal  
at the output is suppressed by disabling the Vl-converter input stages. The capacitors  
on pins HVP1 and HVP2 have been charged to half the supply voltage (asymmetrical  
supply only)  
Operating mode: the amplifiers are fully operational with an output signal  
Fault mode  
Both pins POWERUP and ENGAGE refer to pin CGND.  
Table 4 shows the different modes as a function of the voltages on the POWERUP and  
ENGAGE pins.  
Table 4.  
Mode  
Mode selection for the TDA8933B  
Pin  
POWERUP[1]  
ENGAGE[1]  
< 0.8 V  
DIAG  
Sleep  
< 0.8 V  
undefined  
> 2 V  
Mute  
2 V to 6 V  
2 V to 6 V  
2 V to 6 V  
< 0.8 V  
Operating  
Fault  
2.4 V to 6 V  
undefined  
> 2 V  
< 0.8 V  
[1] When there are symmetrical supply conditions, the voltage applied to pins POWERUP and ENGAGE must  
never exceed the supply voltage (VDDA, VDDP1 or VDDP2).  
If the transition between Mute mode and Operating mode is controlled via a time constant,  
the start-up will be pop-free since the DC output offset voltage is applied gradually to the  
output. The bias current setting of the V/I-converters is related to the voltage on pin  
ENGAGE.  
Mute mode: the bias current setting of the V/I-converters is zero (V/I-converters  
disabled).  
Operating mode: the bias current is at maximum.  
The time constant required to apply the DC output offset voltage gradually between Mute  
mode and Operating mode can be generated by applying a capacitor on pin ENGAGE.  
The value of the capacitor on pin ENGAGE should be 470 nF.  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
6 of 42  
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
V
P
POWERUP  
DREF  
OSCIO  
HVPREF  
HVP1, HVP2  
2.0 V (typical)  
1.2 V (typical)  
0.8 V  
ENGAGE  
OUT1, OUT2  
AUDIO  
AUDIO  
AUDIO  
PWM  
PWM  
PWM  
DIAG  
operating  
mute  
operating  
fault  
operating  
sleep  
010aaa457  
Fig 3. Start-up sequence  
8.3 Pulse Width Modulation (PWM) frequency  
The output signal of the amplifier is a PWM signal with a carrier frequency of  
approximately 320 kHz. Using a 2nd-order low-pass filter in the application results in an  
analog audio signal across the loudspeaker. The PWM switching frequency can be set by  
an external resistor Rosc connected between pin OSCREF and VSSD(HW). The carrier  
frequency can be set between 300 kHz and 500 kHz. Using an external resistor of 39 k,  
the carrier frequency is set to a typical value of 320 kHz (see Figure 4).  
If two or more TDA8933B devices are used in the same audio application, it is  
recommended to synchronize the switching frequency of all devices. See Section 14.6 for  
more information.  
The value of the resistor also sets the frequency of the carrier and can be calculated with  
Equation 1:  
12.45x109  
f osc  
=
(1)  
------------------------  
Rosc  
Where:  
fosc = oscillator frequency (Hz)  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
7 of 42  
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
Rosc = oscillator resistor () (on pin OSCREF)  
010aaa531  
550  
f
osc  
(kHz)  
450  
350  
250  
25  
30  
35  
40  
45  
R
osc  
(k)  
Fig 4. Oscillation frequency as a function of Rosc  
Table 5 summarizes how to configure the TDA8933B in master or slave configuration.  
For device synchronization see Section 14.6.  
Table 5.  
Master or slave configuration  
Configuration  
Pin  
OSCREF  
OSCIO  
output  
input  
Master  
Slave  
Rosc > 25 kto VSSD(HW)  
Rosc = 0 ; shorted to VSSD(HW)  
8.4 Protections  
The following protections are implemented in the TDA8933B:  
Thermal Foldback (TF)  
OverTemperature Protection (OTP)  
OverCurrent Protection (OCP)  
Window Protection (WP)  
Supply voltage protections  
UnderVoltage Protection (UVP)  
OverVoltage Protection (OVP)  
UnBalance Protection (UBP)  
Electro Static Discharge (ESD)  
The behavior of the device under the different fault conditions differs according to the  
protection activated and is described in the following sections.  
8.4.1 Thermal Foldback (FT)  
If the junction temperature of the TDA8933B exceeds the threshold level (Tj > 140 °C), the  
gain of the amplifier is decreased gradually to a level where the combination of  
dissipation (P) and the thermal resistance from junction to ambient (Rth(j-a)) results in a  
junction temperature of around the threshold level.  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
8 of 42  
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
This means that the device will not switch off completely, but remains operational at lower  
output power levels. With music output signals, this feature enables high peak output  
powers while still operating without any external heat sink other than the copper area on  
the Printed-Circuit Board (PCB).  
If the junction temperature still increases due to external causes the OTP shuts down the  
amplifier completely.  
8.4.2 OverTemperature Protection (OTP)  
If the junction temperature Tj > 155 °C the power stage will shut down immediately.  
8.4.3 OverCurrent Protection (OCP)  
The OCP can distinguish between an impedance drop of the loudspeaker and a  
low-ohmic short circuit.  
If an impedance drop causes the output current to exceed 2 A, e.g. due to dynamic  
behavior of the loudspeaker, the amplifier will start limiting the current above 2 A.  
Therefore the current limiting feature will avoid audio interruption (audio holes) due to a  
loudspeaker impedance drop.  
If a fault condition causes the output current to exceed 2 A, like a short circuit between the  
loudspeaker terminals or from the loudspeaker terminal to the supply lines or ground, the  
amplifier is switched off and a timer of 100 ms is started. The DIAG is set low for the first  
50 ms of the timer. The timer will keep the power stage disabled for at least 100 ms.  
Every 100 ms the amplifier will try to restart as long as the short circuit between the  
loudspeaker terminals remains. The average power dissipation in the TDA8933B will be  
low because the short circuit current will flow only during a very short time every 100 ms.  
If a short circuit occurs between a loudspeaker terminal and the supply lines or ground,  
the activated WP will keep the power stage disabled (no restart every 100 ms). Restart  
will take place after removing this short.  
8.4.4 Window Protection (WP)  
The window protection protects the amplifier against the following fault conditions:  
During the start-up sequence, when pin POWERUP is switched from Sleep mode to  
Mute mode. In the event of a short circuit at one of the output terminals to VDDP1  
,
VSSP1, VDDP2 or VSSP2 the start-up procedure is interrupted and the TDA8933B waits  
for open circuit outputs. Because the check is done before enabling the power stages  
no large currents will flow in the event of a short circuit.  
When the amplifier is shut down completely due to activation of the OCP or because  
of a short circuit to one of the supply lines, then during restart (i.e. after 100 ms) the  
window protection will be activated. As a result the amplifier will not start up until the  
short circuit to the supply lines has been removed.  
8.4.5 Supply voltage protection  
If the supply voltage drops below 10 V the UnderVoltage Protection (UVP) circuit is  
activated and the system will shut down directly. This switch-off will be silent and without  
pop noise. When the supply voltage rises above the threshold level the power stage is  
restarted after 100 ms.  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
9 of 42  
 
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
If the supply voltage exceeds 36 V the OVP circuit is activated and the power stages will  
shut down. It is enabled again as soon as the supply voltage drops below the threshold  
level. The power stage is restarted after 100 ms.  
Supply voltages > 40 V may damage the TDA8933B. Two conditions should be  
distinguished here:  
If the supply voltage is pumped to higher values by the TDA8933B application itself  
(see also Section 14.8), the OVP is triggered and the TDA8933B is shut down. The  
supply voltage will decrease and the TDA8933B is thus protected against any  
overstress.  
If a supply voltage > 40 V is caused by other or by external causes the TDA8933B will  
shut down, but the device can still be damaged since the supply voltage in this case  
will remain > 40 V. The OVP protection is not a supply clamp.  
An additional UnBalance Protection (UBP) circuit compares the positive analog supply  
voltage VDDA with the negative analog supply voltage VSSA and is triggered if the  
difference between them exceeds a certain level. This level depends on the sum of both  
supply voltages. The UBP threshold levels can be defined as follows:  
LOW-level threshold: VP(th)(ubp)l < 8/5 × VHVPREF  
HIGH-level threshold: VP(th)(ubp)h > 8/3 × VHVPREF  
In a symmetrical supply the UBP is released when the unbalance of the supply voltage is  
within 6 % of its starting value.  
Table 6 shows an overview of all protections and their effect on the output signal.  
Table 6.  
Overview of protections for the TDA8933B  
Protection  
Restart  
When fault is removed  
Every 100 ms  
OTP  
OCP  
WP  
no  
yes  
no  
yes  
yes  
no  
no  
UVP  
OVP  
UBP  
yes  
yes  
yes  
no  
no  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
10 of 42  
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
8.5 Diagnostic input and output  
Except for TF, whenever one of the protections is triggered pin DIAG is activated to LOW  
level (see Table 6). An internal current source will pull up the open-drain DIAG output to  
approximately 2.5 V. This current source can deliver approximately 50 µA. The DIAG pin  
refers to pin CGND. The diagnostic output signal during different short circuit conditions is  
illustrated in Figure 5. Using pin DIAG as input, a voltage < 0.8 V will put the device into  
Fault mode.  
V
V
o
o
2.4 V  
2.4 V  
amplifier  
restart  
no restart  
0 V  
0 V  
50 ms 50 ms  
short to  
shorted load  
supply line  
001aad759  
Fig 5. Diagnostic output for different short circuit conditions  
8.6 Differential inputs  
For a high common-mode rejection ratio and for maximum flexibility in the application the  
audio inputs are fully differential. By connecting the inputs anti-parallel the phase of one of  
the two channels can be inverted so that the amplifier can then operate as a mono BTL  
amplifier. The input configuration for a mono BTL application is illustrated in Figure 6.  
In the SE configuration it is also recommended to connect the two differential inputs in  
anti-phase. This has advantages for the current handling of the power supply at low signal  
frequencies and minimizes supply pumping (see also Section 14.8).  
IN1P  
OUT1  
IN1N  
audio  
input  
IN2P  
OUT2  
IN2N  
001aad760  
Fig 6. Input configuration for a mono BTL application  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
11 of 42  
 
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
8.7 Output voltage buffers  
When pin POWERUP is set HIGH the half-supply output voltage buffers are switched on  
in asymmetrical configuration. The start-up will then be pop-free because the device  
starts switching when the capacitor on pin HVPREF and the SE capacitors are completely  
charged.  
Output voltage buffer pins:  
Pins HVP1 and HVP2: The time required for charging the SE capacitor depends on its  
value. The half-supply voltage output is disabled when the TDA8933B is used in a  
symmetrical supply application.  
Pin HVPREF: This output voltage reference buffer charges the capacitor on pin  
HVPREF.  
Pin INREF: This output voltage reference buffer charges the input reference capacitor  
on pin INREF, which applies the bias voltage for the inputs.  
9. Internal circuitry  
Table 7.  
Internal circuitry  
Symbol  
Pin  
1
Equivalent circuit  
VSSD(HW)  
1, 16,  
17, 32  
V
V
DDA  
16  
17  
32  
SSA  
001aad784  
2
IN1P  
IN1N  
INREF  
IN2N  
IN2P  
V
DDA  
3
2 kΩ  
± 20 %  
12  
14  
15  
2, 15  
V/I  
48 kΩ  
± 20 %  
12  
HVPREF  
48 kΩ  
± 20 %  
2 kΩ  
± 20 %  
3, 14  
V/I  
V
SSA  
001aad785  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
12 of 42  
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
Table 7.  
Internal circuitry  
Symbol  
Pin  
Equivalent circuit  
4
DIAG  
V
2.5 V  
DDA  
50 µA  
500 Ω  
± 20 %  
4
100 kΩ  
± 20 %  
V
V
CGND  
SSA  
001aaf607  
5
ENGAGE  
2.8 V  
DDA  
I
= 50 µA  
ref  
2 kΩ  
± 20 %  
5
100 kΩ  
± 20 %  
V
CGND  
SSA  
001aaf608  
6
POWERUP  
V
DDA  
6
V
CGND  
001aad788  
SSA  
7
CGND  
V
DDA  
7
V
SSA  
001aad789  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
13 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
Table 7.  
Internal circuitry  
Symbol  
Pin  
Equivalent circuit  
8
VDDA  
8
V
V
SSA  
SSD  
001aad790  
9
VSSA  
V
DDA  
9
V
SSD  
001aad791  
10  
OSCREF  
V
DDA  
I
ref  
10  
V
001aad792  
SSA  
11  
HVPREF  
V
DDA  
11  
V
SSA  
001aaf604  
13  
TEST  
V
V
DDA  
13  
SSA  
001aad795  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
14 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
Table 7.  
Internal circuitry  
Symbol  
Pin  
Equivalent circuit  
18  
DREF  
V
DD  
18  
V
SSD  
001aag025  
19  
30  
HVP2  
HVP1  
V
DDA  
19, 30  
V
001aag026  
SSA  
20  
23  
26  
29  
VDDP2  
VSSP2  
VSSP1  
VDDP1  
20, 29  
23, 26  
001aad798  
21  
28  
BOOT2  
BOOT1  
21, 28  
OUT1, OUT2  
001aad799  
22  
27  
OUT2  
OUT1  
V
V
DDP1,  
DDP2  
22, 27  
V
SSP1,  
V
SSP2  
001aag027  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
15 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
Table 7.  
Internal circuitry  
Symbol  
Pin  
24  
Equivalent circuit  
STAB2  
V
DDA  
25  
STAB1  
24, 25  
V
SSP1,  
V
SSP2  
001aag028  
31  
OSCIO  
DREF  
31  
V
SSD  
001aag029  
10. Limiting values  
Table 8.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VP  
supply voltage  
asymmetrical  
supply[1]  
0.3  
+40.1  
V
Vx  
voltage on pin x  
[2]  
[3]  
[4]  
IN1P, IN1N, IN2P, IN2N  
OSCREF, OSCIO, TEST  
5  
+5  
5
V
V
V
VSSD(HW) 0.3  
POWERUP, ENGAGE,  
DIAG  
VCGND 0.3  
6
[5]  
[6]  
all other pins  
VSS 0.3  
2
VDD + 0.3  
-
V
A
IORM  
repetitive peak output  
current  
maximum output  
current limiting  
Tj  
junction temperature  
storage temperature  
ambient temperature  
power dissipation  
-
150  
+150  
+85  
5
°C  
°C  
°C  
W
V
Tstg  
Tamb  
P
55  
40  
-
[7]  
[8]  
Vesd  
electrostatic discharge  
voltage  
human body  
model  
2000  
+2000  
machine model  
200  
+200  
V
[1] VP = VDDP1 VSSP1 = VDDP2 VSSP2  
[2] Measured with respect to pin INREF; Vx < VDD + 0.3 V.  
[3] Measured with respect to pin VSSD(HW); Vx < VDD + 0.3 V.  
[4] Measured with respect to pin CGND; Vx < VDD + 0.3 V.  
[5] VSS = VSSP1 = VSSP2; VDD = VDDP1 = VDDP2  
.
[6] Current limiting concept.  
[7] Human Body Model (HBM); Rs = 1500 ; C = 100 pF. For pins 2, 3, 11, 14 and 15 Vesd = 1800V.  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
16 of 42  
 
 
 
 
 
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
[8] Machine Model (MM); Rs = 0 ; C = 200 pF; L = 0.75 µH.  
11. Thermal characteristics  
Table 9.  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
thermal resistance from  
junction to ambient  
free air natural convection  
JEDEC test board  
[1]  
[2]  
[3]  
-
-
-
47  
48  
30  
50  
-
K/W  
K/W  
K/W  
Two-layer application board  
Three-layer application  
board  
-
Ψj-lead  
thermal characterization  
parameter from junction to  
lead  
-
-
-
-
30  
2
K/W  
K/W  
K/W  
[4]  
Ψj-top  
thermal characterization  
parameter from junction to  
top of package  
-
Rth(j-c)  
thermal resistance from  
junction to case  
free-air natural convection  
4.0  
-
[1] Measured on a JEDEC high K-factor test board (standard EIA/JESO 51-7) in free air with natural convection.  
[2] Measured on a two-layer application board (55 mm × 40 mm), 35 µm copper, FR4 base material in free air with natural convection.  
[3] Measured on a three-layer application board (70 mm × 50 mm), 35 µm copper, FR4 base material in free air with natural convection.  
[4] Strongly dependent on where the measurement is taken on the package.  
12. Static characteristics  
Table 10. Characteristics  
VP = 25 V, fosc = 320 kHz and Tamb = 25 °C; unless specified otherwise.  
Symbol  
Supply  
VP  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
supply current  
asymmetrical supply  
symmetrical supply  
Sleep mode  
10  
±5  
-
25  
36  
V
±12.5  
0.6  
40  
±18  
1.0  
50  
V
IP  
mA  
mA  
Iq(tot)  
total quiescent current Operating mode; no load,  
no snubbers or filter  
-
connected  
Series resistance output switches  
RDSon drain-source on-state Tj = 25 °C  
-
-
380  
545  
-
-
mΩ  
mΩ  
resistance  
Tj = 125 °C  
Power-up input: pin POWERUP[1]  
VI  
II  
input voltage  
input current  
0
-
-
6.0  
20  
V
VI = 3 V  
1
-
µA  
V
VIL  
LOW-level input  
voltage  
0
0.8  
VIH  
HIGH-level input  
voltage  
2
-
6.0  
V
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
17 of 42  
 
 
 
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
Table 10. Characteristics …continued  
VP = 25 V, fosc = 320 kHz and Tamb = 25 °C; unless specified otherwise.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Engage input: pin ENGAGE[1]  
VO  
VI  
output voltage  
input voltage  
output current  
2.4  
0
2.8  
-
3.1  
6.0  
60  
V
V
IO  
VI = 3 V  
-
50  
-
µA  
V
VIL  
LOW-level input  
voltage  
0
0.8  
VIH  
HIGH-level input  
voltage  
2.4  
-
6.0  
V
Diagnostic output: pin DIAG[1]  
VO output voltage  
protection activated; see  
Table 6  
-
-
0.8  
3.3  
V
V
Operating mode  
2
2.5  
Bias voltage for inputs: pin INREF  
VO(bias) bias output voltage  
Reference to VSSA  
-
2.1  
-
V
Half-supply voltage  
Pins HVP1 and HVP2  
VO  
output voltage  
half-supply voltage to  
charge SE capacitor  
0.5VP 0.2 V 0.5VP  
50  
0.5VP + 0.2 V V  
IO  
output current  
output voltage  
VHVP1 = VHVP2 = VO 1 V  
-
-
mA  
Pin HVPREF  
VO  
half-supply reference  
voltage in Mute mode  
0.5VP 0.2 V 0.5VP  
0.5VP + 0.2 V V  
Reference voltage for internal logic: pin DREF  
VO output voltage reference to VSSA  
Amplifier outputs: pins OUT1 and OUT2  
4.5  
4.8  
5.1  
V
VO(offset)  
output offset voltage  
SE; with respect to HVPREF  
Mute mode  
-
-
-
-
15  
mV  
mV  
Operating mode  
BTL  
100  
Mute mode  
-
-
-
-
20  
mV  
mV  
Operating mode  
150  
Stabilizer output: pins STAB1, STAB2  
VO output voltage  
Mute mode and  
Operating mode; with  
respect to pins VSSP1 and  
VSSP2  
10  
11  
12  
V
Voltage protections  
VP(uvp) undervoltage  
8.0  
9.5  
9.9  
40  
V
V
protection supply  
voltage  
VP(ovp)  
overvoltage protection  
supply voltage  
36.1  
38.5  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
18 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
Table 10. Characteristics …continued  
VP = 25 V, fosc = 320 kHz and Tamb = 25 °C; unless specified otherwise.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VP(th)(ubp)l  
low unbalance  
VP = 22 V;  
-
-
18  
V
protection threshold  
supply voltage  
VHVPREF = 11 V  
VP(th)(ubp)h  
high unbalance  
protection threshold  
supply voltage  
VP = 22 V;  
HVPREF = 11 V  
29  
-
-
-
V
A
V
Current protections  
IO(ocp)  
overcurrent protection current limiting  
output current  
2.0  
2.5  
Temperature protection  
Tact(th_prot) thermal protection  
155  
140  
-
-
160  
150  
°C  
°C  
activation temperature  
Tact(th_fold)  
thermal foldback  
activation temperature  
Oscillator reference: pin OSCIO[2]  
VIH  
HIGH-level input  
voltage  
4.0  
0
-
-
-
-
-
5.0  
0.8  
5.0  
0.8  
-
V
V
V
V
-
VIL  
LOW-level input  
voltage  
VOH  
HIGH-level output  
voltage  
4.0  
0
VOL  
LOW-level output  
voltage  
Nslave(max)  
maximum number of  
slaves  
driven by one master  
12  
[1] Measured with respect to pin CGND.  
[2] Measured with respect to pin VSSD(HW)  
.
13. Dynamic characteristics  
Table 11. Switching characteristics  
VP = 25 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Internal oscillator  
fosc oscillator frequency  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rosc = 39 kΩ  
-
320  
-
-
kHz  
kHz  
range  
300  
500  
Timing PWM output: pins OUT1 and OUT2  
tr  
rise time  
IO = 0 A  
IO = 0 A  
IO = 0 A  
-
-
-
10  
10  
80  
-
-
-
ns  
ns  
ns  
tf  
fall time  
tw(min)  
minimum pulse width  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
19 of 42  
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
Table 12. SE characteristics  
VP = 25 V, RL = 2 × 8 , fi = 1 kHz, fosc = 320 kHz, RS < 0.1 [1] and Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Po(RMS)  
RMS output power  
continuous time output power per channel[2]  
RL = 4 ; VP = 17 V  
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
THD+N = 10 %, fi = 100 Hz  
RL = 8 ; VP = 25 V  
5.9  
-
6.8  
6.8  
8.5  
8.5  
-
-
-
-
W
W
W
W
7.5  
-
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
THD+N = 10 %, fi = 100 Hz  
Po = 1 W  
7.3  
-
8.2  
-
-
-
-
W
W
W
W
8.2  
9.3  
-
10.3  
10.3  
[3]  
THD+N  
total harmonic  
distortion-plus-noise  
fi = 1 kHz  
-
0.014  
0.05  
30  
0.1  
0.1  
31  
1
%
fi = 6 kHz  
-
%
Gv(cl)  
|GV|  
αcs  
closed-loop voltage gain  
voltage gain difference  
channel separation  
Vi =100 mV; no load  
29  
-
dB  
dB  
dB  
0.5  
Po = 1 W; fi = 1 kHz  
Operating mode  
fi = 100 Hz  
70  
80  
-
[4]  
SVRR  
supply voltage ripple  
rejection  
-
60  
-
dB  
dB  
kΩ  
µV  
µV  
µV  
dB  
fi = 1 kHz  
40  
70  
-
50  
-
|Zi|  
input impedance  
differential  
100  
100  
70  
-
[5]  
[5]  
Vn(o)  
output noise voltage  
Operating mode; Ri = 0 Ω  
Mute mode  
150  
-
100  
VO(mute)  
CMRR  
mute output voltage  
Mute mode; Vi = 1 V (RMS)  
Vi(cm) = 1 V (RMS)  
-
100  
75  
-
-
common mode rejection  
ratio  
-
ηpo  
output power efficiency  
VP = 17 V; RL = 4 ;  
Po = 8 W/channel  
86  
89  
89  
92  
-
-
%
%
VP = 25 V; RL = 8 ;  
Po = 10 W/channel  
[1] RS is the total series resistance of an inductor and a ESR single ended capacitor in the application.  
[2] Output power is measured indirectly; based on RDSon measurement.  
[3] THD+N is measured in a bandwidth of 20 Hz to 20 kHz, AES17 brick wall.  
[4] Vripple = 2 V (p-p); Ri = 0 .  
[5] B = 20 Hz to 20 kHz, AES17 brick wall.  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
20 of 42  
 
 
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
Table 13. BTL characteristics  
VP = 25 V, RL = 16 , fi = 1 kHz, fosc = 320 kHz, RS < 0.1 [1] and Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Po(RMS)  
RMS output power  
continuous time output power[2]  
RL = 8 ; VP = 17 V  
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
THD+N = 10 %, fi = 100 Hz  
RL = 16 ; VP = 25 V  
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
THD+N = 10 %, fi = 100 Hz  
Po = 1 W  
11.9  
13.7  
13.7  
17.1  
17.1  
-
-
-
-
W
W
W
W
-
15.4  
-
14.9  
16.5  
16.5  
20.6  
20.6  
-
-
-
-
W
W
W
W
-
18.9  
-
[3]  
THD+N  
total harmonic  
distortion-plus-noise  
fi = 1 kHz  
-
0.01  
0.04  
36  
0.1  
0.1  
37  
-
%
fi = 6 kHz  
-
%
Gv(cl)  
|Zi|  
closed-loop voltage gain  
input impedance  
35  
35  
dB  
kΩ  
differential  
50  
Vn(o)  
output noise voltage  
Ri = 0 Ω  
[4]  
[4]  
Operating mode  
Mute mode  
-
-
-
-
100  
70  
150  
µV  
µV  
µV  
dB  
100  
VO(mute)  
CMRR  
mute output voltage  
Mute mode; Vi = 1 V (RMS)  
Vi(cm) = 1 V (RMS)  
100  
75  
-
-
common mode rejection  
ratio  
[5]  
ηpo  
output power efficiency  
Po = 17 W; VP = 17 V; RL = 8 Ω  
Po = 21 W; VP = 25 V; RL = 16 Ω  
89  
92  
91  
94  
-
-
%
%
[1] RS is the total series resistance of an inductor and a ESR single ended capacitor in the application.  
[2] Output power is measured indirectly; based on RDSon measurement.  
[3] THD+N is measured in a bandwidth of 20 Hz to 20 kHz, AES17 brick wall.  
[4] B = 22 Hz to 20 kHz, AES17 brick wall.  
2 Po  
[5] η po  
=
-----------------------  
2 Po + P  
14. Application information  
14.1 Output power estimation  
The output power Po at THD+N = 0.5 %, just before clipping, for the SE and the BTL  
configurations can be estimated using Equation 2 and Equation 3.  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
21 of 42  
 
 
 
 
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
SE configuration:  
2
RL  
----------------------------------------------------------  
RL + RDSon + Rs + RESR  
------------------------------------------------------------------------------------------------------------------------------------------  
8 × RL  
× (1 tw(min) × f osc) × VP  
Po(0.5%)  
=
(2)  
(3)  
BTL configuration:  
2
RL  
------------------------------------------------------  
RL + 2 × (RDSon + Rs )  
--------------------------------------------------------------------------------------------------------------------------------------  
2 × RL  
× (1 tw(min) × f osc) × VP  
Po(0.5%)  
=
Where:  
VP = supply voltage VDDP1 VSSP1 (V) or VDDP2 VSSP2 (V)  
RL = load resistance (Ω)  
RDSon = drain-source on-state resistance (Ω)  
Rs = series resistance output inductor (Ω)  
RESR = Equivalent Series Resistance SE capacitance ()  
tw(min) = minimum pulse width(s); 80 ns typical  
fosc = oscillator frequency (Hz); 320 kHz typical with Rosc = 39 kΩ  
The output power Po at THD+N = 10 % can be estimated by:  
Po(10%) = 1.25 × Po(0.5%)  
(4)  
Figure 7 and Figure 8 show the estimated output power at THD+N = 0.5 % and  
THD+N = 10 % as a function of the supply voltage for SE and BTL configurations at  
different load impedances. The output power is calculated with: RDSon = 0.38 (at  
Tj = 25 °C), Rs = 0.05 , RESR = 0.05 and IO(ocp) = 2 A (minimum).  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
22 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
010aaa499  
(3)  
010aaa500  
(3)  
20  
20  
P
(10 %)  
(W/channel)  
P
(0.5 %)  
(W/channel)  
o
o
16  
16  
(2)  
(2)  
12  
8
12  
8
(1)  
(1)  
4
4
0
0
10 12 14 16 18 20 22 24 26 28 30 32 34 36  
(V)  
10 12 14 16 18 20 22 24 26 28 30 32 34 36  
(V)  
V
V
P
P
a. THD+N = 0.5 %  
b. THD+N = 10 %  
(1) RL = 4 Ω  
(2) RL = 6 Ω  
(3) RL = 8 Ω  
When the maximum current of 2 A is reached, the current limitation feature becomes active. See also Section 8.4.3 for OCP  
details.  
Fig 7. SE output power as a function of supply voltage  
010aaa501  
(3)  
010aaa502  
(3)  
40  
40  
P
(0.5 %)  
(W)  
P
(10 %)  
(W)  
o
o
30  
20  
10  
0
30  
20  
10  
0
(2)  
(2)  
(1)  
(1)  
10 12 14 16 18 20 22 24 26 28 30 32 34 36  
(V)  
10 12 14 16 18 20 22 24 26 28 30 32 34 36  
(V)  
V
V
P
P
a. THD+N = 0.5 %  
b. THD+N = 10 %  
(1) RL = 6 Ω  
(2) RL = 8 Ω  
(3) RL = 16 Ω  
When the maximum current of 2 A is reached, the current limitation feature becomes active. See also Section 8.4.3 for OCP  
details.  
Fig 8. BTL output power as a function of supply voltage  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
23 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
14.2 Output current limitation  
The peak output current IO(max) is internally limited to a minimum value of 2 A. During  
normal operation the output current should not exceed this threshold level, otherwise the  
signal will be distorted. The peak output current in SE or BTL configurations can be  
calculated using Equation 5 and Equation 6.  
SE configuration:  
0.5 × VP  
IO(max)  
2A  
(5)  
(6)  
----------------------------------------------------------  
RL + RDSon + Rs + RESR  
BTL configuration:  
VP  
IO(max)  
2A  
-----------------------------------------------------  
RL + 2 × (RDSon + Rs)  
Where:  
VP = supply voltage VDDP1 VSSP1 (V) or VDDP2 VSSP2 (V)  
RL = load resistance (Ω)  
RDSon = drain-source on-state resistance (Ω)  
Rs = series resistance output inductor (Ω)  
RESR = Equivalent Series Resistance SE capacitance (Ω)  
Example:  
An 8 speaker in the BTL configuration can be used up to a supply voltage of 18 V  
without running into current limiting. Current limiting (clipping) will avoid audio holes but  
produces a similar distortion to voltage clipping.  
14.3 Speaker configuration and impedance  
For a flat frequency response (second-order Butterworth filter with an output frequency of  
40 kHz) it is necessary to change the low-pass filter components LLC and CLC according  
to the speaker configuration and impedance. Table 14 shows the values required in  
practice.  
Table 14. Filter component values  
Configuration  
RL ()  
LLC (µH)  
CLC (nF)  
680  
SE  
4
22  
33  
47  
22  
47  
6
470  
8
330  
BTL  
8
680  
16  
330  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
24 of 42  
 
 
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
14.4 Single-ended capacitor  
The SE capacitor forms a high-pass filter with the speaker impedance. This means that  
the frequency response will roll off with 20 dB per decade below f3dB and a cut-off  
frequency of 3 dB.  
The 3 dB cut-off frequency is equal to:  
1
f 3dB  
=
(7)  
-----------------------------------  
2π × RL × CSE  
Where:  
f3dB = 3 dB cut-off frequency (Hz)  
RL = load resistance (W)  
CSE = single-ended capacitance (F); see Figure 32  
Table 15 shows an overview of the required SE capacitor values in the case of a 60 Hz,  
40 Hz or 20 Hz 3 dB cut-off frequency.  
Table 15. SE capacitor values  
Impedance ()  
CSE (µF)  
3dB = 60 Hz  
f
f
3dB = 40 Hz  
f3dB = 20 Hz  
4
6
8
680  
470  
330  
1000  
680  
2200  
1500  
1000  
470  
14.5 Gain reduction  
The gain of the TDA8933B is internally fixed at 30 dB for SE and 36 dB for BTL. The gain  
can be reduced by a resistive voltage divider at the input (see Figure 9).  
R1  
R2  
470 nF  
470 nF  
100  
kΩ  
R3  
audio in  
010aaa137  
Fig 9. Input configuration for reducing gain  
When applying a resistive divider, the total voltage gain Gv(tot) can be calculated using  
Equation 8 and Equation 9:  
REQ  
Gv(tot) = Gv(cl) + 20log  
(8)  
-----------------------------------------  
REQ + (R1 + R2)  
Where:  
Gv(tot) = total voltage gain (dB)  
Gv(cl) = closed-loop voltage gain, fixed at 30 dB for SE (dB)  
REQ = equivalent resistance, R3 and Zi (Ω)  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
25 of 42  
 
 
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
R1 = series resistors (Ω)  
R2 = series resistors (Ω)  
R3 × Zi  
REQ  
=
(9)  
------------------  
R3 + Zi  
Where:  
REQ = equivalent resistance (Ω)  
R3 = parallel resistor (Ω)  
Zi = internal input impedance (Ω)  
Example:  
Substituting R1 = R2 = 4.7 k, Zi = 100 kand R3 = 22 kin Equation 8 and Equation 9  
results in a gain of Gv(tot) = 26.3 dB.  
14.6 Device synchronization  
If two or more TDA8933B devices are used in one application it is recommended that all  
the devices are synchronized at the same switching frequency to avoid beat tones. This  
can be done by connecting all OSCIO pins together and configuring one of the devices as  
master while the others are configured as slaves (see Figure 10).  
A device is configured as master when a resistor Rosc is connected between pin OSCREF  
and pin VSSD(HW), thus setting the carrier frequency. Pin OSCIO of the master is then  
configured as an oscillator output for synchronization. The OSCREF pins of the slave  
devices should be shorted to pin VSSD(HW), configuring pin OSCIO as an input.  
master  
slave  
IC1  
IC2  
TDA8933B  
TDA8933B  
V
V
SSD(HW) OSCREF  
OSCREF SSD(HW) OSCIO  
OSCIO  
C
R
osc  
39 kΩ  
osc  
100 nF  
010aaa138  
Fig 10. Master/slave concept in a two-chip application  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
26 of 42  
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
14.7 Thermal behavior (PCB considerations)  
The TDA8933B is available in a thermally enhanced HTSSOP32 (SOT549-1) package for  
reflow soldering.  
The HTSSOP32 package has an exposed die pad that reduces significantly the overall  
Rth(j-a). Therefore it is required to solder the exposed die pad (at VSSD level) to a copper  
plane for cooling. A low thermal-resistance can be achieved when using a multilayer PCB  
with sufficient space for two or three thermal planes. Increasing the area of the thermal  
plane, the number of planes or the copper thickness can reduce further the thermal  
resistance Rth(j-a) of both packages.  
Find below the typical thermal resistance (free air and natural convection) of two practical  
PCB implementations:  
Rth(j-a) = 48 K/W for a small two-layer application board (55 mm × 40 mm, µm copper,  
FR4 base material).  
Rth(j-a) = 30 K/W for a three-layer application board (70 mm × 50 mm, 35 µm copper,  
FR4 base material).  
Equation 10 shows the relation between the maximum allowable power dissipation P and  
the thermal resistance from junction to ambient.  
T j(max) Tamb  
Rth( j a)  
=
(10)  
-----------------------------------  
P
Where:  
Rth(j-a) = thermal resistance from junction to ambient (K/W)  
Tj(max) = maximum junction temperature (°C)  
Tamb = ambient temperature (°C)  
P = power dissipation, which is determined by the efficiency of the TDA8933B  
The power dissipation is shown in Figure 19 (SE) and Figure 27 (BTL).  
Thermal foldback will limit the maximum junction temperature to 140 °C.  
14.8 Pumping effects  
When the amplifier is used in an SE configuration a so-called ‘pumping effect’ can occur.  
During one switching interval, energy is taken from one supply (e.g. VDDP1), while a part of  
that energy is delivered back to the other supply line (e.g. VSSP1) and vice versa. When  
the power supply cannot sink energy the voltage across output capacitors that power  
supply will increase.  
The voltage increase caused by the pumping effect depends on:  
Speaker impedance  
Supply voltage  
Audio signal frequency  
Value of decoupling capacitors on supply lines  
Source and sink currents of other channels  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
27 of 42  
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
The pumping effect should not cause a malfunction of either the audio amplifier or the  
power supply, which can also be caused by triggering of the undervoltage or overvoltage  
protection of the amplifier.  
Pumping effects in an SE configuration can be minimized by connecting audio inputs in  
anti-phase and changing the polarity of one speaker as shown in Figure 11.  
IN1P  
OUT1  
audio  
in1  
IN1N  
IN2N  
OUT2  
audio  
in2  
IN2P  
010aaa140  
Fig 11. SE application for reducing pumping effect  
14.9 SE curves measured in the reference design  
010aaa503  
010aaa504  
2
2
10  
10  
THD+N  
(%)  
THD+N  
(%)  
10  
10  
1
1
(3)  
(3)  
1  
1  
10  
10  
(1)  
(1)  
(2)  
(2)  
2  
2  
10  
10  
3  
3  
10  
10  
2  
1  
2
2  
1  
2
10  
10  
1
10  
o
10  
10  
10  
1
10  
P (W/channel)  
o
10  
P
(W/channel)  
a. VP = 25 V; RL = 2 × 8 SE  
b. VP = 17 V; RL = 2 × 4 SE  
(1) fi = 6 kHz  
(2) fi = 1 kHz  
(3) fi = 100 Hz  
Fig 12. Total harmonic distortion-plus-noise as a function of output power  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
28 of 42  
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
010aaa505  
010aaa506  
2
2
10  
10  
THD+N  
(%)  
THD+N  
(%)  
10  
10  
1
1
1  
1  
(1)  
(2)  
10  
10  
(1)  
2  
2  
(2)  
10  
10  
10  
3  
3  
10  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
i
f (Hz)  
i
a. VP = 25 V; RL = 2 × 8 SE  
b. VP = 17 V; RL = 2 × 4 SE  
(1) Po = 7 W  
(2) Po = 1 W  
Fig 13. Total harmonic distortion-plus-noise as a function of frequency  
010aaa507  
010aaa508  
40  
0
SVRR  
(dB)  
G
(dB)  
v(cl)  
20  
30  
(2)  
(1)  
40  
60  
80  
(2)  
(1)  
20  
10  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
i
f (Hz)  
i
Ri = 0 Ω; Vi = 100 mV (RMS); Cse = 1000 µF  
Vripple = 500 mV (RMS) referenced to ground;  
Shorted input; CHVPREF = 47 µF  
(1) RL = 2 × 4 SE at VP = 17 V  
(2) RL = 2 × 8 SE at VP = 25 V  
(1) VP = 17 V; RL = 2 × 4 SE  
(2) VP = 25 V; RL = 2 × 8 SE  
Fig 14. Gain as a function of frequency  
Fig 15. Supply voltage ripple rejection as a function of  
frequency  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
29 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
010aaa509  
010aaa510  
100  
S/N  
0
α
cs  
(dB)  
(dB)  
(2)  
80  
20  
40  
(1)  
60  
40  
20  
0
(1)  
(2)  
60  
80  
100  
2  
1  
2
2
3
4
5
10  
10  
1
10  
10  
10  
10  
10  
10  
10  
P
(W)  
f (Hz)  
i
o
Ri = 0 ; 20 kHz brick wall filter AES17  
(1) RL = 2 × 4 SE at VP = 17 V  
(2) RL = 2 × 8 SE at VP = 25 V  
Po = 1 W  
(1) RL = 2 × 4 SE at VP = 17 V  
(2) RL = 2 × 8 SE at VP = 25 V  
Fig 16. Signal-to-noise ratio as a function of output  
power  
Fig 17. Channel separation as a function of frequency  
010aaa511  
010aaa512  
100  
3.0  
η
po  
(%)  
P
(1)  
(W)  
80  
(2)  
2.0  
60  
40  
20  
0
(1)  
(2)  
1.0  
0.0  
2  
1  
2
0
3
6
9
12  
o
15  
10  
10  
1
10  
P (W/channel)  
o
10  
P
(W/channel)  
fi = 1 kHz; Power dissipation in junction only  
2 × Po  
------------------------  
2 × Po + P  
fi = 1 kHz; η po  
=
(1) RL = 2 × 4 SE at 17 V  
(2) RL = 2 × 8 SE at 25 V  
(1) RL = 2 × 4 SE at 17 V  
(2) RL = 2 × 8 SE at 25 V  
Fig 18. Output power efficiency as a function of  
output power  
Fig 19. Power dissipation as a function of output  
power per channel (two channels driven)  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
30 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
010aaa513  
010aaa514  
30  
4.0  
P
(W)  
P
o
(W/channel)  
(2)  
3.0  
(1)  
(2)  
20  
(1)  
2.0  
1.0  
0.0  
(3)  
(4)  
10  
0
10 12 14 16 18 20 22 24 26 28 30 32 34 36  
(V)  
10 12 14 16 18 20 22 24 26 28 30 32 34 36  
(V)  
V
V
P
P
fi = 1 kHz; Short time Po  
fi = 1 kHz; Po at THD+N = 10 %;  
Power dissipation in junction only  
(1) RL = 2 × 8 SE at THD = 10 %  
(2) RL = 2 × 8 SE at THD = 0.5 %  
(3) RL = 2 × 4 SE at THD = 10 %  
(4) RL = 2 × 4 SE at THD = 0.5 %  
(1) RL = 2 × 4 SE  
(2) RL = 2 × 8 SE  
Fig 20. Maximum output power per channel as a  
function of supply voltage  
Fig 21. Power dissipation as a function of supply  
voltage  
010aaa515  
010aaa516  
4
4
V
V
o
o
(V)  
(V)  
Operating  
Operating  
3
2
1
0
3
2
1
0
Sleep  
0.5  
Mute  
0.5  
0
1
1.5  
2
2.5  
3
0
1.0  
1.5  
2.0  
2.5  
(V)  
ENGAGE  
3.0  
V
(V)  
V
POWERUP  
VENGAGE > 2 V; fi = 1 kHz; Vi = 100 mV (RMS)  
VPOWERUP = 2 V; fi = 1 kHz; Vi = 100 mV (RMS)  
Fig 22. Output voltage as a function of voltage on pin  
POWERUP  
Fig 23. Output voltage as a function of voltage on pin  
ENGAGE  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
31 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
14.10 BTL curves measured in the reference design  
010aaa517  
010aaa518  
2
2
10  
10  
THD+N  
(%)  
THD+N  
(%)  
10  
10  
1
1
1  
1  
10  
10  
(1)  
(2)  
(1)  
(2)  
2  
2  
10  
10  
(3)  
(3)  
3  
3  
10  
10  
2  
1  
2
2  
1  
2
10  
10  
1
10  
10  
10  
10  
1
10  
10  
P
(W)  
P (W)  
o
o
a. VP = 17 V; RL = 8 BTL  
b. VP = 25 V; RL = 16 BTL  
(1) fi = 6 kHz  
(2) fi = 1 kHz  
(3) fi = 1 kHz  
Fig 24. Total harmonic distortion-plus-noise as a function of output power  
010aaa519  
010aaa520  
2
2
10  
10  
THD+N  
(%)  
THD+N  
(%)  
10  
10  
1
1
1  
1  
10  
10  
(1)  
(2)  
(1)  
(2)  
2  
2  
10  
10  
3  
3  
10  
10  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
i
f (Hz)  
i
a. VP = 17 V; RL = 8 BTL  
b. VP = 25 V; RL = 16 BTL  
(1) Po = 12 W  
(2) Po = 1 W  
(1) Po = 10 W  
(2) Po = 1 W  
Fig 25. Total harmonic distortion-plus-noise as a function of frequency  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
32 of 42  
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
010aaa521  
(2)  
010aaa522  
100  
45  
η
po  
(%)  
(1)  
Gv(cl)  
(dB)  
80  
(1)  
(2)  
35  
60  
40  
20  
0
25  
15  
2
3
4
5
0
5
10  
15  
20  
25  
10  
10  
10  
10  
10  
P
(W)  
f (Hz)  
i
o
fi = 1 kHz  
Vi = 100 mV (RMS)  
(1) 8 BTL at 17 V  
(2) 16 BTL at 25 V  
(1) RL = 8 BTL at VP = 17 V  
(2) RL = 16 BTL at VP = 25 V  
Fig 26. Output power efficiency as a function of  
output power  
Fig 27. Gain as a function of frequency  
010aaa523  
010aaa524  
3
5
4
3
2
1
0
P
(W)  
P
(W)  
2
(1)  
(1)  
(2)  
(2)  
1
0
10  
2  
1  
2
10  
1
10  
10  
10 12 14 16 18 20 22 24 26 28 30 32 34 36  
(V)  
P
(W)  
V
o
P
fi = 1 kHz; Power dissipation in junction only  
(1) 8 BTL at 17 V  
fi = 1 kHz; Po at THD+N = 10 %;  
Power dissipation in junction only  
(1) RL = 8 BTL  
(2) RL = 16 BTL  
(2) 16 BTL at 25 V  
Fig 28. Power dissipation as a function of output  
power  
Fig 29. Power dissipation as a function of supply  
voltage  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
33 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
010aaa525  
(1)  
010aaa526  
50  
0
P
SVRR  
(dB)  
o
(W)  
40  
20  
(2)  
30  
20  
10  
0
40  
60  
(3)  
(4)  
(1)  
(2)  
80  
100  
2
3
4
5
10 12 14 16 18 20 22 24 26 28 30 32 34 36  
(V)  
10  
10  
10  
10  
10  
f (Hz)  
i
V
P
fi = 1 kHz  
Vripple = 500 mV (RMS) with relation to ground;  
Shorted inputs; CHVP = 100 nF  
(1) 16 BTL at THD+N = 10 %  
(2) 16 BTL at THD+N = 0.5 %  
(3) 8 BTL at THD+N = 10 %  
(4) 8 BTL at THD+N = 0.5 %  
(1) VP = 17 V; RL = 8 BTL  
(2) VP = 25 V; RL = 16 BTL  
Fig 30. Output power as a function of supply voltage  
Fig 31. Supply voltage ripple rejection as a function of  
frequency  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
34 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
14.11 Typical application schematics (simplified)  
V
P
R
vdda  
V
V
PA  
P
10 Ω  
C
C
vddp  
220 µF  
vdda  
100 nF  
(35 V)  
GND  
V
V
SSD(HW)  
SSD(HW)  
IN1P  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
C
in  
OSCIO  
HVP1  
2
C
470 nF  
in  
IN1N  
3
V
P
470 nF  
V
DDP1  
DIAG  
4
C
vddp  
100 nF  
ENGAGE  
POWERUP  
CGND  
BOOT1  
OUT1  
C
15 nF  
MUTE control  
SLEEP control  
5
bo  
C
en  
470 nF  
L
lc  
6
V
SSP1  
7
R
10 Ω  
sn  
V
DDA  
STAB1  
STAB2  
C
osc  
V
8
PA  
U1  
TDA8932B  
C
C
lc  
sn  
470 pF  
C
se  
V
SSA  
100 nF  
9
C
stab  
R
osc  
V
100 nF  
SSP2  
OSCREF  
HVPREF  
INREF  
TEST  
Optional  
10  
11  
12  
13  
14  
15  
16  
39 kΩ  
L
lc  
OUT2  
C
C
15 nF  
hvpref  
bo  
BOOT2  
47 µF (25 V)  
R
10 Ω  
sn  
Optional  
C
inref  
100 nF  
V
DDP2  
V
P
vddp  
100 nF  
C
sn  
470 pF  
C
in  
C
C
lc  
C
se  
IN2N  
HVP2  
DREF  
C
in  
470 nF  
IN2P  
C
dref  
100 nF  
470 nF  
V
V
SSD(HW)  
SSD(HW)  
010aaa527  
Fig 32. Typical simplified application diagram for 2 × SE (asymmetrical supply)  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
35 of 42  
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
V
P
R
vdda  
V
V
PA  
P
10 Ω  
C
C
vddp  
220 µF  
vdda  
100 nF  
(35 V)  
GND  
V
V
SSD(HW)  
SSD(HW)  
IN1P  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
R
hvp  
470 Ω  
R
hvp  
470 Ω  
C
in  
OSCIO  
HVP1  
2
C
in  
1 µF  
IN1N  
3
V
P
1 µF  
V
DDP1  
DIAG  
4
C
C
vddp  
hvp  
100 nF  
100 nF  
ENGAGE  
POWERUP  
CGND  
BOOT1  
OUT1  
C
bo  
15 nF  
MUTE  
control  
5
C
L
lc  
en  
470 nF  
6
V
SSP1  
SLEEP  
control  
7
R
sn  
10 Ω  
C
C
lc  
V
DDA  
STAB1  
STAB2  
C
osc  
V
8
PA  
U1  
TDA8932B  
C
sn  
V
470 pF  
SSA  
100 nF  
9
R
osc  
C
stab  
100 nF  
V
SSP2  
OSCREF  
HVPREF  
INREF  
TEST  
lc  
Optional  
10  
11  
12  
13  
14  
15  
16  
39 kΩ  
L
lc  
OUT2  
C
bo  
15 nF  
BOOT2  
R
sn  
10 Ω  
C
C
hvp  
100 nF  
inref  
100 nF  
V
DDP2  
Optional  
V
P
C
C
vddp  
sn  
470 pF  
IN2N  
HVP2  
DREF  
100 nF  
IN2P  
C
C
dref  
100 nF  
hvp  
100 nF  
V
V
SSD(HW)  
SSD(HW)  
010aaa528  
Fig 33. Typical simplified application diagram for 1 × BTL (asymmetrical supply)  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
36 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
V
DD  
R
vdda  
V
V
V
DD  
DDA  
10 Ω  
C
vddp  
C
vdda  
100 nF  
220 µF  
(25 V)  
GND  
C
vssp  
C
vssa  
100 nF  
220 µF  
(25 V)  
R
vssa  
V
SS  
SSA  
10 Ω  
V
SS  
V
SSA  
V
SSD(HW)  
SSD(HW)  
IN1P  
V
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
V
SSA  
C
in  
OSCIO  
HVP1  
2
C
in  
470 nF  
IN1N  
3
V
DD  
470 nF  
V
DDP1  
DIAG  
4
C
vddp  
ENGAGE  
BOOT1  
OUT1  
100 nF  
C
bo  
15 nF  
MUTE control  
SLEEP control  
5
C
L
en  
470 nF  
lc  
POWERUP  
CGND  
6
Optional  
V
SS  
V
SSP1  
R
10 Ω  
sn  
7
C
V
vssp  
DDA  
STAB1  
STAB2  
C
osc  
C
100 nF  
V
V
8
sn  
DDA  
U1  
TDA8932B  
C
lc  
470 pF  
V
SSA  
VSS  
100 nF  
9
SSA  
C
stab  
100 nF  
C
vssp  
R
osc  
V
SSP2  
OSCREF  
HVPREF  
INREF  
TEST  
V
SSA  
10  
11  
12  
13  
14  
15  
16  
39 kΩ  
100 nF  
L
lc  
OUT2  
Optional  
C
bo  
15 nF  
BOOT2  
R
10 Ω  
sn  
C
inref  
100 nF  
V
DDP2  
V
C
DD  
C
in  
V
C
IN2N  
HVP2  
DREF  
vddp  
sn  
SSA  
C
lc  
100 nF  
470 pF  
C
in  
470 nF  
IN2P  
C
dref  
100 nF  
470 nF  
V
V
SSA  
V
SSD(HW)  
SSD(HW)  
V
SSA  
010aaa529  
Fig 34. Typical simplified application diagram for 2 × SE (symmetrical supply)  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
37 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
V
DD  
R
vdda  
V
V
V
DD  
DDA  
10 Ω  
C
vddp  
C
vdda  
100 nF  
220 µF  
(25 V)  
GND  
C
vssp  
C
vssa  
100 nF  
220 µF  
R
vssa  
(25 V)  
V
SS  
SSA  
10 Ω  
V
SS  
V
V
SSD(HW)  
SSD(HW)  
IN1P  
V
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
V
SSA  
SSA  
C
in  
OSCIO  
HVP1  
2
C
in  
1 µF  
IN1N  
3
V
DD  
1 µF  
V
DDP1  
DIAG  
4
C
vddp  
ENGAGE  
BOOT1  
OUT1  
C
100 nF  
bo  
15 nF  
MUTE  
control  
5
C
L
lc  
en  
470 nF  
POWERUP  
CGND  
6
Optional  
V
SSP1  
R
10 Ω  
sn  
SLEEP  
control  
7
V
SS  
C
vssp  
100 nF  
C
C
lc  
V
DDA  
STAB1  
STAB2  
C
osc  
V
V
8
C
DDA  
U1  
TDA8932B  
sn  
470 pF  
V
SSA  
V
SS  
100 nF  
9
SSA  
C
stab  
100 nF  
C
vssp  
R
osc  
V
SSP2  
OSCREF  
HVPREF  
INREF  
lc  
VSSA  
10  
11  
12  
13  
14  
15  
16  
39 kΩ  
100 nF  
L
lc  
OUT2  
C
bo  
15 nF  
BOOT2  
R
10 Ω  
sn  
C
inref  
V
DDP2  
TEST  
100 nF  
V
DD  
Optional  
V
SSA  
IN2N  
HVP2  
DREF  
C
C
vddp  
100 nF  
sn  
470 pF  
IN2P  
C
dref  
100 nF  
V
V
SSD(HW)  
SSD(HW)  
V
V
SSA  
SSA  
010aaa530  
Fig 35. Typical simplified application diagram for 1 × BTL (symmetrical supply)  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
38 of 42  
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
15. Package outline  
HTSSOP32: plastic thermal enhanced thin shrink small outline package; 32 leads;  
body width 6.1 mm; lead pitch 0.65 mm; exposed die pad  
SOT549-1  
E
A
X
D
c
H
v
M
A
y
exposed die pad side  
E
D
h
Z
32  
17  
A
(A )  
3
2
E
A
h
A
1
pin 1 index  
θ
L
p
L
detail X  
1
16  
w
M
b
e
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions).  
A
(1)  
(2)  
UNIT  
A
A
A
b
c
D
D
E
E
e
H
L
L
p
v
w
y
Z
θ
1
2
3
p
h
h
E
max.  
8o  
0o  
0.15 0.95  
0.05 0.85  
0.30 0.20 11.1  
0.19 0.09 10.9  
5.1  
4.9  
6.2  
6.0  
3.6  
3.4  
8.3  
7.9  
0.75  
0.50  
0.78  
0.48  
mm  
1.1  
0.65  
1
0.2  
0.25  
0.1  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-04-07  
05-11-02  
SOT549-1  
MO-153  
Fig 36. Package outline SOT549-1 (HTSSOP32)  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
39 of 42  
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
16. Revision history  
Table 16. Revision history  
Document ID  
Release date  
20081023  
Data sheet status  
Change notice  
Supersedes  
TDA8933B_1  
Preliminary data sheet  
-
-
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
40 of 42  
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
17.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
17.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TDA8933B_1  
© NXP B.V. 2008. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 23 October 2008  
41 of 42  
 
 
 
 
 
 
TDA8933B  
NXP Semiconductors  
Class D audio amplifier  
19. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
17.4  
18  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Contact information . . . . . . . . . . . . . . . . . . . . 41  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
19  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
8
8.1  
8.2  
8.3  
Functional description . . . . . . . . . . . . . . . . . . . 5  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Mode selection and interfacing. . . . . . . . . . . . . 6  
Pulse Width Modulation (PWM) frequency. . . . 7  
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Foldback (FT) . . . . . . . . . . . . . . . . . . . 8  
OverTemperature Protection (OTP) . . . . . . . . . 9  
OverCurrent Protection (OCP) . . . . . . . . . . . . . 9  
Window Protection (WP). . . . . . . . . . . . . . . . . . 9  
Supply voltage protection . . . . . . . . . . . . . . . . . 9  
Diagnostic input and output . . . . . . . . . . . . . . 11  
Differential inputs . . . . . . . . . . . . . . . . . . . . . . 11  
Output voltage buffers. . . . . . . . . . . . . . . . . . . 12  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.5  
8.6  
8.7  
9
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 12  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 16  
Thermal characteristics. . . . . . . . . . . . . . . . . . 17  
Static characteristics. . . . . . . . . . . . . . . . . . . . 17  
Dynamic characteristics . . . . . . . . . . . . . . . . . 19  
10  
11  
12  
13  
14  
Application information. . . . . . . . . . . . . . . . . . 21  
Output power estimation. . . . . . . . . . . . . . . . . 21  
Output current limitation . . . . . . . . . . . . . . . . . 24  
Speaker configuration and impedance . . . . . . 24  
Single-ended capacitor. . . . . . . . . . . . . . . . . . 25  
Gain reduction . . . . . . . . . . . . . . . . . . . . . . . . 25  
Device synchronization. . . . . . . . . . . . . . . . . . 26  
Thermal behavior (PCB considerations). . . . . 27  
Pumping effects . . . . . . . . . . . . . . . . . . . . . . . 27  
SE curves measured in the reference design. 28  
BTL curves measured in the reference design 32  
Typical application schematics (simplified) . . . 35  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
14.8  
14.9  
14.10  
14.11  
15  
16  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 39  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 40  
17  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 41  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 41  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
17.1  
17.2  
17.3  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2008.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 23 October 2008  
Document identifier: TDA8933B_1  
 

相关型号:

TDA8933T

Class-D audio amplifier
NXP
NXP
NXP

TDA8939

Zero dead time Class-D 7.5 A power comparator
NXP

TDA8939TH

Zero dead time Class-D 7.5 A power comparator
NXP

TDA8941

1.5 W mono Bridge Tied Load BTL audio amplifier
NXP

TDA8941P

1.5 W mono Bridge Tied Load BTL audio amplifier
NXP
NXP

TDA8942

2 x 1.5 W stereo Bridge Tied Load BTL audio amplifier
NXP

TDA8942P

2 x 1.5 W stereo Bridge Tied Load BTL audio amplifier
NXP

TDA8942P/N1,112

IC 1.5 W, 2 CHANNEL, AUDIO AMPLIFIER, PDIP16, 0.300 INCH, PLASTIC, SOT-38-1, MO-001, DIP-16, Audio/Video Amplifier
NXP

TDA8943

6 W mono Bridge Tied Load BTL audio amplifier
NXP