TEA1065 [NXP]

Versatile telephone transmission circuit with dialler interface; 与拨号接口的多功能电话传输电路
TEA1065
型号: TEA1065
厂家: NXP    NXP
描述:

Versatile telephone transmission circuit with dialler interface
与拨号接口的多功能电话传输电路

电话
文件: 总28页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TEA1065  
Versatile telephone transmission  
circuit with dialler interface  
March 1994  
Product specification  
File under Integrated Circuits, IC03A  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
Large gain setting range on microphone and earpiece  
FEATURES  
amplifiers  
Current and voltage regulator mode with adjustable  
Line loss compensation facility, line current dependent  
(on microphone and earpiece amplifiers)  
static resistances  
Provides supply for external circuitry  
Adjustable gain control  
Symmetrical high-impedance inputs for piezoelectric  
microphone  
DC line voltage adjustment facility  
Asymmetrical high-impedance input for electret  
microphone  
GENERAL DESCRIPTION  
DTMF signal input with confidence tone  
The TEA1065 is a bipolar integrated circuit which performs  
all speech and line interface functions that are required in  
fully electronic telephone sets with adjustable DC mask.  
The circuit performs electronic switching between dialling  
and speech internally.  
Mute input for pulse or DTMF dialling  
Power-down input for pulse dial or register recall  
Digital pulse input to drive an external switch transistor  
Receiving amplifier for magnetic, dynamic or  
piezoelectric earpieces  
ORDERING INFORMATION  
PACKAGE  
EXTENDED TYPE  
NUMBER  
PINS  
PIN POSITION  
MATERIAL  
plastic  
CODE  
SOT101L  
TEA1065  
24  
24  
DIL  
TEA1065T  
SO24  
plastic  
SOT137A  
Notes  
1. SOT101-1; 1998 Jun 18.  
2. SOT137-1; 1998 Jun 18.  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
Iline = 15 mA  
MIN.  
TYP.  
4.45  
MAX.  
UNIT  
VLN  
Iline  
ICC  
line voltage  
4.25  
4.65  
150  
V
normal operation line current range  
internal supply consumption  
power-down input LOW  
10  
mA  
1.14  
73  
1.5  
mA  
power-down input HIGH  
105  
µA  
VCC  
supply voltage for peripherals  
Iline = 15 mA;  
MUTE input  
HIGH  
IP = 1.2 mA  
2.7  
2.5  
V
V
IP = 1.55 mA  
GV  
voltage gain range  
microphone amplifier  
earpiece amplifier  
30  
20  
46  
45  
dB  
dB  
GV  
line loss compensation  
gain control range  
5.5  
25  
5.9  
6.3  
+75  
dB  
Tamb  
operating ambient temperature range  
°C  
March 1994  
2
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
17  
6
+
GAR  
IR  
5
4
+
QR+  
QR−  
+
TEA1065  
2
1
8
GAS1  
LN  
MIC+  
+
7
MIC−  
+
24  
3
+
SLPE  
GAS2  
19  
dB  
DTMF  
MUTE  
20  
21  
18  
11  
BANDGAP  
REFERENCE  
V
VBG  
CC  
SUPPLY AND  
REFERENCE  
PD  
13  
12  
REFI  
DOC  
CONTROL  
CURRENT  
LINE  
CURRENT  
CONTROL  
+
CURRENT  
REFERENCE  
16  
22  
REG  
23  
AGC  
9
10  
14  
15  
MBA557  
V
STAB  
DPI VSI CURL  
EE  
Fig.1 Block diagram.  
3
March 1994  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
PINNING  
SYMBOL PIN  
DESCRIPTION  
positive line terminal  
LN  
1
2
3
4
5
GAS1  
GAS2  
QR−  
QR+  
gain adjustment; sending amplifier  
gain adjustment; sending amplifier  
inverting output; receiving amplifier  
handbook, halfpage  
1
2
LN  
GAS1  
GAS2  
QR−  
24 SLPE  
23 AGC  
22 REG  
non-inverting output; receiving  
amplifier  
3
GAR  
MIC−  
MIC+  
STAB  
DPI  
6
7
8
9
gain adjustment; receiving amplifier  
inverting microphone input  
non-inverting microphone input  
current stabilizer  
V
21  
4
CC  
QR+  
5
20 MUTE  
19  
6
GAR  
MIC−  
MIC+  
STAB  
DPI  
DTMF  
TEA1065  
10 digital pulse input  
18  
17  
16  
15  
14  
13  
7
PD  
IR  
V
VBG  
DOC  
REFI  
VSI  
11 bandgap output reference  
12 drive current output  
8
9
EE  
13 reference voltage input  
14 voltage sense input  
CURL  
VSI  
10  
11  
VBG  
CURL  
VEE  
15 current limitation input  
16 negative line terminal  
17 receiving amplifier input  
18 power-down input  
DOC 12  
REFI  
IR  
MBA551  
PD  
DTMF  
MUTE  
VCC  
19 dual-tone multifrequency input  
20 MUTE input  
21 positive supply decoupling  
22 voltage regulator decoupling  
23 automatic gain control input  
24 slope (DC resistance) adjustment  
REG  
AGC  
SLPE  
Fig.2 Pinning diagram.  
March 1994  
4
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
This line current value will be reached when the voltage on  
pin VSI (almost equal to the voltage on pin SLPE) exceeds  
the voltage on pin REFI (equal to the voltage on pin VBG  
divided by the resistor tap R13, R14). For other values of  
R13 and R14, the Iknee current is given by the following  
formula:  
FUNCTIONAL DESCRIPTION  
Supply: VCC, LN, SLPE, REG and STAB  
The circuit and its peripherals are usually supplied from the  
telephone line. The circuit develops its own supply voltage  
at VCC (pin 21) and regulates its voltage drop between LN  
and SLPE (pins 1 and 24). The internal supply requires a  
decoupling capacitor between VCC and VEE (pin 16); the  
internal voltage regulator has to be decoupled by a  
capacitor from REG (pin 22) to VEE. The internal current  
stabilizer is set by a 3.6 kresistor connected between  
Iknee = ICC + IP + (VBG/R9) × {R14/(R14 + R13)}  
(R15/R9) × IO(VSI)  
ICC is the current required by the circuit itself  
(typ. 1.14 mA). IP is the current required by the peripheral  
circuits connected between VCC and VEE. IO(VSI) is the  
output current from pin VSI (typ. 2.5 µA).  
STAB (pin 9) and VEE  
.
The TEA1065 can be set either in a DC voltage regulator  
mode or in a DC current regulator mode. The DC mask can  
be selected by connecting the appropriate external  
components to the dedicated pins (VSI, REFI, DOC,  
VBG).  
When the DC current regulator mode is not required it can  
be cancelled by connecting pin VSI to VEE; pins REFI,  
VBG and DOC are left open-circuit.  
The DC slope of the Vline/Iline curve is, in this mode,  
determined by R9 (R9 = R9a + R9b) in series with the  
rds of the external line current control transistor (see Fig.4;  
rds = VGS/ID at VGS = VDS).  
Current regulator mode  
The current regulator mode is achieved when the line  
current is greater than Iknee. In this mode, the slope of the  
Vline/Iline curve is approximately 1300 with R9 = 20 ,  
R16 = 1 M, R13 = R14 = 30 k. For other values of  
these resistances, the slope value can be approximated by  
the following formula:  
Voltage regulator mode  
The voltage regulator mode is achieved when the line  
current is less than the current Iknee as illustrated in Fig.3.  
With R13 = R14 = 30 k, the current Iknee = 30 mA  
(Ip = 0 mA).  
R9 × {1 + R16 × (1/R13 + 1/R14)}  
MBA567  
line  
current  
I
knee  
0
0
set  
voltage  
voltage  
regulator  
mode  
current  
regulator  
mode  
Fig.3 Voltage and current regulator mode.  
5
March 1994  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
The DC current flowing into the set is determined by the  
exchange supply voltage (Vexch), the DC resistance of the  
subscriber line (Rline) and the DC voltage on the subscriber  
set (see Fig.4).  
If the line current exceeds ICC + 0.3 mA, required by the  
circuit itself (ICC 1.14 mA), plus the current Ip required by  
the peripheral circuits connected to VCC then the voltage  
regulator will divert the excess current via LN.  
Iline in the current regulator mode).  
Under normal conditions ISLPE >> ICC + 0.3 mA + Ip and  
for the voltage regulator mode (Iline < Iknee), the static  
behaviour of the circuit is equal to a 4.18 V voltage  
regulator diode with an internal resistance of R9 in series  
with the VGSon of the external line current control  
transistor. For the current regulator mode (Iline > Iknee), the  
static behaviour of the circuit is equal to a 4.18 V voltage  
regulator diode with an internal resistance of R9 in series  
with the VGSon of the external line current control transistor  
and also in series with a DC voltage source R16  
VLN = Vref + ISLPE × R9 =  
V
ref + (Iline ICC 0.3 × 103 Ip) × R9  
where: Vref is an internally generated temperature  
compensated reference voltage of 4.18 V and R9 is an  
× IDOC (the preferred value of R16 is 1 Mat this value the  
current IDOC is negligible compared to Iline).  
external resistor connected between SLPE and VEE  
.
In the audio frequency range the dynamic impedance  
between LN and VEE is equal to R1 (see Fig.8). The  
internal reference voltage Vref can be adjusted by means  
of an external resistor RVA. This resistor, connected  
between LN and REG, will decrease the internal reference  
voltage. When RVA is connected between REG and SLPE  
the internal reference voltage will increase.  
The maximum allowed line current is given in Figs 5 and 6,  
where the current is shown as a function of the required  
reference voltage, ambient temperature and applied  
package.  
The preferred value of R9 is 20 . Changing R9 will  
influence the microphone gain, gain control  
characteristics, sidetone and the maximum output swing  
on LN. In this instance, the voltage on the line (excluding  
the diode rectifier bridge; see Fig.4) is:  
Vline = VLN + VGS + R16 × IDOC  
where: VGS is the voltage drop between the gate and  
source terminal of the external line current control  
transistor and IDOC is the current sunk by pin DOC  
(IDOC = 0 in the voltage regulator mode and increases with  
V
line  
R
I
R1  
line  
line  
I
I
DOC  
SLPE  
I
CC  
+ 0.5 mA  
R16  
I
p
V
DOC  
12  
LN  
1
CC  
21  
R
exch  
TEA1065  
DC  
AC  
0.3 mA  
peripheral  
circuits  
C1  
V
exch  
22  
9
24  
16  
STAB  
REG  
SLPE  
V
EE  
C3  
R5  
R9  
MBA550  
Fig.4 Supply arrangement.  
6
March 1994  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
The current Ip, available from VCC for supplying peripheral  
circuits, depends on the external components and on the  
line current. Fig.7 shows this current for VCC > 2.2 V and  
for VCC > 3 V, where 3 V is the minimum supply voltage for  
most CMOS circuits including a diode voltage drop for a  
back-up diode. If MUTE is LOW the available current is  
further reduced when the receiving amplifier is driven  
(earpiece amplifier supplied from VCC).  
MBA570  
MBA571  
handbook, halfpage  
handbook, halfpage  
170  
170  
I
I
LN  
LN  
(mA)  
150  
(mA)  
150  
130  
110  
90  
130  
110  
90  
(1)  
(1)  
(2)  
(3)  
(2)  
(4)  
(5)  
70  
70  
50  
50  
30  
2
30  
2
4
6
8
10  
12  
4
6
8
10  
12  
V
-V (V)  
V
-V (V)  
LN SLPE  
LN SLPE  
Tamb  
Ptot  
(1)  
(2)  
(3)  
(4)  
(5)  
35 °C  
45 °C  
55 °C  
65 °C  
75 °C  
1.2  
W
1.07 W  
0.93 W  
Tamb  
Ptot  
(1)  
(2)  
65 °C  
75 °C  
1.2 W  
1.0 W  
0.8  
W
0.67 W  
Fig.5 TEA1065 safe operating area.  
Fig.6 TEA1065T safe operating area.  
March 1994  
7
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
MBA569  
3
handbook, halfpage  
I
P
(mA)  
(1)  
2
(2)  
1
(3)  
(4)  
0
0
1
2
3
4
V
(V)  
CC  
Iline = 15 mA at VLN = 4.45 V  
R1 = 620 Ω  
R9 = 20 Ω  
Curve (1) and (3) are valid when the receiving amplifier is not driven or when MUTE = HIGH, curves (2) and (4)  
are valid when MUTE = LOW and the receiving amplifier is driven, Vo(rms) = 150 mV, RL = 150 (asymmetrical).  
(1) = 2.2 mA; (2) = 1.77 mA; (3) = 0.78 mA and (4) = 0.36 mA.  
Fig.7 Maximum current Ip available from VCC for external (peripheral) circuitry with VCC > 2.2 V and VCC > 3 V.  
LN  
handbook, halfpage  
L
eq  
R
R1  
p
V
ref  
REG  
V
CC  
SLPE  
C3  
4.7 µF  
R9  
20 Ω  
C1  
V
EE  
MBA552  
Leq = C3 × R9 × Rp  
Rp = 17.5 kΩ  
Fig.8 Equivalent circuit impedance between LN  
and VEE  
.
March 1994  
8
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
The gain of the microphone amplifier is proportional to  
external resistor R7, connected between GAS1 and  
GAS2, which can be adjusted between 30 dB and 46 dB to  
suit the sensitivity of the transducer.  
Microphone inputs MIC+ and MICand gain  
adjustment connections GAS1 and GAS2  
The TEA1065 has symmetrical microphone inputs, its  
input impedance is 40.8 k(2 × 20.4 k) and its voltage  
gain is typ. 38 dB with R7 = 68 k. Either dynamic,  
magnetic or piezoelectric microphones can be used, or an  
electret microphone with a built-in FET buffer.  
Arrangements for the microphones types are illustrated in  
Fig.9.  
An external 100 pF capacitor (C6) is required between  
GAS1 and SLPE to ensure stability. A larger value of C6  
may be chosen to obtain a first-order low-pass filter. The  
“cut-off” frequency corresponds with the time constant  
R7 × C6.  
V
CC  
21  
MIC+  
MIC−  
MIC+  
MIC+  
MIC−  
8
8
7
7
(1)  
MIC−  
7
8
16  
V
EE  
MBA553  
(c)  
(c) piezoelectric microphone.  
(a)  
(b)  
(b) electret microphone;  
(a) magnetic or dynamic microphone,  
the resistor (1) may be connected to  
reduce the terminating impedance, or  
for sensitive types a resistive  
attenuator can be used to prevent  
overloading the microphone inputs;  
Fig.9 Microphone arrangements.  
March 1994  
9
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
QR(inverting). These outputs may be used for  
MUTE input  
single-ended or differential drive, depending on the type  
and sensitivity of the earpiece used (see Fig.10). Gain  
from IR to QR+ is typically 31 dB with R4 = 100 k, which  
is sufficient for low-impedance magnetic or dynamic  
earpieces which are suitable for single-ended drive. By  
using both outputs (differential drive) the gain is increased  
by 6 dB. Differential drive can be used when earpiece  
impedance exceeds 450 as with high impedance  
dynamic, magnetic or piezoelectric earpieces.  
When MUTE = HIGH the DTMF input is enabled and the  
microphone and receiving amplifier inputs are inhibited.  
When MUTE = LOW or open-circuit the DTMF input is  
inhibited and the microphone and receiving amplifier  
inputs are enabled. Switching the MUTE input will cause  
negligible clicks at the earpiece outputs and on the line. An  
electrostatic discharge protection diode is connected  
between pin MUTE and pin VCC (pins 20 and 21).  
The output voltage of the receiving amplifier is specified for  
continuous-wave drive. The maximum output voltage will  
be higher under speech conditions where the ratio of peak  
and RMS value is higher.  
Dual-tone multifrequency input DTMF  
When the DTMF input is enabled, dialling tones may be  
sent onto the line. The voltage gain from DTMF to LN is  
typ. 12.5 dB less than the gain of the microphone amplifier  
and varies with R7 in the same way as the gain of the  
microphone amplifier. This means that the tone level at the  
DTMF input has to be adjusted after setting the gain of the  
microphone amplifier. When R7 = 68 kthe gain is  
typically 25.5 dB. The signalling tones can be heard in the  
earpiece at a low level (confidence tone).  
The gain of the receiving amplifier can be adjusted over a  
range of 11 dB to +8 dB to suit the sensitivity of the  
transducer that is used. The gain is proportional to external  
resistor R4 connected between GAR and QR+.  
Two external capacitors, C4 = 100 pF and C7 = 1 nF, are  
necessary to ensure stability. A larger value of C4 may be  
chosen to obtain a first-order low-pass filter. The “cut-off”  
frequency corresponds with the time constant R4 × C4.  
Receiving amplifiers: IR, QR+, QRand GAR  
The receiving amplifier has one input IR and two  
complementary outputs, QR+ (non-inverting) and  
(1)  
(2)  
QR+  
QR−  
QR+  
QR+  
QR+  
5
4
5
4
5
4
5
4
V
QR−  
QR−  
QR−  
EE  
16  
MBA554  
(a)  
(b)  
(c)  
(d)  
Fig.10 Alternative receiver arrangements:  
(a) dynamic earpiece with an impedance less than 450 ;  
(b) dynamic earpiece with an impedance more than 450 ;  
(c) magnetic earpiece with an impedance more than 450 , resistor (1) may be connected to prevent  
distortion (inductive load);  
(d) piezoelectric earpiece, resistor (2) is required to increase the phase margin (stability with capacitive  
load).  
March 1994  
10  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
Automatic gain control  
Automatic compensation of line loss is obtained by connecting a resistor (R6) between AGC and VEE. The automatic gain  
control varies the gain of the microphone amplifier and receiving amplifier in accordance with the DC line current (see  
Fig.12). The control range is 5.9 dB; this corresponds to a line length of 3.5 km of twisted pair cable (see Fig.11). The  
DTMF gain is not affected by this feature.  
If automatic line loss compensation is not required the AGC pin can be left open-circuit, the amplifiers then give their  
maximum gain.  
75 µH  
75 µH  
24.3 nF  
34.8 Ω  
34.8 Ω  
13 nF  
24.3 nF  
75 µH  
75 µH  
34.8 Ω  
34.8 Ω  
MBA572  
Fig.11 Typical 0.5 km line cell model used for automatic gain control optimization.  
h
MBA549  
1
R6 =  
G  
v
0
(dB)  
1  
3  
5  
7  
R6 = 86.6 k118 k147 kΩ  
187 kΩ  
0
20  
40  
60  
80  
I
(mA)  
line  
Fig.12 Variation of gain as a function of line current with R6 as a parameter; R9 = 20 .  
March 1994  
11  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
activated.  
Power-down input PD  
The voltage applied on pin REFI represents a fraction of  
the bandgap reference voltage given by pin VBG (resistor  
During pulse dialling or register recall (timed-loop-break)  
the telephone line is interrupted, consequently it provides  
no supply for the transmission circuit and the peripherals  
connected to VCC. These gaps have to be bridged by the  
charge in the smoothing capacitor C1. The requirement on  
this capacitor is relaxed by applying a HIGH level to the PD  
input during the loop-break. This reduces the internal  
supply current from typ. 1.14 mA to 73 µA.  
tap R13 and R14) in order to determine Iknee  
.
Drive current output DOC  
Pin DOC drives the external line current control transistor  
in order to achieve line interruption during pulse dialling (or  
register recall) and also the DC slope when Iline > Iknee  
.
The current sunk by pin DOC is determined by the voltage  
on pin VSI in comparison with the voltage on pin VBG  
divided by the resistor tap R13 and R14.  
When pin DPI is activated, pin DOC changes to a low  
voltage (by trying to sink typ. 900 µA to VEE) to switch off  
the external line current control transistor.  
A HIGH level at PD also disconnects the capacitor at REG  
which results in the voltage stabilizer having no switch-on  
delay after line interruptions. This results in no contribution  
of the IC to the current waveform during pulse dialling or  
register recall. When this facility is not required PD may be  
left open-circuit or connected to VEE. An electrostatic  
discharge protection diode is connected between pin PD  
Bandgap reference output VBG  
and VCC  
.
This output provides a voltage reference to set the knee  
line current with the following formula:  
Digital pulse input DPI  
A HIGH level at DPI creates a current which flows from pin  
DOC to VEE in order to interrupt the line current by the  
external line current control transistor (see Fig.18;  
MOSFET BUK554). A LOW level (or pin left open-circuit)  
disables this current to provide the normal DC regulation  
(voltage or current). A simple application without  
regulation of current in pulse dialling mode is given in  
Fig.18.  
I
knee = ICC + IP +  
(VBG/R9) × {R14/(R14 + R13)} (R15/R9) × 2.5 × 106  
In order to improve stability, a capacitive load is not  
allowed on this output.  
Current limit input CURL  
This input is applied to the base of an internal NPN  
transistor which has its collector connected to pin DOC  
and its emitter to VEE (see Fig.13). The transistor limits the  
line current just after hook-off or during line transients to a  
value given by the following formula:  
When DPI is activated (HIGH level), the external line  
current control transistor is switched off resulting in no  
current in the TEA1065. The voltage on pin SLPE  
becomes zero and capacitor C15 discharges cancelling  
the current regulation when DPI becomes inactive (LOW  
level).  
Ihook-off = I(R1) + VBE/R9b  
VBE is the base-emitter voltage of the transistor  
(typ. 700 mV at 25 °C). I(R1) is the current flowing through  
R1 to charge C1 just after hook-off.  
To provide a constant regulation (in speech mode and  
pulse mode), an external transistor is required to keep C15  
charged during DPI active (see Fig.19 in which the Field  
Effect Transistor BSJ177 is directly driven by the DPI  
signal).  
DOC  
handbook, halfpage  
An electrostatic discharge protection diode is connected  
I
(collector current)  
C
between pin DPI and pin VCC  
.
CURL  
Voltage sense input and reference voltage input VSI  
and REFI  
The voltage on pin VSI represents the DC voltage of pin  
SLPE. The RC filter (R15 × C15) is also intended to  
disable the DC regulation when C15 is shunted or not yet  
charged (especially directly after hook-off). The time  
constant R15 × C15 determines approximately the time  
when no regulation (except CURL pin limitation) is  
V
MBA556  
EE  
Fig.13 Internal current limiting transistor.  
March 1994  
12  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
The maximum hook-off current then becomes:  
Ihook-off = VZ/R1 + VBE  
also depends on the accuracy of the match between  
Zbal and the impedance of the average line.  
×
(R9a + R9b + R1)/(R1 × R9b)  
Example  
where VZ is the Zener voltage of diode D5 (see Fig.18).  
With k = 1, R1 = 619 , R9 = 20 and an average line  
impedance represented by 270 Ω + (120 nF // 1100 ), the  
calculation results in:  
Side-tone suppression  
Suppression of the transmitted signal in the earpiece is  
obtained by the anti-sidetone network comprising R1//Zline  
R2, R3, R9 and Zbal (see Fig.18). Maximum compensation  
is obtained when the following conditions are fulfilled:  
R2 = 130 kΩ  
R3 = 3650 Ω  
,
R8 = 715  
The anti-sidetone network for the TEA1060 family, shown  
in Fig.15, attenuates the signal received from the line by  
32 dB before it enters the receiving amplifier. The  
attenuation is almost constant over the whole  
audio-frequency range.  
a) R9 × R2 = R1 × (R3 + R8)  
b) k = R3 × (R8 + R9)/(R2 × R9)  
c) Zbal = k × Zline  
The scale factor k is chosen to meet the compatibility with  
a standard capacitor from the E6 or E12 range for Zbal.  
Note  
In practice Zline varies considerably with the line length and  
line type. Therefore, the value chosen for Zbal should be for  
an average line length giving satisfactory sidetone  
More information on the balancing of the anti-sidetone  
bridges can be obtained in our publication “Versatile  
speech transmission ICs for electronic telephone sets”,  
order number 9398 341 10011.  
suppression with long and short times. The suppression  
I
MBA568  
line  
I
hook-off  
0
0
time  
hook-off  
speech mode pulse dialling mode  
Fig.14 Example of line current shape in pulse dialling mode (see also Fig.18).  
March 1994  
13  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
LN  
R1  
R9  
R2  
Z
line  
V
IR  
i
m
EE  
R
t
R3  
Z
R8  
bal  
SLPE  
MBA555  
Fig.15 Equivalent circuit of TEA1060 family anti-sidetone bridge.  
LIMITING VALUES  
In accordance with the absolute maximum system (IEC 134)  
SYMBOL  
VLN  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
12  
UNIT  
positive line voltage continuous  
positive DOC voltage continuous  
V
V
V
VDOC  
VLN  
12  
repetitive line voltage during  
switch-on or line interruption  
13.2  
ILN  
VI  
line current (see also Fig.5 and 6)  
150  
mA  
V
input voltage on pins other than LN,  
DOC, VSI, REFI and CURL  
V
EE 0.7  
VCC + 0.7  
Ptot  
total power dissipation  
see Figs 5 and 6  
Tstg  
Tamb  
storage temperature range  
40  
25  
+ 125  
+75  
°C  
°C  
operating ambient temperature  
range  
Tj  
junction temperature  
+125  
°C  
THERMAL RESISTANCE  
SYMBOL  
PARAMETER  
TYP.  
MAX.  
UNIT  
Rth j-a  
Rth j-a  
from junction to ambient in free air; TEA1065  
from junction to ambient in free air; TEA1065T (1)  
50  
75  
K/W  
K/W  
Note  
1. TEA1065T is mounted on glassy epoxy board 28.5 × 19.1 × 1.5 mm  
HANDLING  
Every pin withstands the ESD test in accordance with MIL-STD-883C class 2, method 3015 (HBM 1500 , 100 pF,  
3 positive pulses and 3 negative pulses on each pin as a function of pin VEE  
.
March 1994  
14  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
CHARACTERISTICS  
ILN = 10 to 150 mA; VEE = 0 V; f = 800 Hz; Tamb = 25 °C; R9 = 20 ; unless otherwise specified  
SYMBOL  
Supply LN and VCC (pins 1 and 21)  
VLN voltage drop over circuit  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Iline = 5 mA  
line = 15 mA  
3.95  
4.25  
4.55  
V
V
V
V
I
4.25  
5.4  
4.45  
6.1  
4.65  
6.7  
7.5  
+1  
Iline = 100 mA  
Iline = 140 mA  
Iline = 15 mA  
VLN/T variation with temperature  
3  
1  
mV/K  
VLN  
voltage drop over circuit  
Iline = 15 mA  
RVA = R1-22 = 68 kΩ  
3.6  
4.7  
3.9  
5.0  
1.14  
73  
4.15  
5.3  
V
RVA = R22-24 = 39 kΩ  
V
ICC  
supply current  
PD = LOW; VCC = 2.8 V  
PD = HIGH; VCC = 2.8 V  
1.5  
mA  
µA  
105  
Microphone inputs MIC+ and MIC(pins 8 and 7)  
ZI  
Gv  
input impedance  
18.5  
37  
20.4  
38  
24.3  
39  
kΩ  
dB  
dB  
voltage gain  
Iline = 15 mA; R7 = 68 kΩ  
Iline = 15 mA;  
Gvf  
variation with frequency  
referred to 800 Hz  
variation with temperature  
referred to 25 °C  
0.5  
±0.2  
+0.5  
f = 300 to 3400 Hz  
Iline = 50 mA;  
GvT  
±0.5  
dB  
Tamb = 25 to 75 °C;  
without R6  
Dual-tone multi-frequency input DTMF (pin 19)  
ZI  
Gv  
input impedance  
16.8  
24.5  
0.5  
20.7  
25.5  
±0.2  
24.6  
26.5  
+0.5  
kΩ  
dB  
dB  
voltage gain  
Iline = 15 mA; R7 = 68 kΩ  
Iline = 15 mA  
Gvf  
variation with frequency  
referred to 800 Hz  
variation with temperature  
referred to 25 °C  
f = 300 to 3400 Hz  
Iline = 50 mA;  
GvT  
±0.5  
dB  
dB  
Tamb = 25 to +75 °C  
Gain adjustment GAS1 and GAS2 (pin 2 and 3)  
Gv  
gain variation with R7  
8  
+8  
connected between pins 2 and 3;  
transmitting amplifier  
March 1994  
15  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Transmitting amplifier output LN (pin 1)  
VLN(rms)  
output voltage (RMS value)  
Iline = 15 mA  
d
tot = 2%  
tot = 10%  
1.9  
2.3  
V
V
d
2.6  
Vno(rms)  
noise output voltage (RMS  
value)  
Iline = 15 mA;  
68  
dBmp  
R7 = 68 k;  
pin 7 and 8 open-circuit  
psophometrically  
weighted (P53 curve);  
control transistor included  
(MOS BUK554 type see  
Fig.18)  
Receiving amplifier input IR (pin 17)  
ZI input impedance  
Receiving amplifier outputs QR+ and QR(pin 5 and 4)  
17  
21  
4
25  
kΩ  
ZO  
Gv  
output impedance  
voltage gain  
Iline = 15 mA; R4 = 100 kΩ  
single-ended; RT = 300 30  
31  
32  
dB  
dB  
dB  
differential; RT = 600 Ω  
36  
37  
38  
Gvf  
variation with frequency  
referred to 800 Hz  
f = 300 to 3400 Hz  
0.5  
±0.2  
+0.5  
GvT  
VO(rms)  
variation with temperature  
referred to 25 °C  
without R6; Iline = 50 mA;  
Tamb = 25 to +75 °C  
±0.2  
dB  
output voltage (RMS value)  
Iline = 15 mA; THD = 2%;  
sinewave drive;  
R4 = 100 kΩ  
single-ended; RT = 150 0.3  
0.38  
0.72  
1.07  
V
V
V
differential; RT = 450 Ω  
differential; CT = 60 nF;  
(1500 series resistor);  
f = 3400 Hz  
0.56  
0.87  
Iline = 30 mA; differential;  
1.02  
1.22  
V
CT = 60 nF;  
(1500 series resistor);  
f = 3400 Hz  
VO(rms)  
noise output voltage (RMS  
value)  
Iline = 15 mA;  
R4 = 100 kΩ  
single-ended; RT = 300 Ω  
differential; RT = 600 Ω  
50  
µV  
µV  
100  
March 1994  
16  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Gain adjustment GAR (pin 6)  
Gv  
receiving amplifier, gain  
adjustment range  
11  
+8  
dB  
Mute input MUTE (pin 20)  
VIH  
input voltage HIGH  
input voltage LOW  
input current  
1.5  
8
VCC  
0.3  
15  
V
VIL  
V
IMUTE  
Gv  
µA  
dB  
change of microphone amplifier  
gain  
MUTE = HIGH  
70  
Gv  
voltage gain from DTMF input  
to QR+ or QR−  
MUTE = HIGH;  
19  
17  
15  
dB  
R4 = 100 kΩ  
single-ended; RT = 300 Ω  
Power-down input PD (pin 18)  
VIH  
VIL  
IPD  
input voltage HIGH  
input voltage LOW  
input current  
1.5  
-
VCC  
0.3  
5.0  
V
-
-
-
V
2.5  
µA  
Automatic gain control input AGC (pin 23)  
Gv  
controlling the gain from IR to  
QR+, QRand the gain from  
MIC+, MICto LN; gain control  
range with respect to  
R6 = 118 kΩ  
5.5  
5.9  
6.3  
dB  
Iline = 15 mA  
Iline  
Iline  
Gv  
highest line current for  
maximum gain  
28  
mA  
mA  
dB  
lowest line current for minimum  
gain  
50  
change of gain between  
-1.5  
Iline = 15 and 35.5 mA  
Current limiting input CURL (pin 15)  
VBE  
base-emitter voltage drop of  
internal transistor  
see Fig.13;  
0.7  
120  
2
V
IC = 50 µA = IDOC  
see Fig.13;  
HFE  
current gain of internal  
transistor  
60  
IC = 50 µA = IDOC  
see Fig.13  
IC(max)  
maximum collector current of  
internal transistor  
mA  
Bandgap reference voltage output VBG (pin 12)  
VBG  
IBG  
ZO  
reference voltage  
output drive capability  
output impedance  
1.22  
-
V
note 1  
100  
+50  
µA  
12  
March 1994  
17  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
SYMBOL  
Voltage sense input VSI (pin 14)  
IO output current  
Reference input REFI (pin 13)  
IO output current  
Drive current output DOC (pin 11)  
IO output current  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
pin VSI connected to VEE  
2.5  
µA  
2.0  
mA  
REFI connected to VEE  
VSI not connected;  
DPI = LOW  
;
120  
200  
300  
µA  
REFI not connected;  
900  
µA  
VSI connected to VEE  
;
DPI = HIGH  
Digital pulse input DPI (pin 10)  
VIH  
VIL  
IDPI  
input voltage HIGH  
input voltage LOW  
input current  
1.5  
VCC  
0.3  
5
V
V
2.5  
µA  
Note  
1. No capacitive load on the VBG output. Positive current is defined as conventional current flow into a device.  
Negative current is defined as conventional current flow out of a device.  
March 1994  
18  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
I
R1  
line  
620 Ω  
21  
13  
REFI  
12  
DOC  
1
11  
VBG  
V
LN  
CC  
17  
8
4
100 µF  
QR−  
IR  
V
o
R
L
5
QR+  
MIC+  
MIC−  
600 Ω  
V
i
15  
6
R4  
100  
kΩ  
7
C4  
100 pF  
CURL  
GAR  
19  
20  
18  
14  
TEA1065  
DTMF  
MUTE  
C1  
100 µF  
C7 1 nF  
5 to  
2
140 mA  
GAS1  
DPI  
R7  
68  
kΩ  
10  
PD  
10 µF  
C6  
3
100 pF  
VSI  
GAS2  
V
REG  
22  
C3  
4.7  
µF  
AGC  
23  
STAB  
9
SLPE  
24  
EE  
V
i
16  
R6  
118  
kΩ  
R5  
3.6  
kΩ  
R9  
20 Ω  
MBA558  
Voltage gain is defined as Gv = 20 Log Vo/Vi . For measuring the gain from MIC+  
and MICthe MUTE input should be LOW or open-circuit, for measuring the DTMF  
input MUTE should be HIGH. Inputs not under test should be open-circuit except VSI  
that should be connected to VEE  
.
Fig.16 Test circuit for defining voltage gain of MIC+, MICand DTMF inputs.  
March 1994  
19  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
I
R1  
line  
620 Ω  
21  
13  
REFI  
12  
DOC  
1
11  
VBG  
V
o
V
LN  
CC  
17  
8
4
100 µF  
QR−  
IR  
Z
L
R
L
5
QR+  
MIC+  
MIC−  
600 Ω  
15  
6
7
R4  
100  
kΩ  
C4  
100 pF  
CURL  
GAR  
19  
20  
18  
14  
TEA1065  
DTMF  
MUTE  
C1  
100 µF  
C7 1 nF  
5 to  
140 mA  
2
GAS1  
DPI  
10 µF  
R7  
68  
kΩ  
10  
PD  
C6  
100 pF  
3
V
i
VSI  
GAS2  
V
REG  
22  
C3  
4.7  
µF  
AGC  
23  
STAB  
9
SLPE  
24  
EE  
16  
R6  
118  
kΩ  
R5  
3.6  
kΩ  
R9  
20 Ω  
MBA559  
Voltage gain is defined as Gv = 20 Log V o/Vi .  
Fig.17 Test circuit for defining voltage gain of the receiving amplifier.  
March 1994  
20  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
ahdnbok,uflapegwidt  
R16  
1 MΩ  
MOSN1  
BUK554  
R1  
+
620 Ω  
C1  
100 µF  
12  
DOC  
1
21  
R2  
130 kΩ  
BAS11  
(4×)  
LN  
V
CC  
C5  
17  
4
19  
IR  
D1  
D2  
D3  
DTMF  
100 nF  
from dial  
and  
QR−  
20  
18  
control circuits  
MUTE  
PD  
R11  
D4  
telephone  
line  
R3  
3.65  
kΩ  
5
6
QR+  
C4  
100 pF  
R4  
100 kΩ  
TEA1065  
10  
16  
23  
GAR  
DPI  
C7  
1 nF  
8
7
V
MIC+  
MIC−  
EE  
D5  
BZX79c  
BV2  
R6  
AGC  
SLPE GAS1  
24  
C6  
GAS2 VSI  
14  
REFI VBG CURL STAB REG  
13 11 15 22  
2
3
9
R7  
R13  
30  
kΩ  
R8  
68 kΩ  
100 pF  
R15  
715 Ω  
15 kΩ  
R14  
30  
kΩ  
R5  
3.6  
kΩ  
C15  
6.8 µF  
C3  
4.7 µF  
R9a  
15 Ω  
Z
bal  
R9b  
5 Ω  
MBA561  
Fig.18 Typical application of the TEA1065, with a piezoelectric earpiece and DTMF dialling.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
ahdnbok,uflapegwidt  
R16  
1 MΩ  
MOSN1  
BUK554  
R1  
+
620 Ω  
12  
DOC  
1
21  
C1  
100 µF  
R2  
130 kΩ  
BAS11  
(4×)  
LN  
V
CC  
C5  
17  
4
IR  
D1  
D2  
D3  
19  
20  
18  
100 nF  
DTMF  
MUTE  
PD  
QR−  
from dial  
and  
control circuits  
R11  
D4  
telephone  
line  
R3  
3.65  
kΩ  
5
6
QR+  
C4  
100 pF  
R4  
100 kΩ  
TEA1065  
10  
16  
23  
GAR  
DPI  
C7  
1 nF  
8
7
V
MIC+  
MIC−  
EE  
D5  
BZX79c  
BV2  
R6  
AGC  
SLPE GAS1  
24  
C6  
GAS2 VSI  
14  
REFI VBG CURL STAB REG  
13 11 15 22  
2
3
9
R7  
R13  
30  
kΩ  
R8  
68 kΩ  
100 pF  
R15  
715 Ω  
15 kΩ  
R14  
30  
kΩ  
R5  
3.6  
kΩ  
C15  
6.8 µF  
C3  
4.7 µF  
R9a  
15 Ω  
Z
bal  
JFP1  
BSJ177  
R9b  
5 Ω  
MBA560  
DTMF dialling requires a different protection arrangement.  
Fig.19 Typical application of the TEA1065, with a piezoelectric earpiece and pulse dialling.  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
PACKAGE OUTLINES  
DIP24: plastic dual in-line package; 24 leads (600 mil)  
SOT101-1  
D
M
E
A
2
A
L
A
1
c
e
w M  
Z
b
1
(e )  
1
b
M
H
24  
13  
pin 1 index  
E
1
12  
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
w
1
1
E
max.  
min.  
max.  
max.  
1.7  
1.3  
0.53  
0.38  
0.32  
0.23  
32.0  
31.4  
14.1  
13.7  
3.9  
3.4  
15.80  
15.24  
17.15  
15.90  
5.1  
0.51  
4.0  
2.54  
0.10  
15.24  
0.60  
0.25  
0.01  
2.2  
0.066  
0.051  
0.021  
0.015  
0.013  
0.009  
1.26  
1.24  
0.56  
0.54  
0.15  
0.13  
0.62  
0.60  
0.68  
0.63  
inches  
0.20  
0.020  
0.16  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-23  
SOT101-1  
051G02  
MO-015AD  
March 1994  
23  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
SO24: plastic small outline package; 24 leads; body width 7.5 mm  
SOT137-1  
D
E
A
X
c
H
v
M
A
E
y
Z
24  
13  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
12  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
15.6  
15.2  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
0.25  
0.01  
1.27  
0.050  
1.4  
0.25 0.25  
0.01  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.61  
0.014 0.009 0.60  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT137-1  
075E05  
MS-013AD  
March 1994  
24  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
SOLDERING  
Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(order code 9398 652 90011).  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
DIP  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
SOLDERING BY DIPPING OR BY WAVE  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
SO  
REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
March 1994  
25  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
March 1994  
26  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit with  
dialler interface  
TEA1065  
NOTES  
March 1994  
27  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Middle East: see Italy  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Fax. +43 160 101 1210  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
Norway: Box 1, Manglerud 0612, OSLO,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belgium: see The Netherlands  
Brazil: see South America  
Pakistan: see Singapore  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Portugal: see Spain  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Colombia: see South America  
Czech Republic: see Austria  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Tel. +65 350 2538, Fax. +65 251 6500  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
Slovakia: see Austria  
Slovenia: see Italy  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1998  
SCA60  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
415102/00/02d/pp28  
Date of release: March 1994  
Document order number: 9397 750 nnnnn  

相关型号:

TEA1065T

Versatile telephone transmission circuit with dialler interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TEA1066T

Versatile telephone transmission circuit with dialler interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TEA1066TD

Telephone Circuit (Support)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TEA1066TD-T

Telephone Circuit (Support)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TEA1067

Low voltage versatile telephone transmission circuit with dialler interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TEA1067N

IC TELEPHONE SPEECH CKT, PDIP18, 0.300 INCH, PLASTIC, SOT-102, DIP-18, Telephone Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TEA1067PN

IC TELEPHONE SPEECH CKT, PDIP18, PLASTIC, SOT-102HE, DIP-18, Telephone Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TEA1067T

Low voltage versatile telephone transmission circuit with dialler interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TEA1067T-T

IC TELEPHONE SPEECH CKT, PDSO20, MINI, SO-20, Telephone Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TEA1067TD

Telecom IC, Bipolar, PDSO20

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
PHILIPS

TEA1067TD

IC TELEPHONE SPEECH CKT, PDSO20, PLASTIC, SOT-163, SO-20, Telephone Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TEA1067TD-T

IC TELEPHONE SPEECH CKT, PDSO20, PLASTIC, SOT-163, SO-20, Telephone Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP