TJA1041T/N1,518 [NXP]

TJA1041 - High-speed CAN transceiver with standby and sleep mode SOIC 14-Pin;
TJA1041T/N1,518
型号: TJA1041T/N1,518
厂家: NXP    NXP
描述:

TJA1041 - High-speed CAN transceiver with standby and sleep mode SOIC 14-Pin

电信 光电二极管 电信集成电路
文件: 总26页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TJA1041  
High speed CAN transceiver  
Rev. 06 — 5 December 2007  
Product data sheet  
1. General description  
The TJA1041 provides an advanced interface between the protocol controller and the  
physical bus in a Controller Area Network (CAN) node. The TJA1041 is primarily intended  
for automotive high-speed CAN applications (up to 1 Mbit/s). The transceiver provides  
differential transmit capability to the bus and differential receive capability to the CAN  
controller. The TJA1041 is fully compatible to the ISO 11898 standard, and offers  
excellent ElectroMagnetic Compatibility (EMC) performance, very low power  
consumption, and passive behavior when supply voltage is off. The advanced features  
include:  
Low-power management, supporting local and remote wake-up with wake-up source  
recognition and the capability to control the power supply in the rest of the node  
Several protection and diagnosis functions including short circuits of the bus lines and  
first battery connection  
Automatic adaptation of the I/O-levels, in line with the supply voltage of the controller  
2. Features  
2.1 Optimized for in-vehicle high speed communication  
I Fully compatible with the ISO 11898 standard  
I Communication speed up to 1 Mbit/s  
I Very low ElectroMagnetic Emission (EME)  
I Differential receiver with wide common-mode range, offering high ElectroMagnetic  
Immunity (EMI)  
I Passive behavior when supply voltage is off  
I Automatic I/O-level adaptation to the host controller supply voltage  
I Recessive bus DC voltage stabilization for further improvement of EME behavior  
I Listen-only mode for node diagnosis and failure containment  
I Allows implementation of large networks (more than 110 nodes)  
2.2 Low-power management  
I Very low-current in Standby and Sleep mode, with local and remote wake-up  
I Capability to power-down the entire node, still allowing local and remote wake-up  
I Wake-up source recognition  
 
 
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
2.3 Protection and diagnosis (detection and signalling)  
I TXD dominant clamping handler with diagnosis  
I RXD recessive clamping handler with diagnosis  
I TXD-to-RXD short-circuit handler with diagnosis  
I Overtemperature protection with diagnosis  
I Undervoltage detection on pins VCC, VI/O and VBAT  
I Automotive environment transient protected bus pins and pin VBAT  
I Short-circuit proof bus pins and pin SPLIT (to battery and to ground)  
I Bus line short-circuit diagnosis  
I Bus dominant clamping diagnosis  
I Cold start diagnosis (first battery connection)  
3. Quick reference data  
Table 1.  
Symbol  
VCC  
Quick reference data  
Parameter  
Conditions  
Min  
4.75  
2.8  
5
Typ  
Max  
5.25  
5.25  
27  
Unit  
V
DC voltage on pin VCC  
DC voltage on pin VI/O  
DC voltage on pin VBAT  
VBAT input current  
operating range  
-
-
-
-
-
-
-
VI/O  
operating range  
V
VBAT  
operating range  
V
IBAT  
VBAT = 12 V  
10  
30  
µA  
V
VCANH  
VCANL  
VSPLIT  
Vesd  
DC voltage on pin CANH  
DC voltage on pin CANL  
DC voltage on pin SPLIT  
electrostatic discharge voltage  
0 V < VCC < 5.25 V; no time limit  
0 V < VCC < 5.25 V; no time limit  
0 V < VCC < 5.25 V; no time limit  
Human Body Model (HBM)  
pins CANH, CANL and SPLIT  
pins TXD, RXD, VI/O and STB  
all other pins  
27  
27  
27  
+40  
+40  
+40  
V
V
[1]  
6  
-
-
-
-
-
+6  
kV  
kV  
kV  
ns  
°C  
3  
+3  
4  
+4  
tPD(TXD-RXD) propagation delay TXD to RXD  
Tvj virtual junction temperature  
VSTB = 0 V  
40  
40  
255  
+150  
[1] Equivalent to discharging a 100 pF capacitor via a 1.5 kseries resistor (6 kV level with pin GND connected to ground).  
4. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
SO14  
-
Description  
Version  
SOT108-1  
-
TJA1041T  
TJA1041U  
plastic small outline package; 14 leads; body width 3.9 mm  
bare die; 1930 × 3200 × 380 µm  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
2 of 26  
 
 
 
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
5. Block diagram  
V
V
V
BAT  
CC  
3
I/O  
5
10  
TJA1041  
7
1
INH  
TXD  
TEMPERATURE  
PROTECTION  
TIME-OUT  
LEVEL  
ADAPTOR  
6
EN  
13  
12  
CANH  
CANL  
DRIVER  
14  
STB  
V
BAT  
V
CC  
9
8
WAKE  
COMPARATOR  
WAKE  
MODE  
CONTROL  
+
FAILURE  
DETECTOR  
+
11  
SPLIT  
SPLIT  
V
I/O  
ERR  
WAKE-UP  
DETECTOR  
V
BAT  
RXD  
RECESSIVE  
DETECTION  
LOW POWER  
RECEIVER  
V
I/O  
V
CC  
4
RXD  
NORMAL  
RECEIVER  
2
mgu166  
GND  
Fig 1. Block diagram  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
3 of 26  
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
6. Pinning information  
6.1 Pinning  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
TXD  
STB  
GND  
CANH  
CANL  
SPLIT  
V
CC  
RXD  
TJA1041T  
V
V
BAT  
I/O  
EN  
WAKE  
ERR  
8
INH  
001aag909  
Fig 2. Pin configuration  
6.2 Pin description  
Table 3.  
Symbol  
TXD  
Pin description  
Pin  
1
Description  
transmit data input  
ground  
GND  
VCC  
2
3
transceiver supply voltage input  
RXD  
4
receive data output; reads out data from the bus lines  
I/O-level adapter voltage input  
VI/O  
5
EN  
6
enable control input  
INH  
7
inhibit output for switching external voltage regulators  
error and power-on indication output (active LOW)  
local wake-up input  
ERR  
8
WAKE  
VBAT  
9
10  
11  
12  
13  
14  
battery voltage input  
SPLIT  
CANL  
CANH  
STB  
common-mode stabilization output  
LOW-level CAN bus line  
HIGH-level CAN bus line  
standby control input (active LOW)  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
4 of 26  
 
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
7. Functional description  
The primary function of a CAN transceiver is to provide the CAN physical layer as  
described in the ISO 11898 standard. In the TJA1041 this primary function is  
complemented with a number of operating modes, fail-safe features and diagnosis  
features, which offer enhanced system reliability and advanced power management  
functionality.  
7.1 Operating modes  
The TJA1041 can be operated in five modes, each with specific features. Control pins  
STB and EN select the operating mode. Changing between modes also gives access to a  
number of diagnostics flags, available via pin ERR. The following sections describe the  
five operating modes. Table 4 shows the conditions for selecting these modes. Figure 3  
illustrates the mode transitions when VCC, VI/O and VBAT are present.  
Table 4.  
Control pins Internal flags  
Operating mode selection[1]  
Operating mode  
Pin INH  
STB  
EN  
UVNOM  
UVBAT  
pwon;  
wake-up  
X
X
set  
X
X[2]  
Sleep mode[3]  
floating  
H
cleared  
set  
one or both set Standby mode  
both cleared  
no change from Sleep mode floating  
Standby mode from any  
other mode  
H
L
L
L
cleared  
cleared  
cleared  
cleared  
one or both set Standby mode  
both cleared  
H
no change from Sleep mode floating  
Standby mode from any  
other mode  
H
H
one or both set Standby mode  
H
both cleared  
no change from Sleep mode floating  
go-to-sleep command mode H[4]  
from any other mode[4]  
H
H
L
cleared  
cleared  
cleared  
cleared  
X
X
pwon/listen-only mode  
normal mode[5]  
H
H
H
[1] X = don’t care.  
[2] Setting the pwon flag or the wake-up flag will clear the UVNOM flag.  
[3] The transceiver directly enters Sleep mode and pin INH is set floating when the UVNOM flag is set (so after  
the undervoltage detection time on either VCC or VI/O has elapsed before that voltage level has recovered).  
[4] When go-to-sleep command mode is selected for longer than the minimum hold time of the go-to-sleep  
command, the transceiver will enter Sleep mode and pin INH is set floating.  
[5] On entering normal mode the pwon flag and the wake-up flag will be cleared.  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
5 of 26  
 
 
 
 
 
 
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
STB = H  
and  
EN = H  
STB = H  
and  
EN = L  
PWON/LISTEN-  
ONLY MODE  
NORMAL  
MODE  
STB = H  
and  
EN = H  
STB = H  
and  
STB = H  
and  
STB = H  
and  
EN = L  
EN = L  
EN = H  
STB = L  
and  
(EN = L or flag set)  
STB = L  
and  
EN = H  
STB = L and EN = H  
and  
flags cleared  
STB = L  
and  
EN = L  
GO-TO-SLEEP  
COMMAND  
MODE  
STB = L and EN = H  
and  
STANDBY  
MODE  
flags cleared  
STB = L  
and  
(EN = L or flag set)  
flags cleared  
and  
STB = L  
and  
flag set  
STB = H and EN = H  
and  
STB = H and EN = L  
and  
cleared  
t > t  
h(min)  
UV  
cleared  
NOM  
UV  
NOM  
SLEEP  
MODE  
LEGEND:  
mgu983  
= H, = L  
flag set  
flags cleared  
logical state of pin  
setting pwon and/or wake-up flag  
pwon and wake-up flag both cleared  
Fig 3. Mode transitions when VCC, VI/O and VBAT are present  
7.1.1 Normal mode  
Normal mode is the mode for normal bidirectional CAN communication. The receiver will  
convert the differential analog bus signal on pins CANH and CANL into digital data,  
available for output to pin RXD. The transmitter will convert digital data on pin TXD into a  
differential analog signal, available for output to the bus pins. The bus pins are biased at  
0.5VCC (via Ri(cm)). Pin INH is active, so voltage regulators controlled by pin INH (see  
Figure 4) will be active too.  
7.1.2 Pwon/listen-only mode  
In pwon/listen-only mode the transmitter of the transceiver is disabled, effectively  
providing a transceiver listen-only behavior. The receiver will still convert the analog bus  
signal on pins CANH and CANL into digital data, available for output to pin RXD. As in  
normal mode the bus pins are biased at 0.5VCC, and pin INH remains active.  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
6 of 26  
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
7.1.3 Standby mode  
The Standby mode is the first-level power saving mode of the transceiver, offering reduced  
current consumption. In Standby mode the transceiver is not able to transmit or receive  
data and the low-power receiver is activated to monitor bus activity. The bus pins are  
biased at ground level (via Ri(cm)). Pin INH is still active, so voltage regulators controlled  
by this pin INH will be active too.  
Pins RXD and ERR will reflect any wake-up requests (provided that VI/O and VCC are  
present).  
7.1.4 Go-to-sleep command mode  
The go-to-sleep command mode is the controlled route for entering Sleep mode. In  
go-to-sleep command mode the transceiver behaves as if in Standby mode, plus a  
go-to-sleep command is issued to the transceiver. After remaining in go-to-sleep  
command mode for the minimum hold time (th(min)), the transceiver will enter Sleep mode.  
The transceiver will not enter the Sleep mode if the state of pins STB or EN is changed or  
the UVBAT, pwon or wake-up flag is set before th(min) has expired.  
7.1.5 Sleep mode  
The Sleep mode is the second-level power saving mode of the transceiver. Sleep mode is  
entered via the go-to-sleep command mode, and also when the undervoltage detection  
time on either VCC or VI/O elapses before that voltage level has recovered. In Sleep mode  
the transceiver still behaves as described for Standby mode, but now pin INH is set  
floating. Voltage regulators controlled by pin INH will be switched off, and the current into  
pin VBAT is reduced to a minimum. Waking up a node from Sleep mode is possible via the  
wake-up flag and (as long as the UVNOM flag is not set) via pin STB.  
7.2 Internal flags  
The TJA1041 makes use of seven internal flags for its fail-safe fallback mode control and  
system diagnosis support. Table 4 shows the relation between flags and operating modes  
of the transceiver. Five of the internal flags can be made available to the controller via pin  
ERR. Table 5 shows the details on how to access these flags. The following sections  
describe the seven internal flags.  
Table 5.  
Accessing internal flags via pin ERR  
Internal flag Flag is available on pin ERR[1]  
Flag is cleared  
UVNOM  
no  
no  
by setting the pwon or wake-up  
flag  
UVBAT  
pwon  
when VBAT has recovered  
on entering normal mode  
in pwon/listen-only mode (coming from  
Standby mode, go-to-sleep command mode,  
or Sleep mode)  
wake-up  
in Standby mode, go-to-sleep command  
mode, and Sleep mode (provided that VI/O  
and VCC are present)  
on entering normal mode, or by  
setting the pwon or UVNOM flag  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
7 of 26  
 
 
 
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
Table 5.  
Accessing internal flags via pin ERR …continued  
Internal flag Flag is available on pin ERR[1]  
Flag is cleared  
wake-up  
source  
in normal mode (before the fourth dominant to on leaving normal mode, or by  
recessive edge on pin TXD[2])  
setting the pwon flag  
bus failure  
in normal mode (after the fourth dominant to on re-entering normal mode  
recessive edge on pin TXD[2]  
local failure  
in pwon/listen-only mode (coming from  
normal mode)  
on entering normal mode or when  
RXD is dominant while TXD is  
recessive (provided that all local  
failures are resolved)  
[1] Pin ERR is an active-LOW output, so a LOW level indicates a set flag and a HIGH level indicates a cleared  
flag. Allow pin ERR to stabilize for at least 8 µs after changing operating modes.  
[2] Allow for a TXD dominant time of at least 4 µs per dominant-recessive cycle.  
7.2.1 UVNOM flag  
UVNOM is the VCC and VI/O undervoltage detection flag. The flag is set when the voltage  
on pin VCC drops below VCC(sleep) for longer than tUV(VCC) or when the voltage on pin VI/O  
drops below VI/O(sleep) for longer than tUV(VI/O). When the UVNOM flag is set, the transceiver  
will enter Sleep mode to save power and not disturb the bus. In Sleep mode the voltage  
regulators connected to pin INH are disabled, avoiding the extra power consumption in  
case of a short-circuit condition. After a waiting time (fixed by the same timers used for  
setting UVNOM) any wake-up request or setting of the pwon flag will clear UVNOM and the  
timers, allowing the voltage regulators to be reactivated at least until UVNOM is set again.  
7.2.2 UVBAT flag  
UVBAT is the VBAT undervoltage detection flag. The flag is set when the voltage on pin VBAT  
drops below VBAT(stb). When UVBAT is set, the transceiver will try to enter Standby mode to  
save power and not disturb the bus. UVBAT is cleared when the voltage on pin VBAT has  
recovered. The transceiver will then return to the operating mode determined by the logic  
state of pins STB and EN.  
7.2.3 Pwon flag  
Pwon is the VBAT power-on flag. This flag is set when the voltage on pin VBAT has  
recovered after it dropped below VBAT(pwon), particularly after the transceiver was  
disconnected from the battery. By setting the pwon flag, the UVNOM flag and timers are  
cleared and the transceiver cannot enter Sleep mode. This ensures that any voltage  
regulator connected to pin INH is activated when the node is reconnected to the battery. In  
pwon/listen-only mode the pwon flag can be made available on pin ERR. The flag is  
cleared when the transceiver enters normal mode.  
7.2.4 Wake-up flag  
The wake-up flag is set when the transceiver detects a local or a remote wake-up request.  
A local wake-up request is detected when a logic state change on pin WAKE remains  
stable for at least twake. A remote wake-up request is detected when the bus remains in  
dominant state for at least tBUS. The wake-up flag can only be set in Standby mode,  
go-to-sleep command mode or Sleep mode. Setting of the flag is blocked during the  
UVNOM flag waiting time. By setting the wake-up flag, the UVNOM flag and timers are  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
8 of 26  
 
 
 
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
cleared. The wake-up flag is immediately available on pins ERR and RXD (provided that  
VI/O and VCC are present). The flag is cleared at power-on, or when the UVNOM flag is set  
or the transceiver enters normal mode.  
7.2.5 Wake-up source flag  
Wake-up source recognition is provided via the wake-up source flag, which is set when  
the wake-up flag is set by a local wake-up request via pin WAKE. The wake-up source flag  
can only be set after the pwon flag is cleared. In normal mode the wake-up source flag  
can be made available on pin ERR. The flag is cleared at power-on or when the  
transceiver leaves normal mode.  
7.2.6 Bus failure flag  
The bus failure flag is set if the transceiver detects a bus line short-circuit condition to  
VBAT, VCC or GND during four consecutive dominant-recessive cycles on pin TXD, when  
trying to drive the bus lines dominant. In normal mode the bus failure flag can be made  
available on pin ERR. The flag is cleared when the transceiver re-enters normal mode.  
7.2.7 Local failure flag  
In normal mode or pwon/listen-only mode the transceiver can recognize five different local  
failures, and will combine them into one local failure flag. The five local failures are: TXD  
dominant clamping, RXD recessive clamping, a TXD-to-RXD short circuit, bus dominant  
clamping, and overtemperature. The nature and detection of these local failures is  
described in Section 7.3 “Local failures”. In pwon/listen-only mode the local failure flag can  
be made available on pin ERR. The flag is cleared when entering normal mode or when  
RXD is dominant while TXD is recessive, provided that all local failures are resolved.  
7.3 Local failures  
The TJA1041 can detect five different local failure conditions. Any of these failures will set  
the local failure flag, and in most cases the transmitter of the transceiver will be disabled.  
The following sections give the details.  
7.3.1 TXD dominant clamping detection  
A permanent LOW level on pin TXD (due to a hardware or software application failure)  
would drive the CAN bus into a permanent dominant state, blocking all network  
communication. The TXD dominant time-out function prevents such a network lock-up by  
disabling the transmitter of the transceiver if pin TXD remains at a LOW level for longer  
than the TXD dominant time-out tdom(TXD). The tdom(TXD) timer defines the minimum  
possible bit rate of 40 kbit/s. The transmitter remains disabled until the local failure flag is  
cleared.  
7.3.2 RXD recessive clamping detection  
An RXD pin clamped to HIGH level will prevent the controller connected to this pin from  
recognizing a bus dominant state. So the controller can start messages at any time, which  
is likely to disturb all bus communication. RXD recessive clamping detection prevents this  
effect by disabling the transmitter when the bus is in dominant state without RXD reflecting  
this. The transmitter remains disabled until the local failure flag is cleared.  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
9 of 26  
 
 
 
 
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
7.3.3 TXD-to-RXD short-circuit detection  
A short-circuit between pins RXD and TXD would keep the bus in a permanent dominant  
state once the bus is driven dominant, because the low-side driver of RXD is typically  
stronger than the high-side driver of the controller connected to TXD. The TXD-to-RXD  
short-circuit detection prevents such a network lock-up by disabling the transmitter. The  
transmitter remains disabled until the local failure flag is cleared.  
7.3.4 Bus dominant clamping detection  
A CAN bus short circuit (to VBAT, VCC or GND) or a failure in one of the other network  
nodes could result in a differential voltage on the bus high enough to represent a bus  
dominant state. Because a node will not start transmission if the bus is dominant, the  
normal bus failure detection will not detect this failure, but the bus dominant clamping  
detection will. The local failure flag is set if the dominant state on the bus persists for  
longer than tdom(bus). By checking this flag, the controller can determine if a clamped bus is  
blocking network communication. There is no need to disable the transmitter. Note that  
the local failure flag does not retain a bus dominant clamping failure, and is released as  
soon as the bus returns to recessive state.  
7.3.5 Overtemperature detection  
To protect the output drivers of the transceiver against overheating, the transmitter will be  
disabled if the virtual junction temperature exceeds the shutdown junction temperature  
Tj(sd). The transmitter remains disabled until the local failure flag is cleared.  
7.4 Recessive bus voltage stabilization  
In recessive state the output impedance of transceivers is relatively high. In a partially  
powered network (supply voltage is off in some of the nodes) any deactivated transceiver  
with a significant leakage current is likely to load the recessive bus to ground. This will  
cause a common-mode voltage step each time transmission starts, resulting in increased  
EME. Using pin SPLIT of the TJA1041 in combination with split termination (see Figure 5)  
will reduce this step effect. In normal mode and pwon/listen-only mode pin SPLIT provides  
a stabilized 0.5VCC DC voltage. In Standby mode, go-to-sleep command mode and Sleep  
mode, pin SPLIT is set floating.  
7.5 I/O level adapter  
The TJA1041 is equipped with a built-in I/O-level adapter. By using the supply voltage of  
the controller (to be supplied at pin VI/O) the level adapter ratio-metrically scales the  
I/O-levels of the transceiver. For pins TXD, STB and EN the digital input threshold level is  
adjusted, and for pins RXD and ERR the HIGH-level output voltage is adjusted. This  
allows the transceiver to be directly interfaced with controllers on supply voltages between  
2.8 V and 5.25 V, without the need for glue logic.  
7.6 Pin WAKE  
Pin WAKE of the TJA1041 allows local wake-up triggering by a LOW-to-HIGH state  
change as well as a HIGH-to-LOW state change. This gives maximum flexibility when  
designing a local wake-up circuit. To keep current consumption at a minimum, after a twake  
delay the internal bias voltage of pin WAKE will follow the logic state of this pin. A HIGH  
level on pin WAKE is followed by an internal pull-up to VBAT. A LOW level on pin WAKE is  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
10 of 26  
 
 
 
 
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
followed by an internal pull-down towards GND. To ensure EMI performance in  
applications not using local wake-up it is recommended to connect pin WAKE to pin VBAT  
or to pin GND.  
8. Limiting values  
Table 6.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
0.3  
4.75  
0.3  
2.8  
Max  
Unit  
V
VCC  
DC voltage on pin VCC  
no time limit  
operating range  
no time limit  
operating range  
no time limit  
operating range  
load dump  
+6  
5.25  
V
VI/O  
DC voltage on pin VI/O  
DC voltage on pin VBAT  
+6  
V
5.25  
V
VBAT  
0.3  
5
+40  
V
27  
V
-
40  
V
VTXD  
VRXD  
VSTB  
VEN  
DC voltage on pin TXD  
DC voltage on pin RXD  
DC voltage on pin STB  
DC voltage on pin EN  
DC voltage on pin ERR  
DC voltage on pin INH  
DC voltage on pin WAKE  
DC current on pin WAKE  
DC voltage on pin CANH  
DC voltage on pin CANL  
DC voltage on pin SPLIT  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
-
VI/O + 0.3  
VI/O + 0.3  
VI/O + 0.3  
VI/O + 0.3  
VI/O + 0.3  
VBAT + 0.3  
VBAT + 0.3  
15  
V
V
V
V
VERR  
VINH  
V
V
VWAKE  
IWAKE  
VCANH  
VCANL  
VSPLIT  
Vtrt  
V
mA  
V
0 V < VCC < 5.25 V; no time limit  
0 V < VCC < 5.25 V; no time limit  
0 V < VCC < 5.25 V; no time limit  
27  
27  
27  
200  
+40  
+40  
V
+40  
V
transient voltages on pins CANH,  
CANL, SPLIT and VBAT  
according to ISO 7637; see  
Figure 6  
+200  
V
[1]  
Vesd  
electrostatic discharge voltage  
Human Body Model (HBM)  
pins CANH, CANL and SPLIT  
pins TXD, RXD, VI/O and STB  
all other pins  
6  
+6  
kV  
kV  
kV  
V
3  
+3  
4  
+4  
[2]  
[3]  
Machine Model (MM)  
200  
40  
55  
+200  
+150  
+150  
Tvj  
virtual junction temperature  
storage temperature  
°C  
°C  
Tstg  
[1] Equivalent to discharging a 100 pF capacitor via a 1.5 kseries resistor (6 kV level with pin GND connected to ground).  
[2] Equivalent to discharging a 200 pF capacitor via a 0.75 µH series inductor and a 10 series resistor.  
[3] Junction temperature in accordance with IEC 60747-1. An alternative definition is: Tvj = Tamb + P × Rth(vj-amb), where Rth(vj-amb) is a fixed  
value. The rating for Tvj limits the allowable combinations of power dissipation (P) and ambient temperature (Tamb).  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
11 of 26  
 
 
 
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
9. Thermal characteristics  
Table 7.  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
thermal resistance from junction SO14 package; in  
to ambient free air  
Conditions  
Typ  
Unit  
120  
K/W  
Rth(j-s)  
thermal resistance from junction bare die; in free air  
to substrate  
40  
K/W  
10. Characteristics  
Table 8.  
Characteristics  
VCC = 4.75 V to 5.25 V; VI/O = 2.8 V to VCC; VBAT = 5 V to 27 V; RL = 60 ; Tvj = 40 °C to +150 °C; unless specified  
otherwise; all voltages are defined with respect to ground; positive currents flow into the device.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supplies (pins VBAT, VCC and VI/O  
)
VCC(sleep)  
VI/O(sleep)  
VBAT(stb)  
VBAT(pwon)  
ICC  
VCC undervoltage detection  
level for forced Sleep mode  
VBAT = 12 V (fail-safe)  
2.75  
0.5  
2.75  
2.5  
25  
3.3  
1.5  
3.3  
3.3  
55  
6
4.5  
2
V
VI/O undervoltage detection  
level for forced Sleep mode  
V
VBAT voltage level for fail-safe  
fallback mode  
VCC = 5 V (fail-safe)  
VCC = 0 V  
4.5  
4.1  
80  
10  
V
VBAT voltage level for setting  
pwon flag  
V
VCC input current  
VI/O input current  
VBAT input current  
normal mode; VTXD = 0 V  
(dominant)  
mA  
mA  
normal or pwon/listen-only  
mode; VTXD = VI/O (recessive)  
2
Standby or Sleep mode  
-
1
10  
µA  
µA  
II/O  
normal mode; VTXD = 0 V  
(dominant)  
100  
350  
1000  
normal or pwon/listen-only  
mode; VTXD = VI/O (recessive)  
15  
80  
200  
µA  
Standby or Sleep mode  
-
0
5
µA  
µA  
IBAT  
normal or pwon/listen-only  
mode  
15  
30  
40  
Standby mode; VCC > 4.75 V;  
10  
10  
20  
20  
30  
30  
µA  
µA  
VI/O = 2.8 V;  
VINH = VWAKE = VBAT = 12 V  
Sleep mode;  
VINH = VCC = VI/O = 0 V;  
VWAKE = VBAT = 12 V  
Transmitter data input (pin TXD)  
VIH  
VIL  
IIH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level input current  
0.7VI/O  
0.3  
5  
-
VCC + 0.3  
+0.3VI/O  
+5  
V
-
V
normal or pwon/listen-only  
mode; VTXD = VI/O  
0
µA  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
12 of 26  
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
Table 8.  
Characteristics …continued  
VCC = 4.75 V to 5.25 V; VI/O = 2.8 V to VCC; VBAT = 5 V to 27 V; RL = 60 ; Tvj = 40 °C to +150 °C; unless specified  
otherwise; all voltages are defined with respect to ground; positive currents flow into the device.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IIL  
LOW-level input current  
normal or pwon/listen-only  
mode; VTXD = 0.3VI/O  
70  
250  
500  
µA  
Ci  
input capacitance  
not tested  
-
5
10  
pF  
Receiver data output (pin RXD)  
IOH  
IOL  
HIGH-level output current  
LOW-level output current  
VRXD = VI/O 0.4 V; VI/O = VCC  
1  
3  
6  
mA  
mA  
VRXD = 0.4 V; VTXD = VI/O; bus  
dominant  
2
5
12  
Standby and enable control inputs (pins STB and EN)  
VIH  
VIL  
IIH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
0.7VI/O  
-
VCC + 0.3  
+0.3VI/O  
10  
V
0.3  
-
V
VSTB = VEN = 0.7VI/O  
VSTB = VEN = 0 V  
1
-
4
0
µA  
µA  
IIL  
1  
Error and power-on indication output (pin ERR)  
IOH  
IOL  
HIGH-level output current  
LOW-level output current  
VERR = VI/O 0.4 V; VI/O = VCC  
4  
20  
50  
µA  
VERR = 0.4 V  
0.1  
0.2  
0.35  
mA  
Local wake-up input (pin WAKE)  
IIH  
IIL  
HIGH-level input current  
LOW-level input current  
threshold voltage  
VWAKE = VBAT 1.9 V  
VWAKE = VBAT 3.1 V  
VSTB = 0 V  
1  
5  
10  
µA  
µA  
V
1
5
10  
Vth  
VBAT 3  
VBAT 2.5  
VBAT 2  
Inhibit output (pin INH)  
VH  
|IL|  
HIGH-level voltage drop  
leakage current  
IINH = 0.18 mA  
0.05  
-
0.2  
0
0.8  
5
V
Sleep mode  
µA  
Bus lines (pins CANH and CANL)  
VO(dom)  
dominant output voltage  
VTXD = 0 V  
pin CANH  
pin CANL  
3
3.6  
1.4  
-
4.25  
V
V
V
0.5  
0.1  
1.75  
VO(dom)(m)  
VO(dif)(bus)  
matching of dominant output  
voltage (VCC - VCANH - VCANL  
+0.15  
)
differential bus output voltage VTXD = 0 V (dominant);  
1.5  
-
3.0  
V
(VCANH - VCANL  
)
45 < RL < 65 Ω  
VTXD = VI/O (recessive); no load  
50  
-
+50  
3
mV  
V
VO(reces)  
recessive output voltage  
short-circuit output current  
normal or pwon/listen-only  
mode; VTXD = VI/O; no load  
2
0.5VCC  
Standby or Sleep mode; no load 0.1  
0
+0.1  
V
IO(sc)  
VTXD = 0 V (dominant)  
pin CANH; VCANH = 0 V  
pin CANL; VCANL = 40 V  
27 V < VCAN < 32 V  
45  
45  
70  
70  
-
95  
95  
mA  
mA  
mA  
IO(reces)  
recessive output current  
2.5  
+2.5  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
13 of 26  
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
Table 8.  
Characteristics …continued  
VCC = 4.75 V to 5.25 V; VI/O = 2.8 V to VCC; VBAT = 5 V to 27 V; RL = 60 ; Tvj = 40 °C to +150 °C; unless specified  
otherwise; all voltages are defined with respect to ground; positive currents flow into the device.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vdif(th)  
differential receiver threshold  
voltage  
normal or pwon/listen-only  
mode; see Figure 7;  
0.5  
0.7  
0.9  
V
12 V < VCANH < 12 V;  
12 V < VCANL < 12 V  
Standby or Sleep mode;  
12 V < VCANH < 12 V;  
12 V < VCANL < 12 V  
0.4  
50  
0.7  
70  
1.15  
100  
V
Vhys(dif)  
differential receiver hysteresis normal or pwon/listen-only  
mV  
voltage  
mode; see Figure 7;  
12 V < VCANH < 12 V;  
12 V < VCANL < 12 V  
ILI  
input leakage current  
VCC = 0 V; VCANH = VCANL = 5 V  
100  
15  
170  
25  
250  
35  
µA  
kΩ  
Ri(cm)  
common-mode input  
resistance  
Ri(cm)(m)  
common-mode input  
resistance matching  
VCANH = VCANL  
3  
0
+3  
%
Ri(dif)  
Ci(cm)  
differential input resistance  
25  
-
50  
-
75  
20  
kΩ  
common-mode input  
capacitance  
VTXD = VCC; not tested  
pF  
Ci(dif)  
differential input capacitance  
VTXD = VCC; not tested  
normal mode  
-
-
-
10  
50  
pF  
Rsc(bus)  
detectable short-circuit  
0
resistance between bus lines  
and VBAT, VCC and GND  
Common-mode stabilization output (pin SPLIT)  
Vo  
output voltage  
normal or pwon/listen-only  
mode;  
0.3VCC  
0.5VCC  
0.7VCC  
V
500 µA < ISPLIT < 500 µA  
|IL|  
leakage current  
Standby or Sleep mode;  
-
0
5
µA  
22 V < VSPLIT < 35 V  
Timing characteristics; see Figure 8 and Figure 9  
td(TXD-BUSon) delay TXD to bus active  
td(TXD-BUSoff) delay TXD to bus inactive  
td(BUSon-RXD) delay bus active to RXD  
normal mode  
25  
10  
15  
70  
50  
65  
110  
95  
ns  
ns  
ns  
normal mode  
normal or pwon/listen-only  
mode  
115  
td(BUSoff-RXD) delay bus inactive to RXD  
normal or pwon/listen-only  
mode  
35  
100  
160  
ns  
tPD(TXD-RXD) propagation delay TXD to RXD VSTB = 0 V  
40  
5
-
255  
ns  
tUV(VCC)  
undervoltage detection time on  
VCC  
10  
12.5  
ms  
tUV(VI/O)  
undervoltage detection time on  
VI/O  
5
10  
12.5  
ms  
tdom(TXD)  
tdom(bus)  
th(min)  
TXD dominant time-out  
bus dominant time-out  
VTXD = 0 V  
Vdif > 0.9 V  
300  
300  
20  
600  
600  
35  
1000  
1000  
50  
µs  
µs  
µs  
minimum hold time of  
go-to-sleep command  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
14 of 26  
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
Table 8.  
Characteristics …continued  
VCC = 4.75 V to 5.25 V; VI/O = 2.8 V to VCC; VBAT = 5 V to 27 V; RL = 60 ; Tvj = 40 °C to +150 °C; unless specified  
otherwise; all voltages are defined with respect to ground; positive currents flow into the device.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tBUS  
dominant time for wake-up via Standby or Sleep mode;  
0.75  
1.75  
5
µs  
bus  
V
BAT = 12 V  
Standby or Sleep mode;  
BAT = 12 V  
twake  
minimum wake-up time after  
receiving a falling or rising  
edge  
5
25  
50  
µs  
V
Thermal shutdown  
Tj(sd) shutdown junction temperature  
155  
165  
180  
°C  
[1] All parameters are guaranteed over the virtual junction temperature range by design, but only 100 % tested at Tamb = 125 °C for dies on  
wafer level and in addition to this, 100 % tested at Tamb = 125 °C for cased products, unless specified otherwise. For bare dies, all  
parameters are only guaranteed with the reverse side of the die connected to ground.  
11. Application information  
3 V  
5 V  
BAT  
V
V
V
I/O  
BAT  
CC  
INH  
V
CC  
STB  
EN  
WAKE  
GND  
Port x, y, z  
ERR  
MICRO-  
CONTROLLER  
TJA1041  
RXD  
TXD  
RXD  
TXD  
CANH  
CANL  
SPLIT  
mgu173  
CAN bus wires  
Fig 4. Typical application with 3 V microcontroller  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
15 of 26  
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
V
CC  
TJA1041  
CANH  
SPLIT  
CANL  
R
60  
V
= 0.5V  
CC  
SPLIT  
V
in normal mode  
and pwon/listen-only  
mode;  
SPLIT  
R
60 Ω  
otherwise floating  
mgu169  
GND  
Fig 5. Stabilization circuitry and application  
+12 V  
+5 V  
47 µF  
100 nF  
V
I/O  
V
CC  
V
10 µF  
BAT  
5
3
10  
1 nF  
TXD  
EN  
CANH  
CANL  
1
13  
12  
TRANSIENT  
GENERATOR  
6
1 nF  
STB  
14  
9
WAKE  
SPLIT  
ERR  
INH  
TJA1041  
11  
8
500 kHz  
7
RXD  
4
2
GND  
mgw337  
The waveforms of the applied transients will be in accordance with ISO 7637 part 1, test pulses  
1, 2, 3a, 3b, 5, 6 and 7.  
Fig 6. Test circuit for automotive transients  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
16 of 26  
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
V
RXD  
HIGH  
LOW  
hysteresis  
0.5  
0.9  
V
(V)  
i(dif)(bus)  
mgs378  
Vi(dif)(bus) = VCANH - VCANL  
.
Fig 7. Hysteresis of the receiver  
+12 V  
+5 V  
47 µF  
100 nF  
V
V
V
BAT  
10 µF  
I/O  
CC  
5
3
10  
TXD  
EN  
CANH  
1
13  
R
60 Ω  
C
L
100 pF  
L
6
STB  
CANL  
SPLIT  
ERR  
INH  
14  
9
12  
11  
8
WAKE  
TJA1041  
7
RXD  
4
2
15 pF  
mgw338  
GND  
Fig 8. Test circuit for timing characteristics  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
17 of 26  
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
HIGH  
LOW  
TXD  
CANH  
CANL  
dominant  
(BUS on)  
0.9 V  
0.5 V  
(1)  
V
i(dif)(bus)  
recessive  
(BUS off)  
HIGH  
0.7V  
CC  
RXD  
0.3V  
CC  
LOW  
t
t
d(TXD-BUSon)  
t
d(TXD-BUSoff)  
t
d(BUSon-RXD)  
d(BUSoff-RXD)  
t
t
PD(TXD-RXD)  
PD(TXD-RXD)  
mgs377  
(1) Vi(dif)(bus) = VCANH - VCANL  
.
Fig 9. Timing diagram  
12. Test information  
12.1 Quality information  
This product has been qualified in accordance with the Automotive Electronics Council  
(AEC) standard Q100 - Stress test qualification for integrated circuits, and is suitable for  
use in automotive applications.  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
18 of 26  
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
13. Package outline  
SO14: plastic small outline package; 14 leads; body width 3.9 mm  
SOT108-1  
D
E
A
X
c
y
H
v
M
A
E
Z
8
14  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
7
e
detail X  
w
M
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
8.75  
8.55  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.75  
1.27  
0.05  
1.05  
0.25  
0.01  
0.25  
0.1  
0.25  
0.01  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.35  
0.014 0.0075 0.34  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches  
0.041  
0.01 0.004  
0.069  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT108-1  
076E06  
MS-012  
Fig 10. Package outline SOT108-1 (SO14)  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
19 of 26  
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
14. Bare die outline  
1
14  
2
3
13  
12  
4
TJA1041U  
11  
10  
5
9
x
0
6
7
8
0
mgu984  
y
The reverse side of the bare die must be connected to ground.  
Fig 11. Bonding pad locations  
Table 9.  
Symbol  
Bonding pad locations  
Pad  
Coordinates[1]  
x
y
TXD  
GND  
VCC  
1
664.25  
75.75  
115.5  
115.5  
115.5  
264.5  
667.75  
1076.75  
1765  
1765  
1765  
1765  
1751  
940.75  
3004.5  
3044.25  
2573  
1862.75  
115.5  
114  
2
3
RXD  
VI/O  
4
5
EN  
6
INH  
7
85  
ERR  
WAKE  
VBAT  
SPLIT  
CANL  
CANH  
STB  
8
115.5  
85  
9
10  
11  
12  
13  
14  
792.5  
1442.25  
2115  
3002.5  
3004.5  
[1] All x/y coordinates represent the position of the center of each pad (in µm) with respect to the left hand  
bottom corner of the top aluminium layer.  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
20 of 26  
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
15. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
15.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
15.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
15.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
21 of 26  
 
 
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
15.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 12) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 10 and 11  
Table 10. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 11. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 12.  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
22 of 26  
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 12. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
23 of 26  
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
16. Revision history  
Table 12. Revision history  
Document ID  
TJA1041_6  
Modifications:  
TJA1041_5  
TJA1041_4  
TJA1041_3  
TJA1041_N_2  
TJA1041_1  
Release date  
20071205  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
TJA1041_5  
Table 1 and Table 6: changed conditions electrostatic discharge voltage  
20070831  
20031014  
20030213  
20021223  
20011218  
Product data sheet  
-
-
-
-
-
TJA1041_4  
TJA1041_3  
TJA1041_N_2  
TJA1041_1  
-
Product specification  
Product specification  
Preliminary specification  
Preliminary specification  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
24 of 26  
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Limiting values — Stress above one or more limiting values (as defined in  
17.2 Definitions  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
17.3 Disclaimers  
Bare die — All die are tested on compliance with all related technical  
specifications as stated in this data sheet up to the point of wafer sawing for a  
period of ninety (90) days from the date of delivery by NXP Semiconductors.  
If there are data sheet limits not guaranteed, these will be separately  
indicated in the data sheet. There are no post-packing tests performed on  
individual die or wafers.  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
NXP Semiconductors has no control of third party procedures in the sawing,  
handling, packing or assembly of the die. Accordingly, NXP Semiconductors  
assumes no liability for device functionality or performance of the die or  
systems after third party sawing, handling, packing or assembly of the die. It  
is the responsibility of the customer to test and qualify their application in  
which the die is used.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
All die sales are conditioned upon and subject to the customer entering into a  
written die sale agreement with NXP Semiconductors through its legal  
department.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
18. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
TJA1041_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 5 December 2007  
25 of 26  
 
 
 
 
 
 
TJA1041  
NXP Semiconductors  
High speed CAN transceiver  
19. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
15  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Introduction to soldering. . . . . . . . . . . . . . . . . 21  
Wave and reflow soldering . . . . . . . . . . . . . . . 21  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 21  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 22  
15.1  
15.2  
15.3  
15.4  
2
2.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Optimized for in-vehicle high speed  
communication . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Low-power management . . . . . . . . . . . . . . . . . 1  
Protection and diagnosis (detection and  
2.2  
2.3  
16  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 24  
signalling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
17  
Legal information . . . . . . . . . . . . . . . . . . . . . . 25  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 25  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3
4
5
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
17.1  
17.2  
17.3  
17.4  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
18  
19  
Contact information . . . . . . . . . . . . . . . . . . . . 25  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7
7.1  
Functional description . . . . . . . . . . . . . . . . . . . 5  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . 5  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pwon/listen-only mode . . . . . . . . . . . . . . . . . . . 6  
Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Go-to-sleep command mode . . . . . . . . . . . . . . 7  
Sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Internal flags. . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
UVNOM flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
UVBAT flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pwon flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Wake-up flag. . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Wake-up source flag. . . . . . . . . . . . . . . . . . . . . 9  
Bus failure flag . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Local failure flag . . . . . . . . . . . . . . . . . . . . . . . . 9  
Local failures. . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TXD dominant clamping detection . . . . . . . . . . 9  
RXD recessive clamping detection. . . . . . . . . . 9  
TXD-to-RXD short-circuit detection . . . . . . . . 10  
Bus dominant clamping detection. . . . . . . . . . 10  
Overtemperature detection. . . . . . . . . . . . . . . 10  
Recessive bus voltage stabilization . . . . . . . . 10  
I/O level adapter . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin WAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
7.5  
7.6  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal characteristics. . . . . . . . . . . . . . . . . . 12  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 12  
Application information. . . . . . . . . . . . . . . . . . 15  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 18  
Quality information . . . . . . . . . . . . . . . . . . . . . 18  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 19  
Bare die outline . . . . . . . . . . . . . . . . . . . . . . . . 20  
9
10  
11  
12  
12.1  
13  
14  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 5 December 2007  
Document identifier: TJA1041_6  
 

相关型号:

TJA1041T/S960J

TJA1041 - High-speed CAN transceiver with standby and sleep mode SOIC 14-Pin
NXP
NXP

TJA1041T/VM,512

TJA1041 - High-speed CAN transceiver with standby and sleep mode SOIC 14-Pin
NXP

TJA1041U

DATACOM, INTERFACE CIRCUIT, UUC14, DIE-14
RENESAS

TJA1041U

IC DATACOM, INTERFACE CIRCUIT, UUC14, DIE-14, Network Interface
NXP

TJA1042

High-speed CAN transceiver with Standby mode
NXP

TJA1042T

High-speed CAN transceiver with Standby mode
NXP

TJA1042T,118

TJA1042 - High-speed CAN transceiver with Standby mode SOIC 8-Pin
NXP

TJA1042T-3

High-speed CAN transceiver with Standby mode
NXP

TJA1042T/1J

TJA1042 - High-speed CAN transceiver with Standby mode SOIC 8-Pin
NXP

TJA1042T/3

High-speed CAN transceiver with Standby mode
NXP

TJA1042T/3,112

TJA1042 - High-speed CAN transceiver with Standby mode SOIC 8-Pin
NXP