TJA1057GTK/3 [NXP]

DATACOM, INTERFACE CIRCUIT;
TJA1057GTK/3
型号: TJA1057GTK/3
厂家: NXP    NXP
描述:

DATACOM, INTERFACE CIRCUIT

电信 光电二极管 电信集成电路
文件: 总25页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TJA1057  
High-speed CAN transceiver  
Rev. 5 — 23 May 2016  
Product data sheet  
1. General description  
The TJA1057 is part of the Mantis family of high-speed CAN transceivers. It provides an  
interface between a Controller Area Network (CAN) protocol controller and the physical  
two-wire CAN bus. The transceiver is designed for high-speed CAN applications in the  
automotive industry, providing the differential transmit and receive capability to (a  
microcontroller with) a CAN protocol controller.  
The TJA1057 offers a feature set optimized for 12 V automotive applications, with  
significant improvements over first- and second-generation CAN transceivers from NXP,  
such as the TJA1050, and excellent ElectroMagnetic Compatibility (EMC) performance.  
The TJA1057 also displays ideal passive behavior to the CAN bus when the supply  
voltage is off.  
A VIO pin on the TJA1057GT(K)/3 variants allows for direct interfacing with 3.3 V and  
5 V-supplied microcontrollers.  
The TJA1057 implements the CAN physical layer as defined in the current  
ISO11898-2:2003 standard and the pending updated version of ISO11898-2:2016. The  
TJA1057T variant is specified for data rates up to 1 Mbit/s. Pending the release of  
ISO11898-2:2016 including CAN FD and SAE-J2284-4/5, additional timing parameters  
are specified for the TJA1057GT(/3) and TJA1057GTK(/3) variants. This implementation  
enables reliable communication in the CAN FD fast phase at data rates up to 5 Mbit/s.  
These features make the TJA1057 an excellent choice for HS-CAN networks that only  
require basic CAN functionality.  
2. Features and benefits  
2.1 General  
Fully ISO 11898-2:2003 compliant  
Optimized for use in 12 V automotive systems  
EMC performance satisfies 'Hardware Requirements for LIN, CAN and FlexRay  
Interfaces in Automotive Applications’, Version 1.3, May 2012.  
VIO option allows for direct interfacing with 3.3 V and 5 V-supplied microcontrollers  
Non-VIO variants can interface with 3.3 V and 5 V-supplied microcontrollers, provided  
the microcontroller I/Os are 5 V tolerant.  
AEC-Q100 qualified  
Dark green product (halogen free and Restriction of Hazardous Substances (RoHS)  
compliant)  
Available in SO8 package and leadless HVSON8 package (3.0 mm 3.0 mm) with  
improved Automated Optical Inspection (AOI) capability  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
2.2 Predictable and fail-safe behavior  
Functional behavior predictable under all supply conditions  
Transceiver disengages from bus when not powered (zero load)  
Transmit Data (TXD) dominant time-out function  
Internal biasing of TXD and S input pins  
2.3 Protection  
High ESD handling capability on the bus pins (8 kV IEC and HBM)  
Bus pins protected against transients in automotive environments  
Undervoltage detection on pins VCC and VIO  
Thermally protected  
2.4 TJA1057GT(/3)/TJA1057GTK(/3)  
Timing guaranteed for data rates up to 5 Mbit/s  
Improved TXD to RXD propagation delay of 210 ns  
3. Quick reference data  
Table 1.  
Symbol  
VCC  
Quick reference data  
Parameter  
Conditions  
Min  
4.75  
2.95  
3.5  
Typ  
Max  
5.25  
5.25  
4.3  
Unit  
V
supply voltage  
-
VIO  
supply voltage on pin VIO  
-
V
Vuvd(VCC)  
undervoltage detection voltage  
on pin VCC  
4
V
Vuvd(VIO)  
ICC  
undervoltage detection voltage  
on pin VIO  
2.1  
-
2.8  
V
supply current  
Silent mode  
0.1  
2
-
1.2  
10  
70  
16  
mA  
mA  
mA  
A  
Normal mode; bus recessive  
Normal mode; bus dominant  
Silent mode  
5
20  
-
45  
3
IIO  
supply current on pin VIO  
Normal mode  
recessive; VTXD = VIO  
-
7
30  
A  
A  
kV  
V
dominant; VTXD = 0 V  
-
110  
320  
+8  
VESD  
VCANH  
VCANL  
Tvj  
electrostatic discharge voltage  
voltage on pin CANH  
IEC 61000-4-2 at pins CANH and CANL  
limiting value according to IEC60134  
limiting value according to IEC60134  
8  
42  
42  
40  
-
-
-
-
+42  
+42  
voltage on pin CANL  
V
virtual junction temperature  
+150 C  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
2 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
4. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
SO8  
Description  
Version  
TJA1057T  
plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
TJA1057GT  
TJA1057GT/3[1]  
TJA1057GTK  
TJA1057GTK/3[1]  
HVSON8  
plastic thermal enhanced very thin small outline package; no leads;  
8 terminals; body 3 3 0.85 mm  
SOT782-1  
[1] TJA1057GT/3 and TJA1057GTK/3 variants have a VIO pin.  
5. Block diagram  
9
9
,2  
&&  
9
&&  
7-$ꢀꢁꢂꢃ  
7(03(5$785(  
3527(&7,21  
ꢈꢁꢉ  
9
9
,2  
&$1+  
6/23(  
&21752/ꢃ  
$1'  
7,0(ꢀ287  
7;'  
'5,9(5  
&$1/  
ꢈꢁꢉ  
,2  
02'(  
6
&21752/  
5;'  
'5,9(5  
ꢀꢁꢂDDDꢃꢄꢁ  
*1'  
(1) VIO = VCC in non-VIO product variants TJA1057(G)T(K)  
Fig 1. Block diagram  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
3 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
6. Pinning information  
6.1 Pinning  
7-$ꢀꢁꢂꢃ7  
7-$ꢀꢁꢂꢃ*7  
7-$ꢀꢁꢂꢃ*7ꢄꢅ  
7;'  
6
7;'  
6
*1'  
&$1+  
&$1/  
QꢌFꢌ  
*1'  
&$1+  
&$1/  
9
9
&&  
&&  
5;'  
5;'  
9
,2  
ꢀꢁꢂDDDꢃꢄꢅ  
DDDꢆꢀꢁꢇꢀꢂꢀ  
a. SO8  
b. SO8 with VIO  
7-$ꢀꢁꢂꢃ*7.  
7-$ꢀꢁꢂꢃ*7.ꢄꢅ  
WHUPLQDOꢃꢁ  
LQGH[ꢃDUHD  
WHUPLQDOꢃꢁ  
LQGH[ꢃDUHD  
7;'  
6
7;'  
6
&$1+  
&$1+  
&$1/  
QꢌFꢌ  
*1'  
*1'  
9
9
&$1/  
&&  
&&  
9
5;'  
5;'  
,2  
DDDꢆꢀꢁꢈꢂꢉꢁ  
DDDꢆꢀꢁꢈꢂꢉꢃ  
7UDQVSDUHQWꢃWRSꢃYLHZ  
7UDQVSDUHQWꢃWRSꢃYLHZ  
c. HVSON8  
Fig 2. Pin configuration diagrams  
d. HVSON8 with VIO  
6.2 Pin description  
Table 3.  
Pin description  
Pin Description  
Symbol  
TXD  
GND[1]  
VCC  
1
2
3
4
5
5
6
7
8
transmit data input  
ground  
supply voltage  
RXD  
n.c.  
receive data output; reads out data from the bus lines  
not connected in TJA1057T, TJA1057GT and TJA1057GTK  
VIO  
supply voltage for I/O level adapter in TJA1057GT/3 and TJA1057GTK/3  
LOW-level CAN bus line  
CANL  
CANH  
S
HIGH-level CAN bus line  
Silent mode control input  
[1] HVSON8 package die supply ground is connected to both the GND pin and the exposed center pad. The  
GND pin must be soldered to board ground. For enhanced thermal and electrical performance, it is  
recommended that the exposed center pad also be soldered to board ground.  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
4 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
7. Functional description  
7.1 Operating modes  
The TJA1057 supports two operating modes, Normal and Silent. The operating mode is  
selected via pin S. See Table 4 for a description of the operating modes under normal  
supply conditions.  
Table 4.  
Mode  
Operating modes  
Inputs  
Outputs  
Pin S  
Pin TXD  
LOW  
CAN driver  
dominant  
recessive  
Pin RXD  
Normal  
Silent  
LOW  
LOW  
HIGH  
LOW when bus dominant  
HIGH when bus recessive  
HIGH  
x[1]  
biased to recessive LOW when bus dominant  
HIGH when bus recessive  
[1] ‘x’ = don’t care.  
7.1.1 Normal mode  
A LOW level on pin S selects Normal mode. In this mode, the transceiver can transmit and  
receive data via the bus lines, CANH and CANL (see Figure 1 for the block diagram). The  
differential receiver converts the analog data on the bus lines into digital data which is  
output on pin RXD. The slopes of the output signals on the bus lines are controlled  
internally and are optimized in a way that guarantees the lowest possible EME.  
7.1.2 Silent mode  
A HIGH level on pin S selects Silent mode. The transmitter is disabled in Silent mode,  
releasing the bus pins to recessive state. All other IC functions, including the receiver,  
continue to operate as in Normal mode. Silent mode can be used to prevent a faulty CAN  
controller disrupting all network communications.  
7.2 Fail-safe features  
7.2.1 TXD dominant time-out function  
A 'TXD dominant time-out' timer is started when pin TXD is set LOW. If the LOW state on  
this pin persists for longer than tto(dom)TXD, the transmitter is disabled, releasing the bus  
lines to recessive state. This function prevents a hardware and/or software application  
failure from driving the bus lines to a permanent dominant state (blocking all network  
communications). The TXD dominant time-out timer is reset when pin TXD is set HIGH.  
The TXD dominant time-out time also defines the minimum possible bit rate of  
approximately 25 kbit/s.  
7.2.2 Internal biasing of TXD and S input pins  
Pins TXD and S have internal pull-ups to VCC (or VIO in TJA1057GT(K)/3 variants) to  
ensure a safe, defined state in case one or both of these pins are left floating. Pull-up  
currents flow in these pins in all states; both pins should be held HIGH in Silent mode to  
minimize supply current.  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
5 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
7.2.3 Undervoltage detection on pins VCC and VIO (TJA1057GT(K)/3)  
If VCC or VIO drops below the undervoltage detection level, Vuvd(VCC)/Vuvd(VIO), the  
transceiver switches off and disengages from the bus (zero load; bus pins floating) until  
the supply voltage has recovered. The output drivers are enabled once both VCC and VIO  
are again within their operating ranges and TXD has been reset to HIGH.  
7.2.4 Overtemperature protection  
The output drivers are protected against overtemperature conditions. If the virtual junction  
temperature exceeds the shutdown junction temperature, Tj(sd), both output drivers are  
disabled. When the virtual junction temperature drops below Tj(sd) again, the output  
drivers recover once TXD has been reset to HIGH (waiting for TXD to go HIGH prevents  
output driver oscillation due to small variations in temperature).  
7.2.5 VIO supply pin (TJA1057GT(K)/3 variants only)  
Pin VIO should be connected to the microcontroller supply voltage (see Figure 6). The  
signal levels on pins TXD, RXD and S will then be adjusted to the I/O levels of the  
microcontroller, allowing for direct interfacing without additional glue logic.  
For versions of the TJA1057 without a VIO pin, the VIO input is internally connected to VCC  
The signal levels of pins TXD, RXD and S are set to levels compatible with 5 V  
microcontrollers.  
.
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
6 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
8. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND.  
Symbol  
Parameter  
voltage on pin x[1]  
Conditions  
Min Max  
42 +42  
Unit  
V
Vx  
on pins CANH, CANL  
on pins VCC, VIO  
on any other pin  
0.3 +7  
0.3 VIO[3] + 0.3  
V
[2]  
V
V(CANH-CANL) voltage between pin CANH  
and pin CANL  
27  
+27  
V
[4]  
Vtrt  
transient voltage  
on pins CANH, CANL  
pulse 1  
100  
-
V
V
V
V
pulse 2a  
-
75  
-
pulse 3a  
150  
pulse 3b  
-
100  
[5]  
[6]  
VESD  
electrostatic discharge  
voltage  
IEC 61000-4-2 (150 pF, 330 )  
on pins CANH and CANL  
Human Body Model (HBM); 100 pF, 1.5 k  
on pins CANH and CANL  
on any other pin  
8  
+8  
kV  
8  
4  
+8  
+4  
kV  
kV  
[7]  
Machine Model (MM); 200 pF, 0.75 H, 10   
on any pin  
200 +200  
V
[8]  
Charged Device Model (CDM); field Induced  
charge; 4 pF  
on corner pins  
750 +750  
500 +500  
V
on any other pin  
V
[9]  
Tvj  
virtual junction temperature  
storage temperature  
40  
55  
+150  
+150  
C  
C  
Tstg  
[1] The device can sustain voltages up to the specified values over the product lifetime, provided applied voltages (including transients)  
never exceed these values.  
[2] Maximum voltage should never exceed 7 V.  
[3] VIO + 0.3 = VCC + 0.3 in the non-VIO product variants TJA1057(G)T(K).  
[4] According to IEC TS 62228 (2007), Section 4.2.4; parameters for standard pulses defined in ISO7637 part 2: 2004-06.  
[5] According to IEC TS 62228 (2007), Section 4.3; DIN EN 61000-4-2.  
[6] According to AEC-Q100-002.  
[7] According to AEC-Q100-003.  
[8] According to AEC-Q100-011; grade C4B.  
[9] In accordance with IEC 60747-1. An alternative definition of virtual junction temperature is: Tvj = Tamb + P Rth(vj-a), where Rth(vj-a) is a  
fixed value to be used for the calculation of Tvj. The rating for Tvj limits the allowable combinations of power dissipation (P) and ambient  
temperature (Tamb).  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
7 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
9. Thermal characteristics  
Table 6.  
Thermal characteristics  
According to IEC 60747-1.  
Symbol Parameter  
Conditions  
Value  
Unit  
Rth(vj-a)  
thermal resistance from virtual junction SO8 package; in free air  
97  
K/W  
to ambient  
HVSON8 package; in free air  
[1]  
[2]  
dual-layer board  
four-layer board  
91  
52  
K/W  
K/W  
[1] According to JEDEC JESD51-2, JESD51-3 and JESD51-5 at natural convection on 1s board with thermal via array under the exposed  
pad connected to the second copper layer.  
[2] According to JEDEC JESD51-2, JESD51-5 and JESD51-7 at natural convection on 2s2p board. Board with two inner copper layers  
(thickness: 35 m) and thermal via array under the exposed pad connected to the first inner copper layer.  
10. Static characteristics  
Table 7.  
Static characteristics  
Tvj = 40 C to +150 C; VCC = 4.75 V to 5.25 V; VIO = 2.95 V to 5.25 V[1]; RL = 60 ; CL = 100 pF unless specified otherwise;  
All voltages are defined with respect to ground. Positive currents flow into the IC.[2]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply; pin VCC  
VCC  
supply voltage  
4.75  
3.5  
-
5.25  
4.3  
V
V
Vuvd(VCC)  
undervoltage detection  
voltage on pin VCC  
4
[3]  
ICC  
supply current  
Silent mode; VTXD = VIO  
Normal mode  
0.1  
-
1.2  
mA  
[3]  
recessive; VTXD = VIO  
dominant; VTXD = 0 V  
2
5
10  
70  
mA  
mA  
20  
45  
[1]  
I/O level adapter supply; pin VIO  
VIO  
supply voltage on pin VIO  
2.95  
2.1  
-
-
5.25  
2.8  
V
V
Vuvd(VIO)  
undervoltage detection  
voltage on pin VIO  
IIO  
supply current on pin VIO  
Silent mode  
-
3
16  
A  
Normal mode  
[3]  
recessive; VTXD = VIO  
dominant; VTXD = 0 V  
-
-
7
30  
A  
A  
110  
320  
Silent mode control input; pin S  
VIH  
VIL  
IIH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
2
-
-
-
-
VIO[3] + 0.3  
V
0.3  
1  
0.8  
+1  
1  
V
[3]  
VS = VIO  
A  
A  
IIL  
VS = 0 V  
15  
CAN transmit data input; pin TXD  
VIH  
VIL  
IIH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level input current  
2
-
-
-
VIO[3] + 0.3  
V
0.3  
5  
0.8  
+5  
V
[3]  
VTXD = VIO  
A  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
8 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
Table 7.  
Static characteristics …continued  
Tvj = 40 C to +150 C; VCC = 4.75 V to 5.25 V; VIO = 2.95 V to 5.25 V[1]; RL = 60 ; CL = 100 pF unless specified otherwise;  
All voltages are defined with respect to ground. Positive currents flow into the IC.[2]  
Symbol  
Parameter  
Conditions  
Min  
260  
-
Typ  
Max  
30  
10  
Unit  
A  
IIL  
Ci  
LOW-level input current  
input capacitance  
VTXD = 0 V  
-
[4]  
5
pF  
CAN receive data output; pin RXD  
IOH  
IOL  
HIGH-level output current  
LOW-level output current  
VRXD = VIO[3] 0.4 V  
8  
3  
1  
mA  
mA  
VRXD = 0.4 V; bus dominant  
1
-
12  
Bus lines; pins CANH and CANL  
VO(dom) dominant output voltage  
VTXD = 0 V; t < tto(dom)TXD  
pin CANH; RL = 50 to 65   
pin CANL; RL = 50 to 65   
2.75  
0.5  
3.5  
1.5  
-
4.5  
V
2.25  
+400  
V
Vdom(TX)sym transmitter dominant voltage Vdom(TX)sym = VCC VCANH VCANL  
400  
mV  
symmetry  
[4]  
[5]  
VTXsym  
VO(dif)  
transmitter voltage  
symmetry  
VTXsym = VCANH + VCANL  
;
0.9VCC  
-
1.1VCC  
V
fTXD = 250 kHz; CSPLIT = 4.7 nF  
dominant; VTXD = 0 V; t < tto(dom)TXD  
RL = 50 to 65   
differential output voltage  
1.5  
1.4  
1.5  
50  
2
-
3
V
RL = 45 to 70   
-
3.3  
5
V
RL = 2240   
-
V
recessive; VTXD = VIO[3]; no load  
VTXD = VIO[3]; no load  
-
+50  
3
mV  
V
VO(rec)  
recessive output voltage  
0.5VCC  
-
Vth(RX)dif  
differential receiver  
threshold voltage  
Normal/Silent mode;  
12 V VCANL +12 V;  
12 V VCANH +12 V  
0.5  
0.9  
V
Vrec(RX)  
receiver recessive voltage  
receiver dominant voltage  
Normal/Silent mode;  
12 V VCANL +12 V;  
12 V VCANH +12 V  
3  
0.9  
50  
-
-
-
0.5  
8.0  
300  
V
Vdom(RX)  
Vhys(RX)dif  
IO(sc)dom  
Normal/Silent mode;  
12 V VCANL +12 V;  
12 V v VCANH +12 V  
V
differential receiver  
hysteresis voltage  
Normal mode;  
12 V VCANL +12 V;  
12 V v VCANH +12 V  
mV  
dominant short-circuit output VTXD = 0 V; t < tto(dom)TXD; VCC = 5 V  
current  
pin CANH; VCANH = 3 V to +40 V  
100  
40  
70  
70  
-
40  
100  
+5  
mA  
mA  
mA  
pin CANL; VCANL = 3 V to +40 V  
IO(sc)rec  
IL  
recessive short-circuit output Normal mode; VTXD = VCC  
5  
current  
VCANH = VCANL = 27 V to +32 V  
leakage current  
VCC = 0 V or  
5  
-
+5  
A  
VCC = VIO = shorted to ground via  
47 k; VCANH = VCANL = 5 V  
Ri  
input resistance  
9
15  
-
28  
+3  
52  
k  
%
Ri  
Ri(dif)  
input resistance deviation  
differential input resistance  
between VCANH and VCANL  
3  
19  
30  
k  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
9 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
Table 7.  
Static characteristics …continued  
Tvj = 40 C to +150 C; VCC = 4.75 V to 5.25 V; VIO = 2.95 V to 5.25 V[1]; RL = 60 ; CL = 100 pF unless specified otherwise;  
All voltages are defined with respect to ground. Positive currents flow into the IC.[2]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[4]  
[4]  
Ci(cm)  
common-mode input  
capacitance  
-
-
20  
pF  
Ci(dif)  
differential input capacitance  
-
-
-
10  
-
pF  
Temperature detection  
Tj(sd) shutdown junction  
temperature  
[4]  
185  
C  
[1] Only TJA1057GT/3 and TJA1057GTK/3 have a VIO pin; the VIO input is internally connected to VCC in the other variants.  
[2] Factory testing uses correlated test conditions to cover the specified temperature and power supply voltage range.  
[3] VIO = VCC in non-VIO product variants TJA1057(G)T(K).  
[4] Not tested in production; guaranteed by design.  
[5] The test circuit used to measure the bus output voltage symmetry (which includes CSPLIT) is shown in Figure 8.  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
10 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
11. Dynamic characteristics  
Table 8.  
Dynamic characteristics  
Tvj = 40 C to +150 C; VCC = 4.75 V to 5.25 V; VIO = 2.95 V to 5.25 V[1]; RL = 60 ; CL = 100 pF unless specified otherwise.  
All voltages are defined with respect to ground.[2]  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Transceiver timing; pins CANH, CANL, TXD and RXD; see Figure 7 and Figure 3  
td(TXD-busdom) delay time from TXD to bus dominant  
td(TXD-busrec) delay time from TXD to bus recessive  
td(busdom-RXD) delay time from bus dominant to RXD  
td(busrec-RXD) delay time from bus recessive to RXD  
Normal mode  
Normal mode  
Normal mode  
Normal mode  
-
65  
90  
60  
65  
-
-
-
-
-
ns  
ns  
ns  
ns  
-
-
-
td(TXDL-RXDL) delay time from TXD LOW to RXD LOW TJA1057T; Normal mode  
50  
50  
230 ns  
210 ns  
TJA1057GT(/3), TJA1057GTK(/3);  
-
Normal mode  
td(TXDH-RXDH) delay time from TXD HIGH to RXD HIGH TJA1057T; Normal mode  
50  
50  
-
-
230 ns  
210 ns  
TJA1057GT(/3), TJA1057GTK(/3);  
Normal mode  
tbit(bus)  
transmitted recessive bit width  
bit time on pin RXD  
TJA1057GT(/3), TJA1057GTK(/3)  
tbit(TXD) = 500 ns  
[3]  
[3]  
435  
155  
-
-
530 ns  
210 ns  
tbit(TXD) = 200 ns  
tbit(RXD)  
TJA1057GT(/3), TJA1057GTK(/3)  
[3]  
[3]  
t
bit(TXD) = 500 ns  
400  
120  
-
-
550 ns  
220 ns  
tbit(TXD) = 200 ns  
trec  
receiver timing symmetry  
TXD dominant time-out time  
TJA1057GT(/3), TJA1057GTK(/3)  
tbit(TXD) = 500 ns  
65  
45  
0.8  
-
+40 ns  
+15 ns  
tbit(TXD) = 200 ns  
-
tto(dom)TXD  
VTXD = 0 V; Normal mode  
3
6.5  
ms  
[1] Only TJA1057GT/3 and TJA1057GTK/3 have a VIO pin; the VIO input is internally connected to VCC in the other variants.  
[2] Factory testing uses correlated test conditions to cover the specified temperature and power supply voltage range.  
[3] See Figure 4.  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
11 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
+,*+  
ꢍꢌꢄꢃ9  
7;'  
7;'  
ꢍꢌꢊꢃ9  
7;'  
/2:  
&$1+  
&$1/  
GRPLQDQW  
ꢍꢌꢎꢃ9  
ꢍꢌꢋꢃ9  
9
2ꢈGLIꢉꢈEXVꢉ  
UHFHVVLYH  
+,*+  
ꢈꢁꢉ  
ꢍꢌꢄꢃ9  
,2  
5;'  
ꢈꢁꢉ  
ꢍꢌꢊꢃ9  
,2  
/2:  
W
W
Gꢈ7;'ꢀEXVUHFꢉ  
Gꢈ7;'ꢀEXVGRPꢉ  
W
W
GꢈEXVUHFꢀ5;'ꢉ  
GꢈEXVGRPꢀ5;'ꢉ  
W
W
Gꢈ7;'+ꢀ5;'+ꢉ  
Gꢈ7;'/ꢀ5;'/ꢉ  
DDDꢆꢀꢁꢄꢀꢁꢄ  
(1) VIO = VCC in non-VIO product variants TJA1057(G)T(K)  
Fig 3. CAN transceiver timing diagram  
ꢄꢍꢃꢏ  
7;'  
ꢊꢍꢃꢏ  
ꢊꢍꢃꢏ  
ꢋꢃ[ꢃW  
ELWꢈ7;'ꢉ  
W
ELWꢈ7;'ꢉ  
ꢍꢌꢎꢃ9  
9
2ꢈGLIꢉ  
ꢍꢌꢋꢃ9  
W
ELWꢈEXVꢉ  
ꢄꢍꢃꢏ  
5;'  
ꢊꢍꢃꢏ  
W
ELWꢈ5;'ꢉ  
DDDꢆꢀꢅꢁꢇꢈꢊ  
Fig 4. Loop delay symmetry timing diagram (TJA1057GT(K)(/3) only)  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
12 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
12. Application information  
12.1 Application diagram  
%$7  
ꢋꢃ9  
ꢈꢁꢉ  
9
&&  
9
''  
&$1+  
&$1/  
6
,ꢐ2  
7-$ꢀꢁꢂꢃ7  
7-$ꢀꢁꢂꢃ*7  
&21752//(5  
*1'  
7;'  
5;'  
7-$ꢀꢁꢂꢃ*7.  
7;ꢍ  
5;ꢍ  
*1'  
ꢀꢁꢂDDDꢃꢄꢇ  
(1) Optional, depends on regulator.  
Fig 5. Typical application with a 5 V microcontroller.  
%$7  
ꢊꢃ9  
ꢋꢃ9  
ꢈꢁꢉ  
ꢈꢁꢉ  
9
9
,2  
&&  
&$1+  
&$1/  
6
9
''  
,ꢐ2  
7-$ꢀꢁꢂꢃ*7ꢄꢅ  
7-$ꢀꢁꢂꢃ*7.ꢄꢅ  
—&ꢃꢑꢃ&$1  
&21752//(5  
7;'  
5;'  
7;ꢍ  
5;ꢍ  
*1'  
*1'  
DDDꢆꢀꢁꢈꢂꢄꢇ  
(1) Optional, depends on regulator.  
Fig 6. Typical TJA1057 application with a 3 V microcontroller.  
12.2 Application hints  
Further information on the application of the TJA1057 can be found in NXP application  
hints AH1308 Application Hints - Standalone high speed CAN transceiver Mantis-GT  
TJA1044G/TJA1057G.  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
13 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
13. Test information  
ꢑꢋꢃ9  
ꢂꢄꢃ—)  
ꢁꢍꢍꢃQ)  
ꢈꢁꢉ  
9
9
&&  
,2  
7;'  
&$1+  
5
/
&
/
7-$ꢀꢁꢂꢃ  
5;'  
*1'  
&$1/  
6
ꢁꢋꢃS)  
ꢀꢁꢂDDDꢃꢄꢃ  
(1) The VIO pin is internally connected to pin VCC in the non-VIO product variants TJA1057(G)T(K).  
Fig 7. CAN transceiver timing test circuit  
9
9
,2  
&&  
ꢈꢁꢉ  
7;'  
5;'  
&$1+  
ꢊꢍꢃȍ  
ꢊꢍꢃȍ  
Iꢃ ꢃꢆꢋꢍꢃN+]  
7-$ꢀꢁꢂꢃ  
&
63/,7  
ꢂꢌꢄꢃQ)  
&$1/  
*1'  
DDDꢆꢀꢅꢁꢇꢀꢅ  
(1) The VCC pin is used in the non-VIO product variants TJA1057(G)T(K).  
Fig 8. Test circuit for measuring transceiver driver symmetry  
13.1 Quality information  
This product has been qualified in accordance with the Automotive Electronics Council  
(AEC) standard Q100 Rev-G - Failure mechanism based stress test qualification for  
integrated circuits, and is suitable for use in automotive applications.  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
14 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
14. Package outline  
62ꢋꢌꢆSODVWLFꢆVPDOOꢆRXWOLQHꢆSDFNDJHꢍꢆꢋꢆOHDGVꢍꢆERG\ꢆZLGWKꢆꢅꢇꢎꢆPPꢆ  
627ꢎꢏꢐꢀꢆ  
'ꢃ  
(ꢃ  
$ꢃ  
;ꢃ  
Fꢃ  
\ꢃ  
+ꢃ  
(ꢃ  
Yꢃ 0ꢃ  
$ꢃ  
=ꢃ  
ꢋꢃ  
ꢇꢃ  
4ꢃ  
$ꢃ  
ꢆꢃ  
$ꢃ  
ꢈ$ꢃꢃꢉꢃ  
ꢊꢃ  
$ꢃ  
ꢁꢃ  
SLQꢃꢁꢃLQGH[ꢃ  
șꢃ  
/ꢃ  
Sꢃ  
/ꢃ  
ꢁꢃ  
ꢂꢃ  
ꢍꢃ  
Hꢃ  
GHWDLOꢃ;ꢃ  
Zꢃ 0ꢃ  
Eꢃ  
Sꢃ  
ꢆꢌꢋꢃ  
ꢋꢃPPꢃ  
VFDOHꢃ  
',0(16,216ꢆꢉLQFKꢆGLPHQVLRQVꢆDUHꢆGHULYHGꢆIURPꢆWKHꢆRULJLQDOꢆPPꢆGLPHQVLRQVꢊꢆ  
$ꢆ  
ꢉꢀꢊꢆ  
ꢉꢀꢊꢆ  
ꢉꢈꢊꢆ  
81,7ꢆ  
$ꢆ  
ꢀꢆ  
$ꢆ  
ꢈꢆ  
$ꢆ  
ꢅꢆ  
Eꢆ  
Sꢆ  
Fꢆ  
'ꢆ  
(ꢆ  
Hꢆ  
+ꢆ  
(ꢆ  
/ꢆ  
/ꢆ  
Sꢆ  
4ꢆ  
Yꢆ  
Zꢆ  
\ꢆ  
ꢍꢌꢁꢃ  
=ꢆ  
șꢃ  
PD[ꢇꢆ  
ꢍꢌꢆꢋꢃ ꢁꢌꢂꢋꢃ  
ꢍꢌꢁꢍꢃ ꢁꢌꢆꢋꢃ  
ꢍꢌꢂꢎꢃ ꢍꢌꢆꢋꢃ  
ꢍꢌꢊꢅꢃ ꢍꢌꢁꢎꢃ  
ꢋꢌꢍꢃ  
ꢂꢌꢇꢃ  
ꢂꢌꢍꢃ  
ꢊꢌꢇꢃ  
ꢅꢌꢆꢃ  
ꢋꢌꢇꢃ  
ꢁꢌꢍꢃ  
ꢍꢌꢂꢃ  
ꢍꢌꢄꢃ  
ꢍꢌꢅꢃ  
ꢍꢌꢄꢃ  
ꢍꢌꢊꢃ  
PPꢃ  
ꢁꢌꢆꢄꢃ  
ꢍꢌꢍꢋꢃ  
ꢁꢌꢍꢋꢃ  
ꢍꢌꢍꢂꢁꢃ  
ꢍꢌꢆꢋꢃ ꢍꢌꢆꢋꢃ  
ꢁꢌꢄꢋꢃ  
ꢍꢌꢆꢋꢃ  
ꢍꢌꢍꢁꢃ  
Rꢃ  
ꢇꢃ  
Rꢃ  
ꢍꢃ  
ꢍꢌꢍꢁꢍꢃ ꢍꢌꢍꢋꢄꢃ  
ꢍꢌꢍꢍꢂꢃ ꢍꢌꢍꢂꢎꢃ  
ꢍꢌꢍꢁꢎꢃ ꢍꢌꢍꢁꢍꢍꢃ ꢍꢌꢆꢍꢃ ꢍꢌꢁꢅꢃ  
ꢍꢌꢍꢁꢂꢃ ꢍꢌꢍꢍꢄꢋꢃ ꢍꢌꢁꢎꢃ ꢍꢌꢁꢋꢃ  
ꢍꢌꢆꢂꢂꢃ  
ꢍꢌꢆꢆꢇꢃ  
ꢍꢌꢍꢊꢎꢃ ꢍꢌꢍꢆꢇꢃ  
ꢍꢌꢍꢁꢅꢃ ꢍꢌꢍꢆꢂꢃ  
ꢍꢌꢍꢆꢇꢃ  
ꢍꢌꢍꢁꢆꢃ  
LQFKHVꢃ ꢍꢌꢍꢅꢎꢃ  
ꢍꢌꢍꢁꢃ ꢍꢌꢍꢁꢃ ꢍꢌꢍꢍꢂꢃ  
1RWHVꢆ  
ꢁꢌꢃ3ODVWLFꢃRUꢃPHWDOꢃSURWUXVLRQVꢃRIꢃꢍꢌꢁꢋꢃPPꢃꢈꢍꢌꢍꢍꢅꢃLQFKꢉꢃPD[LPXPꢃSHUꢃVLGHꢃDUHꢃQRWꢃLQFOXGHGꢌꢃ  
ꢆꢌꢃ3ODVWLFꢃRUꢃPHWDOꢃSURWUXVLRQVꢃRIꢃꢍꢌꢆꢋꢃPPꢃꢈꢍꢌꢍꢁꢃLQFKꢉꢃPD[LPXPꢃSHUꢃVLGHꢃDUHꢃQRWꢃLQFOXGHGꢌꢃꢃ  
ꢆ5()(5(1&(6ꢆ  
ꢆ-('(&ꢆ ꢆ-(,7$ꢆ  
ꢃ06ꢀꢍꢁꢆꢃ  
287/,1(ꢆ  
9(56,21ꢆ  
(8523($1ꢆ  
352-(&7,21ꢆ  
,668(ꢆ'$7(ꢆ  
ꢆ,(&ꢆ  
ꢎꢎꢀꢁꢆꢀꢆꢄꢃ  
ꢍꢊꢀꢍꢆꢀꢁꢇꢃ  
ꢃ627ꢎꢅꢀꢁꢃ  
ꢍꢄꢅ(ꢍꢊꢃ  
Fig 9. Package outline SOT96-1 (SO8)  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
15 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
+9621ꢋꢌꢆSODVWLFꢆWKHUPDOꢆHQKDQFHGꢆYHU\ꢆWKLQꢆVPDOOꢆRXWOLQHꢆSDFNDJHꢍꢆQRꢆOHDGVꢍꢆ  
ꢋꢆWHUPLQDOVꢍꢆERG\ꢆꢅꢆ[ꢆꢅꢆ[ꢆꢁꢇꢋꢂꢆPP  
627ꢃꢋꢈꢐꢀ  
;
%
$
(
'
$
$
F
GHWDLOꢃ;  
WHUPLQDOꢃꢁꢃ  
LQGH[ꢃDUHD  
H
&
WHUPLQDOꢃꢁꢃ  
LQGH[ꢃDUHD  
%
$
Y
Z
&
&
H
E
\
\
&
/
.
(
K
'
K
ꢆꢃPP  
/
VFDOH  
'LPHQVLRQV  
ꢈꢁꢉ  
8QLW  
$
$
E
F
'
'
K
(
(
H
H
.
Y
Z
\
\
K
PD[ꢃ ꢁꢌꢍꢍꢃ ꢍꢌꢍꢋꢃ ꢍꢌꢊꢋꢃ  
PP QRPꢃ ꢍꢌꢇꢋꢃ ꢍꢌꢍꢊꢃ ꢍꢌꢊꢍꢃ ꢍꢌꢆ ꢊꢌꢍꢍꢃ ꢆꢌꢂꢍꢃ ꢊꢌꢍꢍꢃ ꢁꢌꢅꢍꢃ ꢍꢌꢅꢋ ꢁꢌꢎꢋ ꢍꢌꢊꢍꢃ ꢍꢌꢂꢍꢃ ꢍꢌꢁ ꢍꢌꢍꢋ ꢍꢌꢍꢋ ꢍꢌꢁ  
PLQ ꢍꢌꢇꢍ ꢍꢌꢍꢍ ꢍꢌꢆꢋ ꢆꢌꢎꢍ ꢆꢌꢊꢋ ꢆꢌꢎꢍ ꢁꢌꢋꢋ ꢍꢌꢆꢋ ꢍꢌꢊꢋ  
ꢊꢌꢁꢍꢃ ꢆꢌꢂꢋꢃ ꢊꢌꢁꢍꢃ ꢁꢌꢅꢋꢃ  
ꢍꢌꢊꢋꢃ ꢍꢌꢂꢋꢃ  
1RWHꢃ  
ꢁꢌꢃ3ODVWLFꢃRUꢃPHWDOꢃSURWUXVLRQVꢃRIꢃꢍꢌꢍꢄꢋꢃPD[LPXPꢃSHUꢃVLGHꢃDUHꢃQRWꢃLQFOXGHGꢌ  
VRWꢊꢉꢅꢆꢁBSR  
5HIHUHQFHV  
2XWOLQHꢃ  
YHUVLRQ  
(XURSHDQꢃ  
SURMHFWLRQ  
,VVXHꢃGDWH  
,(&  
ꢀꢃꢀꢃꢀ  
-('(&  
-(,7$  
ꢀꢃꢀꢃꢀ  
ꢍꢎꢀꢍꢇꢀꢆꢋꢃ  
ꢍꢎꢀꢍꢇꢀꢆꢇ  
627ꢄꢇꢆꢀꢁ  
02ꢀꢆꢆꢎ  
Fig 10. Package outline SOT782-1 (HVSON8)  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
16 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
15. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling ensure that the appropriate precautions are taken as  
described in JESD625-A or equivalent standards.  
16. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
16.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
16.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
16.3 Wave soldering  
Key characteristics in wave soldering are:  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
17 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
16.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 11) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 9 and 10  
Table 9.  
SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
350  
220  
< 2.5  
235  
220  
2.5  
220  
Table 10. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 11.  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
18 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 11. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
19 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
17. Appendix: ISO 11898-2:2016 parameter cross-reference list  
Table 11. ISO 11898-2:2016 to NXP data sheet parameter conversion  
ISO 11898-2:2016  
NXP data sheet  
Notation Symbol Parameter  
Parameter  
HS-PMA dominant output characteristics  
Single ended voltage on CAN_H  
Single ended voltage on CAN_L  
Differential voltage on normal bus load  
Differential voltage on effective resistance during arbitration  
Optional: Differential voltage on extended bus load range  
HS-PMA driver symmetry  
VCAN_H  
VCAN_L  
VDiff  
VO(dom)  
dominant output voltage  
differential output voltage  
VO(dif)  
Driver symmetry  
VSYM  
VTXsym  
transmitter voltage symmetry  
Maximum HS-PMA driver output current  
Absolute current on CAN_H  
ICAN_H  
ICAN_L  
IO(sc)dom  
dominant short-circuit output  
current  
Absolute current on CAN_L  
HS-PMA recessive output characteristics, bus biasing active/inactive  
Single ended output voltage on CAN_H  
Single ended output voltage on CAN_L  
Differential output voltage  
VCAN_H  
VCAN_L  
VDiff  
VO(rec)  
recessive output voltage  
differential output voltage  
TXD dominant time-out time  
VO(dif)  
Optional HS-PMA transmit dominant timeout  
Transmit dominant timeout, long  
tdom  
tto(dom)TXD  
Transmit dominant timeout, short  
HS-PMA static receiver input characteristics, bus biasing active/inactive  
Recessive state differential input voltage range  
Dominant state differential input voltage range  
VDiff  
Vth(RX)dif  
differential receiver threshold  
voltage  
Vrec(RX)  
receiver recessive voltage  
receiver dominant voltage  
Vdom(RX)  
HS-PMA receiver input resistance (matching)  
Differential internal resistance  
RDiff  
Ri(dif)  
Ri  
differential input resistance  
input resistance  
Single ended internal resistance  
RCAN_H  
RCAN_L  
Matching of internal resistance  
HS-PMA implementation loop delay requirement  
Loop delay  
MR  
Ri  
input resistance deviation  
tLoop  
td(TXDH-RXDH) delay time from TXD HIGH to  
RXD HIGH  
td(TXDL-RXDL)  
delay time from TXD LOW to RXD  
LOW  
Optional HS-PMA implementation data signal timing requirements for use with bit rates above 1 Mbit/s up to  
2 Mbit/s and above 2 Mbit/s up to 5 Mbit/s  
Transmitted recessive bit width @ 2 Mbit/s / @ 5 Mbit/s,  
intended  
tBit(Bus)  
tbit(bus)  
transmitted recessive bit width  
Received recessive bit width @ 2 Mbit/s / @ 5 Mbit/s  
Receiver timing symmetry @ 2 Mbit/s / @ 5 Mbit/s  
tBit(RXD)  
tbit(RXD)  
bit time on pin RXD  
tRec  
trec  
receiver timing symmetry  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
20 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
Table 11. ISO 11898-2:2016 to NXP data sheet parameter conversion  
ISO 11898-2:2016  
NXP data sheet  
Parameter  
Notation Symbol  
Parameter  
HS-PMA maximum ratings of VCAN_H, VCAN_L and VDiff  
Maximum rating VDiff  
VDiff  
V(CANH-CANL) voltage between pin CANH and  
pin CANL  
General maximum rating VCAN_H and VCAN_L  
VCAN_H  
VCAN_L  
Vx  
voltage on pin x  
Optional: Extended maximum rating VCAN_H and VCAN_L  
HS-PMA maximum leakage currents on CAN_H and CAN_L, unpowered  
Leakage current on CAN_H, CAN_L  
ICAN_H  
ICAN_L  
IL  
leakage current  
HS-PMA bus biasing control timings  
CAN activity filter time, long  
CAN activity filter time, short  
Wake-up timeout, short  
[1]  
tFilter  
twake(busdom)  
bus dominant wake-up time  
bus recessive wake-up time  
bus wake-up time-out time  
[1]  
twake(busrec)  
tto(wake)bus  
tWake  
Wake-up timeout, long  
Timeout for bus inactivity  
Bus Bias reaction time  
tSilence  
tBias  
tto(silence)  
bus silence time-out time  
td(busact-bias)  
delay time from bus active to bias  
[1] tfltr(wake)bus - bus wake-up filter time, in devices with basic wake-up functionality  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
21 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
18. Revision history  
Table 12. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
TJA1057 v.5.01 20160523  
Product data sheet  
-
TJA1057 v.5  
Modifications:  
Section 1: text of 4th paragraph amended  
Table 5: Table note 1 added; Table note 8 amended; values for parameter V(CANH-CANL) amended  
Table 7: measurement conditions changed for parameters IL and IIO (ref. to Table note 3 added);  
values changed for parameter VO(dif)  
Table 8: referenceS to Table note 3 added to parameter tbit(bus)  
Figure 8: amended  
TJA1057 v.5  
20160128  
Product data sheet  
-
TJA1057 v.4  
Modifications:  
TJA1057GT/3 and TJA1057GTK/3 variants added:  
Section 1: 3rd paragraph added  
Section 2.1: feature added  
Section 2.3: feature amended to include VIO  
Section 2.4: heading amended to include TJA1057GT/3 and TJA1057GTK/3; text of 1st feature  
amended  
Table 1, Table 7: parameters VIO, Vuvd(VIO) and IIO added  
Table 2: ordering information updated  
Figure 1, Figure 2, Figure 3 and Table 3 amended; Figure 6 added  
Section 7.2.2 and Section 7.2.3: text amended  
Section 7.2.5 added  
Table 5, Table 7, Table 8: measurement conditions revised to include new variants  
ISO 11898-2:2016 compliance:  
Section 1: text amended (4th paragraph)  
Table 5: parameter V(CANH-CANL) added  
Table 7:  
- measurement conditions changed for parameters VO(dom), Vth(RX)dif (associated table note  
removed), Vhys(RX)dif, IO(sc)dom and IL  
- parameters VTXsym (and associated table note), Vrec(RX) and Vdom(RX) added  
- additional measurement included for parameter VO(dif) (RL = 2240 )  
Table 8: parameters tbit(bus) and trec added  
Figure 4 amended and Figure 8 added  
Section 17 added  
Table 3, Table note 1revised  
Table 4 revised (RXD in Silent mode)  
Section 7.2.4: text amended  
Table 5, Table note 2 added  
Table 7: parameters IO(dom) and IO(rec) renamed as IO(sc)dom and IO(sc)rec  
Specification status changed to Product data sheet  
TJA1057 v.4  
TJA1057 v.3  
TJA1057 v.2  
TJA1057 v.1  
20150710  
20141119  
20131030  
20130530  
Product data sheet  
Product data sheet  
Product data sheet  
Preliminary data sheet  
-
-
-
-
TJA1057 v.3  
TJA1057 v.2  
TJA1057 v.1  
-
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
22 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use in automotive applications — This NXP  
19.2 Definitions  
Semiconductors product has been qualified for use in automotive  
applications. Unless otherwise agreed in writing, the product is not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer's own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
19.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
23 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
19.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Mantis — is a trademark of NXP B.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TJA1057  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 5 — 23 May 2016  
24 of 25  
TJA1057  
NXP Semiconductors  
High-speed CAN transceiver  
21. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
19.2  
19.3  
19.4  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Predictable and fail-safe behavior . . . . . . . . . . 2  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
TJA1057GT(/3)/TJA1057GTK(/3). . . . . . . . . . . 2  
2.1  
2.2  
2.3  
2.4  
20  
21  
Contact information . . . . . . . . . . . . . . . . . . . . 24  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3
4
5
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
Functional description . . . . . . . . . . . . . . . . . . . 5  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . 5  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Silent mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Fail-safe features . . . . . . . . . . . . . . . . . . . . . . . 5  
TXD dominant time-out function. . . . . . . . . . . . 5  
Internal biasing of TXD and S input pins . . . . . 5  
Undervoltage detection on pins VCC and VIO  
7.1.1  
7.1.2  
7.2  
7.2.1  
7.2.2  
7.2.3  
(TJA1057GT(K)/3) . . . . . . . . . . . . . . . . . . . . . . 6  
Overtemperature protection . . . . . . . . . . . . . . . 6  
VIO supply pin (TJA1057GT(K)/3 variants only) 6  
7.2.4  
7.2.5  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal characteristics . . . . . . . . . . . . . . . . . . 8  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 8  
Dynamic characteristics . . . . . . . . . . . . . . . . . 11  
9
10  
11  
12  
12.1  
12.2  
Application information. . . . . . . . . . . . . . . . . . 13  
Application diagram . . . . . . . . . . . . . . . . . . . . 13  
Application hints . . . . . . . . . . . . . . . . . . . . . . . 13  
13  
13.1  
14  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 14  
Quality information . . . . . . . . . . . . . . . . . . . . . 14  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 15  
Handling information. . . . . . . . . . . . . . . . . . . . 17  
15  
16  
Soldering of SMD packages . . . . . . . . . . . . . . 17  
Introduction to soldering . . . . . . . . . . . . . . . . . 17  
Wave and reflow soldering . . . . . . . . . . . . . . . 17  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 17  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 18  
16.1  
16.2  
16.3  
16.4  
17  
Appendix: ISO 11898-2:2016 parameter  
cross-reference list . . . . . . . . . . . . . . . . . . . . . 20  
18  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 22  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 23  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 23  
19  
19.1  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2016.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 23 May 2016  
Document identifier: TJA1057  

相关型号:

TJA1057T

High-speed CAN transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1057T,118

TJA1057 - High-speed CAN transceiver SOIC 8-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1059TKJ

TJA1059 - Dual high-speed CAN transceiver with Standby mode SON 14-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080

FlexRay transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080A

FlexRay transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080ATS/1

FlexRay transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080ATS/2/T

IC SPECIALTY INTERFACE CIRCUIT, PDSO20, 5.30 MM, PLASTIC, MO-150, SOT339-1, SSOP-20, Interface IC:Other

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080ATS2

FlexRay transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080A_11

FlexRay transceiver Support of 60 ns minimum bit time

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080TS

FlexRay transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080TS,118

TJA1080 - FlexRay transceiver SSOP2 20-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080TS,512

TJA1080 - FlexRay transceiver SSOP2 20-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP