UM10406 [NXP]

SSL1523 high power factor 5 W LED driver for universal; SSL1523高功率因数5 W LED驱动器通用
UM10406
型号: UM10406
厂家: NXP    NXP
描述:

SSL1523 high power factor 5 W LED driver for universal
SSL1523高功率因数5 W LED驱动器通用

驱动器
文件: 总21页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UM10406  
SSL1523 high power factor 5 W LED driver for universal  
mains  
Rev. 01 — 3 August 2010  
User manual  
Document information  
Info  
Content  
Keywords  
Abstract  
SSL1523, SSL152x family, LED driver, mains supply, AC/DC conversion  
This user manual describes a demonstration (demo) board for a mains  
operated non-dimmable 5 W LED driver using the SSL1523 SMPS  
controller IC.  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
Revision history  
Rev  
Date  
Description  
01  
20100803  
Draft version  
Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
2 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
1. Introduction  
WARNING  
Lethal voltage and fire ignition hazard  
The non-insulated high voltages that are present when operating this product, constitute a  
risk of electric shock, personal injury, death and/or ignition of fire.  
This product is intended for evaluation purposes only. It shall be operated in a designated test  
area by personnel that is qualified according to local requirements and labor laws to work with  
non-insulated mains voltages and high-voltage circuits. This product shall never be operated  
unattended.  
1.1 General description  
The SSL1523 5 W LED driver is a high performance solution for a professional non-dim-  
mable application with multiple high power LEDs, that requires galvanic isolation and a  
safe output voltage. It can generate a regulated output current with an output power of up  
to 5 W, which is equal to a 25 W incandescent lamp (at 63 Lumen/W). Examples are shelf  
lighting, down lighting, LED lighting for bathrooms etc. This device can also be used with  
less external components in an application, if some performance compromises can be  
accepted. Details of a solution with less external components are given in the application  
note AN10925.  
2. Specification  
Table 1 shows the specification for the SSL1523 5 W LED driver.  
Specification  
Table 1.  
Parameter  
Specification  
Comment  
AC line input voltage  
100 V (AC) to 254 V (AC)  
board has been optimized for 230 V (AC) or  
120 V (AC) ± 10 % variation  
Output voltage (LED voltage)  
19 V (nominal): 12 V to 25 V  
range  
-
Output voltage protection  
33 V (DC)  
-
Output current (LED current)  
200 mA up to 250 mA  
adjustable with potentiometer  
Input voltage/load current dependency ± 1 % in the range 100 V (AC) to the maximum output power is not exceeded  
130 V (AC) ± 1 % in the range  
210 V (AC) to 254 V (AC)  
Output voltage/load current dependency ± 4 %/Volt in regulated range  
the maximum output power is not exceeded;  
see graphs Figure 9 and Figure 10.  
Current ripple  
± 75 mA ± 30 %  
5 W  
at 250 mA  
Maximum output power (LED power)  
Efficiency  
at Vout = +19 V  
>80 %  
at Tamb = 25 °C, Vout = +19 V; see graphs  
Figure 11 and Figure 12.  
Power Factor:  
120 V (AC)  
0.98  
at 5 W output power; 19 V, Vout = +19 V  
-
230 V (AC)  
0.90  
Switching frequency  
90 kHz to 110 kHz  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
3 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
Table 1.  
Specification …continued  
Parameter  
Specification  
50 mm × 86 mm × 1.6 mm  
0 °C to 85 °C  
Comment  
Board dimensions  
Operating temperature  
Isolation voltage  
-
-
± 4 kV  
between the primary and secondary circuits  
3. Demo board views  
019aaa132  
Fig 1. Demo board top  
019aaa133  
Fig 2. Demo board bottom  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
4 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
4. Demo board connections  
The demo board can be operated from mains voltages of 120 V (AC) (60 Hz) up to  
230 V (AC) (50 Hz). The board is designed to work with multiple high power LEDs with a  
total working voltage of 12 V to 25 V. The output current can be set by resistor R18, see  
Section 7. A dedicated LED load connected to K3 can be supplied on request. The  
connector K2 can be used to attach other LED loads. The output voltage is limited to a  
maximum of 33 V. When attaching a LED load to an operational board (hot plugging), an  
inrush peak current will occur due to discharge of capacitor C10. After (some)  
discharge(s), the LEDs may deteriorate and/or become damaged.  
control input from  
external opto coupler  
pin 2: pin 1: +  
pin 2: LED −  
pin 1: L  
pin 2:  
K4  
K1  
pin 1: LED +  
pin 3: N  
K2  
K3  
J1  
J2  
pin 6: LED −  
pin 5: LED −  
pin 4: LED −  
pin 3: LED +  
pin 2: LED +  
pin 1: LED +  
019aaa134  
Fig 3. Demo board connection diagram  
4.1 Connecting the demo board:  
If a galvanic isolated transformer is used, this should be placed between the AC  
source and the demo board.  
Connect a user-defined LED (string) to the connector K2 as shown in Figure 3. Make  
sure that the anode of the LED (string) is connected to + (bottom side of this  
connector).  
5. Functional description  
The SSL1523 IC (Ref. 3) has several internal functions which include the following:  
The SSL1523 controls and drives the flyback converter.  
Over Current Protection (OCP) of the internal FET at 0.5 V on the SOURCE pin.  
The converter frequency is set with an internal oscillator, the timing of which is  
controlled by external RC components on pin RC.  
The REG pin controls the on-time of the internal switch between 0 % and 75 %.  
This board is optimized to operate at a power factor of 0.9 in the nominal application with  
six LEDs on the output. In order to achieve this, the converter operates dominantly at a  
constant ton mode. The output power of the converter is buffered by capacitor C10, and  
therefore the circuit exhibits resistive input current behavior (see Figure 4).  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
5 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
The input circuit of the converter must be equipped with a filter that is partially capacitive,  
in order to address the EMC requirements (see Figure 5). The combination of C1, L1 and  
C2 make a filter that blocks most of the disturbance generated by the converter input  
current. This filter is designed to have a limited capacitive load, so a good power factor  
can be achieved. For this design, two 150 nF capacitors are incorporated, resulting in a  
power factor of at least 0.9 for the nominal condition with six LEDs connected at 5 W  
output power.  
019aaa135  
Fig 4. Mains current (C2), VCC (C1), bulk capacitor input voltage (C3) and the mains voltage (C4)  
The board is equipped with a feedback loop to regulate the output current. This feedback  
loop senses the LED current over sense resistor R10, and a current mirror is made from  
transistors Q10a/Q10b. Using R18, the current level can then be set. The same feedback  
loop is also used to provide overvoltage protection. If the LED voltage exceeds 33 V, a  
current through R17 and D11, D12 and D13 will start running. The current through the  
opto coupler IC2 will pull up the REG pin. At values above 2.7 V, the ‘on time’ of the  
internal MOSFET is zero. The feedback loop has a proportional, and partially integrated  
action. The gain is critical due to the phase shift caused by the converter and the output  
capacitor C10. Increased gain will make the feedback loop intrinsically unstable.  
The accuracy of the resulting output current will satisfy the requirements of the majority of  
the 5 W LED applications with four to eight LEDs connected in series. The demo board  
can be controlled by connecting the floating output of an external opto coupler (TCDT1124  
or equivalent) to K4.  
The demo board can be switched on and off by switching the external opto coupler.  
Controlling the LED current is another option. The LED current can be regulated by  
applying a PWM signal to the external input with a frequency up to 1 kHz. The PWM  
frequency can be synchronized with the ripple frequency on the buffer capacitor C1 for an  
optimal mains input current shape.  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
6 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
6. Board system optimization  
To meet specific customer application requirements, the modifications described in the  
following sections are possible.  
6.1 Changing the output current and LED current  
One of the major advantages of a flyback converter over other topologies, is its suitability  
for driving LED configurations with a broad range of voltages. Essentially, changing the  
winding ratio whilst maintaining the value of the primary inductance, will shift the output  
working voltage accordingly. Part of the efficiency of the driver is linked to the output  
voltage. A lower output voltage will require increased transformation ratio, and will cause  
higher secondary losses. In practice, a mains operated flyback converter will have an  
efficiency > 80 % for high output voltages (like 40 V) down to 50 % for very low output  
voltages < 3 V. At low voltages, synchronous rectification becomes advisable to reduce  
rectification losses.  
The NXP TEA 1761/TEA1762 can be used for this purpose, see Ref. 1. For exact  
calculations of transformer properties and peak current, refer to Ref. 2 application note  
AN10754, “How to design an LED driver using the SSL2101”, see Ref. 2.  
6.2 Changing the output ripple current  
The output ripple current is mostly determined by the LED voltage, the LED dynamic  
resistance and the output capacitor. The present value of C10 has been chosen to  
optimize the capacitor size under typical load. The resulting ripple of ± 30 % will result in  
an expected deterioration of light output < 1 %.  
The size for the buffer capacitor (C10) can be estimated from Equation 1:  
I
1
----- ----------------------------------------  
C10  
=
(1)  
ΔI 2πfnet Rdynamic  
Using a series of LEDs, the dynamic resistance of each LED can be multiplied by the  
number of LEDs. The current sense resistor (R10) should also be included in this  
calculation.  
Example: For a ripple current of ± 30 %, and a mains frequency of 50 Hz, and a total  
dynamic resistance of 7 Ω, the resulting capacitance value will be 3.3333 / (314*7) =  
1500 μF. The capacitor must be specified for the HF switching related ripple current of  
about 0.35 times the average effective LED current (ILED(AV)). For high lifetime  
applications, the ripple current specification of the electrolytic capacitor must be  
increased. For details, please contact the capacitor supplier.  
6.3 Changing the load curve  
The current load curve can be divided into the following two regions:  
Where the current control loop regulates the output current, the constant current  
output  
Where the IC limits the peak input current of the converter, the constant power output  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
7 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
The constant power output occurs at output voltages above 23 V combined with an output  
power exceeding 5 W, see also Section 9, Figure 9. In this area, constant output power  
becomes the dominant control mechanism. At very low output voltages, the feedback loop  
will become non-functional, resulting again in constant output power mode. An output  
short-circuit will cause an output current of about 1 A, resulting in increased stress on the  
transformer TX1, shunt resistor R10, the output diode D10, and the snubber diode D3.  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
8 of 21  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
7. Board schematic  
L1  
R1  
1 mH  
K3-1  
K3-2  
K3-3  
K3-4  
K3-5  
13R105C  
33 Ω, 2 W  
D1  
RMB6S  
+
1
2
K1  
C1  
150 nF  
400 V  
C2  
150 nF  
400 V  
F1  
3
4
D2  
P6KE400A  
2
1
FUSE  
TIME-LAG, 1A  
D3  
P6KE200A  
TX1  
760871038-E13  
120 V(AC)  
to  
230 V(AC)  
HGND  
HGND  
HGND  
HGND  
K3-6  
K2  
D4  
HER107  
D10  
L10  
R10  
1
2
3
2
1
4
7
6
10 μH, 2.6 A  
744772100  
1 Ω, 1 W  
SB1H100  
D5  
R2  
100 Ω  
C11  
1 μF  
35 V  
C10  
R11  
220 Ω  
R12  
220 Ω  
12 V(DC)  
to  
25 V(DC)  
1500 μF  
35 V  
HER107  
C12  
C3  
1 μF  
35 V  
VCC  
DRAIN  
n.c.  
D6  
BZV55-C30  
R4  
220 kΩ  
1 μF, 35 V  
1
2
3
8
7
R7  
120 kΩ  
GND  
RC  
C15 Y-Type  
D11  
SSL152X  
8RC  
AUX  
BZV55-C22  
1 nF, 250 V AC  
6
5
R6  
REG  
4
HGND  
SGND  
47 kΩ  
R5  
20 kΩ  
C4  
330 pF  
R3  
6.8 kΩ  
Q10  
IC1  
R8  
2.4 Ω  
R9  
2.4 Ω  
BCM857DS,115  
Q11  
BC857  
R17  
D13  
BZV55-C6v2  
1 kΩ  
D12  
HGND  
1N4148W-V-GS08  
R20  
C13  
6.8 μF  
R16  
6.2 kΩ  
R15  
10 kΩ  
R14  
10 kΩ  
R13  
1 kΩ  
10 kΩ  
IC2  
TCDT1124  
3
2
K4  
R18  
4.7 kΩ  
R19  
10 kΩ  
1
2
1
CONTROL INPUT  
SGND  
019aaa136  
Fig 5. Demo board schematic  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
7.1 Bill of materials (BOM)  
Table 2.  
Bill of materials  
Part Description  
no.  
Value  
PCB footprint  
Supplier Art no.  
Manufacturer Manufacturer part no.  
C1  
C2  
C3  
capacitor  
capacitor  
capacitor  
150 nF 400 V  
150 nF 400 V  
1 μF 35 V  
-
Farnell  
Farnell  
Farnell  
Farnell  
-
9752838  
9752838  
1611920  
1611920  
-
-
-
-
-
-
B32562J6154K  
B32562J6154K  
GMK107BJ105KA-T  
GMK107BJ105KA-T  
-
-
0603  
0603  
0603  
C11 capacitor  
1 μF 35 V  
C4  
capacitor CPO 330 pF 5 %  
NGO  
C10 capacitor low  
ESR  
1500 μF 35 V  
pitch = 5 mm  
Farnell  
Farnell  
Farnell  
-
1219477  
1611920  
1572632  
3531971  
Panasonic  
-
EEUFM1V152L  
C12 capacitor low  
ESR  
1 μF 35 V  
0603  
0805  
-
GMK107BJ105KA-T  
C0805C106K8PAC-TU  
DE1E3KX102MA5B  
C13 capacitor  
6.8 μF 10 V  
Kemet  
Murata  
C15 Y-CAP  
Y-CAP 1 nF  
250 V (AC)  
D1  
D2  
diode bridge  
TVS  
MB6S  
-
-
1621770  
1578842  
Multicomp  
-
-
-
P6KE400A  
DO15  
Farnell  
D3  
D4  
TVS  
P6KE200A  
HER107  
DO15  
DO41  
Farnell  
Farnell  
1017750  
9565191  
9565191  
Multicomp  
Multicomp  
Multicomp  
-
-
diode fast  
D5  
D6  
diode fast  
HER107  
DO41  
Farnell  
Farnell  
Farnell  
-
-
-
Zener diode  
BZV55-C30  
SOD80C  
DO41  
1081362RL NXP  
D10 diode Schottky SB1H100  
9550364  
Vishay  
D11 Zener diode  
D12 diode standard 1n4148  
D13 Zener diode  
BZV55-C22  
SOD80C  
SMD  
Farnell  
Farnell  
Farnell  
1097189  
1469425  
1757832  
1637535  
-
NXP  
Vishay  
NXP  
Schurter  
NXP  
-
-
-
BZX384-B6V2 SOD-323  
BZX384-B6V2  
34.6915  
SSL1523  
-
F1  
fuse  
1 A 250 V  
SSL1523  
TCDT1124  
pitch = 5.08 mm Farnell  
IC1  
IC2  
SSL1523  
-
-
-
opto coupler  
CTR 160 320 %  
isolation =  
Farnell  
1045415  
class II  
K1  
K2  
K3  
K4  
L1  
connector  
connector  
connector  
connector  
coil  
-
-
-
-
pitch = 5.08 mm Farnell  
pitch = 5.08 mm Farnell  
pitch = 2.54 mm Farnell  
pitch = 5.08 mm Farnell  
1131853  
1131853  
1668357  
1131853  
1710434  
Weidmuller  
Weidmuller  
Samtec  
PM5.08/2/90  
PM5.08/2/90  
SSW-106-02-G-S-RA  
PM5.08/2/90  
-
Weidmuller  
1 mH -  
13R105C  
pitch = 2 E  
Farnell  
13R105C  
Murata  
L10  
coil  
10 μH 2.6 A  
pitch = 5 mm  
-
-
Wuerth  
744772100  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
10 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
Table 2.  
Bill of materials …continued  
Q10 dual transistor BCM857DS  
PNP  
SC-74 (TSOP6) Farnell  
SOT457  
1757904  
NXP  
BCM857DS  
Q11 transistor PNP BC857  
SMD  
-
-
-
-
-
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
resistor  
resistor  
resistor  
resistor  
resistor  
resistor  
resistor  
33 Ω 2 W  
100 Ω  
Farnell  
1565460  
Welwyn  
-
0603  
0603  
0603  
0603  
0603  
0805  
1206  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6.8 kΩ  
220 kΩ  
20 kΩ  
MC34751  
-
-
-
-
-
47 kΩ  
120 kΩ  
2.4 Ω  
resistor not  
wirewound  
R9  
resistor not  
wirewound  
2.4 Ω  
1206  
-
-
-
-
-
R10 current sense  
resistor not  
1 Ω 1 W 1 %  
Farnell  
5383894  
RCD  
Components  
F1S 1R  
wirewound  
R11 resistor  
R12 resistor  
R13 resistor  
R17 resistor  
R14 resistor  
R15 resistor  
R19 resistor  
R20 resistor  
R16 resistor  
220 Ω 1 %  
220 Ω 1 %  
1 kΩ  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
-
-
-
-
-
-
-
-
-
-
-
-
1 kΩ 1 %  
10 kΩ 1 %  
10 kΩ 1 %  
10 kΩ  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10 kΩ  
-
-
-
-
6.2 kΩ 1 %  
-
-
-
-
R18 variable resistor 4.7 kΩ  
potentiometer  
leaded  
Farnell  
1227568  
Tyco  
CB10MV472ME  
TX1 transformer 760871038  
EE13  
Wuerth  
760871038 Wuerth  
760871038  
8. Transformer specification  
Figure 6 shows the transformer schematic:  
3
N1  
2
7
6
N2  
1
N3  
4
019aaa137  
Fig 6. Transformer schematic  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
11 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
8.1 Winding specification  
1 mm on pin 1 - 4 side  
N1 (2-3):  
N2 (7-6):  
N1 (2-3):  
N3 (1-4):  
AWG39  
AWG26 TIW  
AWG39  
AWG35  
bobbin  
019aaa138  
tape  
Fig 7. Winding specification  
Table 3.  
Winding  
Winding specification  
Section  
N1 : N2  
N1 : N3  
Ratio  
Primary to secondary  
Primary to auxiliary  
1 : 0.173  
1 : 0.204  
8.2 Electrical characteristics  
Table 4.  
Section  
N1  
Inductance  
Inductance  
1.85 mH ± 5 %  
56 μH  
N2  
N3  
75 μH  
Nominal frequency = 100 kHz  
Vbreakdown N1, N2 = 4 kV and N3, N2 = 4 kV  
Leakage inductance = 20 μH (short N2)  
8.3 Core and bobbin  
Core: EE13/6/6 (3C90 or better)  
Air gap in centre leg  
Bobbin: for EE13/6/6 core; bobbin must be suitable for Class II isolation requirements.  
8.4 Physical dimensions  
15 mm  
15.75 mm  
18.5 mm  
019aaa139  
Fig 8. Transformer dimensions  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
12 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
9. Appendix  
9.1 Load curves  
019aaa140  
275  
(1)  
LED  
current  
(mA)  
225  
175  
125  
(2)  
(3)  
12  
16  
20  
24  
28  
LED voltage (V)  
(1) LED current = 250 mA.  
(2) LED current = 200 mA.  
(3) LED current = 150 mA.  
Fig 9. 120 V (AC) load curve at VLED = 19.5 V  
019aaa141  
275  
(1)  
LED  
current  
(mA)  
225  
(2)  
175  
(3)  
125  
12  
16  
20  
24  
28  
LED voltage (V)  
(1) LED current = 250 mA.  
(2) LED current = 200 mA.  
(3) LED current = 150 mA.  
Fig 10. 230 V (AC) load curve at VLED = 19.5 V  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
13 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
9.2 Efficiency curves  
019aaa142  
0.84  
η
(%)  
0.80  
0.76  
0.72  
(1)  
(2)  
(3)  
12  
16  
20  
24  
28  
LED voltage (V)  
(1) LED current = 250 mA.  
(2) LED current = 200 mA.  
(3) LED current = 150 mA.  
Fig 11. 120 V (AC) efficiency curve  
019aaa143  
0.84  
η
(%)  
0.80  
0.76  
0.72  
(1)  
(2)  
(3)  
12  
16  
20  
24  
28  
LED voltage (V)  
(1) LED current = 250 mA.  
(2) LED current = 200 mA.  
(3) LED current = 150 mA.  
Fig 12. 230 V (AC) efficiency curve  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
14 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
9.3 Input voltage dependency  
019aaa144  
254  
lout  
(mA)  
252  
(1)  
250  
248  
246  
70  
110  
150  
190  
230  
270  
Umains (V)  
(1) LED current set at 250 mA nominal with a load of six LEDs in series (19.5 V).  
Fig 13. Input voltage versus output current  
9.4 EMC requirements  
NXP Semiconductors  
04.Dec 09 17:52  
RBW  
MT  
9
1
kHz  
ms  
Marker  
1
[T2  
48.64 dB  
]
V
Att 10 dB  
100 kHz  
PREAMP OFF  
9.000000000 kHz  
dB  
1
V
100  
90  
1
MHz  
10 MHz  
SGL  
PK  
MAXH  
80  
70  
60  
2
AV  
CLRWR  
FCC15AVQ  
FCC15BVQ  
1
50  
40  
30  
20  
6DB  
10  
0
9
kHz  
30 MHz  
019aaa145  
Fig 14. EMC measurements at a mains voltage of 120 V (AC)  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
15 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
NXP Semiconductors  
04.Dec 09 16:48  
RBW  
MT  
9
1
kHz  
ms  
Marker  
1
[T2  
50.66 dB  
]
V
Att 10 dB  
100 kHz  
PREAMP OFF  
9.000000000 kHz  
dB  
1
V
100  
EN55015Q  
1
MHz  
10 MHz  
LIMIT CHECK  
PASS  
90  
80  
70  
60  
SGL  
PK  
MAXH  
2
AV  
CLRWR  
1
EN55015A  
50  
40  
3
6DB  
20  
10  
0
9
kHz  
30 MHz  
019aaa146  
Fig 15. EMC measurements at a mains voltage of 230 V (AC)  
9.5 Mains conducted harmonics  
Table 5.  
Mains conducted harmonics  
230 V (AC) @ 50 Hz amplitude  
Harmonic  
120 V (AC) @ 60 Hz amplitude  
1
100  
0
100  
0
2
3
11.0  
0
8.1  
0
4
5
12.5  
0
14  
0
6
7
11.7  
0
2.7  
0
8
9
7.7  
0
1.2  
0
10  
11  
12  
13  
14  
15  
16  
17  
5.0  
0
2.1  
0
7.4  
0
2.4  
00  
2.4  
0
3.0  
0
7.6  
1.5  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
16 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
Table 5.  
Mains conducted harmonics …continued  
Harmonic  
230 V (AC) @ 50 Hz amplitude  
120 V (AC) @ 60 Hz amplitude  
18  
19  
20  
0
0
1.1  
0
3.4  
0
Table 6.  
Parameter  
THD  
Total Harmonic Distortion and Power Factor  
230 V (AC) @ 50 Hz amplitude  
27.1  
120 V (AC) @ 50 Hz amplitude  
21.6  
0.98  
Power Factor (PF)  
0.90  
10. References  
[1] TEA1761/TEA1762 NXP GreenChip controllers  
for synchronous rectification.  
[2] AN10754 How to design an LED driver using the SSL2101 or SSL2102.  
[3] SSL152x Datasheet - SMPS ICs for mains LED drivers.  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
17 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
11. Legal information  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
11.1 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
11.2 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Evaluation products — This product is provided on an “as is” and “with all  
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates  
and their suppliers expressly disclaim all warranties, whether express, implied  
or statutory, including but not limited to the implied warranties of  
non-infringement, merchantability and fitness for a particular purpose. The  
entire risk as to the quality, or arising out of the use or performance, of this  
product remains with customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
In no event shall NXP Semiconductors, its affiliates or their suppliers be liable  
to customer for any special, indirect, consequential, punitive or incidental  
damages (including without limitation damages for loss of business, business  
interruption, loss of use, loss of data or information, and the like) arising out  
the use of or inability to use the product, whether or not based on tort  
(including negligence), strict liability, breach of contract, breach of warranty or  
any other theory, even if advised of the possibility of such damages.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever (including without limitation, all damages referenced above and  
all direct or general damages), the entire liability of NXP Semiconductors, its  
affiliates and their suppliers and customer’s exclusive remedy for all of the  
foregoing shall be limited to actual damages incurred by customer based on  
reasonable reliance up to the greater of the amount actually paid by customer  
for the product or five dollars (US$5.00). The foregoing limitations, exclusions  
and disclaimers shall apply to the maximum extent permitted by applicable  
law, even if any remedy fails of its essential purpose.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
11.3 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
18 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
12. Tables  
Table 1. Specification . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Table 2. Bill of materials . . . . . . . . . . . . . . . . . . . . . . . .10  
Table 3. Winding specification . . . . . . . . . . . . . . . . . . . .12  
Table 4. Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Table 5. Mains conducted harmonics . . . . . . . . . . . . . .16  
Table 6. Total Harmonic Distortion and Power Factor . .17  
continued >>  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
19 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
13. Figures  
Fig 1. Demo board top. . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Fig 2. Demo board bottom. . . . . . . . . . . . . . . . . . . . . . . .4  
Fig 3. Demo board connection diagram. . . . . . . . . . . . . .5  
Fig 4. Mains current (C2), VCC (C1), bulk capacitor  
input voltage (C3) and the mains voltage (C4) . . .6  
Fig 5. Demo board schematic . . . . . . . . . . . . . . . . . . . . .9  
Fig 6. Transformer schematic . . . . . . . . . . . . . . . . . . . .11  
Fig 7. Winding specification. . . . . . . . . . . . . . . . . . . . . .12  
Fig 8. Transformer dimensions . . . . . . . . . . . . . . . . . . .12  
Fig 9. 120 V (AC) load curve at VLED = 19.5 V . . . . . . .13  
Fig 10. 230 V (AC) load curve at VLED = 19.5 V . . . . . . .13  
Fig 11. 120 V (AC) efficiency curve . . . . . . . . . . . . . . . . .14  
Fig 12. 230 V (AC) efficiency curve . . . . . . . . . . . . . . . . .14  
Fig 13. Input voltage versus output current . . . . . . . . . . .15  
Fig 14. EMC measurements at a mains voltage  
of 120 V (AC). . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Fig 15. EMC measurements at a mains voltage  
of 230 V (AC). . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
continued >>  
UM10406  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
User manual  
Rev. 01 — 3 August 2010  
20 of 21  
UM10406  
NXP Semiconductors  
SSL1523 5 W LED driver  
14. Contents  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.1  
2
General description . . . . . . . . . . . . . . . . . . . . . 3  
Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Demo board views. . . . . . . . . . . . . . . . . . . . . . . 4  
Demo board connections . . . . . . . . . . . . . . . . . 5  
Connecting the demo board: . . . . . . . . . . . . . . 5  
Functional description . . . . . . . . . . . . . . . . . . . 5  
3
4
4.1  
5
6
Board system optimization. . . . . . . . . . . . . . . . 7  
Changing the output current and LED current . 7  
Changing the output ripple current . . . . . . . . . . 7  
Changing the load curve. . . . . . . . . . . . . . . . . . 7  
6.1  
6.2  
6.3  
7
Board schematic . . . . . . . . . . . . . . . . . . . . . . . . 9  
7.1  
Bill of materials (BOM) . . . . . . . . . . . . . . . . . . 10  
8
Transformer specification. . . . . . . . . . . . . . . . 11  
Winding specification . . . . . . . . . . . . . . . . . . . 12  
Electrical characteristics. . . . . . . . . . . . . . . . . 12  
Core and bobbin. . . . . . . . . . . . . . . . . . . . . . . 12  
Physical dimensions. . . . . . . . . . . . . . . . . . . . 12  
8.1  
8.2  
8.3  
8.4  
9
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Load curves . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Efficiency curves. . . . . . . . . . . . . . . . . . . . . . . 14  
Input voltage dependency. . . . . . . . . . . . . . . . 15  
EMC requirements . . . . . . . . . . . . . . . . . . . . . 15  
Mains conducted harmonics. . . . . . . . . . . . . . 16  
9.1  
9.2  
9.3  
9.4  
9.5  
10  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
11  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 18  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
11.1  
11.2  
11.3  
12  
13  
14  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 3 August 2010  
Document identifier: UM10406  

相关型号:

UM10430

LPC18xx ARM Cortex-M3 microcontroller
NXP

UM10495

TDA5051A lighting master-slave demo board OM13314
NXP

UM104M

Analog IC
ETC

UM105

Analog IC
ETC

UM10512

GreenChip controller for LED lighting
NXP

UM10562

LPC408x/407x User manual
NXP

UM105M

Analog IC
ETC

UM106

Analog IC
ETC

UM10601

LPC800 User manual
NXP

UM106M

Analog IC
ETC

UM107

Analog IC
ETC

UM107M

Analog IC
ETC