FDB3632-F085 [ONSEMI]

N 沟道,PowerTrench® MOSFET,100V,80A,9mΩ;
FDB3632-F085
型号: FDB3632-F085
厂家: ONSEMI    ONSEMI
描述:

N 沟道,PowerTrench® MOSFET,100V,80A,9mΩ

PC 开关 晶体管
文件: 总12页 (文件大小:1368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
FDB3632-F085  
N-Channel PowerTrench® MOSFET  
100V, 80A, 9m  
Applications  
DC/DC converters and Off-Line UPS  
Distributed Power Architectures and VRMs  
Primary Switch for 24V and 48V Systems  
High Voltage Synchronous Rectifier  
Direct Injection / Diesel Injection Systems  
42V Automotive Load Control  
Features  
rDS(ON) = 7.5m(Typ.), VGS = 10V, ID = 80A  
Qg(tot) = 84nC (Typ.), VGS = 10V  
Low Miller Charge  
Low QRR Body Diode  
UIS Capability (Single Pulse and Repetitive Pulse)  
Qualified to AEC Q101  
Electronic Valve Train Systems  
RoHS Compliant  
D
DRAIN  
(FLANGE)  
GATE  
G
SOURCE  
TO-263AB  
FDB SERIES  
S
MOSFET Maximum Ratings TC = 25°C unless otherwise noted  
Symbol  
VDSS  
VGS  
Parameter  
Ratings  
100  
Units  
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
V
V
±20  
Continuous (TC < 111oC, VGS = 10V)  
Continuous (Tamb = 25oC, VGS = 10V, RθJA = 43oC/W)  
Pulsed  
80  
12  
A
A
ID  
Figure 4  
338  
A
EAS  
Single Pulse Avalanche Energy (Note 1)  
Power dissipation  
Derate above 25oC  
mJ  
W
W/oC  
oC  
310  
PD  
2.07  
TJ, TSTG  
Operating and Storage Temperature  
-55 to +175  
Thermal Characteristics  
RθJC  
RθJA  
RθJA  
Thermal Resistance Junction to Case TO-220, TO-263, TO-262  
0.48  
62  
oC/W  
oC/W  
oC/W  
Thermal Resistance Junction to Ambient TO-220, TO-262 (Note 2)  
Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area  
43  
Publication Order Number:  
©2012 Semiconductor Components Industries, LLC.  
August-2017, Rev. 3  
FDB3632-F085/D  
Package Marking and Ordering Information  
Device Marking  
Device  
Package  
Reel Size  
Tape Width  
Quantity  
FDB3632  
FDB3632-F085  
TO-263AB  
330mm  
24mm  
800 units  
Electrical Characteristics TC = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
BVDSS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
ID = 250µA, VGS = 0V  
100  
-
-
-
-
-
V
V
DS = 80V  
-
-
-
1
IDSS  
µA  
nA  
VGS = 0V  
TC= 150oC  
250  
±100  
IGSS  
VGS = ±20V  
On Characteristics  
VGS(TH)  
Gate to Source Threshold Voltage  
VGS = VDS, ID = 250µA  
ID=80A, VGS=10V  
ID=80A, VGS=10V, TC=175oC  
2
-
-
4
V
0.0075 0.009  
0.018 0.022  
rDS(ON)  
Drain to Source On Resistance  
-
Dynamic Characteristics  
CISS  
Input Capacitance  
-
-
-
-
-
-
-
-
6000  
820  
200  
84  
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
VDS = 25V, VGS = 0V,  
f = 1MHz  
COSS  
CRSS  
Qg(TOT)  
Qg(TH)  
Qgs  
Output Capacitance  
-
Reverse Transfer Capacitance  
Total Gate Charge at 10V  
Threshold Gate Charge  
-
110  
14  
-
VGS = 0V to 10V  
VGS = 0V to 2V  
11  
VDD = 50V  
ID = 80A  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
30  
Ig = 1.0mA  
Qgs2  
20  
-
Qgd  
20  
-
Resistive Switching Characteristics (VGS = 10V)  
tON  
td(ON)  
tr  
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
102  
ns  
ns  
ns  
ns  
ns  
ns  
30  
39  
96  
46  
-
-
-
VDD = 50V, ID = 80A  
GS = 10V, RGS = 3.6Ω  
V
td(OFF)  
tf  
Turn-Off Delay Time  
Fall Time  
-
-
tOFF  
Turn-Off Time  
213  
Drain-Source Diode Characteristics  
I
I
SD = 80A  
SD = 40A  
-
-
-
-
-
-
-
-
1.25  
1.0  
64  
V
V
VSD  
Source to Drain Diode Voltage  
trr  
Reverse Recovery Time  
ISD = 75A, dISD/dt= 100A/µs  
ISD = 75A, dISD/dt= 100A/µs  
ns  
nC  
QRR  
Reverse Recovered Charge  
120  
Notes:  
1: Starting T = 25°C, L = 0.12mH, I = 75A.  
J
AS  
2: Pulse Width = 100s  
www.onsemi.com  
2
Typical Characteristics TA = 25°C unless otherwise noted  
1.2  
125  
CURRENT LIMITED  
BY PACKAGE  
1.0  
100  
0.8  
75  
V
= 10V  
GS  
0.6  
0.4  
0.2  
0
50  
25  
0
0
25  
50  
75  
100  
150  
175  
125  
o
25  
50  
75  
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
C
T
, CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P  
x Z  
x R  
+ T  
J
DM  
θJC  
θJC C  
0.01  
10  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
Figure 3. Normalized Maximum Transient Thermal Impedance  
2000  
1000  
o
T
= 25 C  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
V
= 10V  
C
I = I  
GS  
25  
100  
50  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
www.onsemi.com  
3
Typical Characteristics TA = 25°C unless otherwise noted  
400  
100  
200  
If R = 0  
10µs  
t
AV  
= (L)(I )/(1.3*RATED BV  
- V  
DD  
)
AS  
DSS  
If R 0  
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
- V ) +1]  
DD  
AV  
AS  
DSS  
100  
100µs  
www.onsemi.com  
o
2
STARTING T = 25 C  
J
OPERATION IN THIS  
AREA MAY BE  
10  
1
LIMITED BY r  
DS(ON)  
1ms  
o
STARTING T = 150 C  
J
10ms  
DC  
SINGLE PULSE  
T
= MAX RATED  
= 25 C  
J
o
T
C
10  
0.01  
0.1  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
200  
0.1  
1
10  
V
t , TIME IN AVALANCHE (ms)  
DS  
AV  
NOTE: Refer to ON Semiconductor Application Notes AN7514 and AN7515  
Figure 5. Forward Bias Safe Operating Area  
Figure 6. Unclamped Inductive Switching  
Capability  
150  
150  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 6V  
GS  
V
= 10V  
GS  
V
= 15V  
V
= 5.5V  
DD  
GS  
120  
90  
60  
30  
0
120  
90  
60  
30  
0
o
T
= 175 C  
J
V
= 5V  
GS  
o
T
= 25 C  
J
o
o
T
= 25 C  
T
= -55 C  
C
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
0
1
2
3
4
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
GS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
10  
9
2.5  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 6V  
GS  
2.0  
8
1.5  
1.0  
0.5  
V
= 10V  
GS  
7
V
= 10V, I =80A  
D
GS  
6
0
20  
40  
I , DRAIN CURRENT (A)  
62  
80  
-80  
-40  
0
40  
80  
120  
o
160  
200  
T , JUNCTION TEMPERATURE ( C)  
D
J
Figure 9. Drain to Source On Resistance vs Drain  
Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
www.onsemi.com  
4
Typical Characteristics TA = 25°C unless otherwise noted  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.2  
1.1  
1.0  
0.9  
V
= V , I = 250µA  
DS D  
I
= 250µA  
GS  
D
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
10000  
10  
V
= 50V  
DD  
C
= C + C  
GS GD  
ISS  
8
6
4
2
0
C
C + C  
GD  
OSS  
DS  
1000  
C
= C  
RSS  
GD  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 80A  
= 40A  
D
D
V
= 0V, f = 1MHz  
1
GS  
100  
0.1  
10  
100  
0
20  
40  
60  
80  
100  
V
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
DS  
g
Figure 13. Capacitance vs Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Currents  
www.onsemi.com  
5
Test Circuits and Waveforms  
V
BV  
DSS  
DS  
t
P
V
DS  
L
I
AS  
V
DD  
VARY t TO OBTAIN  
P
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
V
DS  
L
V
= 10V  
GS  
V
GS  
+
-
V
DD  
V
GS  
V
= 2V  
DUT  
GS  
Q
gs2  
0
I
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
t
t
f
L
r
V
0
DS  
90%  
90%  
+
-
V
GS  
V
DD  
10%  
10%  
DUT  
90%  
50%  
R
GS  
V
0
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
www.onsemi.com  
6
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, TJM, and the  
80  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, PDM, in an  
R
= 26.51+ 19.84/(0.262+Area) EQ.2  
θJA  
R
= 26.51+ 128/(1.69+Area) EQ.3  
θJA  
application.  
Therefore the application’s ambient  
temperature, TA (oC), and thermal resistance RθJA (oC/W)  
must be reviewed to ensure that TJM is never exceeded.  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
60  
40  
20  
(T  
T )  
A
JM  
(EQ. 1)  
P
= -----------------------------  
DM  
RθJA  
In using surface mount devices such as the TO-263  
package, the environment in which it is applied will have a  
significant influence on the part’s current and maximum  
power dissipation ratings. Precise determination of PDM is  
complex and influenced by many factors:  
0.1  
(0.645)  
1
10  
(6.45)  
(64.5)  
2
2
AREA, TOP COPPER AREA in (cm )  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
ON Semiconductor provides thermal information to  
assist  
the  
designer’s  
preliminary  
application  
evaluation. Figure 21  
defines the RθJA for the device as a function of the top  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the ON  
Semiconductor device Spice thermal model or manually  
utilizing the normalized maximum transient thermal  
impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and equation 3 is for area in centimeters  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
19.84  
(0.262 + Area)  
R
= 26.51 + ------------------------------------  
(EQ. 2)  
θJA  
Area in Inches Squared  
128  
(1.69 + Area)  
R
= 26.51 + ---------------------------------  
(EQ. 3)  
θJA  
Area in Centimeters Squared  
www.onsemi.com  
7
PSPICE Electrical Model  
.SUBCKT FDB3632 2 1 3 ;  
CA 12 8 1.7e-9  
rev May 2002  
Cb 15 14 2.5e-9  
Cin 6 8 6.0e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
Ebreak 11 7 17 18 102.5  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
-
+
50  
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
-
ESG  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
-
18  
22  
It 8 17 1  
MMED  
9
20  
MSTRO  
8
RLGATE  
Lgate 1 9 5.61e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 2.7e-9  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
RLgate 1 9 56.1  
RLdrain 2 5 10  
RLsource 3 7 27  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 3.8e-3  
Rgate 9 20 1.1  
-
-
8
22  
RVTHRES  
RSLC1 5 51 RSLCMOD 1.0e-6  
RSLC2 5 50 1.0e3  
Rsource 8 7 RsourceMOD 2.5e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*350),3))}  
.MODEL DbodyMOD D (IS=5.9E-11 N=1.07 RS=2.3e-3 TRS1=3.0e-3 TRS2=1.0e-6  
+ CJO=4e-9 M=0.58 TT=4.8e-8 XTI=4.2)  
.MODEL DbreakMOD D (RS=0.17 TRS1=3.0e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=15e-10 IS=1.0e-30 N=10 M=0.6)  
.MODEL MstroMOD NMOS (VTO=4.1 KP=200 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MmedMOD NMOS (VTO=3.4 KP=10.0 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.1)  
.MODEL MweakMOD NMOS (VTO=2.75 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.1e+1 RS=0.1)  
.MODEL RbreakMOD RES (TC1=1.0e-3 TC2=-1.7e-6)  
.MODEL RdrainMOD RES (TC1=8.5e-3 TC2=2.8e-5)  
.MODEL RSLCMOD RES (TC1=2.0e-3 TC2=2.0e-6)  
.MODEL RsourceMOD RES (TC1=4e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-4.0e-3 TC2=-1.8e-5)  
.MODEL RvtempMOD RES (TC1=-4.4e-3 TC2=2.2e-6)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-2)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-4)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.8 VOFF=0.4)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.4 VOFF=-0.8)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
www.onsemi.com  
8
SABER Electrical Model  
REV May 2002  
template FDB3632 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=5.9e-11,nl=1.07,rs=2.3e-3,trs1=3.0e-3,trs2=1.0e-6,cjo=4e-9,m=0.58,tt=4.8e-8,xti=4.2)  
dp..model dbreakmod = (rs=0.17,trs1=3.0e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=15e-10,isl=10.0e-30,nl=10,m=0.6)  
m..model mstrongmod = (type=_n,vto=4.1,kp=200,is=1e-30, tox=1)  
m..model mmedmod = (type=_n,vto=3.4,kp=10.0,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=2.75,kp=0.05,is=1e-30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-2)  
LDRAIN  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2,voff=-4)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.8,voff=0.4)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.4,voff=-0.8)  
c.ca n12 n8 = 1.7e-9  
c.cb n15 n14 = 2.5e-9  
c.cin n6 n8 = 6.0e-9  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
ISCL  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
DBREAK  
11  
50  
-
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
spe.ebreak n11 n7 n17 n18 = 102.5  
MWEAK  
LGATE  
EVTEMP  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
RGATE  
GATE  
1
6
+
-
18  
22  
EBREAK  
+
MMED  
9
20  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
i.it n8 n17 = 1  
RLSOURCE  
S1A  
S2A  
l.lgate n1 n9 = 5.61e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 2.7e-9  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
res.rlgate n1 n9 = 56.1  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 27  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
22  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
RVTHRES  
res.rbreak n17 n18 = 1, tc1=1.0e-3,tc2=-1.7e-6  
res.rdrain n50 n16 = 3.8e-3, tc1=8.5e-3,tc2=2.8e-5  
res.rgate n9 n20 = 1.1  
res.rslc1 n5 n51 = 1.0e-6, tc1=2.0e-3,tc2=2.0e-6  
res.rslc2 n5 n50 = 1.0e3  
res.rsource n8 n7 = 2.5e-3, tc1=4e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-4.0e-3,tc2=-1.8e-5  
res.rvtemp n18 n19 = 1, tc1=-4.4e-3,tc2=2.2e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/350))** 3))  
}
}
www.onsemi.com  
9
SPICE Thermal Model  
JUNCTION  
th  
REV May 2002  
FDB3632  
CTHERM1 TH 6 7.5e-3  
CTHERM2 6 5 8.0e-3  
CTHERM3 5 4 9.0e-3  
CTHERM4 4 3 2.4e-2  
CTHERM5 3 2 3.4e-2  
CTHERM6 2 TL 6.5e-2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 TH 6 3.1e-4  
RTHERM2 6 5 2.5e-3  
RTHERM3 5 4 2.2e-2  
RTHERM4 4 3 8.1e-2  
RTHERM5 3 2 1.35e-1  
RTHERM6 2 TL 1.5e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model FDB3632  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 =7.5e-3  
ctherm.ctherm2 6 5 =8.0e-3  
ctherm.ctherm3 5 4 =9.0e-3  
ctherm.ctherm4 4 3 =2.4e-2  
ctherm.ctherm5 3 2 =3.4e-2  
ctherm.ctherm6 2 tl =6.5e-2  
4
3
2
rtherm.rtherm1 th 6 =3.1e-4  
rtherm.rtherm2 6 5 =2.5e-3  
rtherm.rtherm3 5 4 =2.2e-2  
rtherm.rtherm4 4 3 =8.1e-2  
rtherm.rtherm5 3 2 =1.35e-1  
rtherm.rtherm6 2 tl =1.5e-1  
}
tl  
CASE  
www.onsemi.com  
10  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

FDB3632_12

N-Channel PowerTrench® MOSFET 100V, 80A, 9mΩ
FAIRCHILD

FDB3632_F085

N-Channel PowerTrench® MOSFET 100V, 80A, 9mΩ
FAIRCHILD

FDB3632_NL

Power Field-Effect Transistor, 12A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, TO-263AB, 3 PIN
FAIRCHILD

FDB3632_SB82115

暂无描述
FAIRCHILD

FDB3652

N-Channel PowerTrench MOSFET 100V, 61A, 16mз
FAIRCHILD

FDB3652

rDS(ON) = 14m (Typ.), VGS = 10V, ID = 61A Qg(tot) = 41nC (Typ.), VGS = 10V
TYSEMI

FDB3652

N-Channel PowerTrench® MOSFET, 100V, 61A, 16mΩ
ONSEMI

FDB3652-F085

N 沟道,PowerTrench® MOSFET,100V,61A,16mΩ
ONSEMI

FDB3652_08

N-Channel PowerTrench® MOSFET 100V, 61A, 16mΩ
FAIRCHILD

FDB3652_F085

Power Field-Effect Transistor, 9A I(D), 100V, 0.016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT PACKAGE-3
FAIRCHILD

FDB3652_NL

Power Field-Effect Transistor, 9A I(D), 100V, 0.016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE PACKAGE-3
FAIRCHILD

FDB3672

N-Channel PowerTrench MOSFET
FAIRCHILD