FDG6318PZ [ONSEMI]

双 P 沟道,PowerTrench® MOSFET,-20 V,-0.5 A,307 mΩ;
FDG6318PZ
型号: FDG6318PZ
厂家: ONSEMI    ONSEMI
描述:

双 P 沟道,PowerTrench® MOSFET,-20 V,-0.5 A,307 mΩ

PC 开关 光电二极管 晶体管
文件: 总11页 (文件大小:279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Is Now Part of  
To learn more about ON Semiconductor, please visit our website at  
www.onsemi.com  
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers  
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor  
product management systems do not have the ability to manage part nomenclature that utilizes an underscore  
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain  
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated  
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please  
email any questions regarding the system integration to Fairchild_questions@onsemi.com.  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number  
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right  
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON  
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON  
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s  
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA  
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out  
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor  
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
January 2003  
FDG6318PZ  
Dual P-Channel, Digital FET  
General Description  
Features  
These dual P-Channel logic level enhancement mode  
MOSFET are produced using Fairchild Semiconductor’s  
especially tailored to minimize on-state resistance. This  
device has been designed especially for bipolar digital  
transistors and small signal MOSFETS  
-0.5A, -20V.  
rDS(ON) = 780mΩ (Max)@ VGS = -4.5 V  
DS(ON) = 1200mΩ (Max) @ VGS = -2.5 V  
r
Very low level gate drive requirements allowing direct  
operation in 3V circuits (VGS(TH) < 1.5V).  
Gate-Source Zener for ESD ruggedness (>1.4kV Human  
Body Model).  
Applications  
Battery management  
Compact industry standard SC-70-6 surface mount  
package.  
S
G
D
S
G
D
D
G
S
1 or 4  
2 or 5  
3 or 6  
6 or 3  
5 or 2  
4 or 1  
D
G
Pin 1  
S
SC70-6  
The pinouts are symmetrical; pin1 and pin 4 are interchangeable.  
MOSFET Maximum Ratings TA=25°C unless otherwise noted  
Symbol  
VDSS  
VGS  
Parameter  
Ratings  
Units  
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
-20  
V
V
±12  
Continuous (TC = 25oC, VGS = - 4.5V)  
Continuous (TC = 100oC, VGS = - 2.5V)  
Pulsed  
-0.5  
-0.3  
A
A
ID  
Figure 4  
0.3  
Power dissipation  
W
mW/oC  
oC  
PD  
Derate above 25°C  
2.4  
TJ, TSTG  
ESD  
Operating and Storage Temperature  
-55 to 150  
Electrostatic Discharge Rating MIL-STD-883D  
Human Body Model ( 100pF / 1500Ω )  
1.4  
kV  
Thermal Characteristics  
RθJA  
Thermal Resistance Junction to Ambient (Note 1)  
415  
oC/W  
Package Marking and Ordering Information  
Device Marking  
Device  
Package  
Reel Size  
Tape Width  
8 mm  
Quantity  
3000  
.68  
FDG6318PZ  
SC70-6  
7”  
©2003 Fairchild Semiconductor Corporation  
FDG6318PZ Rev. B  
Electrical Characteristics TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
BVDSS  
IDSS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
ID = -250µA, VGS = 0V  
VGS =16 V , VGS = 0 V  
VGS = ±12V , VGS = 0V  
-20  
-
-
-
-
V
-
-
-3  
µA  
µA  
IGSS  
±10  
On Characteristics  
VGS(TH) Gate to Source Threshold Voltage  
VGS = VDS, ID = -250µA  
-0.65  
-0.9  
580  
910  
-1.5  
780  
V
I
D = -0.5A, VGS = -4.5V  
-
-
rDS(ON)  
Drain to Source On Resistance  
mΩ  
ID = -0.4A, VGS = -2.5V  
1200  
Dynamic Characteristics  
CISS  
Input Capacitance  
-
-
-
-
-
-
-
85.4  
24.9  
8.83  
1.08  
0.67  
0.21  
0.33  
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
VDS = -10V, VGS = 0V,  
f = 1MHz  
COSS  
CRSS  
Output Capacitance  
-
Reverse Transfer Capacitance  
-
1.62  
1.0  
-
Qg(TOT) Total Gate Charge at -4.5V  
VGS = 0V to -4.5V  
VDD = -10V  
D = -0.5A  
Ig = 1.0mA  
Qg(-2.5)  
Qgs  
Total Gate Charge at -2.5V  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
VGS = 0V to -2.5V  
I
Qgd  
-
Switching Characteristics (VGS = -4.5V)  
tON  
td(ON)  
tr  
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
35  
-
ns  
ns  
ns  
ns  
ns  
ns  
10  
13  
40  
24  
-
-
VDD = -10V, ID = -0.5A  
VGS = -4.5V, RGS = 120Ω  
td(OFF)  
tf  
Turn-Off Delay Time  
Fall Time  
-
-
tOFF  
Turn-Off Time  
96  
Drain-Source Diode Characteristics  
VSD  
trr  
Source to Drain Diode Voltage  
Reverse Recovery Time  
ISD = -0.5A  
-
-
-
-0.9  
-1.2  
22  
V
ISD = -0.5A, dISD/dt = 100A/µs  
ISD = -0.5A, dISD/dt = 100A/µs  
-
-
ns  
nC  
QRR  
Reverse Recovered Charge  
16  
Notes:  
1. R  
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of  
θJA  
o
2
the center drain pad. R  
is guaranteed by design while R  
is determined by user’s board design. R = 415 C/W when mounted on a 1inch copper pad.  
θJA  
θJC  
θCA  
©2003 Fairchild Semiconductor Corporation  
FDG6318PZ Rev. B  
Typical Characteristic TA = 25°C unless otherwise noted  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.6  
V
= -4.5V  
= -2.5V  
GS  
0.4  
V
GS  
0.2  
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
o
o
T
, AMBIENT TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
A
A
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t1/t2  
PEAK T = P  
x Z  
x R  
+ T  
J
DM  
θJA  
θJA A  
0.01  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
20  
10  
o
T
= 25 C  
A
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
150 - T  
A
I = I  
25  
125  
1
V
= -4.5V  
GS  
V
= -2.5V  
GS  
0.4  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
10  
Figure 4. Peak Current Capability  
©2003 Fairchild Semiconductor Corporation  
FDG6318PZ Rev. B  
Typical Characteristic (Continued) TA = 25°C unless otherwise noted  
10  
3
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= -10V  
DD  
100µs  
o
T
= 150 C  
J
2
1
o
T
= 25 C  
J
1ms  
OPERATION IN THIS  
AREA MAY BE  
o
T
= -55 C  
1
0
J
10ms  
LIMITED BY r  
DS(ON)  
SINGLE PULSE  
0.1  
T
= MAX RATED  
= 25 C  
J
o
T
A
0.05  
0
1
2
3
4
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
30  
V
-V , GATE TO SOURCE VOLTAGE (V)  
GS  
DS  
Figure 5. Forward Bias Safe Operating Area  
Figure 6. Transfer Characteristics  
3
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= -4.5V  
GS  
I
= -0.5A  
D
o
T
= 25 C  
A
2
1
0
V
= -2.5V  
= -2V  
GS  
I
= -0.1A  
D
V
GS  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
2
3
4
5
6
-V , DRAIN TO SOURCE VOLTAGE (V)  
-V , GATE TO SOURCE VOLTAGE (V)  
DS  
GS  
Figure 7. Saturation Characteristics  
Figure 8. Drain to Source On Resistance vs Gate  
Voltage and Drain Current  
1.50  
1.2  
V
= V , I = 250µA  
DS D  
PULSE DURATION = 80µs  
GS  
DUTY CYCLE = 0.5% MAX  
1.25  
1.00  
0.75  
1.0  
0.8  
0.6  
V
= -4.5V, I = -0.5A  
D
GS  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 9. Normalized Drain to Source On  
Resistance vs Junction Temperature  
Figure 10. Normalized Gate Threshold Voltage vs  
Junction Temperature  
©2003 Fairchild Semiconductor Corporation  
FDG6318PZ Rev. B  
Typical Characteristic (Continued) TA = 25°C unless otherwise noted  
1.10  
1.05  
1.00  
0.95  
200  
100  
I
= 250µA  
C
= C + C  
D
ISS GS GD  
C
C
+ C  
OSS  
DS GD  
C
= C  
GD  
RSS  
10  
5
V
= 0V, f = 1MHz  
GS  
-80  
-40  
0
40  
80  
120  
160  
0.1  
1
10  
20  
o
T , JUNCTION TEMPERATURE ( C)  
-V , DRAIN TO SOURCE VOLTAGE (V)  
J
DS  
Figure 11. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
Figure 12. Capacitance vs Drain to Source  
Voltage  
10  
V
= -10V  
DD  
8
6
4
2
0
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= -0.5A  
= -0.1A  
D
D
0
0.5  
1.0  
Qg, GATE CHARGE (nC)  
1.5  
2.0  
Figure 13. Gate Charge Waveforms for Constant Gate Currents  
©2003 Fairchild Semiconductor Corporation  
FDG6318PZ Rev. B  
PSPICE Electrical Model  
.SUBCKT FDG6318PZ 2 1 3 ;  
CA 12 8 0.6e-10  
rev January 2003  
CB 15 14 1.1e-10  
CIN 6 8 0.75e-10  
ESG  
LDRAIN  
DRAIN  
2
5
+
8
6
10  
DBODY 5 7 DBODYMOD  
DBREAK 7 11 DBREAKMOD  
DPLCAP 10 6 DPLCAPMOD  
RLDRAIN  
RSLC1  
51  
+
RSLC2  
+
17  
18  
EBREAK 5 11 17 18 -23.3  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 5 10 8 6 1  
EVTHRES 6 21 19 8 1  
EVTEMP 6 20 18 22 1  
5
51  
ESLC  
EBREAK  
50  
DPLCAP  
RDRAIN  
16  
DBODY  
11  
EVTHRES  
+
21  
19  
8
EVTEMP  
MWEAK  
IT 8 17 1  
LGATE  
GATE  
1
RGATE  
+
6
18  
LDRAIN 2 5 1e-9  
LGATE 1 9 0.47e-9  
LSOURCE 3 7 0.47e-9  
MMED  
22  
9
20  
DBREAK  
MSTRO  
8
RLGATE  
LSOURCE  
CIN  
RSOURCE  
SOURCE  
3
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
7
RLSOURCE  
S1A  
12  
S2A  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 280e-3  
RGATE 9 20 12.4  
RLDRAIN 2 5 10  
RLGATE 1 9 4.7  
RLSOURCE 3 7 4.7  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RBREAK  
15  
14  
13  
13  
8
18  
17  
S1B  
CA  
S2B  
RVTEMP  
19  
13  
CB  
IT  
14  
+
+
5
8
VBAT  
6
8
EDS  
EGS  
+
RSOURCE 8 7 RSOURCEMOD 190e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
8
22  
RVTHRES  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*20),2.5))}  
.MODEL DBODYMOD D (IS = 7.7e-11 N=1.277 RS = 1e-3 TRS1 = 2.8e-1 TRS2 = 3e-4 XTI=0 IKF=0.5 CJO = 3.9e-11  
TT=33e-9 M = 0.50)  
.MODEL DBREAKMOD D (RS = 5.3e-1 TRS1 = 5.5e-3 TRS2 = -9e-5)  
.MODEL DPLCAPMOD D (CJO = 0.5e-10 IS = 1e-30 N = 10 M = 0.55)  
.MODEL MMEDMOD PMOS (VTO = -1.17 KP = 0.6 IS=1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 12.4)  
.MODEL MSTROMOD PMOS (VTO = -1.45 KP = 1.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD PMOS (VTO = -0.99 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 124 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 5.5e-4 TC2 = -1e-7)  
.MODEL RDRAINMOD RES (TC1 = 2.8e-3 TC2 = 4.9e-6)  
.MODEL RSLCMOD RES (TC1 = 3.7e-3 TC2 = 7.8e-6)  
.MODEL RSOURCEMOD RES (TC1 = 3e-3 TC2 = 5.2e-6)  
.MODEL RVTHRESMOD RES (TC1 = 9e-4 TC2 = 3e-7)  
.MODEL RVTEMPMOD RES (TC1 = -5.5e-4 TC2 = -1e-9)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= 0.2)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.2 VOFF= 0.5)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.4 VOFF= -0.1)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.1 VOFF= 0.4)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2003 Fairchild Semiconductor Corporation  
FDG6318PZ Rev. B  
SABER Electrical Model  
REV January 2003  
template fdg6318pz n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl = 7.7e-11, nl=1.277, rs = 1e-3, trs1 = 2.8e-1, trs2 = 3e-4, xti=0, cjo = 3.9e-11, ikf=0.5, tt = 33e-9, m = 0.50)  
dp..model dbreakmod = (rs = 5.3e-1, trs1 = 5.5e-3, trs2 = -9.0e-5)  
dp..model dplcapmod = (cjo = 0.5e-10, isl=10e-30, nl=10, m=0.55)  
m..model mmedmod = (type=_p, vto = -1.17, kp=0.6, is=1e-30, tox=1)  
m..model mstrongmod = (type=_p, vto = -1.45, kp = 1.5, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_p, vto = -0.99, kp = 0.05, is = 1e-30, tox = 1, rs=0.1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = 0.2)  
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = 0.5)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0.4, voff = -0.1)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = -0.1, voff = 0.4)  
ESG  
LDRAIN  
DRAIN  
2
+
5
c.ca n12 n8 = 0.6e-10  
c.cb n15 n14 = 1.1e-10  
c.cin n6 n8 = 0.75e-10  
8
6
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
+
17  
18  
dp.dbody n5 n7 = model=dbodymod  
dp.dbreak n7 n11 = model=dbreakmod  
dp.dplcap n10 n6 = model=dplcapmod  
ISCL  
EBREAK  
50  
DPLCAP  
RDRAIN  
16  
DBODY  
i.it n8 n17 = 1  
11  
EVTHRES  
+
21  
19  
8
l.ldrain n2 n5 = 1e-9  
l.lgate n1 n9 = 0.47e-9  
l.lsource n3 n7 = 0.47e-9  
EVTEMP  
MWEAK  
LGATE  
GATE  
1
RGATE  
+
6
18  
22  
MMED  
9
20  
DBREAK  
MSTRO  
8
RLGATE  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
LSOURCE  
CIN  
RSOURCE  
SOURCE  
3
7
RLSOURCE  
S1A  
12  
S2A  
res.rbreak n17 n18 = 1, tc1 = 5.5e-4, tc2 = -1e-7  
res.rdrain n50 n16 = 280e-3, tc1 = 2.8e-3, tc2 = 4.9e-6  
res.rgate n9 n20 = 12.4  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 4.7  
res.rlsource n3 n7 = 4.7  
res.rslc1 n5 n51= 1e-6, tc1 = 3.7e-3, tc2 =7.8e-6  
res.rslc2 n5 n50 = 1e3  
RBREAK  
15  
14  
13  
13  
8
18  
17  
S1B  
CA  
S2B  
RVTEMP  
19  
13  
CB  
IT  
14  
+
+
VBAT  
6
8
5
8
EDS  
EGS  
+
8
res.rsource n8 n7 = 190e-3, tc1 = 3e-3, tc2 =5.2e-6  
res.rvtemp n18 n19 = 1, tc1 = -5.5e-4, tc2 = -1e-9  
res.rvthres n22 n8 = 1, tc1 = 9e-4, tc2 = 3e-7  
22  
RVTHRES  
spe.ebreak n5 n11 n17 n18 = -23.3  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n5 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/20))** 2.5))  
}
}
©2003 Fairchild Semiconductor Corporation  
FDG6318PZ Rev. B  
SPICE Thermal Model  
REV January 2003  
JUNCTION  
th  
FDG6318PZ_JA Junction Ambient  
Copper Area= 1sq.in  
CTHERM1 Junction c2 0.17e-4  
CTHERM2 c2 c3 2.7e-4  
CTHERM3 c3 c4 5.5e-4  
CTHERM4 c4 c5 1.4e-3  
CTHERM5 c5 c6 2.2e-3  
CTHERM6 c6 c7 2.6e-3  
CTHERM7 c7 c8 6.6e-3  
CTHERM8 c8 Ambient 0.29  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
RTHERM7  
RTHERM8  
CTHERM1  
8
7
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM7  
CTHERM8  
RTHERM1 Junction c2 11.2  
RTHERM2 c2 c3 11.5  
RTHERM3 c3 c4 12.5  
RTHERM4 c4 c5 27  
RTHERM5 c5 c6 81  
RTHERM6 c6 c7 88  
RTHERM7 c7 c8 92  
RTHERM8 c8 Ambient 93  
6
5
SABER Thermal Model  
SABER thermal model FDG6318PZ  
Copper Area= 1sq.in  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th c2 = 0.17e-4  
ctherm.ctherm2 c2 c3 = 2.7e-4  
ctherm.ctherm3 c3 c4 = 5.5e-4  
ctherm.ctherm4 c4 c5 = 1.4e-3  
ctherm.ctherm5 c5 c6 = 2.2e-3  
ctherm.ctherm6 c6 c7 = 2.6e-3  
ctherm.ctherm7 c7 c8 = 6.6e-3  
ctherm.ctherm8 c8 tl = 0.29  
4
3
2
rtherm.rtherm1 th c2 = 11.2  
rtherm.rtherm2 c2 c3 = 11.5  
rtherm.rtherm3 c3 c4 = 12.5  
rtherm.rtherm4 c4 c5 = 27  
rtherm.rtherm5 c5 c6 = 81  
rtherm.rtherm6 c6 c7 = 88  
rtherm.rtherm7 c7 c8 = 92  
rtherm.rtherm8 c8 tl = 93  
}
tl  
AMBIENT  
©2003 Fairchild Semiconductor Corporation  
FDG6318PZ Rev.B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
FACT™  
ImpliedDisconnect™ PACMAN™  
SPM™  
ActiveArray™  
Bottomless™  
CoolFET™  
FACT Quiet Series™ ISOPLANAR™  
POP™  
Stealth™  
®
FAST  
LittleFET™  
MicroFET™  
MicroPak™  
Power247™  
PowerTrench  
QFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
®
FASTr™  
CROSSVOLT™ FRFET™  
DOME™  
GlobalOptoisolator™ MICROWIRE™  
QS™  
SyncFET™  
®
EcoSPARK™  
GTO™  
MSX™  
QT Optoelectronics™ TinyLogic  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
SILENT SWITCHER VCX™  
SMART START™  
2
E CMOS™  
HiSeC™  
I C™  
MSXPro™  
OCX™  
TruTranslation™  
2
EnSigna™  
UHC™  
UltraFET  
®
Across the board. Around the world.™ OCXPro™  
The Power Franchise™  
Programmable Active Droop™  
®
®
OPTOLOGIC  
OPTOPLANAR™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or In  
Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

FDG6318P_NL

Small Signal Field-Effect Transistor, 0.5A I(D), 20V, 2-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, SC-70, 6 PIN
FAIRCHILD

FDG6320C

Dual N & P Channel Digital FET
FAIRCHILD

FDG6320C

双 N 和 P 沟道 数字 FET,25V
ONSEMI

FDG6320C-G

Transistor
FAIRCHILD

FDG6321

Dual N & P Channel Digital FET
FAIRCHILD

FDG6321C

Dual N & P Channel Digital FET
FAIRCHILD

FDG6321C

双 N 和 P 沟道数字 FET 25V
ONSEMI

FDG6321C-F169

双 N 和 P 沟道数字 FET 25V
ONSEMI

FDG6321CD87Z

Small Signal Field-Effect Transistor, 0.5A I(D), 25V, 2-Element, N-Channel and P-Channel, Silicon, Metal-oxide Semiconductor FET, SC-70, 6 PIN
FAIRCHILD

FDG6322C

Dual N & P Channel Digital FET
FAIRCHILD

FDG6322C

双 N 和 P 沟道数字 FET 25V
ONSEMI

FDG6322C_08

Dual N & P Channel Digital FET
FAIRCHILD