FNA23512A [ONSEMI]

智能功率模块,1200V,35A;
FNA23512A
型号: FNA23512A
厂家: ONSEMI    ONSEMI
描述:

智能功率模块,1200V,35A

电动机控制 光电二极管
文件: 总16页 (文件大小:1382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
1200ꢀVꢀMotion SPM)  
2ꢀSeries  
FNA23512A  
Description  
The FNA23512A is a Motion SPM 2 module providing  
a fullyfeatured, highperformance inverter output stage for AC  
induction, BLDC, and PMSM motors. These modules integrate  
optimized gate drive of the builtin IGBTs to minimize EMI and  
losses, while also providing multiple onmodule protection features:  
undervoltage lockouts, overcurrent shutdown, temperature sensing,  
and fault reporting. The builtin, highspeed HVIC requires only  
a single supply voltage and translates the incoming logiclevel gate  
inputs to highvoltage, highcurrent drive signals to properly drive the  
module’s internal IGBTs. Separate negative IGBT terminals are  
available for each phase to support the widest variety of control  
algorithms.  
SPMCAA34  
CASE MODFQ  
MARKING DIAGRAM  
$Y  
FNA23512A  
&Z&K&E&E&E&3  
Features  
UL Certified No. E209204 (UL1557)  
1200 V 35 A 3Phase IGBT Inverter, Including Control ICs for  
Gate Drive and Protections  
FNA23512A  
= Specific Device Code  
= onsemi Logo  
= Assembly Location  
= Lot Run Traceability Code  
= Designates Space  
LowLoss, ShortCircuitRated IGBTs  
Very Low Thermal Resistance Using Al O DBC Substrate  
$Y  
&Z  
&K  
&E  
&3  
2
3
BuiltIn Bootstrap Diodes and Dedicated Vs Pins Simplify PCB  
Layout  
= Date Code (Year & Week)  
Separate OpenEmitter Pins from LowSide IGBTs for ThreePhase  
Current Sensing  
ORDERING INFORMATION  
SingleGrounded Power Supply Supported  
See detailed ordering and shipping information on page 14 of  
this data sheet.  
BuiltIn NTC Thermistor for Temperature Monitoring and  
Management  
Adjustable OverCurrent Protection via Integrated SenseIGBTs  
Isolation Rating of 2500 Vrms / 1 min.  
These Device is Halide Free and is RoHS Compliant  
Applications  
Motion Control Industrial Motor (AC 400 V Class)  
Related Resources  
AN9075 Users Guide for 1200 V SPM 2 Series  
AN9076 Mounting Guide for New SPM 2 Package  
AN9079 Thermal Performance of 1200 V Motion SPM 2 Series  
by Mounting Torque  
© Semiconductor Components Industries, LLC, 2022  
1
Publication Order Number:  
August, 2022 Rev. 4  
FNA23512A/D  
FNA23512A  
Integrated Power Functions  
For inverter lowside IGBTs:  
1200 V 35 A IGBT inverter for threephase DC / AC  
gatedrive circuit, ShortCircuit Protection (SCP)  
control circuit, UnderVoltage LockOut Protection  
(UVLO)  
power conversion (refer to Figure 2)  
Fault signaling:  
Integrated Drive, Protection and System Control  
Functions  
corresponding to UV (lowside supply) and SC faults  
For Inverter HighSide IGBTs:  
Input interface:  
gatedrive circuit, highvoltage isolated highspeed  
levelshifting control circuit, UnderVoltage LockOut  
Protection (UVLO), Available bootstrap circuit example  
is given in Figures 4 and 14.  
activeHIGH interface, works with 3.3 / 5 V logic,  
Schmitttrigger input  
PIN CONFIGURATION  
(34) VS(W)  
(33) VB(W)  
(32) VBD(W)  
(31) VCC(WH)  
(30) IN(WH)  
(1) P  
(29) VS(V)  
(28) VB(V)  
(2) W  
(3) V  
(27) VBD(V)  
(26) VCC(VH)  
(25) IN(VH)  
(24) VS(U)  
(23) VB(U)  
Case Temperature (T )  
Detecting Point  
C
(22) VBD(U)  
(21) VCC(UH)  
(20) COM(H)  
(19) IN(UH)  
(4) U  
(18) RSC  
(17) CSC  
(5) NW  
(6) NV  
(7) NU  
(16) CFOD  
(15) VFO  
(14) IN(WL)  
(13) IN(VL)  
(12) IN(UL)  
(11) COM  
(10) VCC(L)  
(8) RTH  
(9) VTH  
(L)  
Figure 1. Top View  
www.onsemi.com  
2
 
FNA23512A  
PIN DESCRIPTIONS  
Pin No.  
1
Pin Name  
Pin Description  
P
W
V
Positive DCLink Input  
Output for W Phase  
Output for V Phase  
Output for U Phase  
2
3
4
U
5
N
Negative DCLink Input for W Phase  
Negative DCLink Input for V Phase  
Negative DCLink Input for U Phase  
W
6
N
V
7
N
U
8
R
Series Resistor for Thermistor (Temperature Detection)  
Thermistor Bias Voltage  
TH  
TH  
9
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
V
LowSide Bias Voltage for IC and IGBTs Driving  
LowSide Common Supply Ground  
CC(L)  
COM  
(L)  
IN  
IN  
Signal Input for LowSide U Phase  
(UL)  
Signal Input for LowSide V Phase  
(VL)  
IN  
Signal Input for LowSide W Phase  
(WL)  
V
Fault Output  
FO  
C
Capacitor for Fault Output Duration Selection  
Capacitor (LowPass Filter) for ShortCircuit Current Detection Input  
Resistor for ShortCircuit Current Detection  
Signal Input for HighSide U Phase  
FOD  
C
SC  
SC  
R
IN  
(UH)  
COM  
HighSide Common Supply Ground  
(H)  
V
HighSide Bias Voltage for U Phase IC  
CC(UH)  
V
BD(U)  
Anode of Bootstrap Diode for U Phase HighSide Bootstrap Circuit  
HighSide Bias Voltage for U Phase IGBT Driving  
HighSide Bias Voltage Ground for U Phase IGBT Driving  
Signal Input for HighSide V Phase  
V
B(U)  
S(U)  
V
IN  
(VH)  
V
HighSide Bias Voltage for V Phase IC  
CC(VH)  
V
BD(V)  
Anode of Bootstrap Diode for V Phase HighSide Bootstrap Circuit  
HighSide Bias Voltage for V Phase IGBT Driving  
HighSide Bias Voltage Ground for V Phase IGBT Driving  
Signal Input for HighSide W Phase  
V
B(V)  
S(V)  
(WH)  
V
IN  
V
HighSide Bias Voltage for W Phase IC  
CC(WH)  
V
BD(W)  
Anode of Bootstrap Diode for W Phase HighSide Bootstrap Circuit  
HighSide Bias Voltage for W Phase IGBT Driving  
HighSide Bias Voltage Ground for W Phase IGBT Driving  
V
B(W)  
S(W)  
V
www.onsemi.com  
3
FNA23512A  
INTERNAL EQUIVALENT CIRCUIT AND INPUT/OUTPUT PINS  
Figure 2. Internal Block Diagram  
1. Inverter highside is composed of three normalIGBTs, freewheeling diodes, and one control IC for each IGBT.  
2. Inverter lowside is composed of three senseIGBTs, freewheeling diodes, and one control IC for each IGBT. It has gate drive and protection  
functions.  
3. Inverter power side is composed of four inverter DClink input terminals and three inverter output terminals.  
www.onsemi.com  
4
FNA23512A  
ABSOLUTE MAXIMUM RATINGS (T = 25°C, Unless Otherwise Specified)  
J
Symbol  
Parameter  
Conditions  
Rating  
Unit  
INVERTER PART  
V
Supply Voltage  
Applied between P N , N , N  
900  
1000  
1200  
35  
V
V
V
A
A
PN  
PN(Surge)  
U
V
W
V
Supply Voltage (Surge)  
Applied between P N , N , N  
U V  
W
V
CES  
Collector Emitter Voltage  
Each IGBT Collector Current  
Each IGBT Collector Current (Peak)  
I
C
T
T
= 25°C, T 150°C (Note 4)  
J
C
I
= 25°C, T 150°C, Under 1 ms Pulse Width  
70  
CP  
C
J
(Note 4)  
P
C
Collector Dissipation  
T
C
= 25°C per One Chip (Note 4)  
171  
W
T
J
Operating Junction Temperature  
40 ~ 150  
°C  
CONTROL PART  
V
Control Supply Voltage  
Applied between V  
, V COM  
20  
20  
V
V
CC  
CC(H) CC(L)  
V
HighSide Control Bias Voltage  
Applied between V  
V , V  
S(U) B(V)  
V  
,
BS  
B(U)  
S(V)  
V
V
B(W)  
S(W)  
V
IN  
Input Signal Voltage  
Applied between IN  
(WL)  
, IN  
, IN  
, IN  
, IN  
,
0.3 ~ V +0.3  
V
(UH)  
(VH)  
(WH)  
(UL)  
(VL)  
CC  
IN  
COM  
V
Fault Output Supply Voltage  
Fault Output Current  
Applied between V COM  
0.3 ~ V +0.3  
V
mA  
V
FO  
FO  
CC  
I
Sink Current at V pin  
2
FO  
FO  
V
SC  
Current Sensing Input Voltage  
Applied between C COM  
0.3 ~ V +0.3  
SC  
CC  
BOOTSTRAP DIODE PART  
V
Maximum Repetitive Reverse Voltage  
Forward Current  
1200  
1.0  
V
A
A
RRM  
I
F
T
T
= 25°C, T 150°C (Note 4)  
J
C
I
Forward Current (Peak)  
= 25°C, T 150°C, Under 1 ms Pulse Width  
2.0  
FP  
C
J
(Note 4)  
T
J
Operating Junction Temperature  
40 ~ 150  
°C  
TOTAL SYSTEM  
V
Self Protection Supply Voltage Limit  
(Short Circuit Protection Capability)  
V
V
= V = 13.5 ~ 16.5 V, T = 150°C,  
CES  
800  
V
PN(PROT)  
CC  
BS  
J
< 1200 V, Nonrepetitive, < 2 ms  
T
Module Case Operation Temperature  
Storage Temperature  
See Figure 1  
40 ~ 125  
40 ~ 125  
2500  
°C  
°C  
C
T
STG  
V
ISO  
Isolation Voltage  
60 Hz, Sinusoidal, AC 1 Minute, Connection Pins to  
Heat Sink Plate  
V
rms  
THERMAL RESISTANCE  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
0.73  
1.26  
Unit  
°C/W  
°C/W  
R
JunctiontoCase Thermal  
Resistance (Note 5)  
Inverter IGBT part (per 1 / 6 module)  
Inverter FWD part (per 1 / 6 module)  
th(jc)Q  
R
th(jc)F  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
4. These values had been made an acquisition by the calculation considered to design factor.  
5. For the measurement point of case temperature (T ), please refer to Figure 1.  
C
www.onsemi.com  
5
 
FNA23512A  
ELECTRICAL CHARACTERISTICS (T = 25°C, Unless Otherwise Specified)  
J
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Unit  
INVERTER PART  
V
Collector Emitter Saturation Voltage  
V
V
= V = 15 V  
I
= 35 A, T = 25°C  
1.90 2.50  
2.00 2.60  
V
CE(SAT)  
CC  
IN  
BS  
C
J
= 5 V  
V
F
FWDi Forward Voltage  
Switching Times  
V
V
= 0 V  
I = 35 A, T = 25°C  
F
V
IN  
J
HS  
t
= 600 V, V = 15 V, I = 35 A,  
0.70 1.20 1.80  
ms  
ms  
ON  
PN  
CC  
C
T = 25°C  
J
t
0.25 0.65  
1.20 1.80  
0.15 0.55  
C(ON)  
V
IN  
= 0 V 5 V, Inductive Load  
See Figure 4  
(Note 6)  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
mA  
t
OFF  
t
C(OFF)  
t
rr  
0.20  
LS  
t
V
PN  
= 600 V, V = 15 V, I = 35 A,  
0.50 1.00 1.60  
ON  
CC  
C
T = 25°C  
J
t
0.30 0.70  
1.40 2.00  
0.20 0.60  
C(ON)  
V
IN  
= 0 V 5 V, Inductive Load  
See Figure 4  
(Note 6)  
t
OFF  
t
C(OFF)  
t
rr  
0.25  
I
Collector Emitter Leakage Current  
V
CE  
= V  
CES  
5
CES  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. t and t  
include the propagation delay time of the internal drive IC. t  
and t  
are the switching time of IGBT itself under the given  
ON  
OFF  
C(ON)  
C(OFF)  
gate driving condition internally. For the detailed information, please see Figure 3.  
100% I 100% I  
C
C
t
rr  
I
C
I
C
V
CE  
V
CE  
V
IN  
V
IN  
t
t
(OFF)  
ON  
t
t
C(OFF)  
C(ON)  
10% I  
C
V
10% V  
IN(OFF)  
CE  
10% I  
C
V
IN(ON)  
90% I  
10% V  
C
CE  
(b) turnoff  
(a) turnon  
Figure 3. Switching Time Definition  
www.onsemi.com  
6
 
FNA23512A  
OneLeg Diagram of SPM 2  
I
C
R
BS  
P
C
BS  
V
V
B
CC  
LS Switching  
COM  
IN  
OUT  
V
S
V
PN  
HS Switching  
LS Switching  
U,V,W  
V
Inductor  
IN  
600 V  
V
V
C
C
CC  
FO  
V
IN  
HS Switching  
OUT  
5 V  
0 V  
4.7 kW  
FOD  
SC  
V
CC  
V
COM  
N
U,V,W  
15 V  
V
5 V  
R
SC  
Figure 4. Example Circuit for Switching Test  
Figure 5. Switching Loss Characteristics (Typical)  
RT Curve  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
RT Curve in 505C ~ 1255C  
20  
16  
12  
8
4
0
50  
60  
70  
80  
90  
100 110 120  
Temperature [5C]  
0
20 10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120  
Temperature T , [5C]  
TH  
Figure 6. RT Curve of Builtin Thermistor  
www.onsemi.com  
7
FNA23512A  
BOOTSTRAP DIODE PART  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
V
Forward Voltage  
I = 0.1 A, T = 25°C  
2.2  
V
F
F
J
I = 0.1 A, dI / dt = 50 A / ms, T = 25°C  
t
rr  
Reverse Recovery Time  
80  
ns  
F
F
J
CONTROL PART  
Symbol  
Parameter  
Min  
Conditions  
Min.  
Typ.  
Max.  
Unit  
I
Quiescent V Supply Current  
V
= 15 V,  
V
V
V
COM  
COM  
,
,
(H)  
0.15  
mA  
QCCH  
CC  
CC(UH,VH,WH)  
(UH,VH,WH  
CC(UH)  
CC(VH)  
CC(WH)  
(H)  
(H)  
IN  
) = 0 V  
COM  
I
V
= 15 V,  
(UL,VL, WL)  
V
COM  
(L)  
5.00  
0.30  
mA  
mA  
QCCL  
CC(L)  
CC(L)  
IN  
= 0 V  
IP  
Operating V Supply Current  
V
PWM  
= 15 V,  
V
V
V
COM  
(H  
COM  
,
CCH  
CC  
CC(UH,VH,WH)  
CC(UH)  
CC(VH)  
CC(WH)  
(H)  
f
= 20 kHz, Duty = 50%,  
COM ),  
Applied to one PWM Signal Input  
for HighSide  
(H)  
I
V
= 15 V, f  
= 20 kHz,  
V
COM  
(L)  
15.5  
0.30  
12.0  
mA  
mA  
mA  
PCCL  
CC(L)  
PWM  
CC(L)  
Duty = 50%, Applied to one  
PWM Signal Input for LowSide  
I
Quiescent V Supply Current  
V
BS  
= 15 V, IN  
= 0 V  
V
B(U)  
V
B(V)  
V
B(W)  
V  
S(V)  
V  
,
QBS  
BS  
(UH, VH, WH)  
S(U)  
V  
,
S(W)  
IPBS  
Operating V Supply Current  
V
CC  
= V = 15 V, f  
= 20 kHz,  
V
B(U)  
V
B(V)  
V
B(W)  
V  
V  
,
BS  
BS  
PWM  
S(U)  
S(V)  
V  
,
Duty = 50%, Applied to one PWM  
Signal Input for HighSide  
S(W)  
V
Fault Output Voltage  
V
V
V
= 15 V, V = 0 V, V Circuit: 4.7 kn to 5 V Pullup  
4.5  
0.5  
V
V
FOH  
CC  
CC  
CC  
SC  
FO  
V
= 15 V, V = 1 V, V Circuit: 4.7 kn to 5 V Pullup  
SC FO  
FOL  
SEN  
I
Sensing Current of Each  
Sense IGBT  
= 15 V, V = 5 V, R = 0 Ω,  
I = 35 A  
C
36  
mA  
IN  
SC  
No Connection of Shunt Resistor  
at N Terminal  
U,V,W  
V
Short Circuit Trip Level  
V
= 15 V (Note 7)  
C
COM  
(L)  
0.43  
0.50  
70  
0.57  
V
A
SC(ref)  
CC  
SC  
I
SC  
Short Circuit Current Level for  
Trip  
R
N
= 16 Ω (± 1%), No Connection of Shunt Resistor at  
SC  
Terminal (Note 7)  
U,V,W  
UV  
UV  
UV  
UV  
Supply Circuit UnderVoltage  
Detection Level  
Reset Level  
10.3  
10.8  
9.5  
10.0  
50  
12.8  
13.3  
12.0  
12.5  
V
V
CCD  
CCR  
BSD  
BSR  
Protection  
Detection Level  
Reset Level  
V
V
t
FaultOut Pulse Width  
C
C
= Open  
(Note 8)  
ms  
ms  
V
FOD  
FOD  
FOD  
= 2.2 nF  
1.7  
V
IN(ON)  
ON Threshold Voltage  
OFF Threshold Voltage  
Resistance of Thermistor  
Applied between IN  
COM , IN  
(UL, VL, WL)  
2.6  
(UH, VH, WH)  
(H)  
COM  
(L)  
V
0.8  
V
IN(OFF)  
R
TH  
at T = 25°C  
See Figure 7  
(Note 9)  
47  
2.9  
kn  
kn  
TH  
at T = 100°C  
TH  
7. Shortcircuit current protection functions only at the lowsides because the sense current is divided from main current at lowside IGBTs.  
Inserting the shunt resistor for monitoring the phase current at N , N , N terminal, the trip level of the shortcircuit current is changed.  
U
V
W
FOD  
8. The faultout pulse width t  
depends on the capacitance value of C  
according to the following approximate equation :  
FOD  
[s].  
6
t
= 0.8 x 10 x C  
FOD  
FOD  
9. T is the temperature of thermistor itself. To know case temperature (T ), conduct experiments considering the application.  
TH  
C
www.onsemi.com  
8
FNA23512A  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Supply Voltage  
Conditions  
Min.  
300  
Typ.  
600  
Max.  
800  
Unit  
V
V
PN  
CC  
Applied between P N , N , N  
U
V
W
V
Control Supply Voltage  
Applied between V  
COM  
,
14.0  
15.0  
16.5  
V
CC(H)  
(H)  
V
CC(L)  
COM  
(L)  
V
HighSide Bias Voltage  
Applied between V  
V , V  
S(U) B(V)  
V ,  
S(V)  
13.0  
1  
15.0  
18.5  
1
V
V/ms  
ms  
BS  
B(U)  
V
V  
B(W)  
S(W)  
dV / dt, Control Supply Variation  
CC  
dV / dt  
BS  
t
Blanking Time for Preventing  
ArmShort  
For Each Input Signal  
2.0  
dead  
f
PWM Input Signal  
40_C T 125°C, 40_C T 150°C  
20  
5
kHz  
V
PWM  
C
J
V
Voltage for Current Sensing  
Applied between N , N , N COM  
5  
SEN  
U
V
W
(H,L)  
(Including Surge Voltage)  
PW  
PW  
Minimum Input Pulse Width  
Junction Temperature  
V
= V = 15 V, I 70 A,  
2.0  
2.0  
ms  
IN(ON)  
CC  
BS  
C
Wiring Inductance between N  
Link N < 10 nH (Note 10)  
and DC  
U, V, W  
IN(OFF)  
°C  
T
40  
150  
J
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
10.This product might not make output response if input pulse width is less than the recommanded value.  
Figure 7. Allowable Maximum Output Current  
11. This allowable output current value is the reference data for the safe operation of this product. This may be different from the actual application  
and operating condition.  
www.onsemi.com  
9
 
FNA23512A  
MECHANICAL CHARACTERISTISC AND RATINGS  
Parameter  
Conditions  
Min.  
0
Typ.  
Max.  
+200  
1.5  
15.1  
Unit  
mm  
Device Flatness  
Mounting Torque  
See Figure 8  
Mounting Screw: M4  
See Figure 9  
Recommended 1.0 N/m  
Recommended 10.1 kg/cm  
0.9  
9.1  
10  
2
1.0  
10.1  
N/m  
kg/cm  
s
Terminal Pulling Strength  
Terminal Bending Strength  
Weight  
Load 19.6 N  
Load 9.8 N, 90 degrees Bend  
times  
g
50  
()  
()  
Figure 8. Flatness Measurement Position  
2
PreScrewing : 1"2  
Final Screwing : 2"1  
1
Figure 9. Mounting Screws Torque Order  
12.Do not over torque when mounting screws. Too much mounting torque may cause DBC cracks, as well as bolts and Al heatsink destruction.  
13.Avoid onesided tightening stress. Figure 9 shows the recommended torque order for the mounting screws. Uneven mounting can cause  
the DBC substrate of package to be damaged. The prescrewing torque is set to 20 ~ 30% of maximum torque rating.  
www.onsemi.com  
10  
 
FNA23512A  
Time Charts of SPMs Protective Function  
Input Signal  
RESET  
a1  
SET  
RESET  
Protection  
Circuit State  
UV  
CCR  
a6  
UV  
a3  
a4  
CCD  
a2  
Control  
Supply Voltage  
a7  
Output Current  
a5  
Fault Output Signal  
Figure 10. UnderVoltage Protection (LowSide)  
a1 : Control supply voltage rises: after the voltage rises UV  
applied.  
, the circuits start to operate when the next input is  
CCR  
a2 : Normal operation: IGBT ON and carrying current.  
a3 : Under voltage detection (UV  
).  
CCD  
a4 : IGBT OFF in spite of control input condition.  
a5 : Fault output operation starts with a fixed pulse width according to the condition of the external capacitor C  
.
FOD  
a6 : Undervoltage reset (UV  
).  
CCR  
a7 : Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
Input Signal  
Protection  
RESET  
b1  
SET  
RESET  
Circuit State  
UV  
BSR  
b5  
UV  
b2  
Control Supply  
Votlage  
BSD  
b3  
b4  
b6  
Output Current  
Highlevel (no fault output)  
Fault Output Signal  
Figure 11. UnderVoltage Protection (HighSide)  
b1 : Control supply voltage rises: After the voltage reaches UVBSR, the circuits start to operate when next input is applied.  
b2 : Normal operation: IGBT ON and carrying current.  
b3 : Under voltage detection (UV  
).  
BSD  
b4 : IGBT OFF in spite of control input condition, but there is no fault output signal.  
b5 : Under voltage reset (UV ).  
BSR  
b6 : Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
www.onsemi.com  
11  
FNA23512A  
Lower Arms  
Control Input  
c6  
c7  
Protection  
Circuit Statet  
SET  
RESET  
c4  
Internal IGBT  
GateEmitter Voltage  
c3  
c2  
Internal delay  
at protection circuit  
SC current trip level  
c8  
c1  
Output Current  
SC Reference Voltage  
Sensing Voltage  
of Sense Resistor  
RC Filter circuit  
time constant  
delay  
Fault Output Signal  
c5  
Figure 12. ShortCircuit Current Protection (LowSide Operation only)  
(with the external sense resistance and RC filter connection)  
c1 : Normal operation: IGBT ON and carrying current.  
c2 : Shortcircuit current detection (SC trigger).  
c3 : All lowside IGBT’s gate are hard interrupted.  
c4 : All lowside IGBTs turn OFF.  
c5 : Fault output operation starts with a fixed pulse width according to the condition of the external capacitor C  
c6 : Input HIGH: IGBT ON state, but during the active period of fault output, the IGBT doesn’t turn ON.  
c7 : Fault output operation finishes, but IGBT doesn’t turn on until triggering next signal from LOW to HIGH.  
c8 : Normal operation: IGBT ON and carrying current.  
.
FOD  
Input/Output Interface Circuit  
+5 V (MCU or Control power)  
4.7 kΩ  
SPM  
IN  
IN  
, IN  
, IN  
(UH)  
(VH)  
(WH)  
, IN  
, IN  
(UL)  
(VL)  
(WL)  
MCU  
V
FO  
COM  
Figure 13. Recommended MCU I/O Interface Circuit  
14.RC coupling at each input might change depending on the PWM control scheme used in the application and the wiring impedance of the  
applications printed circuit board. The input signal section of the Motion SPM 2 product integrates 5 kΩ (typ.) pulldown resistor. Therefore,  
when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.  
www.onsemi.com  
12  
 
FNA23512A  
P (1)  
R1  
R1  
R1  
(30) IN  
(WH)  
IN  
VCC  
COM  
Gating WH  
Gating VH  
Gating UH  
(31) VCC(WH)  
(32) VBD(W)  
(33) VB(W)  
C4  
C4  
R2  
OUT  
HVIC  
HVIC  
HVIC  
VB  
V
S
W (2)  
(34) V  
S(W)  
C3  
(25) IN(VH)  
IN  
VCC  
COM  
(26) VCC(VH)  
C4  
C4  
R2  
OUT  
(27) VBD(V)  
(28) VB(V)  
(29) VS(V)  
VB  
V
S
V (3)  
C3  
M
(19) IN(UH)  
(21) VCC(UH)  
(20) COM(H)  
(22) VBD(U)  
(23) VB(U)  
(24) VS(U)  
VDC  
IN  
VCC  
COM  
C7  
C4  
C4  
OUT  
R2  
C1 C1 C1  
M
C
U
VB  
V
S
U (4)  
C3  
5V line  
R1  
R3  
C5  
(16) C  
FOD  
OUT  
OUT  
OUT  
Fault  
C
FOD  
A
R4  
(15) VFO  
(14) IN  
NW (5)  
C1  
C
1
VFO  
(WL)  
R1  
R1  
IN  
Gating WL  
Gating VL  
Gating UL  
(13) IN(VL)  
(12) IN(UL)  
IN  
LVIC  
R1  
R4  
IN  
NV (6)  
E
15V line  
(10) V  
CC(L)  
VCC  
Shunt  
Resistor  
C1 C1  
5V line  
C1  
Power  
GND Line  
C2  
(11) COM  
(L)  
C4  
COM  
(9) VTH  
(8) RTH  
R4  
CSC  
NU (7)  
Temp.  
Monitoring  
Thermistor  
RSC (18)  
R5  
R
7
(17) C  
Sense  
Resistor  
SC  
D
B
C
R
6
Control  
GND Line  
C6  
WPhase Current  
VPhase Current  
UPhase Current  
Figure 14. Typical Application Circuit  
15.To avoid malfunction, the wiring of each input should be as short as possible (less than 2 3 cm).  
16.V output is an opendrain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor  
FO  
that makes I up to 2 mA. Please refer to Figure 13.  
FO  
17.Fault out pulse width can be adjust by capacitor C connected to the C  
terminal.  
5
FOD  
18.Input signal is activeHIGH type. There is a 5 kW resistor inside the IC to pulldown each input signal line to GND. RC coupling circuits should  
be adopted for the prevention of input signal oscillation. R C time constant should be selected in the range 50 ~ 150 ns (recommended  
1
1
R = 100 W, C = 1 nF).  
1
1
19.Each wiring pattern inductance of point A should be minimized (recommend less than 10 nH). Use the shunt resistor R of surface mounted  
4
(SMD) type to reduce wiring inductance. To prevent malfunction, wiring of point E should be connected to the terminal of the shunt resistor  
R as close as possible.  
4
20.To insert the shunt resistor to measure each phase current at N , N , N terminal, it makes to change the trip level I about the shortciruit  
U
V
W
SC  
current.  
21.To prevent errors of the protection function, the wiring of points B, C, and D should be as short as possible. The wiring of B between C  
SC  
filter and R terminal should be divided at the point that is close to the terminal of sense resistor R .  
SC  
5
22.For stable protection function, use the sense resistor R with resistance variation within 1% and low inductance value.  
5
23.In the shortcircuit protection circuit, select the R C time constant in the range 1.0 ~ 1.5 ms. R should be selected with a minimum of 10 times  
6
6
6
larger resistance than sense resistor R . Do enough evaluaiton on the real system because shortcircuit protection time may vary wiring  
5
pattern layout and value of the R C time constant.  
6
6
24.Each capacitor should be mounted as close to the pins of the Motion SPM 2 product as possible.  
25.To prevent surge destruction, the wiring between the smoothing capacitor C and the P & GND pins should be as short as possible. The use  
7
of a highfrequency noninductive capacitor of around 0.1 ~ 0.22 mF between the P & GND pins is recommended.  
26.Relays are used at almost every systems of electrical equipments at industrial application. In these cases, there should be sufficient distance  
between the CPU and the relays.  
27.The zener diode or transient voltage suppressor should be adopted for the protection of ICs from the surge destruction between each pair  
of control supply terminals (recommanded Zener diode is 22 V / 1 W, which has the lower zener impedance characteristic than about 15ꢀΩ).  
28.C of around 7 times larger than bootstrap capacitor C is recommended.  
2
3
29.Please choose the electrolytic capacitor with good temperature characteristic in C . Also, choose 0.1 ~ 0.2 mF Rcategory ceramic capacitors  
3
with good temperature and frequency characteristics in C .  
4
www.onsemi.com  
13  
FNA23512A  
PACKAGE MARKING AND ORDERING INFORMATION  
Device  
Device Marking  
Package  
Packing  
Quantity  
FNA23512A  
FNA23512A  
SPMCAA34  
Rail  
6
SPM is registered trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or  
other countries.  
www.onsemi.com  
14  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SPMCAA34 / 34LD, PDD STD, DBC DIP TYPE  
CASE MODFQ  
ISSUE O  
DATE 31 JAN 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13565G  
SPMCAA34 / 34LD, PDD STD, DBC DIP TYPE  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FNA25012A

智能功率模块,1200V,50A
ONSEMI

FNA25060

智能功率模块,600V,50A
ONSEMI

FNA27560

600 V Motion SPM® 2 系列
ONSEMI

FNA40560

Smart Power Module
FAIRCHILD

FNA40560

智能功率模块,600V,5A
ONSEMI

FNA40560B2

AC Motor Controller, 10A, PDIP26, SPM26-AAC, 26 PIN
FAIRCHILD

FNA40560_12

Smart Power Module
FAIRCHILD

FNA40860

Smart Power Module
FAIRCHILD

FNA40860

智能功率模块,600V,8A
ONSEMI

FNA40860B2

Smart Power Module
FAIRCHILD

FNA40860B2

智能功率模块 (IPM),运动控制
ONSEMI

FNA40860_1010

Smart Power Module
FAIRCHILD