LV8961HUWR2G [ONSEMI]

Sinusoidal Sensorless Three-Phase Brushless DC Motor Controller and Predriver, Automotive;
LV8961HUWR2G
型号: LV8961HUWR2G
厂家: ONSEMI    ONSEMI
描述:

Sinusoidal Sensorless Three-Phase Brushless DC Motor Controller and Predriver, Automotive

文件: 总68页 (文件大小:664K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Sinusoidal Sensorless  
Three-Phase Brushless  
DC Motor Controller and  
Predriver  
MARKING DIAGRAM  
LV8961H  
AWLYWW  
SQFP48K  
CASE 131AN  
LV8961HUW  
A
= Assembly Site  
WL  
Y
WW  
= Wafer Lot Number  
= Year of production, Last Number  
= Work Week Number  
Overview  
The LV8961 is a high performance sinusoidal sensorless  
threephase BLDC motor controller with predrivers for automotive  
applications. An integrated twostage charge pump provides gate  
current for a wide range of ultra low Rdson NFETs. The device offers  
a rich set of system protection and diagnostic functions such  
as overcurrent, overvoltage, shortcircuit, undervoltage,  
overtemperature and many more. It supports openloop as well  
as closedloop speed control based on Back ElectroMotive Force  
(BEMF) observation. The user configurable startup, speed setting  
and proportional/integral (PI) control coefficients, make LV8961  
suitable for a wide range of motorand load combinations.  
With a builtin linear regulator for powering an external circuit  
and a watchdog timer, the LV8961 offers a very small system solution.  
A onetime programmable (OTP) nonvolatile memory in addition  
to RAM and an SPI interface is provided for parameter setting  
and monitoring of the system status. With the operating junction  
temperature tolerance up to 175°C, the LV8961 is an ideal solution  
for standalone automotive and industrial BLDC motor control  
systems.  
LV8961H = Specific Device Code  
ORDERING INFORMATION  
Device  
Package  
Shipping  
LV8961HUWR2G  
SQFP48K  
(PbFree)  
2,500 /  
Tape & Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Cycle-by-cycle Current Limit and  
Overcurrent Shutdown (Threshold  
Value can be Selectable by Register)  
Overvoltage and Undervoltage  
Shutdown  
Features  
Overtemperature Warning and  
Shutdown  
AECQ100 Qualified and PPAP Capable  
Operating Junction Temperature up to 175°C  
Operating Voltage Range from 5.5 V to 28 V with Tolerance  
from 4.5 V to 40 V  
Input PWM Fault Detection  
Abnormal FG Cycle Monitoring  
Motor Pin Open Detection  
Embedded Proprietary Sensorless Trapezoidal and Sinusoidal  
Commutation  
Selectable Number of BEMF Zerocrossing Detection Window  
from 6, 3, 2, and 1 per Electrical Cycle  
Typical Applications  
Pumps (Fuel, Oil, Coolant, Hydraulic  
Controls, Vacuum, Solar Boilers, )  
Fans and Blowers (HVAC, Radiator,  
Condenser, Battery, Inverter, Charger, )  
White Goods and Industrial BLDC Motor  
Control  
Simple and Effective Lead Angle Adjustment Setting by Register  
Supports Open-loop as well as Closed-loop Speed Control  
Integrated Predrivers for Driving Six NMOSFETs  
Two-stage Charge Pump for Continuous 100% Duty Cycle Operation  
5 V / 3.3 V Regulator and Watchdog Timer Applications Using  
an External Microcontroller  
Configurable Speed Settings with Linear Characteristic  
PI Control Include Acceleration/Deceleration Adjustment  
Direct Access to PWM Duty and FG Cycle via SPI Interface  
Various System Protection Features Including:  
Shoot through Protection Using Configurable Dead Time  
Drain-source Short Detection  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
June, 2022 Rev. 1  
LV8961HUW/D  
LV8961HUW  
LV8961H BLOCK DIAGRAM  
VS  
CHP CP1N CP1P CP2N CP2P VGL  
5 V / 3.3 V  
Regulator  
LV8961H  
VCC  
V3RI  
V
INT  
Regulator  
Charge Pump  
COM  
VDH  
V3RO  
ZeroCross  
Detection  
Watchdog  
OTP  
High Voltage  
PWM Input  
HVPIN  
RXD  
Timer  
System  
OSC  
Registers  
UH  
CSB  
SCLK  
SI  
UOUT  
VH  
VOUT  
WH  
System Control  
and  
Sensorless  
Commutation  
SO  
EN  
Predriver  
WOUT  
UL  
LVPIN  
FG  
VL  
WAKE  
WL  
SUL  
DIAG  
TEST  
V
VS  
CHP  
VGL  
DS  
SVL  
Thermal  
Shutdown Logic  
Voltage  
Monitor  
Monitor  
SWL  
+
Protection  
Logic  
RF  
+
+
OCSEL CLSEL  
THTH  
RFSENS  
TH  
IGND  
AGND  
PGND  
Figure 1. LV8961H Block Diagram  
www.onsemi.com  
2
LV8961HUW  
APPLICATION BLOCK DIAGRAMS  
VBAT  
PWM  
VS CHP CP1N CP1P CP2N CP2P VGL  
HVPIN  
V3RI  
COM  
VDH  
+
V3RO  
VCC  
UH  
UOUT  
VH  
RXD  
CSB  
VOUT  
WH  
SCLK  
SI  
LV8961H  
WOUT  
UL  
SO  
EN  
VL  
LVPIN  
FG  
WL  
SUL  
SVL  
DIAG  
WAKE  
TEST  
Key  
SWL  
RF  
RFSENS  
PGND  
IGND AGND  
TH  
V3RO  
Figure 2. Example of Standalone Configuration  
www.onsemi.com  
3
LV8961HUW  
VBAT  
PWM  
VS CHP CP1N CP1P CP2N CP2P VGL  
HVPIN  
V3RI  
COM  
+
V3RO  
VCC  
VDH  
UH  
UOUT  
RXD  
CSB  
VH  
VOUT  
WH  
SCLK  
SI  
LV8961H  
WOUT  
MCU  
SO  
UL  
VL  
EN  
LVPIN  
FG  
WL  
SUL  
SVL  
DIAG  
WAKE  
TEST  
SWL  
Key  
RF  
RFSENS  
PGND  
IGND AGND  
TH  
V3RO  
Figure 3. Example of MCU Based Control Configuration  
www.onsemi.com  
4
LV8961HUW  
PIN ASSIGNMENTS  
36  
25  
37  
24  
NC  
VDH  
PGND  
VGL  
COM  
NC  
CHP  
RF  
CP1N  
NC  
LV8961H  
CP1P  
CP2P  
CP2N  
TEST  
VS  
RFSENS  
TH  
SQFP48K(7x7)  
7 mm x 7 mm  
LVPIN  
NC  
HVPIN  
NC  
WAKE  
EN  
IGND  
48  
13  
1
12  
Figure 4. LV8961H Pinout  
www.onsemi.com  
5
LV8961HUW  
PIN DESCRIPTION  
Pin Name  
V3RO  
Pin No  
TYPE  
TYPE 2  
TYPE 1  
Description  
Page  
19  
1
2
3 V regulator output pin. Connect capacitor between this pin and AGND  
V3RI  
3 V regulator input pin (internally connected to control, and logic circuits). Connect to  
19  
V3RO pin  
NC  
3, 14, 16,  
20, 22, 24  
No Connections  
DIAG  
VCC  
4
5
TYPE 4  
TYPE 2  
Programmable open drain diagnostic output  
21  
19  
5 V or 3.3 V regulator output pin. (Selected by internal register setting) Power supply for  
microcontroller. Connect capacitor to AGND for stability  
RXD  
6
TYPE 4  
Open drain logic level output of HVPIN received data. Use pull-up to a voltage less than  
or equal to VS  
21  
AGND  
CSB  
SCLK  
SI  
7
8
Analog GND pin  
TYPE 5  
TYPE 3  
TYPE 3  
TYPE 4  
TYPE 4  
Active low SPI interface chip selection pin  
SPI interface clock input pin  
26  
26  
26  
26  
21  
9
10  
11  
12  
Active high SPI interface serial data input pin  
Open drain SPI interface serial data output pin  
SO  
FG  
Open drain BEMF transition output pin. The frequency division ratio is selectable via  
register settings  
IGND  
HVPIN  
LVPIN  
13  
15  
17  
TYPE 12  
TYPE 12  
TYPE 3  
HV PWMIN Block GND pin. Must be connected to AGND on the PCB  
High voltage PWM input with a VVS/2 threshold  
21  
21  
Digital level PWM input pin for direct drive or speed register selection details. Input  
polarity can be programmed for either active high or active low  
TH  
18  
TYPE 1  
Thermistor input pin for power stage temperature detection. If the input voltage is below  
the threshold voltage, an error is triggered. The error threshold is programmable.  
To disable tie to V3RO  
23  
RFSENS  
RF  
19  
21  
23  
TYPE 13  
TYPE 13  
TYPE 9  
Shunt resistance reference pin. Connect this pin to the GND side of the Shunt resistor  
with Kelvin leads  
22  
22  
15  
21  
Output current detect pin. Connect this pin to higher terminal of the shunt resistor with  
Kelvin leads  
COM  
COM input pin. Connect this pin to the motor neutral point if available. This point may be  
derived from a resistive network with 1 k resistors to the phases  
SWL  
SVL  
SUL  
25  
29  
33  
TYPE 8  
TYPE 8  
TYPE 8  
Current return path for lowside predriver. Shortcircuit shutoff level is measured  
between this pin and its corresponding phase pin  
WL  
VL  
UL  
26  
30  
34  
TYPE 8  
TYPE 8  
TYPE 8  
Predriver output pin for the lowside NFET. Use gate resistors for waveshaping  
21  
21  
21  
21  
WOUT  
VOUT  
UOUT  
27  
31  
35  
TYPE 7  
TYPE 7  
TYPE 7  
Current return path for highside predriver and reference for highside shortcircuit  
shutoff  
WH  
VH  
UH  
28  
32  
36  
TYPE 7  
TYPE 7  
TYPE 7  
Predriver output pin for the highside NFET. Use gate resistors for waveshaping  
VDH  
PGND  
VGL  
37  
38  
39  
40  
TYPE 14  
Sense input for supply voltage and shortcircuit detection of highside power Fets.  
Connect through 100 W resistor to common drain of the power bridge  
TYPE 10,  
11  
GND pin for the charge pump  
TYPE 10  
Power supply pin for lowside predriver. Connect decoupling capacitor between this pin  
and GND  
19  
19  
CHP  
TYPE 11  
Power supply pin for highside predriver. Connect decoupling capacitor between this pin  
and VS  
www.onsemi.com  
6
LV8961HUW  
PIN DESCRIPTION (continued)  
Pin Name  
Pin No  
TYPE  
Description  
Page  
CP1N  
41  
TYPE 10  
Charge transfer pin of the Charge pump (1N). Connect capacitor between CP1P and  
CP1N  
19  
CP1P  
CP2P  
CP2N  
42  
43  
44  
TYPE 10  
TYPE 11  
TYPE 11  
TYPE 15  
Charge transfer pin of the Charge pump (1P). Connect capacitor between CP1P and  
CP1N  
19  
19  
19  
Charge transfer pin of the Charge pump (2P). Connect capacitor between CP2P and  
CP2N  
Charge transfer pin of the Charge pump (2N). Connect capacitor between CP2P and  
CP2N  
TEST  
VS  
45  
46  
47  
Factory test pin. Connect to GND  
Power supply pin  
WAKE  
TYPE 6  
TYPE 3  
WAKE pin. “H” = Operating mode, “L” or “Open” = Sleep mode. In Sleep mode all  
predrivers are high impedance. To protect the power stage, pull-down resistors on the  
gate lines may be required  
18  
18  
EN  
48  
Motor stage Enable pin. “H” = Normal enabled mode; “L” or “Open” = Standby mode. In  
Standby mode all predrivers are driven low. Motor freewheeling  
www.onsemi.com  
7
LV8961HUW  
PIN CIRCUIT  
VS  
VS  
VS  
LVPIN  
SCLK  
SI  
V3RO  
VCC  
V3RI  
TH  
100 kW  
EN  
TYPE 3: LVPIN, SCLK, SI, EN  
VS  
TYPE1: V3RI, TH  
VS  
TYPE 2: V3RO, VCC  
V3RO  
VS  
30 kW  
WAKE  
RXD  
SO  
FG  
CSB  
100 kW  
DIAG  
TYPE5: CSB  
TYPE6: WAKE  
TYPE4: RXD, SO, FG, DIAG  
CHP  
COM  
VGL  
UH  
VH  
WH  
60 kW  
100 kW  
UL  
VL  
WL  
UOUT  
VOUT  
WOUT  
100 kW  
60 kW  
SUL  
SVL  
SWL  
TYPE7: UH, VH WH, UOUT, VOUT, WOUT  
TYPE8: UL, VL, WL, SUL, SVL, SWL  
TYPE9: COM  
VGL  
CHP  
VS  
CP1P  
CP2P  
30 kW  
VGL  
VS  
VS  
HVPIN  
CP1N  
CP2N  
PGND  
IGND  
PGND  
TYPE10: VGL, CP1P, CP1N, PGND  
TYPE11: CHP, CP2P, CP2N, PGND  
TYPE12: HVPIN, IGND  
Figure 5. Pin Circuit  
www.onsemi.com  
8
LV8961HUW  
PIN CIRCUIT (continued)  
20 mA  
20 mA  
VS  
VS  
RF  
VDH  
RFSENS  
TYPE13: RF, RFSENS  
TYPE14: VDH  
TEST  
75 kW  
TYPE15: TEST  
Figure 6. Pin Circuit (continued)  
www.onsemi.com  
9
LV8961HUW  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Pins  
Ratings  
0.3 to 40  
0.3 to 40  
0.3 to 40  
0.3 to 16  
0.3 to 3.6  
0.3 to 5.5  
0.3 to 40  
0.3 to 5.5  
0.3 to 40  
10 to 40  
3 to 3.6  
Unit  
V
Supply Voltage  
VS  
Sense Input for Supply Voltage  
Charge Pump Voltage (High Side)  
Charge Pump Voltage (Low Side)  
Logic Power Supply  
VDH  
V
CHP  
V
VGL  
VR3I, VR3O  
V
V
5 V Regulator Voltage  
Digital I/O Voltage1  
VCC  
V
WAKE,EN  
V
Digital I/O Voltage2  
CSB, SCLK, SI, LVPIN, TEST  
DIAG, FG, SO, RXD  
HVPIN  
V
Digital Output Voltage  
High Voltage PWMIN Voltage  
RF Input Voltage  
V
V
RF  
V
RFSENS Input Voltage  
TH Input Voltage  
RFSENS  
0.3 to 1.0  
0.3 to 3.6  
3 to 40  
V
TH  
V
Voltage Tolerance  
UOUT, VOUT, WOUT, COM  
UH, VH, WH  
V
Highside Output  
3 to 40  
V
Lowside Output  
UL, VL, WL  
3 to 16  
V
Lowside Source Output Voltage  
Voltage between HS Gate and Phase  
Voltage between LS Gate and Source  
Output Current  
SUL, SVL, SWL  
UHUOUT,VHVOUT,WHWOUT  
ULSUL, VLSVL, WLSWL  
3 to 3.6  
V
0.3 to 40  
0.3 to 16  
V
V
UH,VH,WH,UL,VL,WL  
pulsed (duty 5%)  
50  
400  
mA  
Open Drain Output Current  
DIAG, FG, SO, RXD  
with Board (Note 1)  
AEC Q100002  
10  
47  
mA  
°C/W  
kV  
Thermal Resistance (R  
)
q
jA  
ESD Human Body Model  
2
ESD Charged Device Model  
Storage Temperature  
AEC Q100011  
750  
V
55 to 150  
40 to 150  
150 to 175  
°C  
Junction Temperature  
°C  
(Note 2)  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. 76.2 × 114.3 × 1.6 mm, glass epoxy board.  
2. Operation outside the Operating Junction temperature is not guaranteed. Operation above 150_C should not be considered without a written  
agreement from onsemi Engineering staff.  
www.onsemi.com  
10  
 
LV8961HUW  
ELECTRICAL CHARACTERISTICS  
(Valid at a junction temperature range from 40°C to 150°C, for supply Voltage 6.0 V VS 28 V. Typical values at 25°C and VS = 12 V  
unless specified otherwise)  
Parameter  
Symbol  
Condition  
Min  
6
Typ  
12  
Max  
28  
Unit  
V
Supplyvoltage Range  
VS  
Normal mode  
Device fully functional  
5.5  
4.5  
28  
V
Full logic functionality,  
driver stage off  
40  
V
Supply Current into VS  
I
s1  
V3RO = V3RI  
EN = L  
15  
25  
mA  
Is  
Sleep Mode  
40  
80  
mA  
°C  
2
Operational junction  
Temperature  
Topj  
40  
150  
OUTPUT BLOCK (UH, VH, WH, UL, VL, WL)  
Lowside Output  
Onresistance 1  
RON(L1)  
RON(L2)  
RON(H1)  
RON(H2)  
“L” level Io = 10mA  
“H” level Io = 10mA  
“L” level Io = 10mA  
“H” level Io = 10mA  
6
12  
6
15  
22  
15  
22  
W
W
W
W
Lowside Output  
Onresistance 2  
Highside Output  
Onresistance 1  
Highside Output  
Onresistance 2  
12  
DRIVE OUTPUT BLOCK (PWM BLOCK)  
Drive Output  
fPWMO  
18.5  
19.5  
20.5  
0.1  
kHz  
%
PWM Frequency  
Output PWM Duty Cycle  
Resolution  
DPWMDUTY (Note 3)  
3 V CONSTANT VOLTAGE OUTPUT  
Output Voltage  
V3RO  
3.135  
3.3  
3.465  
50  
V
Voltage Regulation  
DV3R1  
VS = 6.0 to 28 V  
mV  
mV  
mA  
Load Regulation  
Current Limit  
DV3REG2  
Io = 5 mA to 25 mA  
50  
IV3RO  
Not for external loads > 5 mA  
50  
VCC 5 V CONSTANT VOLTAGE OUTPUT  
Output Voltage  
Voltage Regulation  
Load Regulation  
Current Limit  
VC5RO  
DVC5R1  
DVC5R2  
IVCC5V  
VS = 6.0 to 28 V  
VS = 6.0 to 28 V  
Io = 5 mA to 25 mA  
4.75  
5.00  
5.25  
50  
50  
V
mV  
mV  
mA  
50  
VCC 3 V CONSTANT VOLTAGE OUTPUT  
Output Voltage  
Voltage Regulation  
Load Regulation  
Current Limit  
VC3RO  
DVC3R1  
DVC3R2  
IVCC3V3  
3.135  
3.3  
3.465  
50  
V
VS = 6.0 to 28 V  
mV  
mV  
mA  
Io = 5 mA to 25 mA  
50  
50  
LOWSIDE GATE VOLTAGE OUTPUT (VGL PIN)  
Lowside Output Voltage1  
Lowside Output Voltage2  
Lowside Output Voltage3  
VGLH1  
VGLH2  
VGLH3  
6.0 <VS 8.0 V Io = 10 mA  
8.0 < VS 20 V Io = 10 mA  
20 < VS 28V Io = 10mA  
8.0  
10.0  
7.0  
12.0  
12.0  
14.0  
14.0  
V
V
V
www.onsemi.com  
11  
LV8961HUW  
ELECTRICAL CHARACTERISTICS (continued)  
(Valid at a junction temperature range from 40°C to 150°C, for supply Voltage 6.0 V VS 28 V. Typical values at 25°C and VS = 12 V  
unless specified otherwise)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
HIGHSIDE OUTPUT VOLTAGE (CHP PIN)  
Internal Charge Pump  
Oscillator frequency  
FCP  
SSCG = 0  
49.6  
52.1  
54.6  
kHz  
V
Boost Voltage1  
Boost Voltage2  
Boost Voltage3  
CHP Voltage Limit  
VGHH1  
VGHH2  
VGHH3  
VCHPLIM  
6.0 VS 8.0 V  
Io = 10 mA  
VS  
+6.0  
VS  
+12.0  
VS  
+14.0  
8.0 < VS 20 V  
Io = 10 mA  
Vs  
+9.0  
VS  
+12.0  
VS  
+14.0  
V
20 < VS 28 V  
Io = 10 mA  
VS  
+6.0  
V
VS = 28 V  
34  
36.5  
38  
V
PWMIN INPUT PIN IN LOW FREQUENCY MODE  
fLPWM  
PWMF = 0  
5.3  
1000  
220  
Hz  
ms  
Input PWM Frequency Range  
Low frequency mode  
PWM Signal Timeout  
TLPWMIN  
PWMF = 0  
Low frequency mode  
210  
PWMIN INPUT PIN IN HIGH FREQUENCY MODE  
Input PWM Frequency Range  
fHPWM  
PWMF = 1  
5.3  
18500  
Hz  
High frequency mode  
PWMINSEL=1  
LVPIN is used for PWM input  
DIGITAL INPUT PIN (CSB)  
High level Input Voltage  
Low level Input Voltage  
Input Hysteresis Voltage  
Pullup Resistance  
VIH1  
VIL1  
0.8×V3RO  
V
V
0.2×V3RO  
0.6×V3RO  
60  
VIHYS1  
RDVI1  
0.1  
15  
0.35  
30  
V
kW  
DIGITAL INPUT PIN (SCLK, SI, LVPIN)  
High level Input Voltage  
Low level Input Voltage  
Input Hysteresis Voltage  
Pulldown Resistance  
WAKE INPUT PIN  
VIH2  
0.8×V3RO  
V
V
VIL2  
0.2×V3RO  
0.6×V3RO  
200  
VIHYS2  
RDVI2  
0.1  
50  
0.35  
100  
V
kW  
High level Input Voltage  
Low level Input Voltage  
Internal Pulldown Resistance  
EN INPUT PIN  
VIH3  
VIL3  
2.5  
V
V
0.6  
200  
RDVI3  
50  
100  
kW  
High level Input Voltage  
Low level Input Voltage  
Input Hysteresis Voltage  
Pulldown Resistance  
TEST INPUT PIN  
VIH4  
VIL4  
0.8×V3RO  
V
V
0.2×V3RO  
0.6×V3RO  
200  
VIHYS4  
RDVI4  
0.1  
50  
0.35  
100  
V
kW  
High level Input Voltage  
Low level Input Voltage  
Input Hysteresis Voltage  
Pulldown Resistance  
VIH5  
VIL5  
0.8×V3RO  
V
V
0.2×V3RO  
0.6×V3RO  
150  
VIHYS5  
RDVI5  
0.1  
0.35  
75  
V
37.5  
kW  
www.onsemi.com  
12  
LV8961HUW  
ELECTRICAL CHARACTERISTICS (continued)  
(Valid at a junction temperature range from 40°C to 150°C, for supply Voltage 6.0 V VS 28 V. Typical values at 25°C and VS = 12 V  
unless specified otherwise)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
DIGITAL OUTPUT PIN (SO, FG, DIAG, RXD)  
Output Voltage  
VOL  
Io = 1 mA pullup current  
0.2  
10  
V
Output Leakage Current  
ILOLK  
mA  
CURRENT LIMIT / OVERCURRENT PROTECTION (RF, RFSENS)  
Current Limit Voltage 1  
VRF11  
VRF12  
VRF21  
Voltage between RF and RFSENS,  
CLSEL = 0  
40  
90  
15  
50  
100  
25  
60  
110  
35  
mV  
mV  
mV  
Current Limit Voltage 2  
Voltage between RF and RFSENS,  
CLSEL = 1  
Overcurrent Detection  
Voltage Threshold 1  
Voltage between RF and RFSENS,  
OCSEL = 00  
The difference voltage between  
VRF21 and the actual current limit  
voltage  
Overcurrent Detection  
Voltage Threshold 2  
VRF22  
VRF23  
VRF24  
Voltage between RF and RFSENS,  
OCSEL = 01  
The difference voltage between  
VRF22 and the actual current limit  
voltage  
40  
65  
90  
50  
75  
60  
85  
mV  
mV  
mV  
Overcurrent Detection  
Voltage Threshold 3  
Voltage between RF and RFSENS,  
OCSEL = 10  
The difference voltage between  
VRF23 and the actual current limit  
voltage  
Overcurrent Detection  
Voltage Threshold 4  
Voltage between RF and RFSENS,  
OCSEL = 11  
100  
110  
The difference voltage between  
VRF24 and the actual current limit  
voltage  
EXTERNAL THERMAL PROTECTION (TH)  
Threshold Voltage Falling  
VTH0  
VTH1  
VTH2  
VTH3  
THTH[1:0] = 00  
THTH[1:0] = 01  
THTH[1:0] = 10  
THTH[1:0] = 11  
Typ –35  
25  
350  
300  
250  
200  
Typ +35  
mV  
Hysteresis Range  
VTHHYS  
50  
75  
mV  
THERMAL PROTECTION  
Thermal Warning Temperature  
(Junction Temperature) (Note 3)  
TSTS = 0  
TSTS = 1  
°C  
TTW0  
TTW1  
125  
150  
Thermal Warning Temperature  
Hysteresis  
TTWHYS  
(Junction Temperature) (Note 3)  
25  
°C  
°C  
Thermal Shutdown  
Temperature  
(Junction Temperature) (Note 3)  
TSTS = 0  
TSTS = 1  
TTSD0  
TTSD1  
150  
175  
Thermal Shutdown  
Temperature Hysteresis  
TTSDHYS  
(Junction Temperature) (Note 3)  
25  
°C  
VOLTAGE MONITORING (VS, CHP, VGL, VCC)  
VS Undervoltage Detection  
VSLV  
4.8  
0.1  
5.1  
0.4  
V
V
VS Undervoltage Detection  
Hysteresis  
VSLVHYS  
0.25  
VS Overvoltage Detection  
VSHV  
30.5  
1.5  
35.5  
2.5  
V
V
Overvoltage Detection  
Hysteresis  
VSHVHYS  
2.0  
www.onsemi.com  
13  
LV8961HUW  
ELECTRICAL CHARACTERISTICS (continued)  
(Valid at a junction temperature range from 40°C to 150°C, for supply Voltage 6.0 V VS 28 V. Typical values at 25°C and VS = 12 V  
unless specified otherwise)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
VOLTAGE MONITORING (VS, CHP, VGL, VCC)  
VDH Overvoltage Detection  
VDHHV  
30.5  
1.5  
35.5  
2.5  
V
V
VDH Overvoltage Detection  
Hysteresis  
VDHHVHYS  
2.0  
CHP Undervoltage Detection  
CHPLV  
VS+4.5  
0.2  
VS+5.5  
0.7  
V
V
CHP undervoltage Detection  
Hysteresis  
CHPLVHYS  
0.4  
VGL Undervoltage Detection  
VGLLV  
4.5  
0.2  
5.5  
0.7  
V
V
VGL Undervoltage Detection  
Hysteresis  
VGLLVHYS  
0.4  
VCC3.3 Undervoltage  
Detection  
VCLV3  
REGSEL = 0, VCEN = 1,  
VCLVPO = 0  
2.3  
0.1  
3.8  
0.1  
2.7  
0.4  
4.2  
0.4  
V
V
V
V
VCC3.3 Undervoltage  
Detection Hysteresis  
VCLVHYS3 REGSEL = 0,  
VCLVPO = 0  
0.25  
VCC5.0 Undervoltage  
Detection  
VCLV5  
REGSEL = 1, VCEN = 1,  
VCLVPO = 0  
VCC5.0 Undervoltage  
Detection Hysteresis  
VCLVHYS5 REGSEL = 1,  
VCLVPO = 0  
0.25  
HVPIN PIN  
Internal Pullup Resistance  
High Level Input Voltage  
Low Level Input Voltage  
Input Hysteresis Voltage  
RI5  
VIH5  
15  
0.6×VS  
0
30  
60  
kW  
V
VS  
VIL5  
0.4×VS  
0.2×VS  
V
VIHYS5  
0.05×VS  
V
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. Not tested in production. Guaranteed by design.  
www.onsemi.com  
14  
LV8961HUW  
DETAILED FUNCTIONAL DESCRIPTION  
The LV8961H integrates full sensorless brushless DC  
In case of system errors such as a missing control signal,  
or a watchdog error, the LV8961H includes autorun  
settings. If one of those errors occur and connection to the  
microcontroller is lost, the motor can continue running at a  
predefined fixed duty cycle of 25%, 50%, 75% or 100% and  
TAG_L or TAG_H.  
motor commutation and Proportional/Integral (PI) speed  
control. A robust startup algorithm combined with OTP  
registers for important system parameters make this IC a  
solution of choice for many BLDC applications which need  
to turn a motor in one direction only such as pumps, fans, etc.  
Building a BLDC application with the LV8961H is even  
simpler than building a DC motor. Only a PWM pulse train  
is necessary to control the motor – either directly or via  
speed control. Switchonly applications are also possible.  
Speed and error information can be fed back to the control  
unit via FG and DIAG outputs.  
If more complex operation and flexibility are required the  
LV8961H can be combined with a small microcontroller.  
The LV8961H implements motor commutation and includes  
all necessary support circuitry for the microcontroller such  
as:  
Motor Commutation  
Motor position is detected using the BEMF of the  
undriven phase of a rotating threephase motor relative to  
its neutral point connected to COM. BEMF monitoring can  
be detected at 2 points in each phase of U/V/WOUT, and  
there are 6 zerocrossing signal in 3 phase in total with  
6 undriven windows. Once an adequate BEMF level has  
been detected voltages applied via PWM to the other two  
phases of the motor maintain rotation. The digital equivalent  
of the BEMF signal appears at FG.  
Two different PWM patterns can be selected via register  
SLMD to match motors with trapezoidal or sinusoidal  
BEMF.  
5 V / 3.3 V Power supply  
Integrated watchdog timer  
External Temperature Sensor  
Figure 7. Trapezoidal vs. Sinusoidal Drive  
(CH1, 2 = U, V Phase Voltage, CH3 = FG, CH4 = U Phase Current)  
With sinusoidal drive, each phase is driven with  
will be detected by opening 6 windows per electrical  
cycle. This offers increased robustness at the expense of  
increased current waveform distortion. At the startup, this  
6window mode is automatically selected.  
6 windows for BEMF monitoring. This results in sinusoidal  
drive current with lower total harmonic distortion, reducing  
both torque ripple and noise. Trapezoidal drive results in a  
higher voltage across the motor phases and may be  
preferable for high torque and high speed operation.  
3window mode  
One rising zerocrossing for each phase will be detected  
by opening 3 windows per electrical cycle. The same  
waveform is applied to the three phases.  
Rotor Position Detection  
The rotor position is detected with BEMF zerocross  
timing. To detect the BEMF, the short window is opened by  
making the phase current zero or the phase float. Four types  
of the window mode are provided.  
1window mode  
One rising zerocrossing in phase U will be detected by  
opening a window only in phase U. Therefore, the current  
waveform distortion will be minimized for the other  
phases.  
6window mode  
All zerocrossings (rising and falling) for all three phases  
www.onsemi.com  
15  
LV8961HUW  
In this example (3window mode), we will introduce two  
important timing parameters: MSKRSTNUM0 and  
MSKRSTNUM1:  
2window mode  
A risingand a falling zerocrossing in phase U will be  
detected by opening 2 windows per electrical cycle only  
in phase U.  
BEMF Window Timing  
Figure 8 shows a timing chart of the BEMF window with  
simplified phase voltage and current waveform illustrations.  
Inductive  
kick  
High Z  
window  
PhaseU  
simplified  
voltage  
Highside PWM ON  
Lowside PWM ON  
PhaseU  
current  
60 deg  
60 deg  
60 deg  
60 deg  
60 deg  
60 deg  
FG3  
BEMF detection  
MSKRSTNUM1  
MSKRSTNUM0  
W phase BEMF  
zerocross finding  
U phase BEMF  
zerocross finding  
V phase BEMF  
zerocross finding  
Figure 8. BEMF Window Timing Parameters  
(1) MSKRSTNUM0_***  
MSKRSTNUM0 defines the time from the beginning of  
the BEMF detection window (reserved for that phase) until  
the moment where the phase output turns off (= start of the  
HiZ window).  
Where, *** is ONE (for 1window mode), TWO (for  
2window mode), THR (for 3window mode), SIX (for  
6window mode), or INI (for startup 6window mode).  
www.onsemi.com  
16  
 
LV8961HUW  
MSKRSTNUM0_THR[3:0] = x  
x < 8 (15 + x * 3.75) deg  
x 8 (41.25 + (x – 7) * 1.875) deg  
until BEMF sensing. This blanking time prevents faulty  
zerocross detection due to the flyback caused by the  
window opening.  
Example:  
MSKRSTNUM1_THR[3:0] = x  
((x +1) + 1.875) deg  
x = 4 (15 + x * 3.75) deg (15 + 4 * 3.75) deg = 30 deg  
Example:  
(2) MSKRSTNUM1_***  
x = 2 ((x +1) + 1.875) deg ((2 +1) + 1.875) deg =  
5.625 deg  
Where, *** is ONE (for 1window mode), TWO (for  
2window mode), THR (for 3window mode), SIX (for  
6window mode), or INI (for startup 6window mode).  
MSKRSTNUM1 is a blanking (or ignoring) period from  
the start of the Hiz window defined by MSKRSTNUM0  
These window parameters are used commonly with the  
sinusoidal waveform shaping mode and trapezoidal  
waveform shaping mode.  
Table 1.  
The Number of Window  
SLMD = L  
SLMD = H  
Trapezoidal  
Sinusoidal  
WINDSEL  
Window Timing Parameters  
0
6
6
6
6
6
MSKRSTNUM1_SIX  
MSKRSTNUM0_SIX  
1
2
3
3
2
1
MSKRSTNUM1_THR  
MSKRSTNUM0_THR  
MSKRSTNUM1_TWO  
MSKRSTNUM0_TWO  
MSKRSTNUM1_ONE  
MSKRSTNUM0_ONE  
Maximum Motor Speed  
Motor Startup  
The maximum physical motor speed of the application is  
limited by the internal clock to approximately 48000  
electrical RPM. If this is exceeded the LV8961H coasts the  
motor until BEMF detection and drive can resume.  
BEMF is used for rotor position sensing but for BEMF  
generation the motor has to be rotating. A stopped motor will  
initially be driven openloop until BEMF can be detected.  
Openloop operation is motor parameter dependent. The  
most critical parameters depend on load and motor inertia:  
initial commutation frequency and PWM duty cycle (which  
affects motor flux density).  
In the LV8961H, the initial commutation frequency is  
programmed with register STOSC. Flux density is regulated  
by limiting startup current with a current ramp. During this  
ramp the current limit is increased in 16 steps from 0 to the  
maximum current defined by the external shunt. The ramp  
time from 102 ms to 6.55 s is defined in register SSTT.  
Register CLREFEN_STOP allows to disable the current  
ramp if necessary.  
Lead Angle Setting  
LV8961H can adjust the lead angle according to the output  
Duty as depicted in Figure 9. It is set by the registers  
LASET_L, LASET_H and LASET_LIM.  
LASET_L sets lead angle when the output duty is 0%, and  
LASET_H sets lead angle when the output duty is 100%.  
And then LASET_LIM sets the upper limit when an  
application requires it.  
LA  
Fixed motor speed will be applied until either a valid  
BEMF has been detected in all three phases or the startup  
timer expires.  
LASET_H  
LASET_LIM  
Motor Lock  
This timer begins after the end of the current ramp and can  
be programmed from 400 ms to 6.4 s in register CPTM. If  
the timer expires a locked rotor error is flagged. In automatic  
retry mode, the LV8961H will restart after standby mode for  
time of eight times of CPTM.  
LASET_L  
Output  
PWM Duty  
0
100%  
Figure 9. Lead Angle adjustment  
www.onsemi.com  
17  
 
LV8961HUW  
Motor Connect Open Detection  
power on reset (POR) threshold the system oscillator starts,  
and after 32 counts of the system clock (1.6 ms typical)  
releases the internal digital reset which simultaneously starts  
the external regulator VCC and the charge pump, and loads  
the system register contents from OTP into the internal  
registers. During the entire wakeup sequence of 8 ms (typ.)  
DIAG is masked for charge pump and VCC undervoltage.  
After wakeup is complete, the IC enters Standby mode and  
DIAG is activated to display internal errors. During Standby  
mode full SPI access is possible.  
A high on EN takes the LV8961H from Standby to Normal  
mode. Normal mode allows motor control and SPI access is  
limited. A low on EN disables the motor stage regardless of  
the PWM input and returns the part back to Standby mode.  
The IC is shut down by taking WAKE to low level. WAKE  
has priority over the state of EN, if EN hold functionality is  
desired; it needs to be implemented with an external diode  
from EN to WAKE.  
When the motor cannot be started for a certain period of  
time and it is in the startup mode, this IC flows current to  
each coil, then determines IC is in a constraint state when  
current flows, or an open state when no current flows. The  
detection time for the current to flow can be selected by  
OPDTM register.  
Spinup of Rotating Motors  
The LV8961H can perform freewheeling detection before  
applying the openloop spinup algorithm described above.  
If the motor is already turning in the right direction the IC  
will continue with closedloop commutation. If the motor is  
turning in the wrong direction, the IC will wait for the motor  
to stop and then perform openloop startup.  
There are two scenarios where this behavior might not be  
desirable:  
1. Fast Startup is required  
Freewheeling detection takes up to one electrical  
revolution of the motor, which may be  
System States  
inacceptable for some applications. In this case  
freewheeling detection can be disabled by setting  
FRREN  
LV8961H has three operating modes. The operating  
modes are controlled by WAKE and EN.  
Sleep Mode  
2. Windmilling backwards  
Sleep mode is a power saving mode. All circuits are  
powered down, charge pump is inactive and the SPI port is  
unusable. Activating WAKE allows the transition from the  
sleep mode to either Standby or Normal mode.  
Should the motor be driven by some external force  
as it is freewheeling in the wrong direction the  
LV8961H will potentially wait forever. Should  
startup under these conditions be required,  
freewheeling detection must be disabled as well  
Standby Mode  
In Standby mode the OTP content has been transferred  
into the main registers. In this mode all outputs are turned  
off. Any internal writable register that is not locked can be  
configured by SPI interface.  
Chip Activation, Shutdown and System States  
After power up of VS and WAKE above 2.5 V the  
LV8961H wakes up. Standby mode is entered after VS has  
exceeded 5.5 V (min.).  
Normal Mode  
A high level on WAKE activates the IC from sleep mode  
which enables the internal linear regulator at V3RO. Once  
the voltage on V3RO as sensed on V3RI has passed the  
In normal mode, outputs can be controlled and all blocks  
are active. All registers can be read through the SPI  
interface.  
Mode  
Sleep  
WAKE  
EN  
x
Internal Bias  
Disable  
Logic  
Reset  
Active  
Active  
VCC  
Charge Pump  
Disable  
Drivers  
HighZ  
Low  
L
H
H
Disable  
Enable  
Enable  
Standby  
Normal  
L
Enable  
Enable  
H
Enable  
Enable  
Enable  
Supply Voltage Transients  
power stage drivers UH, VH, WH and UL, VL, and WL go  
low, turning the external power stage high impedance and  
letting the motor freewheel. The LV8961H will reengage  
the motor after conditions have returned to normal.  
The LV8961H is well suited to operate during typical  
automotive transients. It is fully functional during startstop  
transients, as it maintains all specified parameters for supply  
voltages from 6 V < VS < 28 V. If the supply voltage falls  
below 5 V, for example during cold cranking, undervoltage  
error is flagged, but digital functionality is maintained until  
the internal regulator falls below its undervoltage lockout  
level of 2.2 V. The VCC regulator must be configured for 3.3  
V if low transient operation is desired.  
System Power Supplies  
Three power supplies are integrated into the LV8961H:  
An internal 3.3 V regulator provides power to the  
digital and interface section  
The VCC regulator can be configured to provide 5 V or  
3.3 V to an external processor and other loads  
If overvoltage protection is enabled in MRCONF8 an  
overvoltage error is indicated if the supply rises beyond  
28 V(min). In both underand overvoltage error modes, the  
www.onsemi.com  
18  
LV8961HUW  
The VCC regulator can be enabled or disabled with  
register VCEN.  
A twostage charge pump allows 100% duty cycle  
operation and maintains full enhancement to the power  
stage at low input voltages  
Charge Pump Circuit for CHP and VGL  
LV8961H has an integrated charge pump circuit for  
lowside and highside predriver supply. Lowside drive  
voltage at VGL is 12 V(typ.) and highside drive voltage at  
CHP is VS + 12 V(typ.). For functionality see Figure 10.  
Undervoltage protection for the lowside drivers  
activates if VGL falls below VGLLV in which case the  
output FET’s will be turned off and VGL undervoltage error  
is flagged in register MRDIAG. Overvoltage protection for  
the highside drivers activates if VS becomes greater than  
28 V(min). In that event the driver stage is disabled,  
overvoltage error is flagged in register MRDIAG, and both  
VGL and CHP are discharged to prevent output circuit  
destruction.  
Internal Regulator V3RO, V3RI  
The internal regulator is supplied from VS and provides  
3.3 V at V3RO. V3RI is connected to the power supply  
inputs of the controland logic circuit blocks. V3RO and  
V3RI need to be connected externally and decoupled to the  
GND plane for stability. V3RO should not be connected to  
external loads.  
VCC Regulator  
The VCC regulator may power external loads, VCC  
becomes active during Standby mode and can be configured  
via register REGSEL to provide 5 V or 3.3 V. WARNING:  
the microcontroller can be damaged if the wrong REGSEL  
value is selected. Undervoltage error is flagged if the output  
voltage drops below VCLV5 in 5 V operation, or VCLV3 in  
3.3 V operation.  
The charge pump circuit operates nominally at 52.1 kHz.  
A SSCG function is provided to add a spreadspectrum  
component for EMI reduction.  
C
C
CP2  
CP1  
C
VGL  
C
CHP  
VS  
Current limitation  
Voltage clamping  
CP1P  
CP1N  
VGL  
CP2P  
CP2N  
CHP  
VS  
Supply for  
LS Predrivers  
Supply for  
HS Predrivers  
Buf  
Buf  
Figure 10. Charge Pump Circuit  
Figure 11. HighSide and LowSide Gate Voltages  
www.onsemi.com  
19  
 
LV8961HUW  
INPUT PWM and SPEED CONTROL  
The LV8961H provides three speed control methods  
through the input PWM signal:  
will also reset the error registers. Input duty cycles higher  
than the maximum Duty setting by DUTY_H register are  
considered a full drive command. Input to output duty cycle  
translation is described by the following formula:  
1. Indirect PWM translation  
2. Closedloop speed control  
3. Direct register command  
0
0 v d v DUTY_L  
Indirect PWM Translation  
IN  
This is the preferred mode for standalone operation. The  
frequency range has two modes, high and low frequency. In  
the high frequency mode, it corresponds to frequency input  
up to 18.5 kHz. In the low frequency mode, it is limited to  
the frequency input up to 1 kHz, and when the frequency  
input is above 1 kHz, it is ignored. Frequency mode can be  
configured in high frequency mode by setting register  
PWMF to 1. In both modes the input PWM signal is  
compared against minimum PWM frequency thresholds to  
allow for more robust operation. Frequencies below 5.3 Hz  
(typ.) are considered as 0% or 100% duty cycle (no  
frequency).  
100  
  (d * DUTY_L)  
IN  
d
+
DUTY_L t d t DUTY_H  
IN  
OUT  
DUTY_H * DUTY_L  
100  
DUTY_H v d v 100  
IN  
Closedloop Speed Control  
For standalone operation, the LV8961H offers a PI  
controller for motor speed which is activated by clearing bit  
SCEN. Frequencies below 5.3 Hz(typ.) are considered as  
0% or 100% duty cycle (no frequency). The output PWM  
frequency is fixed to 19.5 kHz (typ.).  
LV8961H provides Linear characteristic target speed  
setting as shown in Figure 13.  
The duty cycle of the PWM input signal is measured with  
a resolution of 10 bits. There is an inherent delay to detect  
and utilize this duty cycle information. It is the delay time  
from input PWM input signal to output PWM. The delay  
time is determined by  
Direct Register Command  
LV8961H allows user to access the register directly,  
which is connected to the control logic, and set the PWM  
duty cycle command from the PWMDTIN register. This  
mode can be configured by setting register SPIINSEL to 1.  
Also, FG frequency information can be obtained from the  
STATUS register by setting register STATSEL to 0h, and It  
can minimize delay that occurs when the PWM frequency is  
low.  
T
PWM ) 19.8 ms (max.)  
Where, T  
is the period of the PWM input signal.  
PWM  
19.8 ms is fixed value.  
If faster startup is necessary, see section “Fast Startup”  
below. If no frequency is detected after 210ms (typ.) the  
PWMPO flag is set in system warning register MRDIAG1.  
Even without PWM input the LV8961H can run as described  
below in section “Fast Startup”.  
Target  
Speed  
(rpm)  
Output PWM Duty (%)  
ZPSEL = 4  
100%  
FLSEL = 4  
100%  
FLSEL = 6  
TAG_H  
TAG_H  
If a valid frequency was detected, the LV8961H evaluates  
the input duty cycle and translates it into an output duty cycle  
as shown in Figure 12. The output PWM frequency is fixed  
to 19.5 kHz (typ.).  
ZPSEL = 3  
75%  
FLSEL = 3  
75%  
ZPSEL = 2  
50%  
FLSEL = 2  
50%  
Output PWM Duty  
[%]  
ZPSEL = 1  
25%  
ZPSEL=4  
100%  
FLSEL=4  
100%  
FLSEL = 1  
25%  
ZPSEL = 5  
TAG_L  
ZPSEL=3  
75%  
FLSEL=3  
75%  
FLSEL = 0  
0%  
TAG_L  
0
ZPSEL = 0  
0%  
Input PWM  
Duty %  
DUTY_H  
100  
0
DUTY_L  
ZPSEL=2  
50%  
FLSEL=2  
50%  
Figure 13. Target Speed by Input  
PWM Duty Cycle  
ZPSEL=1  
25%  
FLSEL=1  
25%  
The Control Algorithm  
The LV8961H controls the motor speed by comparing the  
selected target speed to the actual motor speed and  
incorporating a PI controller with configurable gains for the  
P, I and T components which are stored in register  
MRSPCT7, MRSPCT8 and MRSPCT9 respectively.  
FLSEL=0  
0%  
ZPSEL=0  
0%  
0
Input PWM Duty  
[%]  
0
DUTY_L  
DUTY_H 100  
Figure 12. Duty Cycle Translation  
Ramping of Speed Control Values  
While tight control is required for optimal speed tracking,  
it may be undesirable during large input changes as it may  
Input duty cycles lower than the minimum Duty setting by  
DUTY_L register are considered a motoroff command and  
www.onsemi.com  
20  
 
LV8961HUW  
lead to sudden supply loading, increasing noise and motor  
during energy recuperation, the variable DWNSET allows  
to prevent energy recuperation entirely by switching the  
synchronous rectification off.  
wear. To limit the slope of the control signal, register  
USTEPSEL and DSTEPSEL imposes a ramp on an input  
step to slew the speed response of the motor.  
Decreasing motor speed too fast results in energy  
recuperation back into the system. To limit overvoltage  
HVPIN  
High voltage  
RXD  
PWM input  
PWMF  
Translation  
Duty  
Limitation  
0
1
Duty  
Cycle  
1
0
Duty  
Frequency  
Limitation  
polarity  
Ramp  
PI speed  
controller  
Cycle  
Closedloop  
Encoder  
Imposer  
speed control  
LVPIN  
Output  
PWM Duty  
PWMON  
PWMINSEL  
19.5kHz  
PWM  
Generator  
PWMDTIN[9:0]  
PX[2:0], PG[2:0]  
IX[3:0], IG[2:0]  
DDUTYSEL[2:0]  
USTEPSEL[1:0]  
DSTEPSEL[1:0]  
TAG_L[14:0]  
TAG_H[14:0]  
SCEN  
FLSEL[2:0]  
ZPSEL[2:0]  
PDTC  
Lead Angle  
PDTSEL[1:0]  
SPIINSEL  
Lead Angle  
adjustment  
Fixed Duty  
Cycle  
Generator  
WDTEN  
WDT[5:0]  
WDTSEL[2:0]  
LASET_L[4:0]  
LASET_H[4:0]  
LASET_LIM[4:0]  
watchdog  
0%, 25%,  
50%, 75%  
or 100%  
Abnormal duty cycle detected  
or  
Initial duty cycle for ‘fast startup’ sequence  
Figure 14. PWM Command Flow and Related Registers  
Fault Output DIAG  
Fast Startup  
A low on open drain output DIAG indicates a system fault  
and a shutdown of the driver stage. Per default all system  
faults selfrecover when the fault condition is removed. For  
some potentially destructive faults such as overcurrent, FET  
shortcircuit and locked rotor conditions, it is possible to  
latch the fault condition. For more information on system  
diagnostics see section “System Errors and Warnings”.  
It may be desirable to have the motor start immediately  
after EN goes high and not wait for PWM input duty cycle  
evaluation. Two register settings enable motor operation  
during this evaluation time: bit PDTC determines if the  
motor should be running during this time at all, and PDTSEL  
selects a motor duty cycle of 25, 50, 75 or 100%. This is used  
as the initial value of the duty cycle command for the  
closedloop speed control mode. To guarantee smooth  
transition from fast startup to PWM operation it is important  
to apply a comparable external PWM duty cycle at startup.  
High Voltage PWM Interface  
The PWM interface translates a VS level signal with a  
threshold of 50%(Typ) VS to a digital signal appearing at  
RXD pin. This signal can be used for input PWM translation  
from outside units to the microcontroller.  
Abnormal Duty Cycle Operation (100% or 0%)  
For normal duty cycle controlled operation the PWM  
signal is expected to have a frequency between 5.3 Hz or  
more. If no frequency is detected, the LV8961H will flag  
PWMPO error and enter 0% or 100% duty cycle mode  
depending on the level of the PWM signal (all low or all  
high). Operation during this mode can be selected to be  
either no motor operation, or motor operation at a fixed  
motor duty cycle of 25, 50, 75 or 100% and TAG_L or  
TAG_H as defined by the variables FLSEL or ZPSEL.  
These PWM values do not enter into the speed control loop.  
Predriver Circuit  
The predriver circuit of the LV8961H includes  
3 halfbridge drivers which control external NFETs for the  
motor phases U, V and W. The highside drivers UH, VH,  
WH switch their gate connection either to CHP or the  
respective phase connection UOUT, VOUT and WOUT.  
The lowside drivers are switched from VGL to the  
corresponding source connection SUL, SVL, SWL. Both  
highand lowside switches are not current controlled.  
Slope control has to be implemented with external  
components.  
Limit the Amount of Change of Output Duty  
The register DDUTYSEL allows to limit the amount of  
change in output duty to avoid sudden acceleration and  
deceleration.  
Current shoot through protection of the bridge drivers is  
implemented by a dead time counter that delays the turning−  
on of the complementary switch. The dead time can be  
Speed Feedback FG  
programmed from 200 ns < t  
FDTI.  
< 6.4 ms into 5bit parameter  
FDTI  
The motor speed is shown at open drain output FG where  
the transitions are direct representations of the BEMF signal  
transitions on the motor. The relationship between motor  
rotation and FG pulses is defined in register FGOF.  
www.onsemi.com  
21  
LV8961HUW  
To protect against external shorts the drainsource voltage  
An external resistor (typ. 100 kW) is visible in the  
of the active external Power FETs is monitored as well. 4 bit  
application circuit between the gate and source of the FET.  
register FSCDL selects a shortcircuit shutoff voltage  
Cyclebycycle Current Limit  
100 mV < V  
< 1.6 V. To suppress false triggering  
FSCLD  
If the voltage between RF and RFSENS exceeds VRF1,  
the active bridge is turned off until the next PWM period.  
VRF1 can be selectable 100 mV(Typ) or 50 mV(Typ) by  
register CLSEL. To suppress switching transients a current  
limit blanking time 0.2 ms < t  
programmed into register CLMASK.  
during the rising edge of FET activation, FSCDT selects the  
masking time.  
Current Limit and Overcurrent Shutoff  
< 3.2 ms can be  
CLMASK  
An integrated current sense amplifier implements current  
limiting and overcurrent shutoff by measuring the motor  
phase current across a single shunt between RF and  
RFSENS.  
Figure 15 shows a summary of the current limit and the  
overcurrent shutoff, and the descriptions for each function  
are in the following sections.  
During soft start this current limit is ramped from 0 to  
VRF1 in 16 steps during a programmable time 102 ms  
< t  
< 6.55 s as defined in register SSTT.  
SSTT  
Overcurrent Shutoff  
If the bit OCPEN is set and the voltage between RF and  
RFSENS exceeds VRF2, the LV8961H goes into  
overcurrent shutoff and all predrivers are driving low  
turning the power FETs high impedance. VRF2 can be  
selectable VRF1 + 25 mV, +50 mV, +75 mV and +100 mV  
by register OCSEL. To suppress switching transients an  
In Sleep mode, the highand lowside gate outputs of  
each U, V, W phase become High Z.  
A 100 KW pulldown resistor is builtin between UH and  
UOUT of the highside predriver output so that the gate and  
source of the external FET do not become High Z.  
The lowside output also has a builtin 100 kW pulldown  
resistor between the UL and SUL terminals (similar for V  
and W phases).  
overcurrent shutoff blanking time 0.2 ms < t  
can be programmed into register OCMASK.  
< 3.2 ms  
OCMASK  
Table 2. SUMMARY OF POWER STAGE PROTECTIONS  
Current  
Cyclebycycle  
Short to VS  
Purpose  
Limiter  
Flag  
CLDO  
OCPO  
Sense point  
Threshold  
Turnoff  
PWM FET  
All FET  
Recovery  
Sense Resistor VRF  
Sense Resistor VRF  
VRF1 100 mV or 50 mV  
Next PWM cycle  
50 ms later  
Protector  
VRF1+25 mV, +50 mV,  
+75 mV and 100 mV  
FSPO  
FSPO  
FET VDS MOUTSXL  
FET VDS VDHMOUT  
Configurable  
Configurable  
Short to GND  
Protector  
All FET  
50 ms later  
The short protection can be latched by  
register setting.  
ON  
OFF  
FSPO  
OCPLT: for OCPO  
FSPLT: for FSPO  
FSCDL  
FET VDS is determined by  
the register FSCDL[3:0].  
0.1 to 1.6[V] step 0.1  
ON  
FSPO  
OFF  
FSCDL  
CLDO  
OCPO  
CLSEL  
OCSEL  
Figure 15. Current Limit vs. Overcurrent Shutoff  
www.onsemi.com  
22  
 
LV8961HUW  
Temperature Sensing  
microcontroller stops working properly. Bit WDTEN  
enables and disables the watchdog timer. Access to this bit  
can be blocked – see section “OTP Register” for details. The  
enabled watchdog will issue an error whenever the  
The LV8961H measures the die temperature and  
implements internal thermal warning and shutoff. It is also  
possible to protect external devices by monitoring the  
voltage at pin TH. Internal and external overtemperature can  
shut down the driver section.  
watchdog time 1.6 ms < t  
< 102.4 ms expires. A write  
WDT  
of 00h to register MRRST resets the watchdog timer.  
A watchdog timeout can result in either a motor stop, or  
motor operation at four predefined duty cycles of 25%, 50%,  
75% or 100% and TAG_L or TAG_H as defined by  
WDTSEL. The duty cycle is directly applied to the power  
stage, not through the speed selection registers. The  
microprocessor is not reset.  
Internal Overtemperature Measurement  
A thermal warning is issued if the internal temperature of  
the device reaches approximately 25°C below the  
overtemperature shutoff level. The shutoff level is selected  
by bit TSTS as 150°C or 175°C(min).  
External Overtemperature Shutoff  
System Errors and Warnings  
An analog comparator triggers external overtemperature  
error if the voltage at pin TH falls below the two bit  
All system errors and most warnings cause a transition on  
DIAG. The polarity of this transition can be selected in bit  
DIAGSEL. The ability of standalone applications without  
microcontroller to react to errors and warnings is limited.  
For this case various autoretry strategies are implemented.  
If a companion microcontroller exists, more complex  
error handling is possible and DIAG should be connected to  
an interrupt input of the microcontroller. Errors that may  
cause serious damage such as shortcircuit, overcurrent and  
locked rotor can be latched by enabling the corresponding  
latch bit in MRCONF9. In this case the LV8961H will keep  
the output stage disabled until the latch is cleared by one of  
the following actions:  
programmable level 0.2 V < V  
< 0.35 V as defined by  
THTH  
register THTH. For external temperature measurement  
connect a resistor between V3RO and TH and an NTC  
between TH and AGND. The programmed threshold  
voltage at V  
should be reached at the intended thermal  
THTH  
shutdown temperature of the external component to be  
protected. During the overtemperature condition, the  
predrivers are disabled and a flag, THPO in MRDIAG0 is  
set.  
V3RI  
Power on reset  
EN low  
Input the output duty 0% or 0 rpm command  
SPI write of FFh to MRRST  
TH  
NTC Thermistor  
If bit DLTO is set ONLY latched errors will cause a  
transition of DIAG. To detect the other less serious errors  
and warnings, the diagnostic registers MRDIAG0  
/MRDIAG1/MRDIAG2 have to be read regularly via SPI  
access.  
Figure 16. Example Circuit for External  
Temperature Sensing  
Watchdog Operation  
The LV8961H includes a watchdog timer to monitor a  
companion microcontroller and disable the motor if the  
Table 3. ERROR AND WARNING DIAGNOSTIC REGISTER (Note 4)  
Latched  
Set  
ADDR  
0201h  
0201h  
Bit  
0
Error  
OCPO  
Description  
Enabled Set  
OCPEN  
N/A  
SelfRecovery Timing  
Overcurrent Error  
VS Undervoltage  
OCPLT  
N/A  
After 50 ms (typ.) the motor will restart  
1
VSLVPO  
Motor is restarted when voltage  
recovers  
0201h  
0201h  
0201h  
2
3
4
VSOVPO  
CHPLVPO  
VGLLVPO  
VS Overvoltage  
CHP Undervoltage  
VGL Undervoltage  
OVPEN  
N/A  
N/A  
N/A  
N/A  
Motor is restarted when voltage  
recovers  
Motor is restarted when voltage  
recovers  
N/A  
Motor is restarted when voltage  
recovers  
www.onsemi.com  
23  
 
LV8961HUW  
Table 3. ERROR AND WARNING DIAGNOSTIC REGISTER (Note 4) (continued)  
Latched  
Set  
FSPLT  
N/A  
ADDR  
0201h  
0201h  
Bit  
5
Error  
FSPO  
THPO  
Description  
Enabled Set  
FSPEN  
SelfRecovery Timing  
FET ShortCircuit  
After 50 ms (typ.) the motor will restart  
6
External  
Overtemperature  
THPEN  
Motor is restarted when temperature re-  
covers  
0201h  
0202h  
0202h  
7
0
1
CPO  
Locked Rotor  
CPEN  
THWEN  
N/A  
CPLT  
N/A  
Wait 8 t  
periods (see “Motor Lock”)  
CPTM  
THWPO  
THSPO  
Chip Junction Warning  
Only warning  
Chip Junction  
Overtemperature  
N/A  
Motor is restarted when temperature  
recovers  
0202h  
0202h  
0202h  
0202h  
2
3
4
5
WDTPO  
CLDO  
Watchdog Timeout  
Current Limit Warning  
Motor Open Detect  
WDTEN  
CLDOEN  
OOPOEN  
N/A  
N/A  
N/A  
N/A  
N/A  
Motor is restarted when WDT is reset  
Only warning  
OOPO  
Same as Motor Lock protect  
RCSMPO  
Register Checksum  
Error  
Write MRRST = 55h or MRODL = 00h or  
MRODL = FFh  
0202h  
0202h  
6
7
VCLVPO  
PWMPO  
VCC undervoltage  
PWM Input Fault  
VCLVPEN  
N/A  
N/A  
Motor is restarted when voltage recovers  
FLSEL  
ZPSEL  
PPDOSEL  
Motor is restarted when PWM input  
recovers  
0203h  
0203h  
0203h  
0203h  
0
1
2
3
VDHOVPO  
STUPO  
VDH overvoltage  
Startup Operation  
Loss of speed lock  
VDHOVPEN  
N/A  
N/A  
N/A  
N/A  
N/A  
Motor is restarted when voltage recovers  
Only warning  
SPCO  
N/A  
Only warning  
FGERPO  
FG error protection  
output  
FGERACCEN  
FGERDECEN  
Wait t  
periods  
RCVTM  
0203h  
4
REGAZ  
Register data all 0  
output  
N/A  
N/A  
Only warning  
0203h  
5
OTPAZ  
OTP data all 0 output  
N/A  
N/A  
Only warning  
4. See register MRCONF 7 to 12 for error and warning activation, masking and latching options.  
Detection of Loss of Commutation Synchronization  
Three methods are provided to detect the loss of  
commutation synchronization which is significant for  
sensorless motor control applications.  
1. Open load  
sequences related to that motorphase don’t reach in time the  
current limit. Therefore it is important to set OPDTM  
sufficiently long.  
It can be checked which U, V, W connector is open by  
reading the status register. One connector opening of U, V,  
W can be distinguished, but when two or three openings  
overlap, it is judged that everything is open so it cannot be  
distinguished what is not open. Also, if only one of UHVL,  
VHWL, WHUL combinations don’t reach the current  
limit, it is judged that all phases are connected.  
2. Abnormal rotational speed change  
3. Locked rotor  
They are explained in the following sections.  
Open Load Detection  
LV8961H can detect an open motor phase connection by  
means of setting OOPOEN = 1.  
When automatic recovery mode is set, OOPO returns to  
0 when the time set in the CPTM register (the constraint  
protection detection time multiplied by 8) has elapsed.  
When latch mode is set, OOPO returns to 0 by EN = L input,  
PWM 0% input, or MRRST command.  
Because the open load detection is performed after the  
constraint protection detection, CPO = 1 is output.  
Figure 17 shows an example where automatic recovery  
mode is set and phaseV is detected to be open.  
When this function is enabled, then after the detection of  
a blocked rotor (CPO=1), a testcurrent is briefly pulsed from  
UH to VL, from VH to WL and from WH to UL. The current  
will increase and stop when the current limit is reached  
(outputs are switched off). When the current limit is not  
reached within the time set by OPDTM, the outputs are  
switched off and an open connection is assumed. However,  
a motor phase is considered open (bit OOPO=1) only if both  
www.onsemi.com  
24  
 
LV8961HUW  
max. OPDTM setting x 6  
CPTM setting  
Constraint  
Protection  
is detected  
Open Connector Detection  
Recovery Time  
Restart  
FG  
OPDTM  
setting  
UH  
UL  
max. OPDTM  
setting  
VH  
VL  
WH  
WL  
Current Limit  
Detection  
Current is not detected  
Current is not detected  
for VHWL  
Current is detected  
for UHVL  
for WHUL  
OPEN_U  
OPEN_V  
OPEN_W  
NO_OPEN  
OOPO  
Figure 17. Timing Chart of OOPO  
Abnormal Rotational Speed Change Detection  
The abnormal rotational speed change detection is  
activated for acceleration through bit FGERACCEN and for  
deceleration by means of FGERDECEN.  
An abnormal acceleration is detected if the number of  
detected BEMF zerocrossings immediately after the mask  
is opened is equal or larger than the number represented by  
FGERACC.  
If it is judged that the rotation speed is abnormal,  
LV8961H restarts from freerun detection after the recovery  
time set by RCVTM has elapsed.  
Upon detection of abnormal rotational speed change, all  
predriver outputs are switched off and bits FGERACCO  
resp. FGERDECO are set. They will reset when the recovery  
time (RCVTM) elapses.  
The protection state also returns to normal state by either  
EN = L input, sensorless logic reset pulse by MRRST.  
When FGERACCEN/FGERDECEN = 0, although the  
rotation speed abnormality is detected, state transition to the  
protection state does not occur.  
An abnormal deceleration is detected if no zerocrossings  
are observed during the time represented by FGERDEC  
(Table 4).  
Table 4. FGERDEC SETTING  
FGERDEC[2:0]  
Detection Setting  
0
1
2
3
4
5
6
7
(previous 60 electrical degrees period) × 1.25  
(previous 60 electrical degrees period) × 1.5  
(previous 60 electrical degrees period) × 1.75  
(previous 60 electrical degrees period) × 2  
(previous 60 electrical degrees period) × 3  
(previous 60 electrical degrees period) × 4  
(previous 60 electrical degrees period) × 6  
(previous 60 electrical degrees period) × 8  
www.onsemi.com  
25  
 
LV8961HUW  
Detection by  
FGERACC, FGERRDEC  
Recovery Time by  
RCVTM  
FG  
Normal Rotation  
Abnormal Rotation  
Freerun  
Restart  
SPCO  
Figure 18. Timing Chart of SPCO  
Locked Rotor Detection  
Openloop startup continues for the time programmed  
into CPTM (MRCONF6[6:3]). If no BEMF is detected  
during that time a locked rotor error is indicated.  
Table 5. MRCONF6  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0106h  
MRCONF6  
0
CPTM[3:0]  
THTH[1:0]  
TSTS  
CPTM[3:0  
: Constrained movement Protection TiMe  
The locked rotor is detected by counting the time  
LV8961H is in the startup mode without BEMF detection.  
If consecutive seven BEMF zerocrossings are not detected  
within the time programmed into CPTM register, the driver  
outputs are turned off and the locked rotor is flagged.  
In autorecovery mode, the motor will remain off for the  
openloop startup timeout duration multiplied by 8, before  
another startup is attempted.  
Detection time has maximum 1 ms error, because it is  
sampled by 1 ms clock.  
Table 6. MRDIAG0  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0201h  
MRDIAG0  
CPO  
THPO  
FSPO  
VGLLVPO  
CHPLVPO  
VSOVPO  
VSLVPO  
OCPO  
CPO  
: Constrained movement Protection Output  
If no BEMF is detected during the entire openloop  
startup time as programmed in CPTM, then either the rotor  
is blocked, or startup parameters are not correct. The drivers  
will be disabled.  
SPI Interface  
In the LV8961H the SPI interface is used to perform  
general communications for status reporting, control and  
programming. The SPI format is MODE0 MSB first.  
SPI communication with the LV8961H follows the  
established industry standard practices. Data is transferred  
MSB first, and it is captured at the rising edge of the clock  
which stays in logical low during idle. Figure 19 shows  
LV8961H SPI format. When the first SI bit “R/W” is LOW,  
the register data will be transferred from LV8961H to the  
master device. When “R/W” is HIGH, the register data is  
transferred from the master device to the LV8961H register.  
The address data is composed of 16 bits and has a function  
of accessing from the address specified by the data Length  
[2:0] setting to the address of continuous 8 bytes by one  
communication. In addition, the LV8961H offers CRC  
check feature to ensure SPI communication. Therefore,  
Format 1 in Figure 19 requires a minimum 5 bytes data  
length with one access. Format 2 in Figure 19 is prepared to  
access with a short data length. It can be used for addresses  
requiring access in a short time and is set by the data  
BASEL[3:0].  
When the repeating access to the same register access is  
required, a shorter bitlength alias of the target address can  
reduce the total length of the SPI serial communication data  
train. In LV8961H, the base address pointers are provided as  
an alias of the fullbit address. The base address can be  
specified with the register “BAREG[15:0]”. And,  
BAREG[15:0] is activated as the base address pointer when  
the bitfield “BASEL[3:0]” value in the SPI serial data train  
is 15. Without BAREG setting, 14 preset base addresses,  
www.onsemi.com  
26  
LV8961HUW  
which might be read or written frequently and repeatedly,  
are provided. The following table shows the those addresses  
selected by the bitfield BASEL[3:0].  
Table 7.  
BASEL[3:0]  
Register name  
NA  
Register address  
NA  
Description  
Direct addressing in fullbit  
55h fixed value readonly  
Current control parameters  
Lead angle parameters  
Startup parameters  
0
1
MRACK0  
MRSPCT0  
MRSPCT1  
MRSPCT3  
MRSPCT7  
MRSPCT10  
MRSPCT11  
MRSPCT19  
MRDIAG0  
MRSTAT0  
MRRST  
0000h  
2
0002h  
3
0003h  
4
0005h  
5
0009h  
Speed control PI parameters  
Speed control parameters  
Speed curve parameters  
BEMF window parameters  
Diagnosis flags  
6
000Ch  
000Dh  
0015h  
7
8
9
0201h  
10  
11  
12  
13  
14  
15  
0205h  
Status  
0300h  
Reset related  
MRCTL0  
0301h  
PWM duty cycle input  
commutation parameter  
STATUS selection  
MRCTL2  
0303h  
MRCTL5  
0306h  
Selectable  
Selectable  
Any register selected with the register  
The base address is the first one, and the consecutive  
multiple address can be accessed by setting the bitfield  
“LENGTH[2:0]”.  
For example, to write the duty cycle data to the register  
PWMDTIN[9:0] (located in MRCTL0 0301h and MRCTL1  
0302h), the following three data patters are applicable and  
typical.  
1. Writing twice by one byte (total 64 bits)  
Table 8.  
1
WR  
1
2
0
3
Length  
0
4
0
5
0
6
0
7
0
8
0
9 to 16  
Address[15:8]  
03  
17 to 24  
Address[7:0]  
01h  
25 to 32  
Data LSB  
BASEL  
PWMDTIN[7:0]  
Table 9.  
33  
WR  
1
34  
0
35  
Length  
0
36  
0
37  
0
38  
0
39  
40  
0
41 to 48  
Address[15:8]  
03h  
49 to 56  
Address[7:0]  
02h  
57 to 64  
Data MSB  
BASEL  
0
PWMDTIN[9:8]  
2. Writing once by twobyte with the full address (total 40 bits)  
Table 10.  
1
WR  
1
2
0
3
Length  
0
4
1
5
0
6
7
8
0
9 to 16  
Address[15:8]  
03h  
17 to 24  
Address[7:0]  
01h  
25 to 32  
Data LSB  
33 to 40  
Data MSB  
BASEL  
0
0
PWMDTIN[7:0]  
PWMDTIN[9:8]  
www.onsemi.com  
27  
LV8961HUW  
3. Writing once by twobyte with the base address (total 24 bits)  
Table 11.  
1
WR  
1
2
0
3
Length  
0
4
1
5
1
6
1
7
0
8
0
9 to 16  
Data LSB  
17 to 24  
Data MSB  
BASEL  
PWMDTIN[7:0]  
PWMDTIN[9:8]  
Where, the bit sequence of data bytes is;  
Table 12.  
st  
nd  
rd  
th  
th  
th  
th  
th  
sequence  
1
2
3
4
5
6
7
8
PWNDTIN LSB  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
Table 13.  
st  
nd  
rd  
th  
th  
th  
th  
th  
sequence  
1
2
3
4
5
6
7
8
PWNDTIN MSB  
NA  
NA  
NA  
NA  
NA  
NA  
[9]  
[8]  
There are two items to be especially careful of with the  
general communication scheme:  
inverted for various reasons but must arrive at the  
LV8961H per the above drawing. Common errors  
include SCLK inversion such that the leading edge  
arrives as a downward transition rather than a  
rising edge, or having the data to clock phase  
incorrect. Data phase must be such that the data  
only changes during a clock falling edge and is  
completely stable during a clock rising edge. This  
means a good margin of one half of a bit time  
exists to eliminate transmission delay hazards.  
1. Communications must be full duplex and  
simultaneous. It is not allowed to send one  
transaction and then read data on a second  
transaction as the status register information will  
be updated on the first transaction and then be out  
of date for the second. Some systems break  
transactions into separate read and write  
operations which is not acceptable with the  
LV8961H.  
The first byte returned on all transactions is always the  
status register, GSDAT, and contains information such as the  
busy flag during programming operations.  
2. It is important the system master uses the clock  
and data polarities and phases as shown above.  
Both the clock and data on some systems can be  
CSB  
SCLK  
SI  
Normal SPI access format  
R/W  
Length[2:0]  
0
0
0
0
Address[7:0]  
Data0[7:0]  
Data7[7:0]  
CRC[7:0]  
Address[15:8]  
R/W, Length[2:0] buffer  
update timing  
Address[15:8] buffer  
update timing  
Address[7:0] buffer  
update timing  
Data0[7:0] buffer  
update timing  
Data7[7:0] buffer  
update timing  
CRC compare timing  
Access error check and  
register write start timing  
SO  
GSDAT[7:0]  
DIAG0[7:0]  
DIAG1[7:0]  
Data0[7:0]  
Data7[7:0]  
CRC[7:0]  
Shifter update timing  
Shifter update timing  
Shifter update timing  
Shifter update timing  
Shifter update timing  
Shifter update timing  
Shifter clear timing  
Internal  
Address  
Write address  
from Address to Address+Length  
Write address  
from Address to Address+Length  
Address(DIAG0)  
Address(DIAG1)  
Address(Data0)  
Address(Data7)  
0
Format 1 : Normal SPI access format  
CSB  
SCLK  
SI  
Short SPI access format (address is selected by BASEL field)  
R/W  
Length[2:0]  
Data0[7:0]  
Data7[7:0]  
CRC[7:0]  
BASEL[3:0]0  
R/W, Length[2:0],  
Data0[7:0] buffer  
update timing  
Data7[7:0] buffer  
update timing  
CRC compare timing  
Address[15:0] buffer  
update timing  
Access error check and  
register write start timing  
SO  
GSDAT[7:0]  
Data0[7:0]  
Data7[7:0]  
CRC[7:0]  
Shifter update timing  
Shifter update timing  
Shifter update timing  
Shifter update timing  
Shifter clear timing  
Internal  
Address  
Previous Write address  
from Address to Address+Length  
Write address  
from Address to Address+Length  
Address(Data0)  
Address(Data7)  
0
Base Address[BASEL] + 0  
Base Address[BASEL] + 7  
Format 2 : Short SPI access format  
Figure 19. SPI Format  
www.onsemi.com  
28  
LV8961HUW  
The header byte structure of the SPI format can be  
described by the following C language program.  
enum readwrite {RD, WR};  
enum regCount {cnt1, cnt2, cnt3, cnt4, cnt5, cnt6, cnt7, cnt8};  
enum baseReg {na, MRACK0, MRSPCT0, MRSPCT1, MRSPCT3, MRSPCT7, MRSPCT10, MRSPCT11,\  
MRSPCT19, MRDIAG0, MRSTAT0, MRRST, MRCTL0, MRCTL2, MRCTL5, BY_BAREG};  
union {  
uint8_t bytewise;  
struct {  
baseReg  
regCount Length: 3;  
readwrite RW: 1;  
};  
} header;  
BASEL: 4;  
The checksum (CRC) code of the SPI data train is  
calculated by the following function.  
#define CHAR_BIT  
#define MSB_CRC8  
8
(0x4D)  
/* number of bits in a char */  
/* polynominal*/  
uint8_t GetCRC8_2(uint8_t seed, const void *buff, size_t data_size)  
{
uint8_t *p = (uint8_t *)buff;  
uint8_t crc8;  
int i;  
for (crc8 = seed; data_size != 0; data_size--){  
crc8 ^= *p++;  
for (i = 0; i < CHAR_BIT; i++){  
if (crc8 & 0x80){  
crc8 <<= 1; crc8 ^= MSB_CRC8;  
}
else{  
crc8 <<= 1;  
}
}
}
return crc8;  
}
www.onsemi.com  
29  
LV8961HUW  
An example SPI communication is shown below. It shows  
the case that the two bytes from the register MRACK0  
within one transaction, using the base address scheme.  
uint8_t SPI_WR_BUF[32];  
uint8_t SPI_RD_BUF[32];  
void example_main()  
{
int i;  
header.RW = RD;  
header.Length = cnt2;  
header.BASEL = MRACK0;  
/* read */  
/* 2 bytes */  
/* from MRACK0 */  
Serial.print("Header = ");  
Serial.print(header.bytewise, HEX);  
Serial.println("h");  
SPI_WR_BUF[0] = header.bytewise;  
SPI_WR_BUF[1] = 0;  
SPI_WR_BUF[2] = 0;  
/* dummy data */  
/* dummy data */  
SPI_WR_BUF[3] = GetCRC8_2((uint8_t)0, SPI_WR_BUF, 3);  
Serial.print("CRC = ");  
Serial.print(SPI_WR_BUF[3], HEX);  
Serial.println("h");  
digitalWrite(CSB_pin, LOW);  
for (i = 0; i < 4; ++i)  
{
SPI_RD_BUF[i] = SPI.transfer(SPI_WR_BUF[i]);  
Serial.print(SPI_WR_BUF[i], HEX); Serial.print("h, ");  
Serial.print(SPI_RD_BUF[i], HEX); Serial.println("h");  
}
digitalWrite(CSB_pin, HIGH);  
}
This output is shown below.  
Header = 11h  
CRC = 66h  
WR, RD  
11h, 02h  
00h, 55h  
00h, AAh  
66h, B3h  
www.onsemi.com  
30  
LV8961HUW  
GSDAT Field  
Global status is always output to this field. Global status  
contains following information.  
GSDAT[7:0]  
Bit 7  
6
5
4
3
2
1
Bit 0  
ORBEN  
SACF  
DIAGS  
LATCH  
OBSY  
SMOD[2:0]  
0
0
0
0
1
1
1
1
x
0
0
1
1
0
0
1
1
x
0
1
0
1
0
1
0
1
x
Sleep mode  
Device startup time  
Standby mode  
N/A  
N/A  
Normal mode without FG output  
Normal mode with FG output  
Sleep mode  
0
x
0
1
0
1
0
1
Normal operation  
OTP busy with read/write access  
Latched shutdown condition  
Failure condition  
0
1
Last SPI access OK  
Last SPI access failed*  
OTP integrity test mode  
1
www.onsemi.com  
31  
LV8961HUW  
The following SPI failures are detectable and reported  
Write access to any of the main registers after setting  
MSAENB = 1 (Implies MRxxxx registers are locked)  
Write access to any of the OTP registers after  
OSAENB = 1 (Implies ORxxxx registers are locked)  
Write access attempt to a readonly or locked register  
SI signal changed at positive edge of SCLK  
(Incorrect data/sclk phase setup)  
collectively in GSDAT as general SPI failures:  
Any access to an address which are outside the defined  
address space  
The number of SCLK transitions is not 16 within one  
word transfer  
Any access to MRCONF, MRACS, ORCONF, ORACS  
while OBSY = 1 (during write operations)  
Write access to MRODL register while OBSY=1  
(during write operations)  
SPI Timing  
90%  
90%  
90%  
CSB  
10%  
10%  
Tcsh  
Tcss  
10%  
/Tfck  
Tckn  
10%  
Tckp  
90%  
Tcsp  
1
90%  
Tsih  
SCLK  
SI  
10%  
Tsis  
10%  
90% 90%  
10% 10%  
Tcssod  
Tcksod  
Tcssoz  
90%  
10%  
90%  
10%  
SO  
Tcssoo  
Figure 20. SPI Timing Chart  
SPI TIMING  
(T = 40 to 150°C, VS = 4.5 to 28 V, Pullup resistance of SO pin = 2.4 kW, Output load of SO pin = 30 pF)  
J
Symbol  
Comment  
Min  
Typ  
Max  
Unit  
Tfck  
Tckp  
SCLK clock frequency  
SCLK high pulse width  
SCLK low pulse width  
CSB setup time  
500  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
950  
950  
950  
950  
1900  
450  
450  
Tckn  
Tcss  
Tcsh  
CSB hold time  
Tcsp  
CSB high pulse width  
Tsis  
SI setup time  
Tsih  
SI hold time  
Tcssod  
Tcksod  
Tcssoo  
Tcssoz  
CSB fall edge to SO delay time  
SCLK fall edge to SO delay time  
CSB fall edge to SO data out time  
CSB rise edge to SO High Z out time  
950  
950  
0
950  
www.onsemi.com  
32  
LV8961HUW  
Register Description  
SPI Register Map  
The SPI interface allows read access to the entire address  
space of the main registers. The main registers can only be  
written in Standby mode and then only if the write lock bit  
MSAENB has never been set high.  
SPEED CONTROL OVERVIEW  
Write  
Enable  
Limitation  
by OBSY  
ADDR  
Data Name  
GSDAT  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
OBSY  
0
D[2]  
D[1]  
D[0]  
ReadOnly ReadOnly  
ORBEN  
SACF  
DIAGS  
LATCH  
SMOD[2:0]  
ReadOnly ReadOnly 0000h  
MRACK0  
MRACK1  
MRSPCT0  
0
1
0
1
0
0
0
1
1
0
1
0
0
1
1
0
0001h  
1
MSAENB=L OBSY=L  
0002h  
CLSEL CLDWN  
OFF  
OCSEL[1:0]  
CLMSPD[1:0]  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
0012h  
0013h  
0015h  
0016h  
0017h  
0018h  
0019h  
001Ah  
MRSPCT1  
MRSPCT2  
MRSPCT3  
MRSPCT4  
MRSPCT5  
MRSPCT6  
MRSPCT7  
MRSPCT8  
MRSPCT10  
MRSPCT11  
MRSPCT12  
MRSPCT13  
MRSPCT14  
MRSPCT15  
MRSPCT16  
MRSPCT17  
MRSPCT19  
MRSPCT20  
MRSPCT21  
MRSPCT22  
MRSPCT23  
MRSPCT24  
0
0
SSTT[5:0]  
STOSC[7:0]  
SLMD  
0
0
0
0
0
0
LASET_L[4:0]  
0
0
LASET_H[4:0]  
LASET_LIM[4:0]  
MSKRSTNUM0_SIX[3:0]  
PX[2:0]  
MSKRSTNUM1_SIX[3:0]  
PG[2:0]  
0
0
0
0
IX[3:0]  
IG[2:0]  
DDUTYSEL[2:0]  
USTEPSEL[1:0]  
DUTY_L[7:0]  
DSTEPSEL[1:0]  
DUTY_H[7:0]  
TAG_L[7:0]  
0
TAG_L[14:8]  
TAG_H[7:0]  
TAG_H[14:8]  
0
0
0
Always OK  
MSAENB=L  
0
0
0
0
0
0
0
0
0
0
RECALC  
0
WINDSEL[1:0]  
MSKRSTNUM0_INI[3:0]  
MSKRSTNUM0_THR[3:0]  
MSKRSTNUM0_TWO[3:0]  
MSKRSTNUM0_ONE[3:0]  
MSKRSTNUM1_INI[3:0]  
MSKRSTNUM1_THR[3:0]  
MSKRSTNUM1_TWO[3:0]  
MSKRSTNUM1_ONE[3:0]  
0
0
0
0
0
0
0
RBSEL  
MRACK0  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0000h  
MRACK0  
0
1
0
1
0
1
0
1
MRACK0[7:0]: Main Register Access ChecK  
MRACK0[7:0] read data is fixed to 55h  
This readonly register is used to check IC and SPI  
interface. 55h is read from this register in standby and  
normal mode, FFh during sleep mode.  
www.onsemi.com  
33  
LV8961HUW  
MRACK1  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0001h  
MRACK1  
1
0
1
0
1
0
1
0
MRACK1[7:0]: Main Register Access ChecK  
MRACK1[7:0] read data is fixed to AAh  
This readonly register is used to check IC and SPI  
interface. AAh is read from this register in standby and  
normal mode, FFh during sleep mode.  
MRSPCT0 (DEFAULT: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0002h  
MRSPCT0  
0
0
CLSEL  
CLDWNOFF  
OCSEL[1:0]  
CLMSPD[1:0]  
CLSEL: Current Limit threshold SELection  
CLSEL=0: Threshold voltage 50 mV  
CLSEL=1: Threshold voltage 100 mV  
OCSEL[1:0]=3h: Threshold voltage 150 mV  
CLSEL=1  
OCSEL[1:0]=0h: Threshold voltage 125 mV  
OCSEL[1:0]=1h: Threshold voltage 150 mV  
OCSEL[1:0]=2h: Threshold voltage 175 mV  
OCSEL[1:0]=3h: Threshold voltage 200 mV  
CLDWNOFF: Current Limit semipowerDoWN OFF  
CLDWNOFF=0: function ON  
CLDWNOFF=1: function OFF  
CLMSPD[1:0]: Current LiMit SemiPowerDown level  
CLMSPD[1:0]=0h: 0.1%  
CLMSPD[1:0]=1h: 1.3%  
CLMSPD[1:0]=2h: 2.5%  
CLMSPD[1:0]=3h: 5.07%  
OCSEL[1:0]: OverCurrent threshold SELection  
CLSEL=0  
OCSEL[1:0]=0h: Threshold voltage 75 mV  
OCSEL[1:0]=1h: Threshold voltage 100 mV  
OCSEL[1:0]=2h: Threshold voltage 125 mV  
MRSPCT1 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
SSTT[5:0]  
D[1]  
D[0]  
0003h  
MRSPCT1  
0
0
SSTT[5:0]: Soft STart Time  
SSTT[5:0]=00h: Soft start time 0.102 s  
SSTT[5:0]=x: Soft start time 0.102 * (1 + x) s  
SSTT[5:0]=3Fh: Soft start time 6.55 s  
current limit voltage 100 mV (Typ) into 16 sections and  
increases the value from 6.25 mV to 100 mV to switch over  
the current limit value. Case of 50 mV, increases the value  
from 3.125 mV to 50 mV.  
Soft start allows startup of motors with higher inertia by  
ramping the current. The soft start algorithm divides the  
MRSPCT2 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0004h  
MRSPCT2  
STOSC[7:0]  
STOSC[7:0]: STartup OSCillator  
STOSC[7:0]=00h: 1.024 ms  
STOSC[7:0]=x: 1.024 * (1 + x) ms  
STOSC[7:0]=FFh: 262.14 ms  
MRSPCT3 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0005h  
MRSPCT3  
SLMD  
0
0
LASET_L[4:0]  
SLMD: SinusoidaL Mode Driving  
SLMD=0: Trapezoidal drive with 120 degrees  
This bit selects whether the motor phases are driven with  
a trapezoidal or sinusoidal signal.  
energization.  
SLMD=1: Sinusoidal drive with 6 windows BEMF  
detection.  
www.onsemi.com  
34  
LV8961HUW  
LASET_L[4:0]: Lead Angle SETting at Low output duty  
cycle (0%)  
LASET_L[4:0]=00h: Lead angle 0 deg.  
LASET_L[4:0]=x: Lead angle (x * 1.875) deg  
LASET_L[4:0]=1Fh: Lead angle 58.125 deg.  
It is possible to advance the commutation point towards  
zerocrossing of the BEMF signal. This helps to achieve  
BEMF fieldweakening for higher rotational speeds and to  
compensate for delays in high speed operation.  
MRSPCT4 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0006h  
MRSPCT4  
0
0
0
LASET_H[4:0]  
LASET_H[4:0]: Lead Angle SETting at High output duty  
cycle (100%)  
LASET_H[4:0]=00h: Lead angle 0 deg.  
LASET_H[4:0]=x: Lead angle (x * 1.875) deg  
LASET_H[4:0]=1Fh: Lead angle 58.125 deg.  
It is possible to advance the commutation point towards  
zerocrossing of the BEMF signal. This helps to achieve  
BEMF fieldweakening for higher rotational speeds and to  
compensate for delays in high speed operation.  
MRSPCT5 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0007h  
MRSPCT5  
0
0
0
LASET_LIM[4:0]  
LASET_LIM[4:0]: Lead Angle SETting max. LIMit  
LASET_LIM[4:0]=00h: Lead angle 0 deg.  
LASET_LIM[4:0]=x: Lead angle (x * 1.875) deg  
LASET_LIM[4:0]=1Fh: Lead angle 58.125 deg.  
It is possible to advance the commutation point towards  
zerocrossing of the BEMF signal. This helps to achieve  
BEMF fieldweakening for higher rotational speeds and to  
compensate for delays in high speed operation.  
MRSPCT6 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0008h  
MRSPCT6  
MSKRSTNUM0_SIX[3:0]  
MSKRSTNUM1_SIX[3:0]  
MSKRSTNUM0_SIX[3:0]: MaSK Rate SeTting for bemf  
observation NUMber 0 for 6window mode  
MSKRSTNUM0_SIX[3:0]= x:  
MSKRSTNUM1_SIX[3:0]: MaSK Rate SeTting for bemf  
observation NUMber 1 for 6window mode  
MSKRSTNUM1_SIX[3:0]=x:  
(x < 8) > (15 + x * 3.75) deg.  
((x + 1) * 1.875) deg.  
(x 8) > (41.25 + (x – 7) * 1.875) deg.  
MRSPCT7 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0009h  
MRSPCT7  
0
PX[2:0]  
0
PG[2:0]  
PX[2:0]: Proportional gain eXponent  
PG[2:0]: Proportional Gain  
PX[2:0]=0h: Proportional gain 1 (through)  
PX[2:0]=1h: Proportional gain 2  
PX[2:0]=2h: Proportional gain 4  
PX[2:0]=3h: Proportional gain 8  
PX[2:0]=4h: Proportional gain 16  
PX[2:0]=5h: Proportional gain 32  
PX[2:0]=6h: Proportional gain 64  
PX[2:0]=7h: Proportional gain 0 (cut)  
PG[2:0]=0h: Proportional gain 1 (through)  
PG[2:0]=1h: Proportional gain 7/8  
PG[2:0]=2h: Proportional gain 6/8  
PG[2:0]=3h: Proportional gain 5/8  
PG[2:0]=4h: Proportional gain 4/8  
PG[2:0]=5h: Proportional gain 3/8  
PG[2:0]=6h: Proportional gain 2/8  
PG[2:0]=7h: Proportional gain 1/8  
www.onsemi.com  
35  
LV8961HUW  
MRSPCT8 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
000Ah  
MRSPCT8  
IX[3:0]  
0
IG[2:0]  
IX[3:0]: Integral gain eXponent  
IX[3:0]=0h: Integral gain 1 (through)  
IX[3:0]=1h: Integral gain 2  
IX[3:0]=2h: Integral gain 4  
IX[3:0]=3h: Integral gain 8  
IX[3:0]=4h: Integral gain 16  
IX[3:0]=5h: Integral gain 32  
IX[3:0]=6h: Integral gain 64  
IX[3:0]=7h: Integral gain 0 (cut)  
IX[3:0]=8h: Integral gain 1 (through)  
IX[3:0]=9h: Integral gain 1/2  
IX[3:0]=Ah: Integral gain 1/4  
IX[3:0]=Bh: Integral gain 1/8  
IX[3:0]=Ch: Integral gain 1/16  
IX[3:0]=Dh: Integral gain 1/32  
IX[3:0]=Eh: Integral gain 1/64  
IX[3:0]=Fh: Integral gain 0 (cut)  
IG[2:0]: Integral Gain  
IG[2:0]=0h: Integral gain 1 (through)  
IG[2:0]=1h: Integral gain 7/8  
IG[2:0]=2h: Integral gain 6/8  
IG[2:0]=3h: Integral gain 5/8  
IG[2:0]=4h: Integral gain 4/8  
IG[2:0]=5h: Integral gain 3/8  
IG[2:0]=6h: Integral gain 2/8  
IG[2:0]=7h: Integral gain 1/8  
MRSPCT10 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
DDUTYSEL[2:0]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
000Ch  
MRSPCT10  
0
USTEPSEL[1:0]  
DSTEPSEL[1:0]  
DDUTYSEL[2:0]: Detection level of DUTY output changes  
SELection  
USTEPSEL[1:0]=2h: Upper limit is current speed and  
max. 16384 rpm.  
DDUTYSEL[2:0]=0h: No limitation.  
USTEPSEL[1:0]=3h: Upper limit is 25% of current speed  
and max. 4096 rpm.  
DDUTYSEL[2:0]=1h: Limit to 20.3% ( 208)  
DDUTYSEL[2:0]=2h: Limit to 17.8% ( 182)  
DDUTYSEL[2:0]=3h: Limit to 15.2% ( 156)  
DDUTYSEL[2:0]=4h: Limit to 12.7% ( 130)  
DDUTYSEL[2:0]=5h: Limit to 10.2% ( 104)  
DDUTYSEL[2:0]=6h: Limit to 7.6% ( 78)  
DDUTYSEL[2:0]=7h: Limit to 5.1% ( 52)  
DSTEPSEL[1:0]: DownSpeed Transition stEP SELection.  
(Case of Motor is 2 poles)  
DSTEPSEL[1:0]=0h: Upper limit is current speed and  
max. 32766 rpm.  
DSTEPSEL[1:0]=1h: Upper limit is 25% of current speed  
and max. 4096 rpm.  
USTEPSEL[1:0]: UpSpeed Transition stEP SELectio.  
(Case of Motor is 2 poles)  
DSTEPSEL[1:0]=2h: Upper limit is 6.25% of current  
speed and max. 1024 rpm.  
USTEPSEL[1:0]=0h: max. 32766 rpm.  
USTEPSEL[1:0]=1h: Upper limit is 400% of current  
speed and max. 32766 rpm.  
DSTEPSEL[1:0]=3h: Upper limit is 1.5625% of current  
speed and max. 256 rpm.  
MRSPCT11 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
000Dh  
MRSPCT11  
DUTY_L[7:0]  
DUTY_L[7:0]: input pwm DUTY cycle Low limit  
DUTY_L[7:0]=00h: Lower limit 0.098%  
DUTY_L[7:0]=x:  
Lower limit ((x * 2 + 1) * 100 / 1024) %  
DUTY_L[7:0]=FFh: Lower Limit 49.9%  
www.onsemi.com  
36  
LV8961HUW  
MRSPCT12 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
000Eh  
MRSPCT12  
DUTY_H[7:0]  
DUTY_H[7:0]: input pwm DUTY cycle High limit  
DUTY_H[7:0]=00h: Upper limit 50%  
DUTY_H[7:0]=x:  
Upper limit ((x * 2) * 100 / 1024 + 50) %  
DUTY_H[7:0]=FEh: Upper Limit 99.6%  
DUTY_H[7:0]=FFh: Upper Limit 99.9%  
MRSPCT13 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[6]  
D[5]  
D[5]  
D[4]  
D[3]  
D[2]  
D[2]  
D[1]  
D[1]  
D[0]  
D[0]  
000Fh  
MRSPCT13  
TAG_L[7:0]  
MRSPCT14 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[4]  
D[3]  
0010h  
MRSPCT14  
0
TAG_L[14:8]  
TAG_L[14:0]: TArGet speed Low.  
(Case of Motor is 2 poles)  
SCEN=0 (Closedloop)  
TAG_L[14:0]=7FFEh: Lower Limit 40000 rpm  
TAG_L[14:0]=7FFFh: Lower Limit 40000 rpm  
SCEN=1 (Openloop)  
TAG_L[14:0]=0000h: Lower limit 0 rpm  
TAG_L[14:0]=0001h: Lower limit 2 rpm  
TAG_L[14:0]=x:  
Ignore TAG_L  
(x 4E20h) > Lower limit 40000 rpm  
(x < 4E20h) > Lower limit x * 2 rpm  
0% duty output is fixed.  
MRSPCT15 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[6]  
D[5]  
D[5]  
D[4]  
D[3]  
D[2]  
D[2]  
D[1]  
D[1]  
D[0]  
D[0]  
0011h  
MRSPCT15  
TAG_H[7:0]  
MRSPCT16 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[4]  
D[3]  
0012h  
MRSPCT16  
0
TAG_H[14:8]  
TAG_H[14:0]: TArGet speed High.  
(Case of Motor is 2 poles)  
SCEN=0 (Closedloop)  
TAG_H[14:0]=7FFEh: Upper Limit 40000 rpm  
TAG_H[14:0]=7FFFh: Upper Limit 40000 rpm  
SCEN=1 (Openloop)  
TAG_H[14:0]=0000h: Upper limit 0 rpm  
TAG_H[14:0]=0001h: Upper limit 2 rpm  
TAG_H[14:0]=x:  
Ignore TAG_H  
(x 4E20h) > Upper limit 40000 rpm  
(x < 4E20h) > Upper limit x * 2 rpm  
100% duty output is fixed.  
MRSPCT17 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0013h  
MRSPCT17  
0
0
0
0
0
0
0
RECALC  
RECALC: RECALCulate target speed from input pwm  
control table  
RECALC=0: No operation.  
RECALC=1: Update latched values (SCEN, DUTY_L,  
DUTY_H, TAG_L and TAG_H) in the target speed  
calculation module and RECALC will be cleared  
automatically.  
www.onsemi.com  
37  
LV8961HUW  
MRSPCT19 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0015h  
MRSPCT19  
0
0
0
0
0
0
WINDSEL[1:0]  
WINDSEL[1:0]: Bemf WINdow mode SELection  
WINDSEL[1:0]=1h: 3window  
WINDSEL[1:0]=2h: 2window  
WINDSEL[1:0]=3h: 1window  
WINDSEL[1:0]=0h: 6window  
MRSPCT20 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0016h  
MRSPCT20  
MSKRSTNUM0_INI[3:0]  
MSKRSTNUM1_INI[3:0]  
MSKRSTNUM0_INI[3:0]: MaSK Rate SeTting for bemf  
(x 8) > (41.25 + (x 7) * 1.875) deg.  
observation NUMber 0 for startup 6window mode  
MSKRSTNUM1_INI[3:0]: MaSK Rate SeTting for bemf  
observation NUMber 1 for startup 6window mode  
MSKRSTNUM0_INI[3:0]=x:  
(x < 8) > (15 + x * 3.75) deg.  
MSKRSTNUM1_INI[3:0]=x: ((x + 1) * 1.875) deg.  
MRSPCT21 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0017h  
MRSPCT21  
MSKRSTNUM0_THR[3:0]  
MSKRSTNUM1_THR[3:0]  
MSKRSTNUM0_THR[3:0]: MaSK Rate SeTting for bemf  
(x 8) > (41.25 + (x 7) * 1.875) deg.  
observation NUMber 0 for 3window mode  
MSKRSTNUM1_THR[3:0]: MaSK Rate SeTting for bemf  
observation NUMber 1 for 3window mode  
MSKRSTNUM0_THR[3:0]=x:  
(x < 8) > (15 + x * 3.75) deg.  
MSKRSTNUM1_THR[3:0]=x: ((x + 1) * 1.875) deg.  
MRSPCT22 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0018h  
MRSPCT22  
MSKRSTNUM0_TWO[3:0]  
MSKRSTNUM1_TWO[3:0]  
MSKRSTNUM0_TWO[3:0]: MaSK Rate SeTting for bemf  
(x 8) > (41.25 + (x 7) * 1.875) deg.  
observation NUMber 0 for 2window mode  
MSKRSTNUM1_TWO[3:0]: MaSK Rate SeTting for bemf  
observation NUMber 1 for 2window mode  
MSKRSTNUM0_TWO[3:0]=x:  
(x < 8) > (15 + x * 3.75) deg.  
MSKRSTNUM1_TWO[3:0]=x: ((x + 1) * 1.875) deg.  
MRSPCT23 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0019h  
MRSPCT23  
MSKRSTNUM0_ONE[3:0]  
MSKRSTNUM1_ONE[3:0]  
MSKRSTNUM0_ONE[3:0]: MaSK Rate SeTting for bemf  
MSKRSTNUM1_ONE[3:0]: MaSK Rate SeTting for bemf  
observation NUMber 0 for 1window mode  
observation NUMber 1 for 1window mode  
MSKRSTNUM0_ONE[3:0]=x:  
(x < 8) > (15 + x * 3.75) deg.  
MSKRSTNUM1_ONE[3:0]=x: ((x + 1) * 1.875) deg.  
(x 8) > (41.25 + (x 7) * 1.875) deg.  
www.onsemi.com  
38  
LV8961HUW  
MRSPCT24 (DEFAULT: 00H)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
001Ah  
MRSPCT24  
0
0
0
0
0
0
0
RBSEL  
RBSEL: Reverse detection Brake SELection  
RBSEL=0: Short brake is disabled when reverse rotation  
is detected.  
If RBSEL is set, short brake (all lowside FET are ON) is  
done until the rotation stops after reverse rotation is  
detected.  
RBSEL=1: Short brake is enabled when reverse rotation  
is detected.  
MOTOR CONFIGURATION REGISTER OVERVIEW  
Write  
Enable  
Limitation  
by OBSY  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
MSAENB=L OBSY=L  
0100h  
MRCONF0  
FRMD  
FRREN  
SCEN  
PWMF REGSEL VCEN  
SPCFG PWMIN  
SEL  
&
EN=L  
0101h  
0102h  
MRCONF1  
MRCONF2  
FLSEL[2:0]  
ZPSEL[2:0]  
PDTC  
PWM  
ON  
FGST  
BLMD  
FGOF[1:0]  
FDTI[4:0]  
0103h  
0104h  
0105h  
MRCONF3  
MRCONF4  
MRCONF5  
CLMASK[3:0]  
SROFFT[3:0]  
OCMASK[3:0]  
CRMASK[3:0]  
FSCDL[3:0]  
SYNC  
EN  
PPDO  
SEL  
FSCDT[1:0]  
0106h  
0107h  
MRCONF6  
0
CPTM[3:0]  
THTH[1:0]  
TSTS  
MRCONF7 WDTEN WDTS  
EL[2]  
WDT[5:0]  
0108h  
MRCONF8  
VCLVP CPEN  
EN  
THWEN THPEN FSPEN OVPEN OCPEN DIAGSEL  
0109h  
010Ah  
MRCONF9  
RCVTM[1:0]  
WDTSEL[1:0]  
CPLT  
FSPLT  
OCPLT  
DLTO  
MRCONF10 VDHO  
VPEN  
OOPO  
EN  
CLDO  
EN  
FGERA RCSM  
CCEN PMD  
RCSM  
PEN  
OPDTM[1:0]  
010Bh  
010Ch  
MRCONF11 INIODU  
TYMD  
INITA  
GMD  
CLREFE CLREFE ATSYN  
0
STSYNC SPIIN  
N_ROT N_STOP  
COFF  
EN  
SEL  
MRCONF12 FGERD  
ECEN  
FGERDEC[2:0]  
FGERACC[3:0]  
010Dh MRCONF13  
0
DWNSET  
0
PDTSEL[1:0]  
FSPDTM[1:0]  
RCSM[7:0]  
OVPMASK[1:0]  
Internal use  
010Eh  
010Fh  
MRCONF14  
MRCONF15  
0
0
SSCG  
EN  
SSCGCN[1:0]  
www.onsemi.com  
39  
LV8961HUW  
MRCONF0 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0100h  
MRCONF0  
FRMD  
FRREN  
SCEN  
PWMF  
REGSEL  
VCEN  
SPCFG  
PWMINSEL  
FRMD: Forward / Reverse MoDe  
FRMD=0: Forward motor rotation  
FRMD=1: Reverse motor rotation  
REGSEL: Vcc REGulator SELection  
REGSEL=0: VCC output set to 3.3 V.  
REGSEL=1: VCC output set to 5 V.  
FRREN: FRee Running ENable  
VCEN: Vcc regulator ENable  
VCEN=0: VCC is off.  
VCEN=1: VCC is active.  
FRREN=0: Motor will start with a BEMF detection.  
FRREN=1: Motor will start openloop with startup  
parameters.  
SPCFG: Speed feedback loop calculation Period  
ConFiGuration  
SPCFG=0: Calculate per 360 electrical degrees.  
SPCFG=1: Calculate per 120 electrical degrees. (Using  
speed just before 360 electrical degrees)  
SCEN: external Speed Control ENable  
SCEN=0: Speed feedback loop is active. RPM is selected  
from input duty cycle.  
SCEN=1: Power stage duty cycle is translated from input  
duty cycle.  
PWMINSEL: PWM INput pin SELection  
PWMINSEL=0: HVPIN is used for PWM input. (High  
voltage)  
PWMINSEL=1: LVPIN is used for PWM input. (Low  
voltage)  
PWMF: PWM input Frequency selection  
PWMF=0: Valid PWM input frequency range from 5.3 Hz  
to 1 kHz.  
PWMF=1: Valid PWM input frequency range from 5.3 Hz  
to 18.5 kHz.  
MRCONF1 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0101h  
MRCONF1  
FLSEL[2:0]  
ZPSEL[2:0]  
PDTC  
PWMON  
FLSEL[2:0]: Full Load fallback level SELection (PWM  
input 100% duty mode)  
ZPSEL[2:0]=3h: Motor duty cycle 75%  
ZPSEL[2:0]=4h: Motor duty cycle 100%  
FLSEL[2:0]=0h,7h: Motor is turned off  
FLSEL[2:0]=1h: Motor duty cycle 25%  
FLSEL[2:0]=2h: Motor duty cycle 50%  
FLSEL[2:0]=3h: Motor duty cycle 75%  
FLSEL[2:0]=4h: Motor duty cycle 100%  
FLSEL[2:0]=5h: Motor duty cycle is decided by TAG_L  
setting  
ZPSEL[2:0]=5h: Motor duty cycle is decided by TAG_L  
setting  
ZPSEL[2:0]=6h: Motor duty cycle is decided by TAG_H  
setting  
PDTC: Pending Detection of a Transition Control  
PDTC=0: Fast startup operation is disabled.  
PDTC=1: Fast startup operation is enabled.  
If PDTC is set, the motor is driven with the duty cycle  
programmed into PDTSEL, as soon as EN is high.  
This feature is bridging the initial 200 ms of operation  
until a valid PWM duty cycle can be decoded.  
FLSEL[2:0]=6h: Motor duty cycle is decided by TAG_H  
setting  
ZPSEL[2:0]: Zero Power fallback level SELection (PWM  
input 0% duty mode)  
ZPSEL[2:0]=0h,7h: Motor is turned off  
ZPSEL[2:0]=1h: Motor duty cycle 25%  
ZPSEL[2:0]=2h: Motor duty cycle 50%  
PWMON: PWM ON polarity  
PWMON=0: PWM input signal is active high.  
PWMON=1: PWM input signal is active low.  
www.onsemi.com  
40  
LV8961HUW  
MRCONF2 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0102h  
MRCONF2  
FGSTBLMD  
FGOF[1:0]  
FDTI[4:0]  
FGSTBLMD: Frequency Generator STaBLe MoDe  
FGSTBLMD=0: Disable  
FGSTBLMD=1: Enable  
FGOF[1:0]=2h: One pulse per electrical revolution (FG1)  
FGOF[1:0]=3h: One pulse per every two electrical  
revolutions (FG1/2)  
It affects only for the 6window mode (WINDSEL = 0).  
To determine the lead angle timing, the previous BEMF  
zerocross interval is sampled. When this function is  
disabled, the sampling is done every 60 degree electrical  
cycle. When this function is enabled, the sampling is done  
every 120 degree, and the previous 60 degree interval will  
be estimated as 1/2 of 120 degree interval. It ignores the  
BEMF asymmetric characteristics (or waveform) between  
rise and fall.  
The FG3 signal is a representation of a successfully  
detected BEMF transition which occurs three times during  
every electrical revolution.  
FDTI[4:0]: Fet Dead TIme  
FDTI[4:0]=00h: 6.4 ms  
FDTI[4:0]=x: (6.4 – x * 0.2) ms  
FDTI[4:0]=1Fh: 0.2 ms  
During phase switching between supply and GND it is  
possible for both lowand highside drivers to be  
temporarily on at the same time causing large current spikes.  
Register FDTI defines a dead time during which both drivers  
will be kept off during these transitions.  
FGOF[1:0]: Frequency Generator Output Frequency (=  
rotation speed)  
FGOF[1:0]=0h: One transition per BEMF detection  
(FG3)  
FGOF[1:0]=1h: One transition per every two BEMF  
detection (FG3/2)  
MRCONF3 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0103h  
MRCONF3  
CLMASK[3:0]  
OCMASK[3:0]  
CLMASK[3:0]: Current Limit MASKing time  
OCMASK[3:0]: OverCurrent MASKing time  
CLMASK[3:0]=0h: Mask Time 0.2 ms  
CLMASK[1:0]=x: Mask Time 0.2 * (1 + x) ms  
CLMASK[3:0]=Fh: Mask Time 3.2 ms  
In order to prevent noise and glitches causing from false  
current limiting, this mask time can be programmed.  
OCMASK[3:0]=0h: Overcurrent mask time 0.2 ms  
OCMASK[3:0]=x:  
Overcurrent mask time 0.2 * (1 + x) ms  
OCMASK[3:0]=Fh: Overcurrent mask time 3.2 ms  
The time to detect overcurrent can be programmed with  
OCMASK.  
MRCONF4 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0104h  
MRCONF4  
SROFFT[3:0]  
CRMASK[3:0]  
SROFFT[3:0]: Synchronous Rectification OFF Time  
CRMASK[3:0]: Current Reversed MASKing time  
A reverse current detection at 25% of CLSEL can disable  
for a programmable time the synchronous rectification, e.g.  
to avoid that the power supply is lifted when the motor  
current is reduced quickly.  
SROFFT[3:0]=0h: Synchronous rectification off time 4  
FG  
This is the masking time of the reverse current detection  
before triggering SROFFT.  
CRMASK[3:0]=0h: Mask time 3.2 ms  
CRMASK[3:0]=x: Mask time 0.2 * (16 x) ms  
CRMASK[3:0]=Fh: Mask time 0.2 ms  
SROFFT[3:0]=x:  
Synchronous rectification off time 4 * (1 + x) FG  
SROFFT[3:0]=Fh: Synchronous rectification off time 64  
FG  
www.onsemi.com  
41  
LV8961HUW  
MRCONF5 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0105h  
MRCONF5  
SYNCEN  
PPDOSEL  
FSCDT[1:0]  
FSCDL[3:0]  
SYNCEN: SYNChronous rectification ENable (active low)  
SYNCEN=0: Synchronous rectification is ON.  
(Synchronous rectification mode)  
SYNCEN=1: Synchronous rectification is OFF.  
(Asynchronous rectification mode)  
SYNCEN defines synchronous rectification mode for the  
output stage. In synchronous rectification mode, the high  
and lowside switches are always switched in  
complementary mode. In asynchronous rectification mode,  
both complementary switches may be off and the motor  
current is circling through the body diodes.  
PPDOSEL=1: Abnormal PWM input detected result is  
not reflected to DIAG pin.  
FSCDT[1:0]: Fet ShortCircuit Detection Time  
FSCDT[1:0]=0h: Detection time 3.2 ms  
FSCDT[1:0]=1h: Detection time 6.4 ms  
FSCDT[1:0]=2h: Detection time 9.6 ms  
FSCDT[1:0]=3h: Detection time 12.8 ms  
By monitoring FET Vds, the time from FET’s ON signal  
output until detecting shorted status can be set with FSCDT.  
FSCDL[3:0]: Fet ShortCircuit Detection Level  
FSCDL[3:0]=0h: Detection voltage 0.1 V  
FSCDL[3:0]=x: Detection voltage 0.1 * (1 + x) V  
FSCDL[3:0]=Fh: Detection voltage 1.6 V  
PPDOSEL: Pwm Problem Diagnostics Output SELection  
PPDOSEL=0: Abnormal PWM input detected result is  
reflected to DIAG pin.  
MRCONF6 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0106h  
MRCONF6  
0
CPTM[3:0]  
THTH[1:0]  
TSTS  
CPTM[3:0]: Constrained movement Protection TiMe  
THTH[1:0]=1h: Detection voltage 0.30 V  
THTH[1:0]=2h: Detection voltage 0.25 V  
THTH[1:0]=3h: Detection voltage 0.20 V  
LV8961H has an embedded comparator to monitor the  
external power FET temperature via an external thermistor.  
If the voltage at TH exceeds the threshold shown in the table,  
the power stage is shut off and a THPO error is triggered.  
CPTM[3:0]=0h: Detection time 0.4 s / Restart time 3.2 s  
CPTM[3:0]=x: Detection time 0.4 * (1 + x) s / Restart time  
0.4 * 8 * (1 + x) s  
CPTM[3:0]=Fh: Detection time 6.4 s / Restart time 51.2 s  
A locked rotor protection circuit is embedded in order to  
protect IC and Motor during locked rotor conditions. A  
locked rotor is detected by counting the time the IC is in  
Startup mode (without BEMF detection). If no BEMF is  
detected for the time programmed into CPTM register, the  
motor is turned off and a locked rotor is flagged.  
In autorecovery mode, the motor will remain off for eight  
times the OpenLoop Startup Timeout before another  
startup is attempted.  
TSTS: Thermal Shutdown Temperature Setting  
TSTS=0: Overtemperature warning occurs at 125°C(typ),  
shutdown at 150°C (typ).  
TSTS=1: Overtemperature warning occurs at 150°C  
(typ), shutdown at 175°C (typ).  
The LV8961H monitors its own junction temperature to  
protect against overtemperature damage. Two different  
warningand shutoff levels can be selected.  
THTH[1:0]: THreshold of THermometer  
THTH[1:0]=0h: Detection voltage 0.35 V  
www.onsemi.com  
42  
LV8961HUW  
MRCONF7 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0107h  
MRCONF7  
WDTEN  
WDTSEL[2]  
WDT[5:0]  
WDTEN: WatchDog Timeout Enable  
WDTEN=0: Watchdog is disabled.  
WDTEN=1: Watchdog is active.  
WDTSEL[2:0]=6h: Motor duty cycle is indicated by  
TAG_H  
If this register is set, a watchdog timeout causes Halt mode  
(0% drive) or Drive mode. When Drive mode is selected, the  
motor duty cycle is defined by this register and TAG_L,  
TAG_H registers.  
This bit can enable or disable the watchdog.  
WDTSEL[2:0]: WatchDog Target duty SELection  
1bit [2] of WDTSEL[2:0] register  
WDT[5:0]: WatchDog Timeout duration setting  
WDT[5:0]=00h: Detection time 1.6 ms  
WDT[5:0]=x:Detection time 1.6 * (1 + x) ms  
WDT[5:0]=3Fh: Detection time 102.4 ms  
Writing 00h to register MRRST(Address = 0300h) resets  
the watchdog timer. When the watchdog timer reaches its  
end detection time, a watchdog error is issued.  
WDTSEL[2:0]=0h,7h: Motor duty cycle 0%  
WDTSEL[2:0]=1h: Motor duty cycle 25%  
WDTSEL[2:0]=2h: Motor duty cycle 50%  
WDTSEL[2:0]=3h: Motor duty cycle 75%  
WDTSEL[2:0]=4h: Motor duty cycle 100%  
WDTSEL[2:0]=5h: Motor duty cycle is indicated by  
TAG_L  
MRCONF8 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0108h  
MRCONF8  
VCLVPEN  
CPEN  
THWEN  
THPEN  
FSPEN  
OVPEN  
OCPEN  
DIAGSEL  
xEN: Error and warning mask  
The higher seven bits in this register allows enabling and  
disabling of various errors and warnings. Setting xEN=1  
masks the error, setting xEN=0 activates the error.  
VCLVPEN: VCc Low Voltage Protection ENable.  
CPEN: Constrained movement Protection ENable.  
THWEN: THermal Warning ENable.  
THPEN: THermal Protection ENable.  
FSPEN: Fet Short Protection ENable  
DIAGSEL: DIAG polarity SELection  
DIAGSEL=0: The DIAG pin is active low.  
DIAGSEL=1: The DIAG pin is active high.  
This bit selects the polarity of the DIAG signal.  
The DIAG pin is OPEN drain.  
OVPEN: OverVoltage Protection ENable.  
OCPEN: OverCurrent Protection ENable.  
MRCONF9 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0109h  
MRCONF9  
RCVTM[1:0]  
WDTSEL[1:0]  
CPLT  
FSPLT  
OCPLT  
DLTO  
RCVTM[1:0]: ReCoVery TiMe setting  
RCVTM[1:0]=0h: Recovery time 0 s  
RCVTM[1:0]=1h: Recovery time 5 s  
RCVTM[1:0]=2h: Recovery time 10 s  
RCVTM[1:0]=3h: Recovery time 20 s  
FSPLT=0: Auto recover after FET short detection.  
FSPLT=1: Latch the IC off after FET short detection.  
OCPLT=0: Auto recover after overcurrent detection.  
OCPLT=1: Latch the IC off after overcurrent detection.  
Motor constraint, FET short, and overcurrent can cause  
intolerable largecurrent flow in the application. To prevent  
repeated current flow during retry attempts, it is possible to  
latch these errors.  
IC will restart (after an abnormal rotational speed change  
is detected) when this recovery time elapses.  
WDTSEL[1:0]: WatchDog Target duty SELection  
DLTO: Diagnostics output Latched Transitions Only  
DLTO=0: Trigger DIAG for any nonmasked error or  
warning.  
DLTO=1: Trigger DIAG only for latched errors as defined  
by above xPLTs.  
2bit [1:0] of WDTSEL[2:0] register  
See MRCONF7 register.  
xPLT: Protection LaTch selection  
CPLT=0: Auto recover after constrained movement  
detection.  
CPLT=1: Latch the IC off after constrained movement  
detection.  
www.onsemi.com  
43  
LV8961HUW  
MRCONF10 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
010Ah  
MRCONF10  
VDHOVPEN OOPOEN CLDOEN FGERACCEN  
RCSMPMD  
RCSMPEN  
OPDTM[1:0]  
xEN: Error and warning mask  
RCSMPEN=0: Register checksum calculation is done at  
following timing.  
Device startup  
Writing OTP  
OTP download by writing MRODL=00h  
RCSMPEN=1: Register checksum calculation is done at  
following timing.  
Device startup  
Writing OTP  
OTP download by writing MRODL=00h  
1 ms periodically at motor running  
OPDTM[1:0]: OPen connector Detection TiMe selection  
OPDTM[1:0]=0h: Detection time 160 ms  
OPDTM[1:0]=1h: Detection time 320 ms  
OPDTM[1:0]=2h: Detection time 640 ms  
OPDTM[1:0]=3h: Detection time 1280 ms  
VDHOVPEN: VDH OverVoltage Protection ENable.  
OOPOEN: Open cOnnector Protection Output ENable.  
CLDOEN: Current Limit Detection Output ENable.  
The higher three bits in this register allow enabling and  
disabling of various errors and warnings. Setting xEN=1  
masks the error, setting xEN=0 activates the error.  
FGERACCEN: Frequeny Generator ERrordetection during  
ACCeleration ENabled  
FGERACCEN=0: FG error detection at acceleration is  
disabled.  
FGERACCEN=1: FG error detection at acceleration is  
enabled  
RCSMPMD: Register CheckSuM error then Power Motor  
Down  
RCSMPMD=0: Keep motor running after checksum error  
detection.  
When the motor cannot be started for a certain period of  
time and it is in the startup mode, this IC flows current to  
each coil, then determines IC is in a constraint state when  
current flows, or an open state when no current flows. The  
detection time for the current to flow can be selected by  
OPDTM.  
RCSMPMD=1: Power down motor after checksum error  
detection.  
Register checksum error information is always output to  
DIAG when RCSMEN register is set, and it is independent  
of RCSMPMD setting.  
RCSMPEN: Register CheckSuM Periodical at running  
motor ENable  
MRCONF11 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
010Bh  
MRCONF11  
INIODUT  
YMD  
INITAGMD CLREFEN  
_ROT  
CLREFEN  
_STOP  
ATSYNC  
OFF  
0
STSYNCEN SPIINSEL  
INIODUTYMD: INItial Output DUTY cycle MoDe (soft  
start function)  
ATSYNCOFF: AuTomatic SYNChronous rectification OFF  
(active low)  
INIODUTYMD=0: Input PWM duty  
INIODUTYMD=1: Ramp up from 0%  
This bit activates the automatic disabling of synchronous  
rectification.  
ATSYNCOFF=0: Automatic synchronous rectification  
off function is enabled.  
ATSYNCOFF=1: Automatic synchronous rectification  
INITAGMD: INItial max. TArGet output duty cycle MoDe  
INITAGMD=0: Input PWM duty  
INITAGMD=1: PDTSEL setting  
off function is disabled.  
CLREFEN_ROT: Current Limit REFerence ENable (free  
ROTating status)  
CLREFEN_ROT=0: Disable current ramp (soft start) in  
freerun status.  
CLREFEN_ROT=1: Enable current ramp (soft start) in  
freerun status.  
STSYNCEN: SoftSTart SYNChronous rectification ENable  
(active low)  
STSYNCEN=0: Synchronous rectification at soft start  
depends on SYNCEN.  
STSYNCEN=1: Synchronous rectification at soft start is  
forced off.  
CLREFEN_STOP: Current Limit REFerence ENable  
(STOP status)  
CLREFEN_STOP=0: Disable disable current ramp (soft  
start) in stop status.  
CLREFEN_STOP=1: Enable current ramp (soft start) in  
stop status.  
SPIINSEL: duty cycle through SPI INput SELection  
SPIINSEL=0: Input duty from pin. (HVPIN/LVPIN)  
SPIINSEL=1: Input duty from PWMDTIN register  
(concatenation of MRCTL1[1:0] and MRCTL0[7:0]).  
www.onsemi.com  
44  
LV8961HUW  
MRCONF12 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
010Ch  
MRCONF12  
FGERDECEN  
FGERDEC[2:0]  
FGERACC[3:0]  
FGERDECEN: Frequeny Generator ERrordetection during  
DECeleration ENable  
FGERDEC[2:0]=5h: Limit of zerocross detection time  
is (previous 60 electrical degrees period) * 4.  
FGERDECEN=0: FG error detection at deceleration is  
disabled.  
FGERDEC[2:0]=6h: Limit of zerocross detection time  
is (previous 60 electrical degrees period) * 6.  
FGERDECEN=1: FG error detection at deceleration is  
enabled  
FGERDEC[2:0]=7h: Limit of zerocross detection time  
is (previous 60 electrical degrees period) * 8.  
FGERDEC[2:0]: Frequeny Generator ERrordetection  
during DECeleration setting  
FGERACC[3:0]: Frequeny Generator ERrordetection  
during ACCeleration setting  
FGERDEC[2:0]=0h: Limit of zerocross detection time  
is (previous 60 electrical degrees period) * 1.25.  
FGERDEC[2:0]=1h: Limit of zerocross detection time  
is (previous 60 electrical degrees period) * 1.5.  
FGERDEC[2:0]=2h: Limit of zerocross detection time  
is (previous 60 electrical degrees period) * 1.75.  
FGERDEC[2:0]=3h: Limit of zerocross detection time  
is (previous 60 electrical degrees period) * 2.  
FGERACC[3:0]=0h:1 time detecting zerocross of  
BEMF when the moment the Mask signal is opened.  
FGERACC[3:0]=x: (1 + x) consecutive time detecting  
zerocross of BEMF when the moment the Mask signal is  
opened.  
FGERACC[3:0]=Fh: 16 consecutive time detecting  
zerocross of BEMF when the moment the Mask signal is  
opened.  
FGERDEC[2:0]=4h: Limit of zerocross detection time  
is (previous 60 electrical degrees period) * 3.  
MRCONF13 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
010Dh  
MRCONF13  
0
DWNSET  
PDTSEL[1:0]  
FSPDTM[1:0]  
OVPMASK[1:0]  
DWNSET: slowDoWN SETting  
DWNSET=0: Normal mode  
FSPDTM[1:0]: Fet Short Protection Debounce TiMe  
setting  
DWNSET=1: Synchronous rectification OFF mode  
FSPDTM[1:0]=0h: Debounce time 1.6 ms  
FSPDTM[1:0]=1h: Debounce time 3.2 ms  
FSPDTM[1:0]=2h: Debounce time 4.8 ms  
FSPDTM[1:0]=3h: Debounce time 6.4 ms  
During speed control mode, motor deceleration can lead  
to energy recuperation and temporary voltage spikes.  
DWNSET allows for various degrees of energy  
recuperation:  
OVPMASK[1:0]: OverVoltage Protection MASKing time  
The time to detect overvoltage condition on VS and VDH  
can be set by OVPMASK.  
OVPMASK[1:0]=0h: Detection time 0.8 ms  
OVPMASK[1:0]=1h: Detection time 1.6 ms  
OVPMASK[1:0]=2h: Detection time 3.2 ms  
OVPMASK[1:0]=3h: Detection time 6.4 ms  
Normal Mode  
Results in a tightest control and maximum energy  
recuperation. The application circuit has to be able to  
absorb the energy generated.  
Synchronous rectification OFF Mode  
The motor is essentially not driven until it has reached the  
target speed. This does not feed any energy back into the  
supply, but may take a long time if motor inertia is high  
and losses are low.  
PDTSEL[1:0]: Pending Detection of  
SELection  
a Transition  
PDTSEL[1:0]=0h: Motor duty cycle 25%  
PDTSEL[1:0]=1h: Motor duty cycle 50%  
PDTSEL[1:0]=2h: Motor duty cycle 75%  
PDTSEL[1:0]=3h: Motor duty cycle 100%  
If PDTC is set, the motor is driven with the duty cycle  
programmed into PDTSEL, as soon as EN is high.  
This feature is bridging the initial 200 ms of operation  
until a valid PWM duty cycle can be decoded.  
www.onsemi.com  
45  
LV8961HUW  
MRCONF14 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
010Eh  
MRCONF14  
RCSM [7:0]  
RCSM[7:0]: Register CheckSuM  
This register is the data downloaded from OTP memory  
ORCONF34. Basically, users don’t need to care of it.  
MRCONF15 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
010Fh  
MRCONF15  
0
0
0
SSCGEN  
SSCGCN[1:0]  
Internal use  
SSCGEN: Spread Spectrum Charge pump Generation  
ENable  
SSCGEN=0: Spread spectrum is OFF.  
SSCGCN[1:0]=0h: Change CPCLK frequency every 1  
clock.  
SSCGCN[1:0]=1h: Change CPCLK frequency every 2  
clocks.  
SSCGCN[1:0]=2h: Change CPCLK frequency every 4  
clocks.  
SSCGCN[1:0]=3h: Change CPCLK frequency every 8  
clocks.  
SSCGEN=1: Spread spectrum is ON.  
The Charge pump may have radiation noise issues due to  
switching at 52.1 kHz(typ). By activating SSCG it is  
possible to disperse frequency components of the charge  
pump switching frequency.  
SSCGCN[1:0]: Spread Spectrum Charge pump Generation  
Clock Number  
200ns  
CPCLK  
Frequency  
CPCLK pulse number per step  
is set by SSCGCN[1:0]  
CPCLK  
Pulse  
Figure 21.  
www.onsemi.com  
46  
LV8961HUW  
SYSTEM DIAGNOSTICS AND TEST REGISTER OVERVIEW  
Write  
Enable  
Limitation  
by OBSY  
Data  
Name  
ADDR  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
ReadOnly ReadOnly  
0200h  
MRACS  
0
0
0
0
0
RCSM  
EN  
OSAE  
NB  
MSAE  
NB  
0201h  
0202h  
0203h  
0204h  
MRDIAG0  
CPO  
THPO  
FSPO  
VGLLV  
PO  
CHPLV  
PO  
VSOV  
PO  
VSLVPO OCPO  
MRDIAG1 PWMPO VCLVPO RCSM  
PO  
OOPO  
REGAZ  
0
CLDO  
WDTPO THSPO THWPO  
MRDIAG2  
0
0
OTPAZ  
FGER  
PO  
SPCO  
0
STUPO  
VDHO  
VPO  
MRDIAG3  
0
0
0
0
CHPO  
VPO  
CRDT  
O
0205h  
0206h  
0207h  
0300h  
MRSTAT0  
MRSTAT1  
MRSTAT2  
MRRST  
STATUS[7:0]  
STATUS[15:8]  
STATUS[23:16]  
Always OK Always OK  
Write 00h: Reset WDT / Write 55h Reset Register Checksum Error / Write FFh: Reset  
latch off  
0301h  
0302h  
0303h  
0304h  
0305h  
0306h  
0307h  
0308h  
0400h  
MRCTL0  
MRCTL1  
MRCTL2  
MRCTL3  
MRCTL4  
MRCTL5  
MRCTL6  
MRCTL7  
MRODL  
PWMDTIN[7:0]  
BRK  
0
0
0
0
0
PWMDTIN[9:8]  
Internal use  
Internal use  
0
0
0
0
0
0
0
0
0
Internal use  
0
STATSEL[3:0]  
BAREG[7:0]  
BAREG[15:8]  
EN=L  
OBSY=L  
Write 00h: Execute OTP data download, Write FFh: Execute register checksum  
calculation  
0401h  
MRORB  
0
0
0
0
0
0
ORBEN ORBLV  
MRACKS  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
RCSMEN  
D[1]  
OSAENB  
D[0]  
0200h  
MRACS  
0
0
0
0
0
MSAENB  
This data, which is a readonly register, is downloaded  
from OTP memory ORCONF33.  
OSAENB: Otp registers Spi Access ENable Bar (Disable)  
OSAENB=0: Write access permitted.  
OSAENB=1: Write access denied.  
OSAENB controls write access to the OTP registers.  
<BR>  
RCSMEN: Register CheckSuM ENable  
RCSMEN=0: Register checksum diagnostic function is  
disabled.  
RCSMEN=1: Register checksum diagnostic function is  
enabled  
MSAENB: Main registers Spi Access ENable Bar (Disable)  
MSAENB=0: Write access permitted.  
MSAENB=1: Write access denied.  
MSAENB controls write access to the main registers.  
MRDIAG0  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0201h  
MRDIAG0  
CPO  
THPO  
FSPO  
VGLLVPO CHPLVPO  
VSOVPO  
VSLVPO  
OCPO  
CPO: Constrained movement Protection Output  
CPO=0: Normal  
CPO=1: Detect locked rotor error  
No BEMF was detected during the entire openloop  
startup time as programmed in CPTM. Either the rotor is  
blocked, or startup parameters are not correct. The drivers  
are disabled.  
www.onsemi.com  
47  
LV8961HUW  
THPO: fet THermal Protection Output  
THPO=0: Normal  
CHPLVPO: CHarge Pump Low Voltage Protection Output  
CHPLVPO=0: Normal  
THPO=1: Detect FET thermal error  
CHPLVPO=1: Detect CHP low voltage error  
The voltage between VS and VCP has dropped below  
5.5 V (max). The drivers are disabled to protect against low  
gate enhancement.  
FSPO: Fet Short Protection Output  
FSPO=0: Normal  
FSPO=1: Detect FET short error  
The drainsource voltage threshold across one of the  
external power FETs has been exceeded during operation.  
The threshold voltage is programmed in register FSCDL.  
Errors are suppressed for a blanking time as programmed in  
register FSCDT, both in register MRCONF5.  
For the highside FETs this voltage is measured between  
pin VS and the corresponding phase connection UOUT,  
VOUT, WOUT. For the lowside FETs it is measured  
between the phase connection and the pins SUL, SVL and  
SWL. Make sure to minimize potential voltage drops in the  
sense paths.  
VSOVPO: VS OverVoltage Protection Output  
VSOVPO=0: Normal  
VSOVPO=1: Detect VS over voltage error  
The voltage at VS has exceeded 28 V (min). The driver  
stage and the charge pump are disabled to protect against  
overvoltage at the charge pump.  
VSLVPO: VS Low Voltage Protection Output  
VSLVPO=0: Normal  
VSLVPO=1: Detect VS undervoltage error  
The voltage at VS has fallen below 5.1 V (max). The  
driver stage is disabled to protect against internal threshold  
issues.  
VGLLVPO: VGL Low Voltage Protection Output  
VGLLVPO=0: Normal  
VGLLVPO=1: Detect VGL undervoltage error  
The voltage at VGL has dropped below 5.5 V (max). The  
drivers are disabled to protect against low gate  
enhancement.  
OCPO: OverCurrent Protection Output  
OCPO=0: Normal  
OCPO=1: Detect overcurrent error  
The voltage between current sense pins RFSENS and RF  
has exceeded overcurrent threshold voltage for longer than  
the overcurrent limit mask time programmed in register  
OCMASK in MRCONF3. The driver stage is disabled to  
protect against damage.  
MRDIAG1  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0202h  
MRDIAG1  
PWMPO  
VCLVPO  
RCSMPO  
OOPO  
CLDO  
WDTPO  
THSPO  
THWPO  
PWMPO: PWM input abnormal Protection Output  
PWMPO=0: Normal  
OOPO: Open cOnnector Protection Output  
OOPO=0: Normal  
PWMPO=1: Detect PWM input error  
OOPO=1: Detect open connector  
The PWM input does not oscillate with the appropriate  
frequency or is steady high (100%) or low (0%). Depending  
on the settings FLSEL, ZPSEL in MRCONF1, the driver  
stage will turn off, or operate at a predefined duty cycle  
(emergency mode).  
CLDO: Current Limit Detection Output  
CLDO=0: Normal  
CLDO=1: Detect current limitation  
WDTPO: WatchDog Timer Protection Output  
WDTPO=0: Normal  
WDTPO=1: Detect WDT error  
The watchdog has timed out. This flag will be high if the  
watchdog was not reset during the time defined by register  
WDT in MRCONF7. If the watchdog is enabled the driver  
stage will either be off or run in emergency mode with the  
settings defined by register WDTSEL in MRCONF7,  
MRCONF9.  
VCLVPO: VCc Low Voltage Protection Output  
VCLVPO=0: Normal  
VCLVPO=1: Detect VCC undervoltage error  
VCC undervoltage error. Depending on the setting of  
REGSEL in MRCONF0, VCC is either 5 V (typ) or 3.3 V  
(typ). Undervoltage is flagged if VCC falls below 4.2 V  
(max) or 2.7 V (max) respectively.  
RCSMPO: Register CheckSuM Protection Output  
RCSMPO=0: Normal  
Flag WDTPO is high even if the watchdog is disabled.  
THSPO: THermal Shutdown Protection Output  
THSPO=0: Normal  
THSPO=1: Detect thermal shutdown error  
The IC temperature is too high and the drivers are shut off.  
The overtemperature shutoff level is defined by TSTS in  
MRCONF6 to be either 150°C (min.) or 175°C (min.).  
RCSMPO=1: Detect register checksum error  
RCSMPO is set when EN=1, RCSMEN=1,  
RCSMPEN=1 and register checksum error is detected. If  
RCSMPMD is set, the driver stage will be off.  
RCSMPO is cleared by writing 55h to register MRRST.  
www.onsemi.com  
48  
LV8961HUW  
THWPO: THermal Warning Protection Output  
THWPO=0: Normal  
The IC temperature has exceeded the warning level. The  
overtemperature warning level is defined by TSTS in  
THWPO=1: Detect thermal warning error  
MRCONF6 to be either 125°C (min.) or 150°C (min.).  
MRDIAG2  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0203h  
MRDIAG2  
0
0
OTPAZ  
REGAZ  
FGERPO  
SPCO  
STUPO  
VDHOVPO  
OTPAZ: OTP All bits Zero  
SPCO: SPeed Control error Output  
OTPAZ=0: OTP contains at least one zapped bit.  
OTPAZ=1: Detect that OTP output is all 0.  
SPCO=0: The absolute value of the speed error is equal to  
or less than target * 1/16.  
SPCO=1: The absolute value of the speed error is greater  
than target * 1/16.  
REGAZ: otp REGister All bits Zero  
REGAZ=0: Registers which data is downloaded from  
OTP contains at least 1bit one.  
REGAZ=1: Detect that registers which data is  
downloaded from OTP is all 0.  
STUPO: bemfless STartUp Period Output  
STUPO=0: BEMF has been detected.  
STUPO=1: No BEMF has been detected, yet.  
This flag indicates openloop startup operation.  
FGERPO: Frequency Generator ERror Protection Output  
FGERPO=0: The absolute value of the speed error is not  
detected under FGERACC/FGERRDEC conditions.  
FGERPO=1: The absolute value of the speed error is  
detected under FGERACC/FGERRDEC conditions.  
VDHOVPO: VDH OverVoltage Protection Output  
VDHOVPO=0: Normal  
VDHOVPO=1: Detect VDH over voltage error  
MRDIAG3  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0204h  
MRDIAG3  
0
0
0
0
0
0
CHPOVPO  
CRDTO  
CHPOVPO:CHarge Pump OverVoltage Protection Output  
CHPOVPO=0:Normal  
CRDTO: Current Reversed Detection Output  
CRDTO=0: Normal  
CHPOVPO=1: Detect charge pump overvoltage error  
CRDTO=1: Detect reverse current  
MRSTAT0 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[7]  
D[7]  
D[6]  
D[6]  
D[6]  
D[5]  
D[5]  
D[5]  
D[4]  
D[3]  
D[2]  
D[2]  
D[2]  
D[1]  
D[1]  
D[1]  
D[0]  
D[0]  
D[0]  
0205h  
MRSTAT0  
STATUS[7:0]  
MRSTAT1 (Default: 00h)  
ADDR  
Data Name  
D[4]  
D[3]  
0206h  
MRSTAT1  
STATUS[15:8]  
MRSTAT2 (Default: 00h)  
ADDR  
Data Name  
D[4]  
D[3]  
0207h  
MRSTAT2  
STATUS[23:16]  
STATUS[23:0]: internal STATUS output  
Output of STATUS register is selected by STATSEL  
register in MRCTL5.  
2nd and 3rd bytes are hold at temporary register when 1st  
byte is read to keep simultaneity of status data.  
www.onsemi.com  
49  
LV8961HUW  
MRCSMSD  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0208h  
MRCSMSD  
RCSMSD[7:0]  
RCSMSD[7:0]: Register CheckSuM SeeD  
hidden and user area of the OTP memory. How to activate  
the register checksum feature as well as the usage of this  
register RCSMSD is described in the section “Register  
Checksum Feature”.  
This register gives checksum code of the hidden registers  
whose data are downloaded from OTP memory. This  
register value will be used as a calculation seed of checksum  
(ORCONF34) for user area of OTP memory, to include both  
MRRST  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0300h  
MRRST  
Write 00h: Reset WDT / Write 55h Reset register checksum error / Write FFh: Reset latch off  
MRRST[7:0]: Reset for WDT and latch off by protection  
Write MRRST[7:0]=00h: Reset WDT  
Write MRRST[7:0]=55h: Reset driver off by register  
checksum error  
Write MRRST[7:0]=FFh: Reset latch off  
Write MRRST[7:0]=others: No operation  
MRCTL0 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
D[0]  
0301h  
MRCTL0  
PWMDTIN[7:0]  
MRCTL1 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0302h  
MRCTL1  
BRK  
0
0
0
0
0
PWMDTIN[9:8]  
BRK: short BRaKe enable  
BRK=0: Short brake is disabled.  
BRK=1: Short brake is enabled.  
PWMDTIN[9:0]: PWM DuTy cycle INput register  
PWMDTIN[9:0]=000h: Duty cycle  
0% to 0.098%  
PWMDTIN[9:0]=x: Duty cycle  
(x * 100 / 1024) % to ((x+1) * 100 / 1024) %  
PWMDTIN[9:0]=3FFh: Duty cycle  
99.9% to 100%  
Note that when short brake is executed, an overcurrent flows  
due to the electromotive force generated when the motor  
rotates.  
MRCTL5 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0306h  
MRCTL5  
0
0
0
0
STATSEL[3:0]  
STATSEL[3:0]: STATus data SELection  
If STATSEL is changed before reading STATUS[23:8],  
they hold value which is indicated by previous STATSEL  
until STATUS[7:0] will be read.  
If STATUS[23:8] is read soon after reset, they returns  
0000h.  
STATSEL selects status data output to STATUS[23:0]  
(concatenation of MRSTAT2[7:0], MRSTAT1[7:0] and  
MRSTAT0[7:0]).  
STATUS[23:8] are latched when STATUS[7:0] is read.  
www.onsemi.com  
50  
LV8961HUW  
STATUS Register Description  
Users can know various operation status, such as rotation  
period/frequency, input duty cycle, PWM output period,  
lead angle control etc. by reading out the register  
STATUS[23:0] which is divided into three bytes and stored  
in the address 0205h to 0207h. The register STATSEL[3:0]  
stored in the address 0306h determines which status  
parameter is allocated to the STATUS register. When read  
access to the address 0205h (first byte of STATUS [23:0])  
was initiated, the register data in the following address  
0206h and 0207h will not change during the sequential read  
access to these addresses so that the simultaneity of three  
bytes which form STATSEL[23:0] is secured.  
STATUS REGISTER DESCRIPTION  
ADDR  
0205h  
0206h  
0207h  
0306h  
Data Name  
MRSTAT0  
MRSTAT1  
MRSTAT2  
MRCTL5  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
STATUS[7:0]  
STATUS[15:8]  
STATUS[23:16]  
0
0
0
0
STATSEL[3:0]  
STATUS Register Map  
All data which can be read from STATUS register are  
assigned as following table.  
STATUS REGISTER DESCRIPTION  
STATSEL[3:0]  
MRSTAT0  
D[7]  
D[6]  
D[5]  
D[4]  
PROT_T[7:0]  
PROT_T[15:8]  
D[3]  
D[2]  
D[1]  
D[0]  
0h  
MRSTAT1  
MRSTAT2  
MRSTAT0  
MRSTAT1  
MRSTAT0  
MRSTAT1  
MRSTAT0  
MRSTAT1  
MRSTAT2  
MRSTAT0  
MRSTAT1  
MRSTAT2  
MRSTAT0  
MRSTAT1  
MRSTAT0  
MRSTAT1  
0
0
0
0
0
0
PROT_T[19:16]  
1h  
2h  
3h  
PROT_F[7:0]  
PROT_F[14:8]  
IDUTY_IDUTY[7:0]  
0
0
0
0
0
0
0
IDUTY_IDUTY[9:8]  
PWMPCNT_LT[7:0]  
PWMPCNT_LT[15:8]  
0
PWMPCNT_LT[21:16]  
PWMHCNT_LT[7:0]  
PWMHCNT_LT[15:8]  
PWMHCNT_LT[21:16]  
TAG1[7:0]  
TAG1[14:8]  
PIDOLT[7:0]  
4h  
0
0
0
5h  
6h  
0
0
0
0
0
0
0
PIDOLT[9:8]  
7h  
8h  
9h  
Ah  
LACTL_EPOS[7:0]  
MRSTAT0  
MRSTAT0  
0
0
NO_OPEN  
OPEN_W  
OPEN_V  
OPEN_U  
REGCRC_RSLT[7:0]  
ODUTYMAX[7:0]  
MRSTAT0  
MRSTAT0  
MRSTAT1  
0
0
0
0
0
0
0
0
0
ODUTYMAX[9:8]  
Bh  
Ch  
LANUM0[4:0]  
MRSTAT0  
MRSTAT0  
0
0
0
LANUM1[4:0]  
www.onsemi.com  
51  
LV8961HUW  
STATUS REGISTER DESCRIPTION  
STATSEL[3:0]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Dh  
0
0
0
0
0
WNDCH  
NG_EN  
BEMFEN  
HIZON  
MRSTAT0  
Eh  
TAG0[7:0]  
MRSTAT0  
MRSTAT1  
OPENLX  
0
TAG0[14:8]  
STATSEL = 0h  
STATUS  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
PROT_T[7:0]  
PROT_T[15:8]  
0
0
D[6]  
0
0
D[5]  
0
0
PROT_T[19:16]  
STATSEL = 1h  
STATUS[23:0]  
D[7]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
PROT_F[7:0]  
0
0
PROT_F[14:8]  
0
0
0
0
0
PROT_T[19:0]: Period of ROTation (Time)  
Example 1)  
PROT_T = 625 PROT_F = 24000 (RPM, upper limit)  
Example 2)  
PROT_T = 768432 PROT_F = 19 (RPM)  
PROT_F[15:0]: Period of ROTation (Frequency)  
These registers offer speed feedback for use in an external  
speed control loop.  
1
Rotation Period T (sec) + PROT_T   
  2 +  
500 kHz  
60  
+
PROT_F (Hz)  
STATSEL = 2h  
STATUS[23:0]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
IDUTY_IDUTY[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
IDUTY_IDUTY[9:8]  
0
0
IDUTY_IDUTY[9:0]: Input DUTY cycle  
IDUTY_IDUTY[9:0] = 000h: Input duty cycle = 1/1024  
IDUTY_IDUTY[9:0] = 3FFh: Input duty cycle =  
1024/1024 (100%)  
STATSEL = 3h  
STATUS[23:0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
PWMPCNT_LT[7:0]  
PWMPCNT_LT[15:8]  
0
0
PWMPCNT_LT[21:16]  
www.onsemi.com  
52  
LV8961HUW  
STATSEL = 4h  
STATUS[23:0]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
PWMHCNT_LT[7:0]  
PWMHCNT_LT[15:8]  
0
0
PWMHCNT_LT[21:16]  
PWMHCNT_LT[21:0]: PWM input High CouNT  
(LaTched)  
PWMPCNT_LT[21:0]: PWM input Period CouNT  
(LaTched)  
PWMHCNT_LT  
PWMPCNT_LT  
IDUTY_IDUTY +  
  1024  
STATSEL = 5h  
STATUS[23:0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
TAG1[7:0]  
0
0
TAG1[14:8]  
0
0
0
0
0
0
0
TAG1[14:0]: TArGet speed/output duty cycle 1 (control  
input)  
TAG1[14:0] = 7FFFh: Output duty cycle = MAX (Target  
speed limit)  
TAG1[14:0] = 0000h: Output duty cycle = 0% (Target  
speed = 0 RPM)  
STATSEL = 6h  
STATUS[23:0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
PIDOLT[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
PIDOLT[9:8]  
0
0
PIDOLT[9:0]: PI calculated Duty cycle Output resuLT  
PIDOLT[9:0] = 3FFh: Output PWM duty cycle = 100%  
PIDOLT[9:0] = 000h: Output PWM duty cycle = 0%  
STATSEL = 7h  
STATUS[23:0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
LACTL_EPOS[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LACTL_EPOS[7:0]: Lead Angle ConTroL Energizing  
POSition  
LACTL_EPOS[7:0] = x: Energizing position =  
(x * 1.875) deg  
(00h 3 LACTL_EPOS[7:0] 3 BFh)  
LACTL_EPOS[7:0] = 00h: Energizing position = 0 deg  
LACTL_EPOS[7:0] = BFh: Energizing position =  
358.125 deg  
www.onsemi.com  
53  
LV8961HUW  
STATSEL = 8h  
STATUS[23:0]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
0
0
0
0
0
0
0
0
0
0
0
0
NO_OPEN  
OPEN_W  
OPEN_V  
OPEN_U  
0
0
0
0
0
0
0
0
NO_OPEN: NO OPEN phases detected  
OPEN_V: OPEN V phase (active low)  
NO_OPEN = 0: At least one open phase connector  
OPEN_V = 0: V phase connecter is open  
NO_OPEN = 1: All phase connectors are connected  
OPEN_V = 1: V phase connecter is connected  
OPEN_W: OPEN W phase (active low)  
OPEN_W = 0: W phase connecter is open  
OPEN_W = 1: W phase connecter is connected  
OPEN_U: OPEN U phase (active low)  
OPEN_U = 0: U phase connecter is open  
OPEN_U = 1: U phase connecter is connected  
STATSEL = 9h  
STATUS[23:0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
REGCRC_RSLT[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
REGCRC_RSLT: REGister CRC ReSuLT  
The remainder of CRC calculation performed on the OTP  
registers is stored in REGCRC_RSLT [7:0].  
STATSEL = Ah  
STATUS[23:0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
ODUTYMAX[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
ODUTYMAX[9:8]  
0
0
ODUTYMAX[9:0]: Output DUTY cycle MAXimum  
ODUTYMAX[9:0] = 3FFh: Maximum output duty =  
ODUTYMAX[9:0] = 000h: Duty = 0 %  
99.902 %  
ODUTYMAX[9:0] = x: Maximum output duty =  
0.09766 * x %  
ODUTYMAX limits the duty range of U/V/W output.  
STATSEL = Bh  
STATUS[23:0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
0
0
0
0
0
0
0
0
LANUM0[4:0]  
0
0
0
0
0
0
0
0
0
0
LANUM0[4:0]: Lead Angle Number 0 (output monitor)  
LANUM0[4:0] = 00h: Duty = 0 deg  
LANUM0[4:0] = x: Maximum output duty = 1.875 *  
x deg  
LANUM0[4:0] = 1Fh: Maximum output duty =  
58.125 deg  
LANUM0 is the actual lead angle based on the output duty  
cycle.  
www.onsemi.com  
54  
LV8961HUW  
STATSEL = Ch  
STATUS[23:0]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
0
0
0
0
0
0
0
0
0
LANUM1[4:0]  
0
0
0
0
0
0
0
0
0
0
LANUM1[4:0]: Lead Angle Number 1 (control input)  
LANUM1[4:0] = 00h: Duty = 0 deg  
LANUM1[4:0] = x: Maximum output duty = 1.875 *  
x deg  
LANUM1 is the target lead angle value which  
characteristics are determined based on the output duty  
cycle and the setting of LASET_L, LASET_H, and  
LASET_LIM.  
LANUM1[4:0] = 1Fh: Maximum output duty =  
58.125 deg  
STATSEL = Dh  
STATUS[23:0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16]: MRSTAT2  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
WNDCHNG_EN  
BEMFEN  
HIZON  
0
0
0
0
0
0
WNDCHNG_EN: WiNDow mode CHaNGe ENabled  
BEMFEN = 1: BEMF zerocross detection is enabled  
WNDCHNG_EN = 0: Window selection according to  
WINDSEL is disabled  
WNDCHNG_EN = 1: Window selection according to  
WINDSEL is enabled  
BEMFEN is the internal state monitor which indicates  
whether BEMF zerocross detection is enabled or not.  
HIZON: HIgh Z state ON (active)  
HIZON = 0: Not in High Z window  
HIZON = 1: In High Z window  
WNDCHNG_EN is the internal state monitor which  
indicates whether window number change is enabled or not.  
HIZON is the internal state monitor which indicates  
whether now in the High Z state or not.  
BEMFEN: BEMF detection ENabled  
BEMFEN = 0: BEMF zerocross detection is disabled  
STATSEL = Eh  
STATUS[23:0]  
[7:0]: MRSTAT0  
[15:8]: MRSTAT1  
[23:16] : MRSTAT2  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
TAG0[7:0]  
OPENLX0  
0
TAG0[14:8]  
0
0
0
0
0
0
0
TAG0[7:0]: TArGet speed/output duty cycle 0 (output  
monitor)  
TAG0[14:0] = 0000h: Output duty = 0% (Target speed =  
OPENLX0: OPEN Loop condition for tag0 (active low)  
OPENLX0 = 0: TAG0 is generated under Openloop  
condition  
0 RPM)  
OPENLX0 = 1: TAG0 is generated under Closedloop  
condition  
TAG0[14:0] = 7FFFh: Output duty = MAX (Target speed  
limit)  
www.onsemi.com  
55  
LV8961HUW  
MRCTL6 (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[7]  
D[6]  
D[6]  
D[5]  
D[4]  
D[3]  
D[3]  
D[2]  
D[2]  
D[1]  
D[1]  
D[0]  
D[0]  
0307h  
MRCTL6  
BAREG[7:0]  
MRCTL7 (Default: 00h)  
ADDR  
Data Name  
D[5]  
D[4]  
0308h  
MRCTL7  
BAREG[15:8]  
BAREG[15:0]: Base Address REGister (short format  
access)  
This register value is used as register address when  
BASEL[3:0] field of SPI format is set to Fh.  
MRODL  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0400h  
MRODL  
ODL[7:0] Write 00h: Execute OTP data download, Write FFh: Execute Register checksum calculation  
ODL[7:0]: Otp DownLoad and checksum  
Write ODL[7:0]=00h: Execute OTP data download  
Write ODL[7:0]=FFh: Execute register checksum  
calculation  
Write ODL[7:0]=others: No operation  
A write access of 00h to this register initiates a copy  
operation of OTP data to the main register. This register is  
blocked if OBSY is high.  
MRORB (Default: 00h)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0401h  
MRORB  
0
0
0
0
0
0
ORBEN  
ORBLV  
ORBEN: Otp Read Bias check ENable  
ORBEN=0: Normal mode  
ORBEN=1: OTP bias read mode (Margin read mode)  
The OTP Registers contain the default values of the  
system registers. These registers are always readable via SPI  
in either Standby or Normal modes. During device startup  
these default values are copied from the OTP bank (SPI  
addresses 1000h to 1022h) to the main register bank (SPI  
addresses 0000h to 0401h). The OTP registers should only  
be programmed once during IC initialization, during normal  
operation only the main registers are accessed and modified.  
It is possible to block programming of the OTP section by  
setting the OSAENB bit in the ORCONF33 Register of the  
OTP. For detailed information on the content of the OTP, see  
the corresponding main register descriptions in the previous  
section.  
ORBLV: Otp Read Bias check LeVel  
ORBLV=0: OTP low bias read mode (low level margin  
check) at ORBEN=1  
ORBLV=1: OTP high bias read mode (high level margin  
check) at ORBEN=1  
This register modifies the OTP readout threshold. After  
programming the OTP registers should be verified by  
reading them with the readout thresholds set low and high to  
detect false zeros and ones  
OTP Register  
ORCONF0 – ORCONF4 (assigned to OTP bank 0)  
ADDR  
1000h  
1001h  
1002h  
1003h  
1004h  
Data Name  
ORCONF0  
ORCONF1  
ORCONF2  
ORCONF3  
ORCONF4  
D[7]  
D[6]  
FRREN  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
SPCFG  
PDTC  
D[0]  
FRMD  
SCEN  
PWMF  
REGSEL  
ZPSEL[2:0]  
VCEN  
PWMINSEL  
PWMON  
FLSEL[2:0]  
FGSTBLMD  
FGOF[1:0]  
FDTI[4:0]  
CLMASK[3:0]  
SROFFT[3:0]  
OCMASK[3:0]  
CRMASK[3:0]  
OTP write is start when ORCONF4 is written.  
Other register value are hold by temporary registers.  
These temporary registers are common for all banks.  
When ORCONF* register is read, OTP read data without  
internal DFF is directly output to SPI read data.  
www.onsemi.com  
56  
LV8961HUW  
ORCONF5 – ORCONF9 (assigned to OTP bank 1)  
ADDR  
1005h  
1006h  
1007h  
1008h  
1009h  
Data Name  
ORCONF5  
ORCONF6  
ORCONF7  
ORCONF8  
ORCONF9  
D[7]  
D[6]  
D[5]  
FSCDT[1:0]  
CPTM[3:0]  
D[4]  
D[3]  
D[2]  
FSCDL[3:0]  
THTH[1:0]  
D[1]  
D[0]  
SYNCEN  
SSCGEN  
WDTEN  
VCLVPEN  
PPDOSEL  
TSTS  
WDTSEL[2]  
CPEN  
WDT[5:0]  
THWEN  
THPEN  
FSPEN  
CPLT  
OVPEN  
OCPEN  
OCPLT  
DIAGSEL  
DLTO  
RCVTM[1:0]  
WDTSEL[1:0]  
FSPLT  
OTP write is start when ORCONF9 is written.  
ORCONF10 – ORCONF14 (assigned to OTP bank 2)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
CLDOEN  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
100Ah  
ORCONF10  
VDHOVP  
EN  
OOPOEN  
FGERAC  
CEN  
RCSMPMD RCSMPEN  
OPDTM[1:0]  
100Bh  
100Ch  
ORCONF11  
ORCONF12  
INIODUT  
YMD  
INITAGMD CLREFEN  
_ROT  
CLREFEN  
_STOP  
ATSYNC  
OFF  
Internal use STSYNC  
EN  
SPIINSEL  
FGERDE  
CEN  
FGERDEC[2:0]  
FGERACC[3:0]  
100Dh  
100Eh  
ORCONF13  
ORCONF14  
0
DWNSET  
PDTSEL[1:0]  
FSPDTM[1:0]  
SSTT[5:0]  
OVPMASK[1:0]  
LASET_LIM[4:3]  
OTP write is start when ORCONF14 is written.  
ORCONF15 – ORCONF19 (assigned to OTP bank 3)  
ADDR  
100Fh  
1010h  
1011h  
1012h  
1013h  
Data Name  
ORCONF15  
ORCONF16  
ORCONF17  
ORCONF18  
ORCONF19  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
STOSC[7:0]  
LASET_LIM[2:0]  
LASET_L[4:0]  
MSKRSTNUM0_SIX[3:0]  
MSKRSTNUM1_SIX[3:0]  
PG[2:0]  
CLMSPD[0]  
PX[2:0]  
IX[3:0]  
Internal use  
SSCGCN[0]  
IG[2:0]  
OTP write is start when ORCONF19 is written.  
ORCONF20 – ORCONF24 (assigned to OTP bank 4)  
ADDR  
1014h  
1015h  
1016h  
1017h  
1018h  
Data Name  
ORCONF20  
ORCONF21  
ORCONF22  
ORCONF23  
ORCONF24  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
CLMSPD[1]  
OCSEL[0]  
CLSEL  
0
0
SSCGCN[1]  
0
0
0
DDUTYSEL[2:0]  
USTEPSEL[1:0]  
DSTEPSEL[1:0]  
DUTY_L[7:0]  
DUTY_H[7:0]  
TAG_L[7:0]  
OTP write is start when ORCONF24 is written. SSCGCN  
[1], [0] are separated by ADDR 1013h, 1014h.  
ORCONF25 – ORCONF29 (assigned to OTP bank 5)  
ADDR  
1019h  
101Ah  
Data Name  
ORCONF25  
ORCONF26  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
TAG_L[14:8]  
TAG_H[7:0]  
D[2]  
D[1]  
D[0]  
OCSEL[1]  
www.onsemi.com  
57  
LV8961HUW  
ORCONF25 – ORCONF29 (assigned to OTP bank 5)  
ADDR  
101Bh  
101Ch  
101Dh  
Data Name  
ORCONF27  
ORCONF28  
ORCONF29  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
SLMD  
TAG_H[14:8]  
WINDSEL[1:0]  
CLDWNOFF  
LASET_H[4:0]  
MSKRSTNUM0_INI[3:0]  
MSKRSTNUM1_INI[3:0]  
OTP write is start when ORCONF29 is written.  
OCSEL[1], [0] are separated by ADDR 1015h, 1019h.  
ORCONF30 – ORCONF34 (assigned to OTP bank 6)  
ADDR  
101Eh  
101Fh  
1020h  
1021h  
1022h  
Data Name  
ORCONF30  
ORCONF31  
ORCONF32  
ORCONF33  
ORCONF34  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
MSKRSTNUM0_THR[3:0]  
MSKRSTNUM0_TWO[3:0]  
MSKRSTNUM0_ONE[3:0]  
ORCONF33[7:4]  
MSKRSTNUM1_THR[3:0]  
MSKRSTNUM1_TWO[3:0]  
MSKRSTNUM1_ONE[3:0]  
RBSEL  
RCSMEN  
OSAENB  
MSAENB  
RCSM[7:0]  
OTP write is start when ORCONF34 is written.  
ORCONF33[7:4] has no register to download, but OTP  
output is used for checksum calculation.  
OTP Programming Overall  
Figure 24 shows overall of the OTP memory write and  
verify flow. It consists of preparation, write and three times  
of data integrity verification.  
OTP Data Download  
The OTP register data is typically transferred into the  
main registers at device startup (From sleep to standby  
transition). This operation takes up to 340 ms. A high OBSY  
flag in the first returned byte during a SPI transaction  
indicates this.  
OTP Programming  
The OTP registers can be programmed in Standby mode  
only while the write lock bit OSAENB is set 0. And, the  
supply voltage at pin VS must be more than 14 V. The actual  
write operation to the OTP memory will be done, when the  
state change from 0 to 1 is commanded. Once the bit state is  
changed to 1, it cannot be change back to 0. The number of  
writing is limited to one per bit.  
POR ready Download data  
INH  
The OTP memory consists of five memory banks. The  
bank contains five register bytes. The bank is filled by five  
SPI write transactions. When the last address register in each  
bank is received, the busyflag OBSY will be set and those  
five bytes will be programmed permanently into the  
corresponding OTP bank. The OBSY flag will be reset at the  
end of the write cycle. OBSY is in GSDAT register. To get  
GSDAT, SPI accesses to the register MRACK is  
recommended. MRACK doesn’t interfere with the  
programming operation. MRCONF, MRSPCT, ORCONF  
registers cannot be accessed during an OTP write cycle.  
MRCONF, MRSPCT, ORCONF, ORSPCT, ORACS  
registers cannot be accessed during an OTP write cycle.  
OBSY  
Figure 22. OTP Data Download  
Timing at Startup  
An OTP download can also actively be initiated by  
writing 00h to register MRODL. This command requires  
monitoring the OBSY flag. Don’t perform specific register  
access (MRCONF, MRSPCT, ORCONF) until the OBSY  
flag is cleared.  
Write MRODL Register  
OBSY  
Download Data  
Figure 23. OTP Data Download Timing after  
an MRODL Commnad  
www.onsemi.com  
58  
LV8961HUW  
START  
START  
WRITE DATA  
Set LV8961H standby  
Apply VS > 14 V  
Write data to address 10-00h, 01h, 02h, 03h, 04h  
Write Data  
Wait for 20 ms or more  
Set mode to  
Write data to address 10-05h, 06h, 07h, 08h, 09h  
L side read check  
Wait for 20 ms or more  
Verify  
Set mode to  
Write data to address 10-0Ah, 0Bh, 0Ch, 0Dh, 0Eh  
H side read check  
Wait for 20 ms or more  
Verify  
Write data to address 10-0Fh, 10h, 11h, 12h, 13h  
Set mode to  
Normal  
Wait for 20 ms or more  
Verify  
END  
Write data to address 10-14h, 15h, 16h, 17h, 18h  
Wait for 20 ms or more  
Figure 24. OTP Memory Write  
and Verify Flow  
Write OTP data  
Write data to address 10-19h, 1Ah, 1Bh, 1Ch, 1Dh  
OBSY  
Internal write time  
Wait for 20 ms or more  
Figure 25. OTP Programming Timing  
Write data to address 10-1Eh, 1Fh, 20h, 21h, 22h  
The programming takes 20 ms maximum. To simplify  
operation, a waiting for 20 ms plus margin can be applicable  
instead of a polling of the flag OBSY. (Figure 26)  
Wait for 20 ms or more  
END  
Figure 26. OTP Memory Write Operation  
www.onsemi.com  
59  
 
LV8961HUW  
OTP Data Integrity Verification  
6. Verify that the main register contents are  
consistent with the programmed OTP data  
7. Return OTP threshold to normal by setting  
ORBEN = 0 and ORBLV = 0  
8. Execute OTP download command  
9. Verify that the main register contents are  
consistent with the programmed OTP data  
In order to verify that the OTP programming operation  
was successful. It is strongly recommended to do an OTP  
margin check: To do this, the OTP registers are downloaded  
into the main register bank with minimum and maximum  
readout thresholds. This OTP download is forced by writing  
00h to register MRODL. The readout threshold is set in  
register MRORB.  
OTP Margin read check sequence after programmed:  
1. Set OTP readout threshold “low” by setting  
ORBEN = 1 and ORBLV = 0 in register MRORB  
2. Execute OTP download command by writing 00h  
to MRODL  
Locking OTP Register Contents  
MSAENB bit and OSAENB bit of ORCONF33 register  
are used in order to prevent writeaccess of the main  
registers and the OTP registers respectively.  
CAUTION: Inadvertent writing of these bits will  
permanently lock the corresponding register  
blocks from any further write access.  
Should only be set at end of development  
cycles.  
3. Verify that the main register contents are  
consistent with the programmed OTP data  
4. Set OTP readout threshold “high” by setting  
ORBEN = 1 and ORBLV = 1 in register MRORB  
5. Execute OTP download command by writing 00h  
to MRODL  
ORCONF33  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
1021h  
ORCONF33  
0
0
0
0
RBSEL  
RCSMEN  
OSAENB  
MSAENB  
RBSEL: Reverse detection Brake SELection  
RBSEL=0: Short brake is disabled when reverse rotation  
is detected.  
This register is used in order to permanently prevent write  
access to the OTP and/or the main registers. This register  
data is transferred into MRACS register.  
RBSEL=1: Short brake is enabled when reverse rotation  
is detected.  
If RBSEL is set, short brake (all lowside FET are ON) is  
done until the rotation stops after reverse rotation is  
detected.  
OSAENB: Otp registers Spi Access ENable Bar (Disable)  
OSAENB = 0: Write access permitted  
OSAENB = 1: Write access denied  
OSAENB controls write access to the OTP registers.  
MSAENB: Main registers Spi Access ENable Bar (Disable)  
RCSMEN: Register CheckSuM ENable  
RCSMEN=0: Register checksum diagnostic function is  
disabled.  
RCSMEN=1: Register checksum diagnostic function is  
enabled.  
MSAENB = 0: Write access permitted  
MSAENB = 1: Write access denied  
MSAENB controls write access to the main registers.  
www.onsemi.com  
60  
LV8961HUW  
ORCONF34  
ADDR  
Data Name  
ORCONF34  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
1022h  
RCSM[7:0]  
x8 ) x6 ) x3 ) x2 ) 1  
RCSM: Register CheckSuM  
The checksum of whole OTP memory data except this  
register ORCONF34 needs to be written when the data  
integrity diagnostic function is enabled. This checksum is a  
cyclic redundancy check (CRC) which is calculated by the  
following generator polynomial.  
The read out value of the register RCSMSD must be  
applied to the CRC calculation as a seed. An example CRC  
calculation program in C language is shown below.  
// x8 + x6 + x3 + x2 + 1  
#define MSB_CRC8  
(0x4D)  
unsigned char crc_table[256];  
unsigned char crc_seed;  
static unsigned char GetCRC8_2( unsigned char seed, const void *buff, size_t size )  
{
unsigned char *p = (unsigned char *)buff;  
unsigned char crc8;  
int i;  
for ( crc8 = seed ; size != 0 ; size-- ){  
crc8 ^= *p++;  
for ( i = 0 ; i < CHAR_BIT ; i++ ){  
if ( crc8 & 0x80 ){  
crc8 <<= 1; crc8 ^= MSB_CRC8;  
}
else{  
crc8 <<= 1;  
}
}
}
return crc8;  
}
This program is used in the following procedure.  
1. Set ORCONF0 through 33 to crc_table  
2. Set CRC code read from the register RCSMSD to  
crc_seed  
2. Determine the operation at the checksum error  
detection: A motor is kept running or stopped,  
which is specified by the bit RCSMPMD  
3. The bit RCSMEN must be set 1 to enable this  
feature  
4. Read out the checksum code (CRC) of the OTP  
memory reserved area from the register  
RCSMSD[7:0] whose value may be different by  
part  
5. Letting the RCSMSD be a seed for the CRC  
calculation, prepare the total checksum (CRC)  
from ORCON0 to ORCON33, which will be used  
for the register RCSM[7:0] at ORCONF34  
3. Call GetCRC8_2(crc_seed, crc_table, 34)  
4. Use return value for ORCONF34  
Register Checksum Feature  
To activate the register checksum feature, the following  
register bits must be provided before OTP programming  
operation.  
1. Determine the periodical checksum verify function  
to be enabled or not, which is specified by the bit  
RCSMPEN  
www.onsemi.com  
61  
LV8961HUW  
The following table shows related register bits to this  
checksum feature.  
Table 14.  
Register Name  
RCSMPEN  
RCSMPMD  
RCSMEN  
Data Name  
ORCONF10  
ORCONF10  
ORCON33  
ORCONF34  
Address  
100Ah  
100Ah  
1021h  
Description  
Enable the periodical checksum verification while a motor is running  
Selection of motor running or stop when the checksum error is detected  
Enable the register checksum function  
RCSM  
1022h  
Checksum to be written with OTP memory data together, which must be cal-  
culated by user, applying the code of RCSMSD as a seed of CRC  
RCSMSD  
RCSM  
MRCSMSD  
MRCONF14  
0208h  
010Eh  
Seed of the register checksum  
Calculated checksum which is automatically calculated on this device  
Code of this register will be compared with the preprogrammed checksum  
code in the register RCSM at ORCONF34 OTP memory.  
RCSMPO  
MRDIAG1  
0202h  
010Ah  
Checksum error flag  
RCSMPEN  
MRCONF10  
Enable the periodical checksum verification while a motor is running.  
This value will be copied from OTP memory at the device reset or the  
download operation.  
RCSMPMD  
MRCONF10  
010Ah  
Selection of motor running or stop when the checksum error is detected  
This value will be copied from OTP memory at the device reset or the  
download operation.  
Table 15.  
Symbol  
Symbol Name Explanation  
ATSYNCOFF  
BAREG  
AuTomatic SYNChronous rectification OFF (active low)  
Base Address REGister (short format access)  
Base Address SELection  
BASEL  
BEMFEN  
BRK  
BEMF detection ENabled  
short BRaKe enable  
CHPLVPO  
CHPOVPO  
CLDO  
CHarge Pump Low Voltage Protection Output  
CHarge Pump OverVoltage Protection Output  
Current Limit Detection Output  
CLDOEN  
CLDWNOFF  
CLMASK  
CLMSPD  
CLREFEN_ROT  
CLREFEN_STOP  
CLSEL  
Current Limit Detection Output ENable  
Current Limit semipowerDoWN OFF  
Current Limit MASKing time  
Current LiMit SemiPowerDown level  
Current Limit REFerence ENable (free ROTating status)  
Current Limit REFerence ENable (STOP status)  
Current Limit threshold SELection  
CPEN  
Constrained movement Protection ENable  
Constrained movement Protection LaTch selection  
Constrained movement Protection Output  
Constrained movement Protection TiMe  
Current Reversed Detection Output  
CPLT  
CPO  
CPTM  
CRDTO  
CRMASK  
DDUTYSEL  
Current Reversed MASKing time  
Detection level of DUTY output changes SELection  
www.onsemi.com  
62  
 
LV8961HUW  
Table 15. (continued)  
Symbol  
Symbol Name Explanation  
DIAGS  
DIAG Status  
DIAG polarity SELection  
DIAGSEL  
DLTO  
Diagnostics output Latched Transitions Only  
DownSpeed Transition stEP SELection  
input pwm DUTY cycle High limit  
DSTEPSEL  
DUTY_H  
DUTY_L  
DWNSET  
FDTI  
input pwm DUTY cycle Low limit  
slowDoWN SETting  
Fet Dead TIme  
FGERACC  
FGERACCEN  
FGERDEC  
FGERDECEN  
FGERPO  
FGOF  
Frequeny Generator ERrordetection during ACCeleration setting  
Frequeny Generator ERrordetection during ACCeleration ENable  
Frequeny Generator ERrordetection during DECeleration setting  
Frequeny Generator ERrordetection during DECeleration ENable  
Frequency Generator ERror Protection Output  
Frequency Generator Output Frequency (= rotation speed)  
Frequency Generator STaBLe MoDe  
Full Load fallback level SELection (PWM input 100% duty mode)  
Forward/Reverse MoDe  
FGSTBLMD  
FLSEL  
FRMD  
FRREN  
FRee Running ENable  
FSCDL  
Fet ShortCircuit Detection Level  
FSCDT  
Fet ShortCircuit Detection Time  
FSPDTM  
FSPEN  
Fet Short Protection Debounce TiMe setting  
Fet Short Protection ENable  
FSPLT  
Fet Short Protection LaTch selection  
Fet Short Protection Output  
FSPO  
GSDAT  
General Status DATa  
HIZON  
HIgh Z state ON (active)  
IDUTY_IDUTY  
IG  
Input DUTYcycle  
Integral Gain  
INIODUTYMD  
INITAGMD  
IX  
INItial Output DUTY cycle MoDe (soft start function)  
INItial max. TArGet output duty cycle MoDe  
Integral gain eXponent  
LACTL_EPOS  
LANUM0  
LANUM1  
LASET_H  
LASET_L  
LASET_LIM  
LATCH  
Lead Angle ConTroL Energizing POSition  
Lead Angle Number 0 (output monitor)  
Lead Angle Number 1 (control input)  
Lead Angle SETting at High output duty cycle (100%)  
Lead Angle SETting at Low output duty cycle (0%)  
Lead Angle SETting max. LIMit  
LATCHed shutdown status  
MRACK  
Main Register Access ChecK  
MRACS  
Main Register ACcess Setting  
MRCONF  
MRDIAG  
Main Register CONFiguration  
Main Register DIAGnostics  
www.onsemi.com  
63  
LV8961HUW  
Table 15. (continued)  
Symbol  
Symbol Name Explanation  
MRODL  
Main Register Otp DownLoad  
MRORB  
Main Register Otp Read Bias check  
Main Register ReSeT  
MRRST  
MRSPCT  
Main Register SPeed ConTrol  
MSAENB  
Main registers Spi Access ENable Bar (Disable)  
same for startup 6window mode  
MaSK Rate SeTting for bemf observation NUMber 0, for 1window mode  
same for 6window mode  
MSKRSTNUM0_INI  
MSKRSTNUM0_ONE  
MSKRSTNUM0_SIX  
MSKRSTNUM0_THR  
MSKRSTNUM0_TWO  
MSKRSTNUM1_INI  
MSKRSTNUM1_ONE  
MSKRSTNUM1_SIX  
MSKRSTNUM1_THR  
MSKRSTNUM1_TWO  
NO_OPEN  
OBSY  
same for 3window mode  
same for 2window mode  
same for startup 6window mode  
MaSK Rate SeTting for bemf observation NUMber 1, for 1window mode  
same for 6window mode  
same for 3window mode  
same for 2window mode  
NO OPEN phases detected  
Otp BuSY  
OCMASK  
OverCurrent MASKing time  
OCPEN  
OverCurrent Protection ENable  
OverCurrent Protection LaTch selection  
OverCurrent Protection Output  
OCPLT  
OCPO  
OCSEL  
OverCurrent threshold SELection  
Otp DownLoad and checksum  
ODL  
ODUTYMAX  
OOPO  
Output DUTYcycle MAXimum  
Open cOnnector Protection Output  
Open cOnnector Protection Output ENable  
OPen connector Detection TiMe selection  
OPEN U phase (active low)  
OOPOEN  
OPDTM  
OPEN_U  
OPEN_V  
OPEN V phase (active low)  
OPEN_W  
OPEN W phase (active low)  
OPENLX0  
OPEN Loop condition for tag0 (active low)  
Otp Read Bias check ENable  
ORBEN  
ORBLV  
Otp Read Bias check LeVel  
OSAENB  
Otp registers Spi Access ENable Bar (Disable)  
OTP All bits Zero  
OTPAZ  
OVPEN  
OverVoltage Protection ENable  
OverVoltage Protection MASKing time  
Pending Detection of a Transition Control  
Pending Detection of a Transition SELection  
Proportional Gain  
OVPMASK  
PDTC  
PDTSEL  
PG  
PIDOLT  
PI calculated Duty cycle Output resuLT  
Pwm Problem Diagnostics Output SELection  
PPDOSEL  
www.onsemi.com  
64  
LV8961HUW  
Table 15. (continued)  
Symbol  
Symbol Name Explanation  
PROT_F  
PROT_T  
PWMDTIN  
PWMF  
Period of ROTation (Frequency)  
Period of ROTation (Time)  
PWM DuTycycle INput register  
PWM input Frequency selection  
PWM input High CouNT (LaTched)  
PWM INput pin SELection  
PWMHCNT_LT  
PWMINSEL  
PWMON  
PWMPCNT_LT  
PWMPO  
PX  
PWM ON polarity  
PWM input Period CouNT (LaTched)  
PWM input abnormal Protection Output  
Proportional gain eXponent  
RBSEL  
Reverse detection Brake SELection  
Register CheckSuM  
RCSM  
RCSMEN  
RCSMPEN  
RCSMPMD  
RCSMPO  
RCSMSD  
RCVTM  
Register CheckSuM ENable  
Register CheckSuM Periodical at running motor ENable  
Register CheckSuM error then Power Motor Down  
Register CheckSuM Protection Output  
Register CheckSuM SeeD  
ReCoVery TiMe setting  
RECALC  
REGAZ  
RECALCulate target speed from input pwm control table  
otp REGister All bits Zero  
REGCRC_RSLT  
REGSEL  
SACF  
REGister CRC ReSuLT  
Vcc REGulator SELection  
Spi ACcess Failed  
SCEN  
external Speed Control ENable  
SinusoidaL Mode Driving  
SLMD  
SMOD  
Status MODeꢀ  
SPCFG  
Speed feedback loop calculation Period ConFiGuration  
SPeed Control error Output  
SPCO  
SPIINSEL  
SROFFT  
SSCGCN  
SSCGEN  
SSTT  
duty cycle through SPI INput SELection  
Synchronous Rectification OFF Time  
Spread Spectrum Charge pump Generation Clock Number  
Spread Spectrum Charge pump Generation ENable  
Soft STart Time  
STATSEL  
STATUS  
STOSC  
STATus data SELection  
internal STATUS output  
STartup OSCillator  
STSYNCEN  
STUPO  
sofSTart SYNChronous rectification ENable (active low)  
bemfless STartUp Period Output  
SYNChronous rectification ENable (active low)  
TArGet speed High  
SYNCEN  
TAG_H  
TAG_L  
TArGet speed Low  
TAG0  
TArGet speed/output duty cycle 0 (output monitor)  
www.onsemi.com  
65  
LV8961HUW  
Table 15. (continued)  
Symbol  
Symbol Name Explanation  
TAG1  
TArGet speed/output duty cycle 1 (control input)  
THermal Protection ENable  
THPEN  
THPO  
fet THermal Protection Output  
THSPO  
THermal Shutdown Protection Outputꢀ  
THreshold of THermometer  
THTH  
THWEN  
THWPO  
TSTS  
THermal Warning ENable  
THermal Warning Protection Output  
Thermal Shutdown Temperature Setting  
UpSpeed Transition stEP SELection  
VCc Regulator ENable  
USTEPSEL  
VCEN  
VCLVPEN  
VCLVPO  
VDHOVPEN  
VDHOVPO  
VGLLVPO  
VSLVPO  
VSOVPO  
WDT  
VCc Low Voltage Protection ENable  
VCc Low Voltage Protection Output  
VDH OverVoltage Protection ENable  
VDH OverVoltage Protection Output  
VGL Low Voltage Protection Output  
VS Low Voltage Protection Output  
VS OverVoltage Protection Output  
WatchDog Timeout duration setting  
WatchDog Timeout Enable  
WDTEN  
WDTP  
WatchDog Timeout Protection mode selectionꢀ  
WatchDog Timer Protection Output  
WatchDog Targetduty SELection  
WiNDow mode CHaNGe ENabled  
bemf WINdow mode SELection  
WDTPO  
WDTSEL  
WNDCHNG_EN  
WINDSEL  
ZPSEL  
Zero Power fallback level SELection (PWM input 0% duty mode)  
www.onsemi.com  
66  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SPQFP48 7x7 / SQFP48K  
CASE 131AN  
ISSUE A  
DATE 08 NOV 2013  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON78439F  
SPQFP48 7X7 / SQFP48K  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

LV8968BBUWR2G

Multipurpose Three-Phase Brushless DC Predriver, Developed in Compliance with ISO 26262
ONSEMI

LV9001

TLV900x Low-Power, Rail-to-Rail In and Out, 1-MHz Operational Amplifier
ETC

LV9004

TLV900x Low-Power, Rail-to-Rail In and Out, 1-MHz Operational Amplifier
ETC

LV9005

Optical Sensor Switch IC
SANYO

LV9005M

Optical Sensor Switch IC
SANYO
PLETRONICS
PLETRONICS

LV9120DEV-10.9M

Oscillator, 10.9MHz Min, 670MHz Max, 10.9MHz Nom,
PLETRONICS

LV9120DEV-10.9M-T1K

LVDS Output Clock Oscillator, 10.9MHz Min, 670MHz Max, 10.9MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 6 PIN
PLETRONICS

LV9120DEV-10.9M-T250

LVDS Output Clock Oscillator, 10.9MHz Min, 670MHz Max, 10.9MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 6 PIN
PLETRONICS

LV9120DEV-10.9M-T500

LVDS Output Clock Oscillator, 10.9MHz Min, 670MHz Max, 10.9MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 6 PIN
PLETRONICS

LV9120DEV-125.0M

LVDS Clock Oscillators
PLETRONICS