MC14538BDWG [ONSEMI]

Dual Precision Retriggerable/Resettable Monostable Multivibrator; 双路精密可重触发/复式单稳态多谐振荡器
MC14538BDWG
型号: MC14538BDWG
厂家: ONSEMI    ONSEMI
描述:

Dual Precision Retriggerable/Resettable Monostable Multivibrator
双路精密可重触发/复式单稳态多谐振荡器

振荡器
文件: 总14页 (文件大小:198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC14538B  
Dual Precision  
Retriggerable/Resettable  
Monostable Multivibrator  
The MC14538B is a dual, retriggerable, resettable monostable  
multivibrator. It may be triggered from either edge of an input pulse,  
and produces an accurate output pulse over a wide range of widths, the  
duration and accuracy of which are determined by the external timing  
components, C and R . Output Pulse Width T = R @ C (secs)  
http://onsemi.com  
MARKING  
X
X
X
X
R = W  
X
DIAGRAMS  
C = Farads  
X
Features  
16  
1
PDIP16  
P SUFFIX  
CASE 648  
MC14538BCP  
AWLYYWWG  
Unlimited Rise and Fall Time Allowed on the A Trigger Input  
Pulse Width Range = 10 ms to 10 s  
Latched Trigger Inputs  
Separate Latched Reset Inputs  
3.0 Vdc to 18 Vdc Operational Limits  
Triggerable from Positive (A Input) or NegativeGoing Edge (BInput)  
Capable of Driving Two LowPower TTL Loads or One LowPower  
Schottky TTL Load Over the Rated Temperature Range  
Pinforpin Compatible with MC14528B and CD4528B (CD4098)  
Use the MC54/74HC4538A for Pulse Widths Less Than 10 ms with  
Supplies Up to 6 V  
NLV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
16  
SOIC16  
D SUFFIX  
CASE 751B  
14538BG  
AWLYWW  
1
16  
SOIC16WB  
DW SUFFIX  
CASE 751G  
14538BG  
AWLYYWW  
1
These Devices are PbFree and are RoHS Compliant  
16  
MAXIMUM RATINGS (Voltages Referenced to V  
)
SS  
14  
538B  
ALYWG  
G
TSSOP16  
DT SUFFIX  
CASE 948F  
Symbol  
Parameter  
Value  
0.5 to +18.0  
Unit  
V
V
DD  
DC Supply Voltage Range  
V , V  
in out  
Input or Output Voltage Range  
(DC or Transient)  
0.5 to V + 0.5  
V
DD  
1
I , I  
in out  
Input or Output Current  
(DC or Transient) per Pin  
10  
mA  
16  
SOEIAJ16  
F SUFFIX  
CASE 966  
MC14538B  
ALYWG  
P
D
Power Dissipation, per Package  
(Note 1)  
500  
mW  
T
Operating Temperature Range  
Storage Temperature Range  
55 to +125  
65 to +150  
260  
°C  
°C  
°C  
A
1
T
stg  
A
WL, L  
YY, Y  
= Assembly Location  
= Wafer Lot  
T
Lead Temperature  
(8Second Soldering)  
L
= Year  
WW, W = Work Week  
Stresses exceeding Maximum Ratings may damage the device. Maximum  
Ratings are stress ratings only. Functional operation above the Recommended  
Operating Conditions is not implied. Extended exposure to stresses above the  
Recommended Operating Conditions may affect device reliability.  
1. Temperature Derating:  
G or G  
= PbFree Indicator  
(Note: Microdot may be in either location)  
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
This device contains protection circuitry to guard against damage due to high  
static voltages or electric fields. However, precautions must be taken to avoid  
applications of any voltage higher than maximum rated voltages to this  
highimpedance circuit. For proper operation, V and V should be constrained  
in  
out  
to the range V v (V or V ) v V  
.
SS  
in  
out  
DD  
Unused inputs must always be tied to an appropriate logic voltage level  
(e.g., either V or V ). Unused outputs must be left open.  
SS  
DD  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
May, 2013 Rev. 10  
MC14538B/D  
 
MC14538B  
PIN ASSIGNMENT  
BLOCK DIAGRAM  
C
X
R
X
V
1
2
3
4
5
6
7
8
16  
15  
V
SS  
DD  
SS  
V
DD  
C /R A  
X
V
X
1
2
RESET A  
14 C /R B  
X X  
A
B
4
5
A
13 RESET B  
A
Q1  
Q1  
RESET  
6
7
B
12  
11  
10  
9
A
B
B
B
A
Q
A
3
Q
Q
A
B
B
V
SS  
Q
C
X
R
X
V
DD  
ONESHOT SELECTION GUIDE  
15  
14  
A
B
12  
11  
100 ns 1 ms 10 ms 100 ms 1 ms 10 ms 100 ms 1 s  
MC14528B  
10 s  
Q2  
Q2  
10  
9
MC14536B  
MC14538B  
MC14541B  
MC4538A*  
23 HR  
5 MIN.  
RESET  
13  
R AND C ARE EXTERNAL COMPONENTS.  
X
ꢀꢀV = PIN 16  
X
DD  
ꢀꢀV = PIN 8, PIN 1, PIN 15  
SS  
*LIMITED OPERATING VOLTAGE (2 - 6 V)  
TOTAL OUTPUT PULSE WIDTH RANGE  
RECOMMENDED PULSE WIDTH RANGE  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC14538BCPG  
PDIP16  
500 Units / Rail  
48 Units / Rail  
(PbFree)  
MC14538BDG  
SOIC16  
(PbFree)  
NLV14538BDG*  
MC14538BDR2G  
NLV14538BDR2G*  
MC14538BDTR2G  
NLV14538BDTR2G*  
MC14538BDWG  
NLV14538BDWG*  
MC14538BDWR2G  
NLV14538BDWR2G*  
MC14538BFG  
SOIC16  
(PbFree)  
2500 Units / Tape & Reel  
2500 Units / Tape & Reel  
47 Units / Rail  
TSSOP16  
(PbFree)  
SOIC16 WB  
(PbFree)  
SOIC16 WB  
(PbFree)  
1000 Units / Tape & Reel  
SOEIAJ16  
(PbFree)  
50 Units / Rail  
MC14538BFELG  
SOEIAJ16  
(PbFree)  
2000 Units / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable.  
http://onsemi.com  
2
MC14538B  
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V  
)
SS  
55_C  
25_C  
125_C  
V
DD  
Characteristic  
Symbol  
Unit  
Min  
Max  
Min  
Typ  
Max  
Min  
Max  
Vdc  
(Note 2)  
Output Voltage  
“0” Level  
“1” Level  
“0” Level  
V
5.0  
10  
15  
0.05  
0.05  
0.05  
0
0
0
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
Vdc  
OL  
V
in  
= V or 0  
DD  
V
OH  
5.0  
10  
15  
4.95  
9.95  
14.95  
4.95  
9.95  
14.95  
5.0  
10  
15  
4.95  
9.95  
14.95  
Vdc  
Vdc  
V
in  
= 0 or V  
DD  
Input Voltage  
(V = 4.5 or 0.5 Vdc)  
V
IL  
5.0  
10  
15  
1.5  
3.0  
4.0  
2.25  
4.50  
6.75  
1.5  
3.0  
4.0  
1.5  
3.0  
4.0  
O
(V = 9.0 or 1.0 Vdc)  
O
(V = 13.5 or 1.5 Vdc)  
O
“1” Level  
V
IH  
Vdc  
(V = 0.5 or 4.5 Vdc)  
5.0  
10  
15  
3.5  
7.0  
11  
3.5  
7.0  
11  
2.75  
5.50  
8.25  
3.5  
7.0  
11  
O
(V = 1.0 or 9.0 Vdc)  
O
(V = 1.5 or 13.5 Vdc)  
O
Output Drive Current  
I
mAdc  
OH  
(V = 2.5 Vdc)  
Source  
Sink  
5.0  
5.0  
10  
– 3.0  
– 0.64  
– 1.6  
– 4.2  
– 2.4  
– 0.51  
– 1.3  
– 3.4  
– 4.2  
– 0.88  
– 2.25  
– 8.8  
– 1.7  
– 0.36  
– 0.9  
– 2.4  
OH  
(V = 4.6 Vdc)  
OH  
(V = 9.5 Vdc)  
OH  
(V = 13.5 Vdc)  
OH  
15  
(V = 0.4 Vdc)  
I
OL  
5.0  
10  
15  
0.64  
1.6  
4.2  
0.51  
1.3  
3.4  
0.88  
2.25  
8.8  
0.36  
0.9  
2.4  
mAdc  
OL  
(V = 0.5 Vdc)  
OL  
(V = 1.5 Vdc)  
OL  
Input Current, Pin 2 or 14  
Input Current, Other Inputs  
I
I
15  
15  
0.05  
0.1  
0.00001  
0.00001  
25  
0.05  
0.1  
0.5  
1.0  
mAdc  
mAdc  
pF  
in  
in  
Input Capacitance, Pin 2 or 14  
C
C
in  
in  
Input Capacitance, Other Inputs  
5.0  
7.5  
pF  
(V = 0)  
in  
Quiescent Current  
(Per Package)  
I
5.0  
10  
15  
5.0  
10  
20  
0.005  
0.010  
0.015  
5.0  
10  
20  
150  
300  
600  
mAdc  
mAdc  
mAdc  
DD  
DD  
Q = Low, Q = High  
Quiescent Current, Active State  
(Both) (Per Package)  
I
5.0  
10  
15  
2.0  
2.0  
2.0  
0.04  
0.08  
0.13  
0.20  
0.45  
0.70  
2.0  
2.0  
2.0  
Q = High, Q = Low  
–2  
–5  
Total Supply Current at an external  
load capacitance (C ) and at  
external timing network (R , C )  
I
T
5.0  
10  
I = (3.5 x 10 ) R C f + 4C f + 1 x 10 C f  
T
X
X
X
L
–2  
–5  
I = (8.0 x 10 ) R C f + 9C f + 2 x 10 C f  
L
T X X X L  
–1  
–5  
I = (1.25 x 10 ) R C f + 12C f + 3 x 10 C f  
T X X X L  
X
X
(Note 3)  
where: I in mA (one monostable switching only),  
T
where: C in mF, C in pF, R in k ohms, and  
X
L
X
where: f in Hz is the input frequency.  
2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
3. The formulas given are for the typical characteristics only at 25_C.  
http://onsemi.com  
3
 
MC14538B  
SWITCHING CHARACTERISTICS (Note 4) (C = 50 pF, T = 25_C)  
L
A
All Types  
V
Vdc  
DD  
Characteristic  
Symbol  
Unit  
Min  
Typ  
(Note 5)  
Max  
Output Rise Time  
t
t
ns  
TLH  
THL  
t
t
t
= (1.35 ns/pF) C + 33 ns  
= (0.60 ns/pF) C + 20 ns  
= (0.40 ns/pF) C + 20 ns  
5.0  
10  
15  
100  
50  
40  
200  
100  
80  
TLH  
TLH  
TLH  
L
L
L
Output Fall Time  
ns  
ns  
t
t
t
= (1.35 ns/pF) C + 33 ns  
= (0.60 ns/pF) C + 20 ns  
= (0.40 ns/pF) C + 20 ns  
5.0  
10  
15  
100  
50  
40  
200  
100  
80  
THL  
THL  
THL  
L
L
L
t
,
Propagation Delay Time  
A or B to Q or Q  
PLH  
t
PHL  
t
t
t
, t  
= (0.90 ns/pF) C + 255 ns  
5.0  
10  
15  
300  
150  
100  
600  
300  
220  
PLH PHL  
L
, t  
= (0.36 ns/pF) C + 132 ns  
PLH PHL  
L
, t  
= (0.26 ns/pF) C + 87 ns  
L
PLH PHL  
Reset to Q or Q  
ns  
t
t
t
, t  
= (0.90 ns/pF) C + 205 ns  
5.0  
10  
15  
250  
125  
95  
500  
250  
190  
PLH PHL  
L
, t  
= (0.36 ns/pF) C + 107 ns  
PLH PHL  
L
, t  
= (0.26 ns/pF) C + 82 ns  
L
PLH PHL  
t , t  
Input Rise and Fall Times  
Reset  
5
10  
15  
15  
5
4
ms  
ms  
r
f
B Input  
A Input  
5
10  
15  
300  
1.2  
0.4  
1.0  
0.1  
0.05  
5
10  
15  
No Limit  
Input Pulse Width  
A, B, or Reset  
t
t
,
5.0  
10  
15  
170  
90  
80  
85  
45  
40  
ns  
ns  
ms  
WH  
WL  
Retrigger Time  
t
rr  
5.0  
10  
15  
0
0
0
T
Output Pulse Width — Q or Q  
Refer to Figures 8 and 9  
C
C
C
= 0.002 mF, R = 100 kW  
5.0  
10  
15  
198  
200  
202  
210  
212  
214  
230  
232  
234  
X
X
X
X
= 0.1 mF, R = 100 kW  
5.0  
10  
15  
9.3  
9.4  
9.5  
9.86  
10  
10.14  
10.5  
10.6  
10.7  
ms  
s
X
= 10 mF, R = 100 kW  
5.0  
10  
15  
0.91  
0.92  
0.93  
0.965  
0.98  
0.99  
1.03  
1.04  
1.06  
X
Pulse Width Match between circuits in  
the same package.  
100  
[(T – T )/T ]  
5.0  
10  
15  
1.0  
1.0  
1.0  
5.0  
5.0  
5.0  
%
1
2
1
C
= 0.1 mF, R = 100 kW  
X
X
4. The formulas given are for the typical characteristics only at 25_C.  
5. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
OPERATING CONDITIONS  
External Timing Resistance  
External Timing Capacitance  
R
C
5.0  
0
(Note 6)  
kW  
mF  
X
X
No Limit  
(Note 7)  
6. The maximum usable resistance R is a function of the leakage of the capacitor C , leakage of the MC14538B, and leakage due to board  
X
X
layout and surface resistance. Susceptibility to externally induced noise signals may occur for R > 1 MW..  
X
7. If C > 15 mF, use discharge protection diode per Fig. 11.  
X
http://onsemi.com  
4
 
MC14538B  
V
DD  
V
DD  
P1  
R
X
2 (14)  
ENABLE  
+
+
C1  
C2  
-
V
ref1  
-
R
Q
6ꢁ(10)  
7ꢁꢁ(9)  
V
ref2  
C
X
ENABLE  
OUTPUT  
LATCH  
(15)  
1
S
Q
N1  
V
SS  
CONTROL  
4 (12)  
5 (11)  
A
B
NOTE: Pins 1, 8 and 15 must  
be externally grounded  
Q
Q
R
R
3 (13)  
RESET LATCH  
RESET  
S
R
Figure 1. Logic Diagram  
(1/2 of DevIce Shown)  
V
DD  
0.1 mF  
CERAMIC  
500 pF  
I
D
R
R ′  
X
X
V
SS  
C
C ′  
X
X
V
SS  
V
in  
C /R  
X
X
A
B
Q
20 ns  
20 ns  
C
L
RESET  
A′  
Q
V
DD  
90%  
10%  
C
L
Q′  
Q′  
C
L
V
in  
0 V  
B′  
C
L
RESET′  
V
SS  
Figure 2. Power Dissipation Test Circuit and Waveforms  
V
DD  
INPUT CONNECTIONS  
R
R ′  
X
Characteristics  
Reset  
A
B
X
*C = 50 pF  
L
C
C ′  
X
t
, t  
, t  
, t  
,
V
DD  
PG1  
V
DD  
X
PLH PHL TLH THL  
V
SS  
V
SS  
T, t , t  
WH WL  
C /R  
X
t
, t  
, t  
, t  
,
V
V
PG2  
X
PLH PHL TLH THL  
DD  
SS  
A
B
PULSE  
T, t , t  
WH WL  
GENERATOR  
Q
Q
t
t
, t  
,
PG3  
PG1  
PG2  
PLH(R) PHL(R)  
C
L
, t  
WH WL  
RESET  
PULSE  
C
L
GENERATOR  
A′  
Q′  
*Includes capacitance of probes,  
wiring, and fixture parasitic.  
PG1 =  
C
L
B′  
Q′  
PULSE  
NOTE: Switching test waveforms  
PG2 =  
PG3 =  
C
L
GENERATOR  
for PG1, PG2, PG3 are shown  
In Figure 4.  
RESET′  
V
SS  
Figure 3. Switching Test Circuit  
http://onsemi.com  
5
MC14538B  
90%  
10%  
50%  
50%  
V
DD  
V
DD  
V
DD  
A
B
t
t
t
THL  
TLH  
WH  
t
t
TLH  
THL  
90%  
10%  
50%  
t
WL  
t
t
PHL  
THL  
RESET  
90%  
10%  
50%  
t
WL  
t
t
THL  
t
PLH  
TLH  
T
t
t
rr  
t
t
PLH  
PHL  
90%  
10%  
50%  
50%  
50%  
50%  
Q
Q
t
t
THL  
TLH  
t
t
PHL  
PLH  
PHL  
90%  
10%  
50%  
50%  
50%  
50%  
Figure 4. Switching Test Waveforms  
T = 25°C  
A
0% POINT PULSE WIDTH  
R
= 100 kW  
X
R
C
= 100 kW  
= 0.1 mF  
X
X
V
V
V
= 5.0 V, T = 9.8 ms  
= 10 V, T = 10 ms  
C
= 0.1 mF  
DD  
DD  
DD  
X
1.0  
0.8  
0.6  
0.4  
0.2  
0
2
= 15 V, T = 10.2 ms  
1
0
1
2
-ꢂ4 -ꢂ2  
0
2
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T, OUTPUT PULSE WIDTH (%)  
V
DD  
, SUPPLY VOLTAGE (VOLTS)  
Figure 5. Typical Normalized Distribution  
of Units for Output Pulse Width  
Figure 6. Typical Pulse Width Variation as  
a Function of Supply Voltage VDD  
1000  
FUNCTION TABLE  
Inputs  
A
Outputs  
R
= 100 kW, C = 50 pF  
L
ONE MONOSTABLE SWITCHING ONLY  
X
Reset  
B
Q
Q
100  
10  
H
H
H
L
V
DD  
= 15 V  
H
H
L
Not Triggered  
Not Triggered  
5.0 V  
H
10 V  
H
H
L, H,  
L
H
L, H,  
Not Triggered  
Not Triggered  
1.0  
0.1  
L
X
X
X
X
L
H
Not Triggered  
0.001  
0.1  
1.0  
OUTPUT DUTY CYCLE (%)  
10  
100  
Figure 7. Typical Total Supply Current  
versus Output Duty Cycle  
http://onsemi.com  
6
MC14538B  
R
C
= 100 kW  
= .002 mF  
X
X
R
C
= 100 kW  
= 0.1 mF  
X
X
3.0  
V
V
= 15 V  
DD  
2
1
2.0  
1.0  
V
V
= 15 V  
= 10 V  
DD  
= 10 V  
= 5 V  
DD  
0
0
DD  
V
DD  
-ꢂ1  
-ꢂ2  
-ꢂ1.0  
-ꢂ2.0  
-ꢂ3.0  
V
DD  
= 5.0 V  
-ꢂ60 -ꢂ40 -ꢂ20  
0
20  
40  
60  
80 100 120 140  
-ꢂ60 -ꢂ40 -ꢂ20  
0
20  
40  
60  
80 100 120 140  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 8. Typical Error of Pulse Width  
Equation versus Temperature  
Figure 9. Typical Error of Pulse Width  
Equation versus Temperature  
THEORY OF OPERATION  
1
3
4
A
B
2
5
RESET  
V
refꢃ2  
V
refꢃ2  
V
refꢃ2  
V
refꢃ2  
C /R  
X
X
V
refꢃ1  
V
refꢃ1  
V
refꢃ1  
V
refꢃ1  
Q
T
T
T
1
4
5
Positive edge trigger  
Positive edge retrigger (pulse lengthening)  
Positive edge retrigger (pulse lengthening)  
2
3
Negative edge trigger  
Positive edge trigger  
Figure 10. Timing Operation  
http://onsemi.com  
7
MC14538B  
TRIGGER OPERATION  
The block diagram of the MC14538B is shown in  
Figure 1, with circuit operation following.  
on Reset sets the reset latch and causes the capacitor to be  
fast charged to V by turning on transistor P1 . When the  
DD  
voltage on the capacitor reaches V , the reset latch will  
ref 2  
As shown in Figure 1 and 10, before an input trigger  
occurs, the monostable is in the quiescent state with the Q  
clear, and will then be ready to accept another pulse. It the  
Reset input is held low, any trigger inputs that occur will be  
inhibited and the Q and Q outputs of the output latch will not  
change. Since the Q output is reset when an input low level  
is detected on the Reset input, the output pulse T can be made  
significantly shorter than the minimum pulse width  
specification.  
output low, and the timing capacitor C completely charged  
X
to V . When the trigger input A goes from V to V  
DD  
SS  
DD  
(while inputs B and Reset are held to V ) a valid trigger is  
DD  
recognized, which turns on comparator C1 and Nchannel  
transistor N1. At the same time the output latch is set. With  
transistor N1 on, the capacitor C rapidly discharges toward  
X
POWERDOWN CONSIDERATIONS  
V
until V  
is reached. At this point the output of  
SS  
ref1  
Large capacitance values can cause problems due to the  
large amount of energy stored. When a system containing  
the MC14538B is powered down, the capacitor voltage may  
comparator C1 changes state and transistor N1 turns off.  
Comparator C1 then turns off while at the same time  
comparator C2 turns on. With transistor N1 off, the capacitor  
discharge from V through the standard protection diodes  
DD  
C begins to charge through the timing resistor, R , toward  
X
X
at pin 2 or 14. Current through the protection diodes should  
be limited to 10 mA and therefore the discharge time of the  
V
. When the voltage across C equals V , comparator  
DD  
X ref 2  
C2 changes state, causing the output latch to reset (Q goes  
low) while at the same time disabling comparator C2 . This  
ends at the timing cycle with the monostable in the quiescent  
state, waiting for the next trigger.  
V
supply must not be faster than (V ). (C)/(10 mA).  
DD  
DD  
For example, if V = 10 V and C = 10 mF, the V supply  
DD  
X
DD  
should discharge no faster than (10 V) x (10 mF)/(10 mA)  
= 10 ms. This is normally not a problem since power  
supplies are heavily filtered and cannot discharge at this rate.  
In the quiescent state, C is fully charged to V causing  
X
DD  
the current through resistor R to be zero. Both comparators  
X
When a more rapid decrease of V to zero volts occurs,  
DD  
are “off” with total device current due only to reverse  
junction leakages. An added feature of the MC14538B is  
that the output latch is set via the input trigger without regard  
to the capacitor voltage. Thus, propagation delay from  
the MC14538B can sustain damage. To avoid this possibility  
use an external clamping diode, D , connected as shown in  
X
Fig. 11.  
trigger to Q is independent of the value of C , R , or the duty  
cycle of the input waveform.  
X
X
D
x
C
V
V
x
RETRIGGER OPERATION  
DD  
R
x
V
SS  
The MC14538B is retriggered if a valid trigger occurs ➀  
followed by another valid trigger before the Q output has  
returned to the quiescent (zero) state. Any retrigger, after the  
timing node voltage at pin 2 or 14 has begun to rise from  
DD  
Q
Q
V
ref 1  
, but has not yet reached V  
, will cause an increase  
ref 2  
in output pulse width T. When a valid retrigger is initiated  
, the voltage at C /R will again drop to V before  
RESET  
X
X
ref 1  
progressing along the RC charging curve toward V . The  
DD  
Q output will remain high until time T, after the last valid  
retrigger.  
Figure 11. Use of a Diode to Limit  
Power Down Current Surge  
RESET OPERATION  
The MC14538B may be reset during the generation of the  
output pulse. In the reset mode of operation, an input pulse  
http://onsemi.com  
8
MC14538B  
TYPICAL APPLICATIONS  
C
X
R
C
X
X
R
X
RISING-EDGE  
TRIGGER  
V
DD  
V
DD  
Q
RISING-EDGE  
TRIGGER  
A
B
Q
A
B
Q
Q
B = V  
DD  
RESET = V  
DD  
RESET = V  
DD  
C
X
C
R
X
X
R
X
V
DD  
A = V  
V
DD  
SS  
Q
Q
Q
A
B
B
Q
FALLING-EDGE  
TRIGGER  
FALLING-EDGE  
TRIGGER  
RESET = V  
RESET = V  
DD  
DD  
Figure 12. Retriggerable  
Monostables Circuitry  
Figure 13. NonRetriggerable  
Monostables Circuitry  
NC  
Q
Q
NC  
NC  
A
B
C
D
V
DD  
V
DD  
Figure 14. Connection of Unused Sections  
http://onsemi.com  
9
MC14538B  
PACKAGE DIMENSIONS  
PDIP16  
P SUFFIX  
CASE 64808  
ISSUE T  
NOTES:  
A−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS  
WHEN FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE  
MOLD FLASH.  
16  
1
9
8
B
S
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
0.740 0.770 18.80 19.55  
MILLIMETERS  
F
C
L
MIN MAX  
A
B
C
D
F
0.250 0.270  
0.145 0.175  
0.015 0.021  
6.35  
3.69  
0.39  
1.02  
6.85  
4.44  
0.53  
1.77  
SEATING  
PLANE  
T−  
0.040  
0.70  
G
H
J
K
L
M
S
0.100 BSC  
2.54 BSC  
1.27 BSC  
K
M
H
J
0.050 BSC  
0.008 0.015  
0.110 0.130  
0.295 0.305  
G
0.21  
0.38  
3.30  
7.74  
10  
D 16 PL  
2.80  
7.50  
0
M
M
0.25 (0.010)  
T A  
0
10  
_
_
_
_
0.020 0.040  
0.51  
1.01  
http://onsemi.com  
10  
MC14538B  
PACKAGE DIMENSIONS  
SOIC16 WB  
CASE 751G03  
ISSUE D  
NOTES:  
A
D
q
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INLCUDE  
MOLD PROTRUSION.  
16  
9
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN  
EXCESS OF THE B DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
MILLIMETERS  
DIM MIN  
2.35  
A1 0.10  
MAX  
2.65  
0.25  
0.49  
0.32  
1
8
A
B
C
D
E
e
H
h
L
q
0.35  
0.23  
10.15 10.45  
7.40 7.60  
1.27 BSC  
10.05 10.55  
B
16X B  
M
S
S
B
0.25  
T
A
0.25  
0.50  
0
0.75  
0.90  
7
_
_
14X  
e
C
SEATING  
PLANE  
T
SOLDERING FOOTPRINT  
16X  
0.58  
11.00  
1
16X  
1.62  
1.27  
PITCH  
DIMENSIONS: MILLIMETERS  
http://onsemi.com  
11  
MC14538B  
PACKAGE DIMENSIONS  
SOIC16  
D SUFFIX  
CASE 751B05  
ISSUE K  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
16  
9
8
B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
0.386  
DIM MIN  
MAX  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00  
G
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
K
M
P
R
C
7
0
_
_
_
_
T−  
SEATING  
PLANE  
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
J
M
D
16 PL  
M
S
S
A
0.25 (0.010)  
T
B
SOLDERING FOOTPRINT  
8X  
6.40  
16X  
1.12  
1
16  
16X  
0.58  
1.27  
PITCH  
8
9
DIMENSIONS: MILLIMETERS  
http://onsemi.com  
12  
MC14538B  
PACKAGE DIMENSIONS  
TSSOP16  
DT SUFFIX  
CASE 948F  
ISSUE B  
16X KREF  
NOTES:  
M
S
S
0.10 (0.004)  
T
U
V
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
S
0.15 (0.006) T  
U
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08  
(0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
K
K1  
16  
9
2X L/2  
J1  
SECTION NN  
B
U−  
L
J
PIN 1  
IDENT.  
N
8
0.25 (0.010)  
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE W.  
M
S
0.15 (0.006) T  
U
A
V−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
N
F
A
B
C
D
F
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
1.20  
−−− 0.047  
DETAIL E  
0.15 0.002 0.006  
0.75 0.020 0.030  
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
W−  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28 0.007 0.011  
C
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.10 (0.004)  
DETAIL E  
H
SEATING  
PLANE  
T−  
6.40 BSC  
0.252 BSC  
D
G
M
0
8
0
8
_
_
_
_
SOLDERING FOOTPRINT  
7.06  
1
0.65  
PITCH  
01.36X6  
16X  
1.26  
DIMENSIONS: MILLIMETERS  
http://onsemi.com  
13  
MC14538B  
PACKAGE DIMENSIONS  
SOEIAJ16  
CASE 966  
ISSUE A  
NOTES:  
ꢀꢁ1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
ꢀꢁ2. CONTROLLING DIMENSION: MILLIMETER.  
ꢀꢁ3. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS AND ARE  
MEASURED AT THE PARTING LINE. MOLD FLASH  
OR PROTRUSIONS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
L
16  
9
E
Q
1
H
E
M
_
E
ꢀꢁ4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
1
8
L
ꢀꢁ5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
DETAIL P  
Z
D
VIEW P  
e
A
c
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
2.05  
0.20  
0.50  
0.20  
10.50  
5.45  
MAX  
0.081  
0.008  
0.020  
0.011  
0.413  
0.215  
A
---  
0.05  
0.35  
0.10  
9.90  
5.10  
---  
0.002  
0.014  
0.007  
0.390  
0.201  
A
1
A
1
b
c
b
0.13 (0.005)  
D
E
0.10 (0.004)  
M
e
1.27 BSC  
0.050 BSC  
H
7.40  
0.50  
1.10  
8.20  
0.85  
1.50  
0.291  
0.020  
0.043  
0.323  
0.033  
0.059  
E
L
L
E
0
10  
10  
_
0.035  
0.031  
M
Q
0
_
_
_
0.70  
---  
0.90  
0.78  
0.028  
---  
1
Z
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC14538B/D  

相关型号:

MC14538BDWR2

Dual Precision Retiggerable/Resettable Monostable Multivibrator
ONSEMI

MC14538BDWR2G

Dual Precision Retriggerable/Resettable Monostable Multivibrator
ONSEMI

MC14538BF

Dual Precision Retiggerable/Resettable Monostable Multivibrator
ONSEMI

MC14538BFEL

Dual Precision Retiggerable/Resettable Monostable Multivibrator
ONSEMI

MC14538BFELG

Dual Precision Retriggerable/Resettable Monostable Multivibrator
ONSEMI

MC14538BFG

Dual Precision Retriggerable/Resettable Monostable Multivibrator
ONSEMI

MC14538BFL1

IC,MONOSTABLE MULTIVIBRATOR,CMOS,SOP,16PIN,PLASTIC
ONSEMI

MC14538BFL2

IC,MONOSTABLE MULTIVIBRATOR,CMOS,SOP,16PIN,PLASTIC
ONSEMI

MC14538BFR2

4000/14000/40000 SERIES, DUAL MONOSTABLE MULTIVIBRATOR, PDSO16, EIAJ, PLASTIC, SOIC-16
ONSEMI

MC14538B_05

Dual Precision Retriggerable/Resettable Monostable Multivibrator
ONSEMI

MC14539B

DUAL 4-CHANNEL DATA SELECTOR/MULTIPLEXER
MOTOROLA

MC14539BALS

IC,LOGIC MUX,DUAL,4-INPUT,CMOS,DIP,16PIN,CERAMIC
MOTOROLA