MC74LVX259M [ONSEMI]

8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter; 8位/ 1 -OF- 8解码器CMOS寻址锁存逻辑电平转换器
MC74LVX259M
型号: MC74LVX259M
厂家: ONSEMI    ONSEMI
描述:

8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter
8位/ 1 -OF- 8解码器CMOS寻址锁存逻辑电平转换器

解码器 转换器 电平转换器
文件: 总11页 (文件大小:151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC74LVX259  
8-Bit Addressable  
Latch/1-of-8 Decoder  
CMOS Logic Level Shifter  
with LSTTL–Compatible Inputs  
The MC74LVX259 is an 8–bit Addressable Latch fabricated with  
silicon gate CMOS technology.  
http://onsemi.com  
MARKING DIAGRAMS  
The internal circuit is composed of three stages, including a buffer  
output which provides high noise immunity and stable output.  
The LVX259 is designed for general purpose storage applications in  
digital systems. The device has four modes of operation as shown in  
the mode selection table.. In the addressable latch mode, the data on  
Data In is written into the addressed latch. The addressed latch follows  
the data input with all non–addressed latches remaining in their  
previous states. In the memory mode, all latches remain in their  
previous state and are unaffected by the Data or Address inputs. In the  
one–of–eight decoding or demultiplexing mode, the addressed output  
follows the state of Data In with all other outputs in the LOW state. In  
the Reset mode, all outputs are LOW and unaffected by the address  
and data inputs. When operating the LVX259 as an addressable latch,  
changing more than one bit of the address could impose a transient  
wrong address. Therefore, this should only be done while in the  
memory mode.  
16  
9
LVX259  
AWLYYWW  
SOIC–16  
D SUFFIX  
CASE 751B  
1
8
16  
9
LVX  
259  
TSSOP–16  
DT SUFFIX  
CASE 948F  
AWLYWW  
1
8
16  
9
LVX259  
ALYW  
The MC74LVX259 input structure provides protection when  
voltages up to 7 V are applied, regardless of the supply voltage. This  
allows the MC74LVX259 to be used to interface 5 V circuits to 3 V  
circuits.  
SOIC EIAJ–16  
M SUFFIX  
1
8
CASE 966  
High Speed: t = 7.0 ns (Typ) at V = 3.3 V  
PD  
CC  
A
= Assembly Location  
Low Power Dissipation: I = 2 µA (Max) at T = 25°C  
WL or L = Wafer Lot  
YY or Y = Year  
WW or W = Work Week  
CC  
A
High Noise Immunity: V  
= V = 28% V  
NIL CC  
NIH  
CMOS–Compatible Outputs: V > 0.8 V ; V < 0.1 V @Load  
OH  
CC OL  
CC  
Power Down Protection Provided on Inputs and Outputs  
Balanced Propagation Delays  
Pin and Function Compatible with Other Standard Logic Families  
Latchup Performance Exceeds 300 mA  
ORDERING INFORMATION  
ESD Performance: HBM > 2000 V; Machine Model > 200 V  
Device  
Package  
SO–16  
Shipping  
MC74LVX259D  
MC74LVX259DR2  
MC74LVX259DT  
48 Units/Rail  
SO–16  
2500 Units/Reel  
TSSOP–16 96 Units/Rail  
MC74LVX259DTR2 TSSOP–16 2000 Units/Reel  
MC74LVX259M  
SO EIAJ–16 48 Units/Rail  
SO EIAJ–16 2000 Units/Reel  
MC74LVX259MEL  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
April, 2001 – Rev. 1  
MC74LVX259/D  
MC74LVX259  
4
5
A0  
A1  
A2  
1
2
3
16  
15  
14  
V
CC  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
1
2
3
A0  
RESET  
ADDRESS  
INPUTS  
6
A1  
A2  
7
NONINVERTING  
OUTPUTS  
ENABLE  
9
Q0  
Q1  
4
5
13  
12  
DATA IN  
Q7  
10  
11  
12  
13  
DATA IN  
Q2  
Q3  
6
7
11  
10  
Q6  
Q5  
PIN 16 = V  
PIN 8 = GND  
15  
14  
CC  
RESET  
GND  
8
9
Q4  
ENABLE  
Figure 1. Pin Assignment  
Figure 2. Logic Diagram  
BIN/OCT  
DMUX  
1
1
2
3
4
5
6
7
8
4
A0  
A1  
A2  
A0  
A1  
A2  
1
2
4
0
1
2
3
4
5
Q0  
Q1  
Q2  
Q3  
Q4  
0
2
0
1
2
3
Q0  
0
7
5
6
7
8
2
3
G
Q1  
Q2  
Q3  
Q4  
4
5
10  
11  
12  
13  
14  
15  
10  
11  
12  
13  
14  
15  
ID  
EN  
R
ID  
Q5  
Q6  
Q7  
Q5  
Q6  
Q7  
EN  
R
6
7
6
7
Figure 3. IEC Logic Symbol  
MODE SELECTION TABLE  
Enable Reset Mode  
LATCH SELECTION TABLE  
Address Inputs  
Latch  
A
Addressed  
C
B
L
H
Addressable Latch  
H
L
H
L
Memory  
L
L
L
L
L
Q0  
Q1  
8–Line Demultiplexer  
H
H
L
Reset  
L
L
H
H
L
Q2  
Q3  
H
H
H
H
H
L
L
L
H
L
Q4  
Q5  
Q6  
Q7  
H
H
H
http://onsemi.com  
2
MC74LVX259  
13  
4
5
D
D
DATA INPUT  
Q0  
Q1  
6
D
Q2  
7
9
D
D
D
Q3  
Q4  
Q5  
A0  
3 TO 8  
DECODER  
ADDRESS  
INPUTS  
A1  
A2  
10  
14  
ENABLE  
11  
12  
D
D
Q6  
Q7  
15  
RESET  
Figure 4. Expanded Logic Diagram  
http://onsemi.com  
3
MC74LVX259  
MAXIMUM RATINGS (Note 1.)  
Symbol  
Parameter  
Value  
Unit  
V
V
V
V
Positive DC Supply Voltage  
Digital Input Voltage  
–0.5 to +7.0  
–0.5 to +7.0  
CC  
IN  
V
DC Output Voltage  
–0.5 to V +0.5  
V
OUT  
CC  
I
I
I
I
Input Diode Current  
–20  
$20  
$25  
$75  
mA  
mA  
mA  
mA  
mW  
IK  
Output Diode Current  
DC Output Current, per Pin  
OK  
OUT  
CC  
DC Supply Current, V and GND Pins  
CC  
P
Power Dissipation in Still Air  
SOIC Package  
TSSOP  
200  
180  
D
T
Storage Temperature Range  
ESD Withstand Voltage  
–65 to +150  
°C  
STG  
V
Human Body Model (Note 2.)  
Machine Model (Note 3.)  
>2000  
>200  
V
ESD  
Charged Device Model (Note 4.)  
>2000  
I
Latch–Up Performance  
Above V and Below GND at 125°C (Note 5.)  
$300  
143  
164  
mA  
LATCH–UP  
CC  
q
Thermal Resistance, Junction to Ambient  
SOIC Package  
TSSOP  
°C/W  
JA  
1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the  
Recommended Operating Conditions.  
2. Tested to EIA/JESD22–A114–A  
3. Tested to EIA/JESD22–A115–A  
4. Tested to JESD22–C101–A  
5. Tested to EIA/JESD78  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Characteristics  
Min  
2.0  
0
Max  
3.6  
Unit  
V
V
V
V
DC Supply Voltage  
DC Input Voltage  
DC Output Voltage  
CC  
IN  
5.5  
V
0
V
CC  
V
OUT  
T
Operating Temperature Range, all Package Types  
Input Rise or Fall Time  
–40  
0
85  
100  
°C  
ns/V  
A
t , t  
r
V
= 3.3 V + 0.3 V  
CC  
f
http://onsemi.com  
4
MC74LVX259  
DC CHARACTERISTICS (Voltages Referenced to GND)  
V
CC  
T
A
= 25°C  
–40°C T 85°C  
A
Symbol  
Parameter  
Condition  
(V)  
Min  
Typ  
Max  
Min  
Max  
Unit  
V
V
V
Minimum High–Level  
Input Voltage  
2.0  
3.0  
3.6  
0.75 V  
0.7 V  
0.7 V  
0.75 V  
0.7 V  
0.7 V  
V
IH  
CC  
CC  
CC  
CC  
CC  
CC  
Maximum Low–Level  
Input Voltage  
2.0  
3.0  
3.6  
0.25 V  
0.3 V  
0.3 V  
0.25 V  
0.3 V  
0.3 V  
V
V
IL  
CC  
CC  
CC  
CC  
CC  
CC  
I
= –50 µA  
= –50 µA  
= –4 mA  
2.0  
3.0  
1.9  
2.9  
2.0  
3.0  
1.9  
2.9  
High–Level Output  
Voltage  
OH  
OH  
I
OH  
I
3.0  
2.58  
2.48  
OH  
I
= 50 µA  
2.0  
0.0  
0.0  
0.1  
0.1  
0.1  
0.1  
V
OL  
Low–Level Output  
Voltage  
V
OL  
I
OL  
= 50 µA  
3.0  
I
= 4 mA  
3.0  
0.36  
±0.1  
2.0  
0.44  
±1.0  
OL  
I
I
Input Leakage Current  
V
V
= 5.5 V or GND  
0 to 3.6  
3.6  
µA  
µA  
IN  
IN  
IN  
Maximum Quiescent  
Supply Current  
= V or GND  
1.0  
1.0  
CC  
CC  
(per package)  
AC ELECTRICAL CHARACTERISTICS Input t = t = 3.0 ns  
r
f
T
A
= 25°C  
–40°C T 85°C  
A
Min  
Typ  
Max  
Min  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.7 V  
C = 15pF  
C = 50pF  
L
6.3  
9.0  
9.0  
14.0  
1.0  
1.0  
12.0  
15.0  
t
t
,
,
,
Maximum Propagation Delay,  
Data to Output  
(Figures 5 and 9)  
ns  
L
PLH  
PHL  
= 3.3 V ± 0.3 V  
= 2.7 V  
C = 15pF  
5.6  
8.0  
8.0  
12.0  
1.0  
1.0  
11.0  
14.0  
L
C = 50pF  
L
C = 15pF  
6.3  
9.0  
9.0  
14.0  
1.0  
1.0  
12.0  
15.0  
t
t
Maximum Propagation Delay,  
Address Select to Output  
(Figures 6 and 9)  
ns  
ns  
ns  
L
PLH  
PHL  
C = 50pF  
L
= 3.3 V ± 0.3 V  
= 2.7 V  
C = 15pF  
5.6  
8.0  
8.0  
12.0  
1.0  
1.0  
11.0  
14.0  
L
C = 50pF  
L
C = 15pF  
6.3  
9.0  
9.0  
14.0  
1.0  
1.0  
12.0  
15.0  
t
t
Maximum Propagation Delay,  
Enable to Output  
(Figures NO TAG and 9)  
L
PLH  
PHL  
C = 50pF  
L
= 3.3 V ± 0.3 V  
= 2.7 V  
C = 15pF  
5.6  
8.0  
9.0  
12.0  
1.0  
1.0  
11.0  
14.0  
L
C = 50pF  
L
C = 15pF  
6.3  
9.0  
9.0  
14.0  
1.0  
1.0  
12.0  
15.0  
t
Maximum Propogation Delay,  
Reset to Output  
(Figures 7 and 9)  
L
PHL  
C = 50pF  
L
= 3.3 V ± 0.3 V  
C = 15pF  
5.6  
8.0  
9.0  
12.0  
1.0  
1.0  
11.0  
14.0  
L
C = 50pF  
L
C
C
Maximum Input Capacitance  
6
10  
10  
pF  
pF  
IN  
Typical @ 25°C, V = 3.3 V  
CC  
30  
Power Dissipation Capacitance (Note 6.)  
PD  
6. C is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.  
PD  
Average operating current can be obtained by the equation: I  
) = C V f + I . C is used to determine the no–load dynamic  
PD CC in CC PD  
CC(OPR  
2
power consumption; P = C V  
f + I V  
.
D
PD  
CC  
in  
CC  
CC  
http://onsemi.com  
5
MC74LVX259  
TIMING REQUIREMENTS Input t = t = 3.0 ns  
r
f
T
A
= 25°C  
T = 85°C  
A
Min  
Typ  
Max  
Min  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
V
= 2.7 V  
4.5  
5.0  
t
Minimum Pulse Width,  
Reset or Enable  
(Figure 8)  
ns  
CC  
w
su  
h
V
V
V
V
= 3.3 V ± 0.3 V  
4.5  
4.0  
3.0  
2.0  
2.0  
5.0  
4.0  
3.0  
2.0  
2.0  
CC  
CC  
CC  
CC  
V
CC  
= 2.7 V  
t
t
Minimum Setup Time,  
Address or Data to Enable  
(Figure 8)  
ns  
ns  
ns  
= 3.3 V ± 0.3 V  
= 2.7 V  
V
CC  
Minimum Hold Time,  
Enable to Address or Data  
(Figure 7 or 8)  
= 3.3 V ± 0.3 V  
= 2.7 V  
V
CC  
400  
300  
300  
300  
t t  
r,  
Maximum Input,  
Rise and Fall Times  
(Figure 5)  
f
= 3.3 V ± 0.3 V  
V
CC  
DATA  
IN  
GND  
t
f
t
r
V
ADDRESS  
SELECT  
CC  
V
CC  
50%  
50%  
50%  
DATA  
IN  
GND  
GND  
t
t
PLH  
PHL  
V
CC  
GND  
50%  
t
t
PHL  
PHL  
OUTPUT  
Q
OUTPUT  
Q
50%  
Figure 5. Switching Waveform  
Figure 6. Switching Waveform  
V
CC  
V
CC  
GND  
DATA IN  
ENABLE  
DATA IN  
RESET  
GND  
t
t
w
w
t
w
V
CC  
V
CC  
50%  
50%  
50%  
50%  
GND  
GN  
D
t
t
PHL  
t
PHL  
PHL  
OUTPUT Q  
OUTPUT Q  
50%  
Figure 7. Switching Waveform  
Figure 8. Switching Waveform  
TEST POINT  
OUTPUT  
DATA IN OR  
ADDRESS  
SELECT  
V
CC  
50%  
DEVICE  
UNDER  
TEST  
GND  
t
h(H)  
t
C *  
L
h(H)  
t
su  
t
su  
ENABLE  
V
CC  
50%  
GND  
*Includes all probe and jig capacitance  
Figure 9. Switching Waveform  
Figure 10. Test Circuit  
http://onsemi.com  
6
MC74LVX259  
10 PITCHES  
CUMULATIVE  
TOLERANCE ON  
TAPE  
±0.2 mm  
(±0.008”)  
P
0
K
t
P
2
D
TOP  
COVER  
TAPE  
E
SEE NOTE 7.  
A
0
F
W
+
+
+
K
0
B
0
B
1
SEE  
NOTE 7.  
D
1
P
FOR COMPONENTS  
2.0 mm × 1.2 mm  
AND LARGER  
EMBOSSMENT  
USER DIRECTION OF FEED  
CENTER  
LINES  
OF CAVITY  
FOR MACHINE REFERENCE  
ONLY  
INCLUDING DRAFT AND RADII  
CONCENTRIC AROUND B  
0
*TOP COVER  
TAPE THICKNESS (t )  
1
0.10 mm  
(0.004”) MAX.  
R MIN.  
TAPE AND COMPONENTS  
SHALL PASS AROUND RADIUS “R”  
WITHOUT DAMAGE  
EMBOSSED  
CARRIER  
EMBOSSMENT  
BENDING RADIUS  
100 mm  
(3.937”)  
MAXIMUM COMPONENT ROTATION  
10°  
1 mm MAX  
TYPICAL  
COMPONENT CAVITY  
CENTER LINE  
TAPE  
1 mm  
(0.039”) MAX  
250 mm  
(9.843”)  
TYPICAL  
CAMBER (TOP VIEW)  
ALLOWABLE CAMBER TO BE 1 mm/100 mm NONACCUMULATIVE OVER 250 mm  
COMPONENT  
CENTER LINE  
7. A , B , and K are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to  
0
0
0
0.50 mm max. The component cannot rotate more than 10° within the determined cavity  
Figure 11. Carrier Tape Specifications  
http://onsemi.com  
7
MC74LVX259  
EMBOSSED CARRIER DIMENSIONS (See Notes 8. and 9.)  
Tape  
Size  
B
1
Max  
D
D
E
F
K
P
P
0
P
2
R
T
W
1
8 mm  
4.35 mm  
(0.179”)  
1.0 mm  
Min  
3.5 mm  
±0.5  
2.4 mm  
Max  
4.0 mm  
±0.10  
25 mm  
(0.98”)  
8.3 mm  
(0.327)  
1.5 mm  
+ 0.1  
1.75 mm  
±0.1  
4.0 mm  
±0.1  
2.0 mm  
±0.1  
0.6 mm  
(0.024)  
(0.179”)  
(1.38  
±0.002”)  
(0.094”)  
(0.157  
±0.004”)  
–0.0  
(0.069  
±0.004”)  
(0.157  
±0.004”)  
(0.079  
±0.004”)  
(0.059”  
+0.004  
–0.0)  
12 mm  
8.2 mm  
(0.323”)  
5.5 mm  
±0.5  
6.4 mm  
Max  
4.0 mm  
±0.10  
12.0 mm  
±0.3  
1.5 mm  
Min  
30 mm  
(1.18”)  
(0.217  
±0.002”)  
(0.252”)  
(0.157  
(0.470  
±0.012”)  
(0.060)  
±0.004”)  
8.0 mm  
±0.10  
(0.315  
±0.004”)  
16 mm 12.1 mm  
(0.476”)  
7.5 mm  
±0.10  
7.9 mm  
Max  
4.0 mm  
±0.10  
16.3 mm  
(0.642)  
(0.295  
(0.311”)  
(0.157  
±0.004”)  
±0.004”)  
8.0 mm  
±0.10  
(0.315  
±0.004”)  
12.0 mm  
±0.10  
(0.472  
±0.004”)  
24 mm 20.1 mm  
(0.791”)  
11.5 mm  
±0.10  
11.9 mm  
Max  
16.0 mm  
±0.10  
24.3 mm  
(0.957)  
(0.453  
(0.468”)  
(0.63  
±0.004”)  
±0.004”)  
8. Metric Dimensions Govern–English are in parentheses for reference only.  
9. A , B , and K are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to  
0
0
0
0.50 mm max. The component cannot rotate more than 10° within the determined cavity  
http://onsemi.com  
8
MC74LVX259  
t MAX  
13.0 mm ±0.2 mm  
(0.512” ±0.008”)  
1.5 mm MIN  
(0.06”)  
20.2 mm MIN  
(0.795”)  
50 mm MIN  
(1.969”)  
A
FULL RADIUS  
G
Figure 12. Reel Dimensions  
REEL DIMENSIONS  
Tape Size  
T&R Suffix  
A Max  
G
t Max  
8 mm  
T1, T2  
178 mm  
(7”)  
8.4 mm, +1.5 mm, –0.0  
(0.33” + 0.059”, –0.00)  
14.4 mm  
(0.56”)  
8 mm  
T3, T4  
R2  
330 mm  
(13”)  
8.4 mm, +1.5 mm, –0.0  
(0.33” + 0.059”, –0.00)  
14.4 mm  
(0.56”)  
12 mm  
16 mm  
24 mm  
330 mm  
(13”)  
12.4 mm, +2.0 mm, –0.0  
(0.49” + 0.079”, –0.00)  
18.4 mm  
(0.72”)  
R2  
360 mm  
(14.173”)  
16.4 mm, +2.0 mm, –0.0  
(0.646” + 0.078”, –0.00)  
22.4 mm  
(0.882”)  
R2  
360 mm  
(14.173”)  
24.4 mm, +2.0 mm, –0.0  
(0.961” + 0.078”, –0.00)  
30.4 mm  
(1.197”)  
DIRECTION OF FEED  
BARCODE LABEL  
POCKET  
HOLE  
Figure 13. Reel Winding Direction  
http://onsemi.com  
9
MC74LVX259  
TAPE TRAILER  
(Connected to Reel Hub)  
NO COMPONENTS  
160 mm MIN  
TAPE LEADER  
NO COMPONENTS  
400 mm MIN  
COMPONENTS  
CAVITY TOP TAPE  
TAPE  
DIRECTION OF FEED  
Figure 14. Tape Ends for Finished Goods  
User Direction of Feed  
Figure 15. TSSOP and SOIC R2 Reel Configuration/Orientation  
TAPE UTILIZATION BY PACKAGE  
SC88A / SOT–353  
SC88/SOT–363  
Tape Size  
8 mm  
SOIC  
TSSOP  
QFN  
5–, 6–Lead  
12 mm  
16 mm  
24 mm  
8–Lead  
8–, 14–, 16–Lead  
20–, 24–Lead  
48–, 56–Lead  
8–, 14–, 16–Lead  
20–, 24–Lead  
48–, 56–Lead  
14–, 16–Lead  
18–, 20–, 24–, 28–Lead  
http://onsemi.com  
10  
MC74LVX259  
PACKAGE DIMENSIONS  
SOIC–16  
D SUFFIX  
CASE 751B–05  
ISSUE J  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
9
8
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
B
0.25 (0.010)  
1
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
0.386  
0.150  
0.054  
0.014  
0.016  
R X 45  
K
_
C
G
J
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
J
M
K
M
P
R
D
16 PL  
_
_
_
_
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T B  
A
TSSOP–16  
DT SUFFIX  
CASE 948F–01  
ISSUE O  
16X KREF  
M
S
S
0.10 (0.004)  
T U  
V
S
0.15 (0.006) T U  
K
K1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
16  
9
2X L/2  
J1  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
B
–U–  
SECTION N–N  
L
J
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
0.25 (0.010) PER SIDE.  
PIN 1  
IDENT.  
8
1
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE -W-.  
N
0.25 (0.010)  
S
0.15 (0.006) T U  
A
M
–V–  
N
F
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
5.10  
4.50  
1.20  
0.15  
0.75  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
A
B
4.90  
4.30  
---  
0.193  
0.169  
---  
DETAIL E  
C
D
0.05  
0.50  
0.002  
0.020  
F
–W–  
C
G
H
0.65 BSC  
0.026 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28  
0.20  
0.16  
0.30  
0.25  
0.007  
0.004  
0.004  
0.007  
0.007  
0.011  
0.008  
0.006  
0.012  
0.010  
J
0.10 (0.004)  
J1  
K
H
DETAIL E  
SEATING  
PLANE  
–T–  
D
G
K1  
L
6.40 BSC  
0.252 BSC  
0
M
0
8
8
_
_
_
_
http://onsemi.com  
11  

相关型号:

MC74LVX259MEL

8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter
ONSEMI

MC74LVX259MELG

8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter with LSTTL−Compatible Inputs
ONSEMI

MC74LVX259MG

8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter with LSTTL−Compatible Inputs
ONSEMI

MC74LVX259_05

8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter with LSTTL−Compatible Inputs
ONSEMI

MC74LVX259_14

8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter
ONSEMI

MC74LVX32

LOW-VOLTAGE CMOS
MOTOROLA

MC74LVX32D

LOW-VOLTAGE CMOS
MOTOROLA

MC74LVX32DR2

LV/LV-A/LVX/H SERIES, QUAD 2-INPUT OR GATE, PDSO14, SOIC-14
ONSEMI

MC74LVX32DR2G

LV/LV-A/LVX/H SERIES, QUAD 2-INPUT OR GATE, PDSO14, LEAD FREE, SOIC-14
ROCHESTER

MC74LVX32DR2G

Quad 2-Input OR Gate
ONSEMI

MC74LVX32DT

LOW-VOLTAGE CMOS
MOTOROLA

MC74LVX32DTR2

OR Gate, LV/LV-A/LVX/H Series, 4-Func, 2-Input, CMOS, PDSO14, PLASTIC, TSSOP-14
MOTOROLA