MMBD301LT1 [ONSEMI]

SILICON HOT-CARRIER DETECTOR AND SWITCHING DIODES; 硅热载流子探测器和开关二极管
MMBD301LT1
型号: MMBD301LT1
厂家: ONSEMI    ONSEMI
描述:

SILICON HOT-CARRIER DETECTOR AND SWITCHING DIODES
硅热载流子探测器和开关二极管

二极管 开关
文件: 总4页 (文件大小:94K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MBD301/D  
SEMICONDUCTOR TECHNICAL DATA  
Schottky Barrier Diodes  
Motorola Preferred Devices  
These devices are designed primarily for high–efficiency UHF and VHF detector  
applications. They are readily adaptable to many other fast switching RF and digital  
applications. They are supplied in an inexpensive plastic package for low–cost,  
high–volume consumer and industrial/commercial requirements. They are also  
available in a Surface Mount package.  
30 VOLTS  
SILICON HOT–CARRIER  
DETECTOR AND SWITCHING  
DIODES  
Extremely Low Minority Carrier Lifetime – 15 ps (Typ)  
Very Low Capacitance – 1.5 pF (Max) @ V = 15 V  
R
Low Reverse Leakage – I = 13 nAdc (Typ) MBD301, MMBD301  
R
1
2
CASE 18202, STYLE 1  
(TO–226AC)  
MAXIMUM RATINGS (T = 125°C unless otherwise noted)  
J
MBD301  
MMBD301LT1  
Value  
30  
Rating  
Reverse Voltage  
Forward Power Dissipation  
Symbol  
Unit  
2
1
CATHODE  
ANODE  
V
R
Volts  
P
F
J
@ T = 25°C  
280  
2.8  
200  
2.0  
mW  
mW/°C  
A
Derate above 25°C  
3
Operating Junction  
Temperature Range  
T
°C  
°C  
55 to +125  
55 to +150  
1
2
Storage Temperature Range  
DEVICE MARKING  
MMBD301LT1 = 4T  
T
stg  
CASE 31808, STYLE 8  
SOT23 (TO236AB)  
3
1
CATHODE  
ANODE  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
30  
Typ  
Max  
Unit  
Volts  
pF  
Reverse Breakdown Voltage (I = 10 µA)  
V
(BR)R  
R
Total Capacitance (V = 15 V, f = 1.0 MHz) Figure 1  
C
0.9  
1.5  
R
T
Reverse Leakage (V = 25 V) Figure 3  
I
13  
200  
0.45  
0.6  
nAdc  
Vdc  
Vdc  
R
R
Forward Voltage (I = 1.0 mAdc) Figure 4  
V
0.38  
0.52  
F
F
F
Forward Voltage (I = 10 mAdc) Figure 4  
V
F
NOTE: MMBD301LT1 is also available in bulk packaging. Use MMBD301L as the device title to order this device in bulk.  
Thermal Clad is a registered trademark of the Berquist Company.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Motorola, Inc. 1997  
TYPICAL ELECTRICAL CHARACTERISTICS  
2.8  
2.4  
500  
f = 1.0 MHz  
400  
2.0  
1.6  
1.2  
0.8  
0.4  
0
KRAKAUER METHOD  
300  
200  
100  
0
0
3.0  
6.0  
9.0  
12  
15  
18  
21  
24  
27  
30  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
V
, REVERSE VOLTAGE (VOLTS)  
I , FORWARD CURRENT (mA)  
R
F
Figure 1. Total Capacitance  
Figure 2. Minority Carrier Lifetime  
10  
100  
10  
T
= 100°C  
A
1.0  
T
= 40°C  
T
= 85°C  
A
A
75  
°
C
C
0.1  
1.0  
0.1  
25°  
T
= 25°C  
A
0.01  
0.001  
0
6.0  
12  
18  
24  
30  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, REVERSE VOLTAGE (VOLTS)  
V , FORWARD VOLTAGE (VOLTS)  
R
F
Figure 3. Reverse Leakage  
Figure 4. Forward Voltage  
I
F(PEAK)  
CAPACITIVE  
CONDUCTION  
I
R(PEAK)  
FORWARD  
CONDUCTION  
STORAGE  
CONDUCTION  
BALLAST  
NETWORK  
(PADS)  
SAMPLING  
OSCILLOSCOPE  
(50 INPUT)  
SINUSOIDAL  
GENERATOR  
PADS  
DUT  
Figure 5. Krakauer Method of Measuring Lifetime  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
drain pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the maximum  
temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
PACKAGE DIMENSIONS  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
A
B
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. CONTOUR OF PACKAGE BEYOND ZONE R IS  
UNCONTROLLED.  
4. DIMENSION F APPLIES BETWEEN P AND L.  
DIMENSIONS D AND J APPLY BETWEEN L AND K  
MINIMUM. LEAD DIMENSION IS  
UNCONTROLLED IN P AND BEYOND DIM K  
MINIMUM.  
R
SEATING  
PLANE  
D
L
P
F
J
K
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
P
MIN  
MAX  
0.205  
0.210  
0.165  
0.022  
0.019  
MIN  
4.45  
4.32  
3.18  
0.41  
0.407  
1.27 BSC  
3.54 BSC  
0.36  
12.70  
6.35  
2.03  
–––  
2.93  
3.43  
MAX  
5.21  
5.33  
4.49  
0.56  
0.482  
0.175  
0.170  
0.125  
0.016  
0.016  
0.050 BSC  
0.100 BSC  
0.014  
0.500  
0.250  
0.080  
–––  
0.115  
0.135  
SECTION X–X  
X X  
D
G
H
0.016  
–––  
–––  
0.105  
0.050  
–––  
0.41  
–––  
–––  
2.66  
1.27  
–––  
–––  
V
C
R
V
–––  
1
2
N
STYLE 1:  
PIN 1. ANODE  
2. CATHODE  
CASE 182–02  
(TO–226AC)  
ISSUE H  
N
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. MAXIUMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
A
L
3
STYLE 8:  
PIN 1. ANODE  
2. NO CONNECTION  
3. CATHODE  
S
B
INCHES  
MIN MAX  
MILLIMETERS  
1
2
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.35  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.69  
1.02  
2.64  
0.60  
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0140 0.0285  
0.0350 0.0401  
0.0830 0.1039  
0.0177 0.0236  
V
G
C
K
L
S
H
J
D
K
V
CASE 318–08  
ISSUE AF  
SOT–23 (TO–236AB)  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorizeduse,evenifsuchclaimallegesthatMotorola  
was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
INTERNET: http://motorola.com/sps  
MBD301/D  

相关型号:

MMBD301LT1G

Silicon Hot−Carrier Diodes SCHOTTKY Barrier Diodes
ONSEMI

MMBD301LT3

Silicon Hot−Carrier Diodes SCHOTTKY Barrier Diodes
ONSEMI

MMBD301LT3G

Silicon Hot−Carrier Diodes SCHOTTKY Barrier Diodes
ONSEMI

MMBD301M3T5G

Silicon Hot-Carrier Diode
ONSEMI

MMBD301TS

SURFACE MOUNT SCHOTTKY DIODE
PANJIT

MMBD301TS_09

SURFACE MOUNT SCHOTTKY DIODE
PANJIT

MMBD301_13

SURFACE MOUNT SCHOTTKY DIODE
PANJIT

MMBD318

Surface Mount High Votlage Switching Diode
SECOS

MMBD318A

Surface Mount High Votlage Switching Diode
SECOS

MMBD318C

Surface Mount High Votlage Switching Diode
SECOS

MMBD318S

Surface Mount High Votlage Switching Diode
SECOS

MMBD318_10

Surface Mount High Vitlage Switching Diode
SECOS