MMBT4126LT1 [ONSEMI]

General Purpose Transistor PNP Silicon; 通用晶体管PNP硅
MMBT4126LT1
型号: MMBT4126LT1
厂家: ONSEMI    ONSEMI
描述:

General Purpose Transistor PNP Silicon
通用晶体管PNP硅

晶体 小信号双极晶体管 光电二极管
文件: 总8页 (文件大小:90K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MMBT4126LT1  
Preferred Device  
General Purpose Transistor  
PNP Silicon  
Moisture Sensitivity Level: 1  
ESD Rating – Human Body Model: >4000 V  
ESD Rating – Machine Model: >400 V  
http://onsemi.com  
MAXIMUM RATINGS  
COLLECTOR  
3
Rating  
Symbol  
Value  
–25  
Unit  
Vdc  
Collector–Emitter Voltage  
Collector–Base Voltage  
Emitter–Base Voltage  
V
CEO  
V
CBO  
V
EBO  
1
BASE  
–25  
Vdc  
–4  
Vdc  
Collector Current–Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
–200  
mAdc  
C
2
EMITTER  
Symbol  
Max  
Unit  
Total Device Dissipation FR–5 Board  
(Note 1.)  
P
D
225  
mW  
3
T = 25°C  
A
Derate above 25°C  
1.8  
mW/°C  
°C/W  
1
Thermal Resistance,  
R
556  
q
2
JA  
Junction to Ambient (Note 1.)  
SOT–23  
CASE 318  
STYLE 6  
Total Device Dissipation  
Alumina Substrate, (Note 2.)  
T = 25°C  
A
P
D
300  
mW  
Derate above 25°C  
2.4  
mW/°C  
°C/W  
MARKING DIAGRAM  
C3 M  
Thermal Resistance,  
R
417  
q
JA  
Junction to Ambient (Note 2.)  
Junction and Storage  
Temperature Range  
T , T  
–55 to  
+150  
°C  
J
stg  
1. FR–5 = 1.0 0.75 0.062 in.  
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.  
C3 = Device Code  
M
= Date Code  
ORDERING INFORMATION  
Device  
MMBT4126LT1  
Package  
Shipping  
3000/Tape & Reel  
SOT–23  
Preferred devices are recommended choices for future use  
and best overall value.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
March, 2001 – Rev. 0  
MMBT4126LT1/D  
MMBT4126LT1  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
OFF CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
Collector–Emitter Breakdown Voltage (Note 3.)  
V
Vdc  
Vdc  
(BR)CEO  
(BR)CBO  
(BR)EBO  
(I = –1.0 mAdc, I = 0)  
–25  
–25  
–4  
C
B
Collector–Base Breakdown Voltage  
(I = –10 mAdc, I = 0)  
V
V
C
E
Emitter–Base Breakdown Voltage  
(I = –10 mAdc, I = 0)  
Vdc  
E
C
Collector Cutoff Current  
(V = –30 Vdc, V = –3.0 Vdc)  
I
nAdc  
CEX  
–50  
CE  
EB  
ON CHARACTERISTICS (Note 3.)  
DC Current Gain  
H
FE  
(I = –2.0 mAdc, V = –1.0 Vdc)  
120  
60  
300  
C
CE  
(I = –50 mAdc, V = –1.0 Vdc)  
C
CE  
Collector–Emitter Saturation Voltage  
(I = –50 mAdc, I = –5.0 mAdc)  
V
Vdc  
Vdc  
CE(sat)  
–0.4  
C
B
Base–Emitter Saturation Voltage  
(I = –50 mAdc, I = –5.0 mAdc)  
V
BE(sat)  
–0.95  
C
B
SMALL–SIGNAL CHARACTERISTICS  
Current–Gain – Bandwidth Product  
f
MHz  
pF  
pF  
T
(I = –10 mAdc, V = –20 Vdc, f = 100 MHz)  
250  
C
CE  
Output Capacitance  
C
obo  
(V = –5.0 Vdc, I = 0, f = 1.0 MHz)  
4.5  
10  
CB  
E
Input Capacitance  
C
ibo  
(V = –0.5 Vdc, I = 0, f = 1.0 MHz)  
EB  
C
Small–Signal Current Gain  
(I = –2.0 mAdc, V = –10 Vdc, f = 1.0 kHz)  
h
fe  
120  
2.5  
480  
C
CE  
(I = 10 mAdc, V = 20 Vdc, f = 100 MHz)  
C
CE  
Noise Figure  
NF  
dB  
(I = –100 mAdc, V = –5.0 Vdc, R = 1.0 k, f = 1.0 kHz)  
4.0  
C
CE  
S
3. Pulse Test: Pulse Width v 300 ms, Duty Cycle v 2.0%.  
TYPICAL TRANSIENT CHARACTERISTICS  
T = 25°C  
J
T = 125°C  
J
10  
5000  
V
CC  
I /I = 10  
= 40 V  
3000  
2000  
7.0  
C B  
C
5.0  
obo  
1000  
700  
C
ibo  
500  
3.0  
2.0  
300  
200  
Q
T
Q
A
100  
70  
1.0  
0.1  
50  
0.2 0.3 0.5 0.7 1.0  
2.0 3.0 5.0 7.0 10  
20 30 40  
1.0  
2.0 3.0 5.0 7.0 10  
20 30 50 70 100  
200  
REVERSE BIAS (VOLTS)  
I , COLLECTOR CURRENT (mA)  
C
Figure 1. Capacitance  
Figure 2. Charge Data  
http://onsemi.com  
2
MMBT4126LT1  
TYPICAL AUDIO SMALL–SIGNAL CHARACTERISTICS  
NOISE FIGURE VARIATIONS  
(VCE = –5.0 Vdc, TA = 25°C, Bandwidth = 1.0 Hz)  
5.0  
4.0  
3.0  
2.0  
1.0  
0
12  
SOURCE RESISTANCE = 200 W  
= 1.0 mA  
f = 1.0 kHz  
I
= 1.0 mA  
C
I
C
10  
8
I
C
= 0.5 mA  
SOURCE RESISTANCE = 200 W  
= 0.5 mA  
I
C
SOURCE RESISTANCE = 2.0 k  
= 50 mA  
6
I
C
4
I
= 50 mA  
C
SOURCE RESISTANCE = 2.0 k  
= 100 mA  
I
= 100 mA  
C
2
I
C
0
0.1 0.2  
0.4  
1.0 2.0 4.0  
10  
20  
40  
100  
0.1 0.2  
0.4  
1.0 2.0  
4.0  
10  
20  
40  
100  
f, FREQUENCY (kHz)  
R , SOURCE RESISTANCE (k OHMS)  
g
Figure 3.  
Figure 4.  
h PARAMETERS  
(VCE = –10 Vdc, f = 1.0 kHz, TA = 25°C)  
300  
200  
100  
70  
50  
30  
20  
100  
70  
10  
7
50  
30  
5
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 5. Current Gain  
Figure 6. Output Admittance  
20  
10  
10  
7.0  
5.0  
7.0  
5.0  
3.0  
2.0  
3.0  
2.0  
1.0  
0.7  
0.5  
1.0  
0.7  
0.5  
0.3  
0.2  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 7. Input Impedance  
Figure 8. Voltage Feedback Ratio  
http://onsemi.com  
3
MMBT4126LT1  
TYPICAL STATIC CHARACTERISTICS  
2.0  
1.0  
T = +125°C  
J
V
CE  
= 1.0 V  
+25°C  
-ā55°C  
0.7  
0.5  
0.3  
0.2  
0.1  
0.1  
0.2  
0.3  
0.5 0.7  
1.0  
2.0  
3.0  
5.0 7.0 10  
20  
30  
50  
70 100  
200  
I , COLLECTOR CURRENT (mA)  
C
Figure 9. DC Current Gain  
1.0  
0.8  
0.6  
0.4  
T = 25°C  
J
I
C
= 1.0 mA  
10 mA  
30 mA  
100 mA  
0.2  
0
0.01  
0.02  
0.03  
0.05 0.07 0.1  
0.2  
0.3  
0.5  
0.7  
1.0  
2.0  
3.0  
5.0  
7.0  
10  
I , BASE CURRENT (mA)  
B
Figure 10. Collector Saturation Region  
1.0  
0.8  
0.6  
1.0  
T = 25°C  
J
V
@ I /I = 10  
BE(sat) C B  
0.5  
0
+25°C TO +125°C  
-ā55°C TO +25°C  
q
FOR V  
CE(sat)  
VC  
V
BE  
@ V = 1.0 V  
CE  
-ā0.5  
-ā1.0  
+25°C TO +125°C  
-ā55°C TO +25°C  
0.4  
0.2  
0
V
@ I /I = 10  
C B  
CE(sat)  
q
FOR V  
BE(sat)  
VB  
-ā1.5  
-ā2.0  
1.0  
2.0 5.0  
10  
20  
50  
100  
200  
0
20  
40  
60  
80 100 120 140 160 180 200  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 11. “ON” Voltages  
Figure 12. Temperature Coefficients  
http://onsemi.com  
4
MMBT4126LT1  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
drain pad size. This can vary from the minimum pad size  
for soldering to a pad size given for maximum power  
dissipation. Power dissipation for a surface mount device is  
into the equation for an ambient temperature T of 25°C,  
one can calculate the power dissipation of the device which  
in this case is 225 milliwatts.  
A
150°C – 25°C  
556°C/W  
PD =  
= 225 milliwatts  
determined by T  
, the maximum rated junction  
J(max)  
temperature of the die, R , the thermal resistance from  
the device junction to ambient, and the operating  
θJA  
The 556°C/W for the SOT–23 package assumes the use of  
the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts.  
There are other alternatives to achieving higher power  
dissipation from the SOT–23 package. Another alternative  
would be to use a ceramic substrate or an aluminum core  
board such as Thermal Clad . Using a board material such  
as Thermal Clad, an aluminum core board, the power  
dissipation can be doubled using the same footprint.  
temperature, T . Using the values provided on the data  
A
sheet for the SOT–23 package, P can be calculated as  
D
follows:  
TJ(max) – TA  
PD =  
Rθ  
JA  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
SOLDERING PRECAUTIONS  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within  
a short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference shall be a maximum of 10°C.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
* Soldering a device without preheating can cause  
excessive thermal shock and stress which can result in  
damage to the device.  
http://onsemi.com  
5
MMBT4126LT1  
PACKAGE DIMENSIONS  
SOT–23  
TO–236AB  
CASE 318–09  
ISSUE AF  
NOTES:  
ąă1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
ąă2. CONTROLLING DIMENSION: INCH.  
ąă3. MAXIUMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS OF  
BASE MATERIAL.  
L
3
B
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
1
2
MIN  
2.80  
1.20  
0.99  
0.36  
1.70  
0.10  
MAX  
3.04  
1.40  
1.26  
0.50  
2.10  
0.25  
0.177  
0.60  
1.02  
2.50  
0.60  
A
B
C
D
G
H
J
0.1102 0.1197  
0.0472 0.0551  
0.0385 0.0498  
0.0140 0.0200  
0.0670 0.0826  
0.0040 0.0098  
V
G
0.0034 0.0070 0.085  
K
L
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
0.45  
0.89  
2.10  
0.45  
C
S
V
J
H
K
D
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
http://onsemi.com  
6
MMBT4126LT1  
Notes  
http://onsemi.com  
7
MMBT4126LT1  
Thermal Clad is a registered trademark of the Bergquist Company  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
MMBT4126LT1/D  

相关型号:

MMBT4126LT1G

General Purpose Transistor
ONSEMI

MMBT4126LT3G

PNP 双极晶体管
ONSEMI

MMBT4126S62Z

Small Signal Bipolar Transistor, 0.2A I(C), 25V V(BR)CEO, 1-Element, PNP, Silicon
FAIRCHILD

MMBT4126_1

PNP SMALL SIGNAL SURFACE MOUNT TRANSISTOR
DIODES

MMBT4126_2

PNP SMALL SIGNAL SURFACE MOUNT TRANSISTOR
DIODES

MMBT4126_NL

Small Signal Bipolar Transistor, 0.2A I(C), 25V V(BR)CEO, 1-Element, PNP, Silicon, LEAD FREE, SOT-23, 3 PIN
FAIRCHILD

MMBT42

HIGH VOLTAGE TRANSISTOR
UTC

MMBT4209

Si, PNP, RF SMALL SIGNAL TRANSISTOR, TO-236AB
TI

MMBT4248

TRANSISTOR,BJT,PNP,40V V(BR)CEO,TO-236VAR
NSC

MMBT4250

TRANSISTOR,BJT,PNP,40V V(BR)CEO,TO-236
NSC

MMBT4258

PNP Switching Transistor
FAIRCHILD

MMBT4258-HIGH

Si, PNP, RF SMALL SIGNAL TRANSISTOR, TO-236AA
TI