MMBT5089LT1 [ONSEMI]

Low Noise Transistors; 低噪声晶体管
MMBT5089LT1
型号: MMBT5089LT1
厂家: ONSEMI    ONSEMI
描述:

Low Noise Transistors
低噪声晶体管

晶体 小信号双极晶体管
文件: 总8页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductort  
MMBT5088LT1  
Low Noise Transistors  
NPN Silicon  
MMBT5089LT1  
MMBT5089LT1 is a Preferred Device  
3
MAXIMUM RATINGS  
1
Rating  
Collector–Emitter Voltage  
Collector–Base Voltage  
Symbol  
5088LT1 5089LT1  
Unit  
Vdc  
2
V
CEO  
V
CBO  
V
EBO  
30  
35  
25  
30  
Vdc  
CASE 318–08, STYLE 6  
SOT–23 (TO–236AF)  
Emitter–Base Voltage  
4.5  
50  
Vdc  
Collector Current — Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
C
mAdc  
COLLECTOR  
3
Symbol  
Max  
Unit  
1
(1)  
Total Device Dissipation FR–5 Board  
P
225  
mW  
D
BASE  
T
= 25°C  
A
Derate above 25°C  
1.8  
556  
300  
mW/°C  
°C/W  
mW  
2
Thermal Resistance, Junction to Ambient  
Total Device Dissipation  
R
qJA  
EMITTER  
P
D
(2)  
Alumina Substrate,  
T
A
= 25°C  
Derate above 25°C  
2.4  
mW/°C  
°C/W  
°C  
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
417  
qJA  
T , T  
J stg  
–55 to +150  
MMBT5088LT1 = 1Q; MMBT5089LT1 = 1R  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Breakdown Voltage  
V
Vdc  
(BR)CEO  
(I = 1.0 mAdc, I = 0)  
MMBT5088  
MMBT5089  
30  
25  
C
B
Collector–Base Breakdown Voltage  
(I = 100 mAdc, I = 0)  
V
Vdc  
nAdc  
nAdc  
(BR)CBO  
MMBT5088  
MMBT5089  
35  
30  
C
E
Collector Cutoff Current  
I
CBO  
(V  
CB  
(V  
CB  
= 20 Vdc, I = 0)  
MMBT5088  
MMBT5089  
50  
50  
E
= 15 Vdc, I = 0)  
E
Emitter Cutoff Current  
I
EBO  
(V  
EB(off)  
(V  
EB(off)  
= 3.0 Vdc, I = 0)  
MMBT5088  
MMBT5089  
50  
100  
C
= 4.5 Vdc, I = 0)  
C
1. FR–5 = 1.0 0.75 0.062 in.  
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.  
Preferred devices are ON Semiconductor recommended choices for future use and best overall value.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
March, 2001 – Rev. 1  
MMBT5088LT1/D  
MMBT5088LT1 MMBT5089LT1  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
ON CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
DC Current Gain  
(I = 100 µAdc, V  
C
h
FE  
= 5.0 Vdc)  
= 5.0 Vdc)  
= 5.0 Vdc)  
MMBT5088  
MMBT5089  
300  
400  
900  
1200  
CE  
CE  
CE  
(I = 1.0 mAdc, V  
C
MMBT5088  
MMBT5089  
350  
450  
(I = 10 mAdc, V  
C
MMBT5088  
MMBT5089  
300  
400  
Collector–Emitter Saturation Voltage  
(I = 10 mAdc, I = 1.0 mAdc)  
V
V
Vdc  
Vdc  
CE(sat)  
0.5  
0.8  
C
B
Base–Emitter Saturation Voltage  
(I = 10 mAdc, I = 1.0 mAdc)  
BE(sat)  
C
B
SMALL–SIGNAL CHARACTERISTICS  
Current–Gain — Bandwidth Product  
f
C
C
MHz  
pF  
T
(I = 500 µAdc, V  
C CE  
= 5.0 Vdc, f = 20 MHz)  
50  
4.0  
10  
Collector–Base Capacitance  
(V = 5.0 Vdc, I = 0, f = 1.0 MHz emitter guarded)  
cb  
eb  
CB  
Emitter–Base Capacitance  
(V = 0.5 Vdc, I = 0, f = 1.0 MHz collector guarded)  
E
pF  
EB  
C
Small Signal Current Gain  
h
fe  
(I = 1.0 mAdc, V  
C
= 5.0 Vdc, f = 1.0 kHz)  
MMBT5088  
MMBT5089  
350  
450  
1400  
1800  
CE  
Noise Figure  
NF  
dB  
(I = 100 mAdc, V  
= 5.0 Vdc, R = 10 k, f = 1.0 kHz)  
MMBT5088  
MMBT5089  
3.0  
2.0  
C
CE  
S
R
S
i
n
e
n
IDEAL  
TRANSISTOR  
Figure 1. Transistor Noise Model  
http://onsemi.com  
2
MMBT5088LT1 MMBT5089LT1  
NOISE CHARACTERISTICS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
NOISE VOLTAGE  
30  
20  
30  
BANDWIDTH = 1.0 Hz  
BANDWIDTH = 1.0 Hz  
20  
I
C
= 10 mA  
R
S
0  
R
S
0  
f = 10 Hz  
10 kHz  
3.0 mA  
1.0 mA  
10  
7.0  
5.0  
10  
7.0  
5.0  
100 Hz  
1.0 kHz  
300 µA  
100 kHz  
5.0  
3.0  
3.0  
0.01 0.02  
10 20 50 100 200 500 1Ăk 2Ăk 5Ăk 10Ăk 20Ăk 50Ăk 100Ăk  
f, FREQUENCY (Hz)  
0.05 0.1  
0.2  
0.5 1.0  
2.0  
10  
I , COLLECTOR CURRENT (mA)  
C
Figure 2. Effects of Frequency  
Figure 3. Effects of Collector Current  
10  
20  
16  
BANDWIDTH = 1.0 Hz  
7.0  
5.0  
I
C
= 10 mA  
3.0  
2.0  
BANDWIDTH = 10 Hz to 15.7 kHz  
3.0 mA  
12  
8.0  
4.0  
0
1.0 mA  
300 µA  
100 µA  
30 µA  
1.0  
0.7  
0.5  
I
C
= 1.0 mA  
500 µA  
100 µA  
10 µA  
0.3  
0.2  
10 µA  
R
S
0  
0.1  
10 20 50 100 200 500 1Ăk 2Ăk 5Ăk 10Ăk 20Ăk 50Ăk 100Ăk  
f, FREQUENCY (Hz)  
10 20  
50 100 200 500 1Ăk 2Ăk  
5Ăk 10Ăk 20Ăk 50Ăk 100Ăk  
R , SOURCE RESISTANCE (OHMS)  
S
Figure 4. Noise Current  
Figure 5. Wideband Noise Figure  
100 Hz NOISE DATA  
300  
200  
20  
BANDWIDTH = 1.0 Hz  
I = 10 mA  
C
3.0 mA  
16  
12  
I
C
= 10 mA  
100 µA  
3.0 mA  
1.0 mA  
100  
70  
1.0 mA  
50  
30  
20  
300 µA  
300 µA  
8.0  
30 µA  
100 µA  
30 µA  
10  
10 µA  
4.0  
0
7.0  
5.0  
10 µA  
BANDWIDTH = 1.0 Hz  
3.0  
10 20  
50 100 200 500 1Ăk 2Ăk 5Ăk 10Ăk 20Ăk 50Ăk 100Ăk  
10 20  
50 100 200 500 1Ăk 2Ăk 5Ăk 10Ăk 20Ăk 50Ăk 100Ăk  
R , SOURCE RESISTANCE (OHMS)  
S
R , SOURCE RESISTANCE (OHMS)  
S
Figure 6. Total Noise Voltage  
Figure 7. Noise Figure  
http://onsemi.com  
3
MMBT5088LT1 MMBT5089LT1  
4.0  
3.0  
V
CE  
= 5.0 V  
2.0  
T
A
= 125°C  
25°C  
1.0  
0.7  
-ā55°C  
0.5  
0.4  
0.3  
0.2  
0.01  
0.02  
0.03  
0.05  
0.1  
0.2  
0.3  
0.5  
1.0  
2.0  
3.0  
5.0  
10  
I , COLLECTOR CURRENT (mA)  
C
Figure 8. DC Current Gain  
1.0  
-ā0.4  
-ā0.8  
T
= 25°C  
J
0.8  
0.6  
0.4  
0.2  
0
V
BE  
@ V = 5.0 V  
CE  
-ā1.2  
-ā1.6  
-ā2.0  
-ā2.4  
T
= 25°C to 125°C  
J
-ā55°C to 25°C  
V
CE(sat)  
@ I /I = 10  
C B  
0.01 0.02 0.05 0.1 0.2  
1.0 2.0 5.0  
0.01 0.02 0.05 0.1 0.2  
1.0 2.0 5.0  
0.5  
10 20  
50 100  
0.5  
10 20  
50 100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 11. “On” Voltages  
Figure 9. Temperature Coefficients  
8.0  
6.0  
500  
T
= 25°C  
J
300  
200  
C
ob  
C
ib  
4.0  
3.0  
C
eb  
C
cb  
2.0  
100  
V
= 5.0 V  
CE  
70  
50  
T
= 25°C  
J
1.0  
0.8  
0.1  
0.2  
1.0  
2.0  
5.0  
1.0  
2.0 3.0  
5.0 7.0  
0.5  
10  
20  
50 100  
10  
20 30  
50 70 100  
V , REVERSE VOLTAGE (VOLTS)  
R
I , COLLECTOR CURRENT (mA)  
C
Figure 12. Capacitance  
Figure 10. Current–Gain — Bandwidth Product  
http://onsemi.com  
4
MMBT5088LT1 MMBT5089LT1  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
SOLDERING PRECAUTIONS  
The power dissipation of the SOT–23 is a function of the  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipa-  
tion. Power dissipation for a surface mount device is deter-  
The melting temperature of solder is higher than the  
rated temperature of the device. When the entire device is  
heated to a high temperature, failure to complete soldering  
within a short time could result in device failure. There-  
fore, the following items should always be observed in  
order to minimize the thermal stress to which the devices  
are subjected.  
mined byT  
of the die, R  
, the maximum rated junction temperature  
, the thermal resistance from the device  
J(max)  
θJA  
junction to ambient, and the operating temperature, T .  
A
Using the values provided on the data sheet for the SOT–23  
package, P can be calculated as follows:  
Always preheat the device.  
D
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
into the equation for an ambient temperature T of 25°C,  
A
one can calculate the power dissipation of the device which  
in this case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed  
circuit board to achieve a power dissipation of 225 milli-  
watts. There are other alternatives to achieving higher  
power dissipation from the SOT–23 package. Another  
alternative would be to use a ceramic substrate or an  
aluminum core board such as Thermal Clad . Using a  
board material such as Thermal Clad, an aluminum core  
board, the power dissipation can be doubled using the same  
footprint.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
* Soldering a device without preheating can cause exces-  
sive thermal shock and stress which can result in damage  
to the device.  
http://onsemi.com  
5
MMBT5088LT1 MMBT5089LT1  
PACKAGE DIMENSIONS  
SOT–23 (TO–236)  
CASE 318–08  
ISSUE AF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
A
L
3
INCHES  
DIM MIN MAX  
MILLIMETERS  
S
C
B
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
MAX  
3.04  
1.40  
1.11  
1
2
A
B
C
D
G
H
J
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
V
G
0.50  
2.04  
0.100  
0.177  
0.69  
1.02  
2.64  
0.60  
0.0005 0.0040 0.013  
0.0034 0.0070 0.085  
K
L
0.0140 0.0285  
0.0350 0.0401  
0.0830 0.1039  
0.0177 0.0236  
0.35  
0.89  
2.10  
0.45  
S
V
H
J
D
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
http://onsemi.com  
6
MMBT5088LT1 MMBT5089LT1  
Notes  
http://onsemi.com  
7
MMBT5088LT1 MMBT5089LT1  
Thermal Clad is a trademark of the Bergquist Company.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
MMBT5088LT1/D  

相关型号:

MMBT5089LT1G

Low Noise Transistors NPN Silicon
ONSEMI

MMBT5089LT3

50mA, 25V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-236AB, CASE 318-08, 3 PIN
ONSEMI

MMBT5089_15

NPN GENERAL PURPOSE AMPLIFIER
UTC

MMBT5128

MMBT5128
TI

MMBT5130

MMBT5130
TI

MMBT5134

MMBT5134
TI

MMBT5135

MMBT5135
TI

MMBT5136

MMBT5136
TI

MMBT5137

MMBT5137
TI

MMBT5138

MMBT5138
TI

MMBT5139

MMBT5139
TI

MMBT5142

MMBT5142
TI