MTC-20276PC-I [ONSEMI]

ISDN Controller, 1-Func, CMOS, PQCC44, PLASTIC, LCC-44;
MTC-20276PC-I
型号: MTC-20276PC-I
厂家: ONSEMI    ONSEMI
描述:

ISDN Controller, 1-Func, CMOS, PQCC44, PLASTIC, LCC-44

综合业务数字网
文件: 总52页 (文件大小:992K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MTC-20276  
Single Chip ISDN NT  
2B1Q (INTQ)  
Data Sheet  
Rev. 2.3 - October 1999  
Key Features  
Applications  
General Description  
The MTC-20276 INTQ integrates all  
of the communications functions re-  
quired in a Basic Rate ISDN Network  
Terminator on a single monolithic inte-  
grated circuit. It provides activation/  
deactivation on chip and does not  
require an external microprocessor.  
The INTQ is designed for the 2B1Q  
line-code on the U-interface and is pin  
compatible with the MTC-20277 INTT,  
which performs identical functions but  
with the 4B3T U-interface line code.  
The MTC-20276 includes a GCI  
expansion port, to allow extended  
functions to be added (e.g. interfaces  
to existing analog terminal equipment  
by means of the MTK-40131 Short-  
Haul POTS chipset).  
Fully integrated basic rate U  
to S/T ISDN NT device  
Pin compatible with MTC-  
20277 INTT (4B3T)  
Full compliance with the  
applicable ETSI and  
Standard ISDN NT1 applica-  
tions (stand-alone mode)  
Advanced NT with analog  
line interfaces (“NT1+”)  
Micro-PABX  
Data network gateways  
Pair gain systems  
Data terminals  
ITU requirements  
Minimal external components  
< 355mW power consump-  
tion, 3.3V operating voltage  
Fully integrated Embedded  
Operations Channel handling  
Advanced 0.5µ CMOS  
mixed analog/digital  
process technology  
-40°C to +85°C or 0 to 70°C  
operating ranges  
CTI  
44 pin PQFP  
Power Supply  
Analog  
Support  
Functions  
TX  
TX  
Uk0  
S0  
‘U’ interface  
‘S’ interface  
4-wire / 2 wire  
network  
(S-bus mode)  
RX  
RX  
SPI and  
Aux. test  
access  
JTAG  
test  
access  
Digital Expansion and Test logic  
Dual GCI access  
and expansion  
port  
Power-on  
Reset  
Crystal  
Oscillator  
MTC-20276 INTQ  
Optional Expanded functions  
(Analog lines, data  
interfaces,...)  
Ordering Information  
Part number  
Package  
Code Temp.  
MTC-20276PC-I 44 pin PLCC PC44 -40 /+85°C  
MTC-20276PC-C 44 pin PLCC PC44 0 /+70°C  
Fig.1: MTC-20276 Application Block Diagram  
MTC-20276 INTQ  
NT and Extended NT  
Functions (“NTplus”)  
Standards Compliance  
The MTC-20276 has a number of test  
access ports to facilitate system or pro-  
duction testing. One of these ports is  
configured as a dual GCI interface,  
which operates in one of two modes.  
In Mode 0 (GMode = logic 0), the  
The application section describes the  
circuit configuration of the MTC-  
20276 in its stand alone mode, for  
conventional NT1 applications.  
(Figure 4)  
MTC-20276 complies with relevant  
ANSI and ETSI specifications.  
ETSI ETS 300 297  
ETSI ETS 300 012  
ETSI ETR 80  
ANSI T1.601  
ITU I.430  
ITU G.961  
GCI port allows the data flow between Figure 2 below shows the system  
the 'U' and the 'S' ports to be optional- concept of an MTC-20276/77 in an  
ly monitored.  
“NT1+” application, in combination  
with the MTK-40131 “SH-POTS” chip-  
set for short-haul analog telephone  
lines.  
This is the “stand alone” mode, which  
is the normal mode for simple NT1  
applications. No additional micro-  
processor or other control device is  
required in this mode.  
* GCI (General Circuit Interface), is an  
interface specification developed jointly  
by Alcatel, Italtel, GPT and Siemens,  
and can be obtained from Alcatel  
Microelectronics.  
MTC-2028xx is one of a family of inter-  
Mode 1 (GMode = logic1) allows sep- face and controller devices which cover  
arate access to the 'U' and the 'S'  
ports, for use by an external GCI com-  
patible controller device. In this mode,  
the chip supports additional  
a wide range of applications, e.g. MTC-  
20280 for ISDN NT+ or small PABX  
applications  
features required by extended NT  
modules (“NT1+”) such as interfaces  
to existing analog equipment, or  
advanced data communication gate-  
ways.  
PC / POS Terminal  
Digital Telephone  
ISDN Line Connection  
U
S - bus  
MTC-20276/7  
S
INT  
Power  
Supply  
GCI  
mains  
Analog  
FAX  
Analog Line 1  
Analog Line 2  
MTC-  
30132  
SH-LIC  
MTC-2028x  
Series  
MTC-  
20232  
CODSP  
GCI  
RS 232  
Controller for  
MTC-  
30132  
SH-LIC  
Existing Analog Installation  
ISDN  
Terminal  
Adapters  
Answering Machine  
Analog Telephone  
MTK-40131  
SH-POTS chipset  
“NT1+” Box  
Fig.2: Concept of an NT1+ Configuration for 2 Analog Lines  
2
MTC-20276 INTQ  
Table of Content  
Key Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
NT and Extended NT Functions (“NTplus”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Standards Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Electrical Characteristics  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Quality / Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Package / Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
LED Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
NT1Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Recommended Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Application Information  
Transformer Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
S-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
U-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Master Clock and XTAL Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Detailed Functional Description  
U-Interface Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Physical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Logical Characteristics of the U-interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Scrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Descrambling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Activation and Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Analog Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3
MTC-20276 INTQ  
GCI Interface, Common Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Data Format and Timing of the GCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Continuous Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
The GCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
The Physical Organization of the GCI Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
General Content of the GCI Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power-down on GCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
G1 External GCI Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
G2 External GCI Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
U-Interface Command List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Command and Indicate (C/I) Channel (A bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Power Down of the Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Transition from Synchronous to Power-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Wake-up Originated by Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Wake-up Originated by the Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
S-interface Commands and Indications Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Commands in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Indications in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
The S-interface Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
General Description of the S-bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
S-interface - General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Test Modes Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
GCI Clock Synchronization in the ISDN Environment for the Upstream S-interface (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Clock Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Power Saving / Deactivation of the S-interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Activation of the S-interface in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Detailed Operational Description of the S-bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Transmission Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
AMI S-bus Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Balance Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
AMI Violations for Frame Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Frame Synchronization - Distance Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Frame Synchronization - Multiframing Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Synchronization Principles - Adaptive Bit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Synchronization Principles - Fixed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Pulse Polarity in the S-bus Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Transmitted Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Details on Downlink Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Details on Uplink Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
S-bus Transmitter Timing and Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Transmitter Timing and Framing at the NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
S-bus Receiver Timing and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Frame Synchronization Details in Adaptive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
First Violation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Violation Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
4
MTC-20276 INTQ  
RX Bit Synchronization NT Adaptive bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Immediate Bit Synchronization at Instant t2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Continuous Bit Synchronization at Each F/L Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Timing Relation Between RX and TX on the S-bus in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Frame Relation Between GCI and S-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
E-channel Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Multiframing - S and Q Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
S-Interface Programming  
M-Channel Messages and Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
M-Channel Receiver and Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
General Content of M-Channel Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
S and Q Channel Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Internal Register M-Channel Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
M-Channel Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
M-Channel Format - Bit and Byte Numbering Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Byte Transfer Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Idle M-Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Start of Message (SOM) and First Byte Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Acknowledge of the SOM and First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Further Byte transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Further Byte Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
End of Message (EOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Acknowledge of EOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Sender Not Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Receiver Not Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
IDLE forced From Sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Abort request From Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Acknowledge Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Reset of the M-channel Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Read Operation and Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Detailed Bitmap of the Internal Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Identification Register Read Only Address 0h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Version Number Register Read and Write Address 1h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Configuration Register Read and Write Address 2h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Output Register Read and Write Address 3h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
IN1 and IN2 Registers Read Only Addresses 4h and 5h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Performance Register Read Only Address 6h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
M-Channel Operation Messages Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Package Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Device Branding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
44PQFP Mechanical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Application Note: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
MTC-20276 INTQ Compliance Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
5
MTC-20276 INTQ  
Lists of Tables  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
LED Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Recommended Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Transformer Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Maintenance and Service Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Service and Maintenance Data Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Service and Maintenance Data Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Command and Indicate (C/I) Channel (A bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
S-interface Commands and Indications Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Commands in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Indications in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Transmitted Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Read Operation and Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Detailed Bitmap of the Internal Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Identification Register Read Only Address 0h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Version Number Register Read and Write Address 1h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Configuration Register Read and Write Address 2h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Output Register Read and Write Address 3h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
IN1 and IN2 Registers Read Only Addresses 4h and 5h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Performance Register Read Only Address 6h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
M-Channel Operation Messages Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
6
MTC-20276 INTQ  
Electrical Characteristics  
Absolute Maximum Ratings  
Operation of the device beyond these  
conditions is not guaranteed. Sustained  
exposure to these limits will adversely  
effect device reliability.  
Table 1  
Parameter  
Max  
Units  
DVDD, AVDD  
Vin, Voltage on any device pin  
4.8  
VSS-0.3  
V (see note)  
V
VDD+0.3 or 3.63  
V, whichever is lower  
Storage temperature  
Temperature under bias  
Lead Temperature  
-65 to +150  
-55 to +125  
300  
°C  
°C  
°C  
(soldering 10 sec)  
Note: Exposure to voltages at or above  
this level for more than 10 hours accum-  
mulated over the device’s operating life  
will adversely effect reliability.  
which is a Schmitt-trigger input with hys-  
teresis.  
Note 2. All logic pins except NRESET,  
Operating Conditions  
Unless otherwise stated, the following  
electrical characteristics are valid over  
the ranges specified here. (Vss = 0V).  
Table 2  
Parameter  
Min  
Max  
3.45  
10  
Units  
V
Note  
DVDD, AVDD  
3.15  
=3.3V 5ꢀ  
SNAVDD, supply noise, analog  
SNDVDD, supply noise, digital  
SNAREF, supply noise, analog ref.  
IAREF  
mVpp  
mVpp  
mVpp  
mA  
100  
0.1  
Note 2  
- 0.25  
15.359  
-40  
+ 0.25  
15.361  
+85  
load on AREF Pin  
50ppm, Note 1  
Crystal frequency  
Temperature range  
MHz  
°C  
Note 1: An external clock may be  
applied to XTAL2, pin 24. Temperature  
dependent drift <10ppm.  
Note 2: AREF is an output, designed to  
allow a decoupling capacitor to be  
placed on the internal analog reference  
voltage. The external circuit layout must  
avoid the induction of noise on this pin.  
7
MTC-20276 INTQ  
DC Characteristics  
Table 3  
MTB-20276 State  
Typ  
Max  
Unit  
Full activated - ETSQI loop 1 on U loop, random data  
Full activated - ETSQI loop 2 (40dB) on U loop, random data  
U loop only activated - ETSI loop 1, random data  
U loop only activated - ETSI loop 2 (40dB), random data  
Deactivated  
362  
325  
340  
301  
20  
390  
355  
mW  
mW  
mW  
mW  
mW  
22  
Table 4  
Parameter  
Conditions  
Min  
Max  
Units  
Note  
VIH  
VIL  
VOH  
VOL  
Input level, logic 1  
Input level, logic 0  
Output level, logic 1  
Output level, logic 0  
Rising, NRESET  
0.8  
DVDD  
DVDD  
DVDD  
V
1
1
1
1
1
0.2  
0.85  
0.4  
1.9  
V
1.7  
0.9  
V
IH  
V
IL  
Falling, NRESET  
1.1  
V
1
V
Reference voltage output,  
load current < 250ꢀA.  
AREF  
1.6  
1.6  
1.7  
1.7  
V
V
V
Nreset input threshold  
TNRES  
Note 1: All logic pins except NRESET,  
which is a Schmitt-trigger input with  
hysteresis.  
AC Characteristics  
Table 5  
Parameter  
Conditions  
Min  
Max  
Units  
Note  
Cin  
Cload  
VTPWRES  
Input capacitance any pin  
Load capacitance on any output pin  
Reset pulse width  
1
100  
pF  
pF  
mS  
10  
Quality / Reliability  
Early failure rate  
Long term failure rate  
Lifetime  
0.3% at 3000 hours  
300 FIT for 45°C average ambient and 45% average humidity  
15 years  
8
MTC-20276 INTQ  
Package / Pinout  
SXP  
LOUT2  
1
33  
SXN  
AREF  
LIN1  
LIN2  
TRST  
TCK  
2
32  
SRP  
3
31  
30  
29  
28  
27  
26  
25  
SRN  
4
AUX  
5
MTC-20276  
INTQ  
SPIDO  
SPIDI  
VDD  
6
TMS  
7
TDI  
8
TDO  
XTAL1  
XTAL2  
VSS  
9
SPICK  
SPICS  
10  
11  
24  
23  
Fig.3: Pinout, 44 PQFP Package (MTC-20276PQ)  
9
MTC-20276 INTQ  
Pin Description  
The table gives a summary of all MTC-20276 pins and their functions.  
Table 6  
Nr. Function  
Name  
Dir.  
Description  
44  
1
LOUT1  
LOUT2  
O
O
U-interface analog outputs. The connections LOUT1 and LOUT2 interface  
the U driver outputs, via termination resistors and the line coupling  
transformer, to the U0 reference point.  
U
3
4
LIN1  
LIN2  
I
I
U-interface analog inputs to the INTQ from the analog ‘hybrid’  
2
43  
42  
AREF  
AV//  
AVSS  
O
P
P
Analog ground, +1.65 V 3ꢀ. Used as reference voltage for Aꢁ/ and /ꢁA.  
+3.3V 5ꢀ poꢂer supply for analog U-interface functions  
0V ground for analog U-interface functions  
33  
32  
SXP  
SXN  
O
O
S-interface analog outputs. SXP and SXN interface the S-driver outputs  
via terminating resistors and the Tx line coupling transformer to the S0  
reference point (Tx).  
31  
30  
37  
S
SRP  
SRN  
SBUS  
I
I
I
S-interface analog inputs. SRP and SRN interface the S-inputs via the Rx line  
coupling transformer to the S0 reference point (Rx).  
S-bus type configuration. 1 = short bus ꢂith fixed timing, 0 = adaptive  
timing for extended bus or point-to-point  
34  
36  
35  
12  
13  
14  
15  
SATP  
AV//  
AVSS  
G1/OUT  
G1/IN  
G1/CLK  
G1/FR  
O
P
P
O
IꢁO  
O
O
Analog test pin. Used for test purposes only, should be left open circuit  
+3.3 5ꢀ poꢂer supply for analog S-interface functions  
0V ground for analog S-interface functions  
Primary GCI interface G1:  
GMO/E = 0: Monitoring of the internal GCI betꢂeen the U and S.  
GMO/E = 1: NTplus mode; complete GCI connected to U ꢂith U as master.  
G1/OUT = data output  
GCI  
G1/IN = data input (output direction in monitoring mode)  
G1/CLK = 512 KHz GCI clock  
G1/FR = 8KHz GCI frame clock ꢂhich identifies the beginning of  
the frame of G1/IN and G1/OUT  
Secondary GCI interface G2:  
GMO/E = 0: No function  
GMO/E = 1: NTplus mode; complete GCI connected to S ꢂith external master.  
G2/OUT = data output  
18  
19  
20  
21  
G2/OUT  
G2/IN  
G2/CLK  
G2/FR  
O
I
I
I
G2/IN = data input  
G2/CLK = 512KHz GCI clock  
G2/FR = 8KHz GCI frame clock ꢂhich identifies the beginning of  
the frame of G2/IN and G2/OUT  
Remark: if NT Plus mode is not used, the inputs should be strapped  
high or loꢂ.  
Select NTplus mode. 0 = monitoring mode, 1 = NTplus mode.  
22  
GMO/E  
I
5
6
7
8
9
TRST  
TCK  
TMS  
T/I  
I
I
I
I
O
TAP (Test Access Port) controller reset, active loꢂ  
TAP controller clock, maximum 10 MHz  
TAP controller mode selection  
TAP controller input  
JTAG  
T/O  
TAP controller output  
10  
MTC-20276 INTQ  
41  
25  
RESET  
OSC.  
NRESET  
XTAL1  
I
I
Hardware reset, active low. Schmitt-trigger input for connection to  
external RC or logic device.  
Connection to external crystal (15.36MHz 100ppm). May also be used  
as input for external master clock source.  
24  
40  
XTAL2  
TSP  
I
I
Connection to external crystal.  
Monitor  
Transmit Single Pulses. INTQ transmits single pulses of alternating maximum  
positive and negative polarity at the S and U-interface.  
Pulse repetition rate is 0.67 kHz at the U-interface, for test purposes and  
as a search tone on the line.  
39  
38  
PW220  
PW40  
I
I
Indicate if the local mains power supply is available.*  
1 = mains power supply ON  
0 = mains power supply OFF  
Indicate if the local 40V power supply is available.*  
1 = 40V power supply ON  
0 = 40V power supply OFF  
10  
11  
27  
28  
29  
TEST0  
TEST1  
OPTO  
LED  
O
O
I
O
I
Factory use only. Leave open circuit.  
Opto isolator input. See below.  
State indicator LED. See below.  
Indicate cold-start-only operation mode:  
0 = normal mode  
CSO  
1 = cold-start-only operation mode**  
+3.3 V 5ꢀ power supply for digital functions  
16  
26  
17  
23  
VDD  
VDD  
VSS  
VSS  
P
P
P
P
0V ground for digital functions  
Note: None of the Input pins are 5V tolerant.  
* This only affects the “PS1” and “PS2” bits in the upstream M symbol, and does not have any functional implication.  
** This only affects the “CSO” bit in the upstream M symbol, and does not influence the activation performance of the INTQ.  
Device pin 27 (OPTO) is used to determine whether an automatic upstream activation request is performed after power-up  
or reset, or not. (New releases of the relevant ETSI specifications require automatic activation on power-up, whereas  
previous releases did not)  
Pin 27 should be strapped as follows:  
Function:  
Pin 27 strapped to:  
Automatic activation request  
No automatic activation request  
VDD  
VSS  
LED Indicator  
The LED output can source up to 4mA to directly drive an LED, via a current limiting resistor.  
Table 7  
LED OFF  
Both U and S-interfaces are inactive  
Fast flashing (8Hz)  
The U-interface is attempting to synchronize, or the EOC has activated a  
2B+D loopback.  
Slow flashing (1Hz)  
LED ON  
The U-interface is synchronized and the S-interface is attempting to synchronize.  
Both U and S-interfaces are fully synchronized and ‘connect through’  
status is achieved.  
11  
MTC-20276 INTQ  
Application Information  
The MTC-20276 requires very few  
external components, all of which are  
low-cost and readily available types.  
In addition, the use of a 44PQFP  
package style allows further savings in  
the total cost and physical size of the  
ISDN NT module.  
The following recommended applica-  
tions information is constantly being  
reviewed to improve cost and  
performance. Please contact Alcatel  
Microelectronics’ application support  
group for the latest details.  
NT1 Schematic  
C3  
C4  
Vdd  
Vdd  
Vdd  
C2  
R13  
S1  
R8  
S-bus type  
AREF  
LIN1  
VSS  
VDD  
AVSS AVDD  
SBUS  
T1  
T2  
SXP  
SXN  
LOUT1  
S0 (Tx)  
S0 (Rx)  
Rt  
Rt  
Passive  
R9  
Hybrid  
UK0  
Power Feed  
(30..100V)  
MTC-20276  
INTQ  
(Figure 4a)  
Clf  
T3  
SRP  
SRN  
TSP  
R10  
C8  
R11  
LOUT2  
LIN2  
line test  
Vdd  
D1  
+/- 40V  
-/+ 40V  
NRESET  
S2  
R12  
Vdd  
R7  
OPTO LED  
X1  
X2  
X1  
GMODE  
Power Supply  
C1  
230V AC  
Vdd  
R14  
R20  
C7  
C6  
Metalic Line  
Termination  
Circuit  
Vss  
Vdd (+3.3V)  
R15  
C5  
30...100V from  
UK0 power feed  
*
* North American Market Only  
Z1  
Fig.4: NT1 Application Schematic  
LIN1  
Rh14  
Ch1  
LOUT1  
Rh16  
T1  
La  
Clf  
Rh11  
Rh21  
Rh12  
Ch3  
Rh13  
Ch4  
Ch5  
Rh17  
Ch6  
Ch7  
Rh22  
Rh23  
Lb  
Ch2  
Rh26  
LOUT2  
LIN2  
Li-line  
power feed  
Rh24  
Fig.4a: Recommended Hybrid Component Configuration  
12  
MTC-20276 INTQ  
Recommended Component Values  
Table 8  
Component  
Function  
Value  
Comment  
U Interface  
T1  
U transformer  
U feed bridge  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
2:1, 15 mH  
13Ω  
590(470+120)  
1k  
4.32kΩ  
6.81kΩ  
100Ω  
see text  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
5ꢀ  
5ꢀ  
Rh14, Rh24  
Rh17  
Rh11, Rh21  
Rh12, Rh22  
Rh13, Rh23  
Rh16, Rh26  
Ch1, Ch2  
Ch3  
4.7nF  
470pF  
Ch4, Ch5  
Ch6  
Ch7  
Hybrid  
Hybrid  
39nF  
2.7nF  
100nF  
2.2µF  
5ꢀ  
5ꢀ  
200V  
200V  
Clf  
Line-feed coupling  
S/ T Interface  
T2,T3  
R8,R9  
R10,R11  
Rt  
S transformer  
2:1  
33Ω  
5kΩ  
100Ω  
27pF  
see text  
1ꢀ  
10ꢀ  
S-bus transmit impedance  
S-bus receive impedance  
S-bus termination resistor  
S-bus receive capacitor  
C8  
10ꢀ  
Crystal  
X1  
C5,C6  
C7  
crystal  
15.36 MHz  
22pF  
0 to 22pF (optional)  
1MΩ  
see text  
see text  
see text  
crystal load  
crystal load  
crystal stabilizer  
R20  
Miscellaneous  
R7,R12,R13,R14  
Pull-up/down  
LED current limit  
reset delay  
supply decoupling  
loss-of-power reset  
Power Supply Clamp  
switch  
100kΩ  
510Ω  
100nF  
100nF  
1N4148  
4.1V zener  
-
R15  
C1,C2  
C3,C4  
D1  
Z1  
S1  
-
any small signal diode  
S-bus mode  
Test signal  
S2  
switch  
-
13  
MTC-20276 INTQ  
Application Information  
Transformer Specifications  
Table 9  
S-Interface  
Parameter  
Turns Ratio  
Primary Inductance  
Leakage Inductance  
Interwinding Capacitance  
PRI DCR  
SEC DCR  
U-Interface  
Parameter  
Min  
Min  
Max  
Units  
Line: Chip  
mH  
2:1  
20  
13  
50  
1.3  
3.1  
µH  
pF nominal  
(1.120%)  
(2.620%)  
0.9  
2.1  
Max  
Units  
Turns Ratio  
2:1  
Line: Chip  
Primary Inductance  
Leakage Inductance  
Interwinding Capacitance  
PRI DCR  
13.5  
16.5  
60  
90  
7
mH  
µH  
pF  
6
SEC DCR  
2.8  
3.3  
Master Clock and XTAL Connections  
At the pins XTAL1 and XTAL2 a  
crystal must be connected to form a  
parallel mode oscillator. Two capaci-  
tors of 22 pF should be connected to  
ground.  
22pF  
15.36 MHz  
XTAL1  
Cp  
Some crystals may require the parallel  
capacitor Cp to be used (10 pf Typ).  
XTAL2  
1M  
22pF  
Fig.5: Crystal Configuration  
Typical Crystal Specifications  
Table 10  
AT cut, fundamental mode  
Parallel resonance frequency  
Total tolerance  
15.360  
50  
MHz  
ppm  
Dynamic capacitance  
Load capacitance  
15  
fF  
30  
7
pF  
pF  
Parallel capacitance  
Series resistance  
40  
10  
Series resistance drift (age)  
%
Drive level  
0.25  
mW  
14  
MTC-20276 INTQ  
Overvoltage Protection  
This is strongly dependant on the Print-  
ed Circuit Board layout and local  
specification variations. Generally, it  
ground. The recommended protection  
for the U-interface is to diode clamp  
the chip side transformer pins to the  
power-supply voltage to increase (full-  
wave rectifier effect through the protec-  
tion diodes), it is recommended that a  
zener-diode is used to clamp the Vdd  
voltage < 4,8V.  
is recommended to use standard small- supply rails, and for the S-interface  
signal diodes to clamp voltages from  
the S-interface (e.g. 1N4148) and  
U-interface (e.g. 1N4004) to Vdd and  
clamp the INTQ device pins (30, 31,  
32, 33). In order to prevent excessive  
disturbance voltages from causing the  
Unused Pins  
The INTQ has a number of device pins  
which are used only in specific applica-  
tions, or for device testing. These pins  
should be connected as shown below to  
ensure proper operation in a given  
application. ‘0’ means connect to  
ground, ‘1’ means connect to Vdd,  
‘open’ means make no connection.  
A dash (‘-’) means that the pin is used  
in the application. All other pins have  
defined states as shown in the applica-  
tion schematic.  
Table 11  
Pin  
Number  
NT mode  
NT+ mode  
GMODE  
G2DOUT  
G2DIN  
G2DCLK  
G2DFR  
G1DOUT  
G1DIN  
G1DCLK  
G1DFR  
TRST  
TCK  
TMS  
TDI  
TDO  
22  
18  
19  
20  
21  
12  
13  
14  
15  
5
6
7
8
9
0
open  
1
0
1
-
-
-
-
-
-
-
0
open/monitor  
open/monitor  
open/monitor  
open/monitor  
0 (pull down)  
1 (pull up)  
1 (pull up)  
1 (pull up)  
open  
-
0 (pull down)  
1 (pull up)  
1 (pull up)  
1 (pull up)  
open  
CSO  
29  
0 (normal)  
1 ( CSO)  
-
0 (normal)  
1 (CSO)  
-
-
open  
open  
-
-
PW40  
PW220  
TEST0  
TEST1  
OPTO  
LED  
38  
39  
10  
11  
27  
28  
34  
-
open  
open  
-
-
SATP  
open  
open  
TSP  
40  
0 (normal)  
1 ( test pulses)  
0 (normal)  
1 ( test pulses)  
PW40  
S BUS  
38  
37  
-
-
0 (P-P S Bus)  
1 (Short S Bus)  
0 (P-P S Bus)  
1 (Short S Bus)  
15  
MTC-20276 INTQ  
Common Hybrid Schematics for 4B3T and 2B1Q  
LIN1  
13  
LOUT1  
4n7  
15mH  
T1  
100  
4k32  
La  
Lb  
6k81  
6k81  
1k  
1k  
2.2µF  
200V  
39n  
39n  
10nF  
200V  
590  
2n7  
470p  
4k32  
2:1  
100  
u-line  
power feed  
4n7  
LOUT2  
13Ω  
LIN2  
2B1Q - Recommended Hybrid component Configuration  
LIN1  
LOUT1  
25Ω  
6mH  
T2  
u
3k3  
u
u
La  
Lb  
2.2µF  
7k  
7k  
*
*
u
u
10nF  
200V  
*
470p  
3k3  
200V  
1.6:1  
u
u-line  
power feed  
LOUT2  
LIN2  
u short  
25Ω  
(* for FTZ loops, 470p -> 680p and 7k-> 6k8)  
Fig.5a: 4B3T - Recommended Hybrid Component Configuration, using same PCB layout as 2B1Q,  
16  
MTC-20276 INTQ  
Vdd in  
10µ + 100n  
10µ + 100n  
43  
36  
16  
26  
AVDD  
AVDD VDD VDD  
AVSS  
AVSS  
VSS VSS  
42  
35  
17  
23  
Vss in  
Fig.5b: MTC-20276 / 20277 Recommended Power Supply Arrangement  
Note: It is recommended to put the decoupling capacitors close to the chip.  
17  
MTC-20276 INTQ  
Detailed Functional Description  
U-Interface Block  
Physical Characteristics  
The quaternary symbol stream on the  
U-interface has to the following physi-  
cal characteristics:  
Jitter Transfer Function  
The jitter transfer function of the INTQ  
(looped between U-interfaces) doesn’t  
exceed 1 dB in the frequency range  
3 Hz to 30 Hz.  
Transmit Signal Amplitude  
The absolute peak value VImax of a  
single pulse VI at the U0 interface ter-  
minated with a 135 Ohm resistance is  
2.5 V 5%.  
Symbol rate  
The symbol rate is 80 kbaud 1 ppm  
and applies to synchronous symbol  
transmission.  
The absolute peak value of the coded  
quaternary signal measured at U0  
interface terminated with 135 Ohm  
doesn’t exceed 4 V.  
Output Jitter  
The peak-to-peak jitter produced by  
the INTQ doesn’t exceed 0.02 UI  
(166 ns), when measured via a high  
pass filter with a cut-off frequency of  
Input Jitter  
The INTQ tolerates a sinusoidal input  
jitter of the quaternary symbols as indi- 30 Hz. Without this filter the same  
cated in Figure 6.  
measurement doesn’t read more than  
0.1 UI.  
Jitter Amplitude  
(peak-to-peak)  
UI = Unit  
Interval  
0,30 UIpp  
20 db/Decade  
0,008 UIpp  
0,5 Hz  
19 Hz  
10 KHz  
Jitter Frequency  
Fig.6: Range of Admissible Sinusoidal Input Jitter  
18  
MTC-20276 INTQ  
- slope above 50 kHz: -10 dB /  
decade  
Stability  
Maximum Voltage  
The transmit signal amplitude mea-  
sured over a period of one minute  
doesn’t vary by more than 1% begin-  
ning 5 ms after the INTQ is switched  
into power-up state.  
The maximum peak-to-peak value  
VUmax of the voltage VU as shown in  
figure 7 with full receive signal (short  
line), that can be accepted is 2 V. Due  
to the analog echo subtraction the  
maximum peak-to peak value Vinmax  
of the voltage Vin between LIN1 and  
LIN2 is 1.35 V.  
Load  
The load is given by the line trans-  
former and the subscriber line. The  
loops are standardised by the ANSI  
and ETSI documents.  
- Turns ratio of line transformer: 2:1  
- Transformer coil inductance (from  
line side): 15 mH 10%  
Transmit Spectrum  
The spectrum of the quaternary trans-  
mit signal at U0 interface doesn’t  
exceed the limits given in Figure 8.  
Input/Output Impedance  
The line terminating impedance is  
nominally 135 Ohm in power up and  
power down states. The return loss  
against 135real exceeds 16 dB  
between 12 kHz and 50 kHz.  
- slope below 12 kHz: 20 dB /  
decade  
Pulse Shape  
A single pulse measured across a 135  
Ohm resistance at U0 interface com-  
ply to the spectral requirements pre-  
sented in Figure 8 and the pulse mask  
requirements given in Figure 9.  
1:2  
LOUT1  
12 Ohm  
VU  
U0, short line  
MTC-20276  
INTQ  
LOUT2  
12 Ohm  
LIN2  
LIN1  
Analog Echo  
Subtraction  
VIN  
Fig.7: Test Circuit for Voltages VU and VIN, U0 Interface  
19  
MTC-20276 INTQ  
+U  
2.625V  
2.5V  
2.375V  
1
T=  
= 12.5 µs  
80 KHz  
0.2V  
10mV  
Time t  
0
-T  
T
2T  
8T  
29T  
30T  
-0.2V  
-10mV  
-U  
Fig.8: Single Pulse Mask  
20  
MTC-20276 INTQ  
Logical Characteristics of the U-Interface  
The quaternary symbol stream crossing  
the U-interface complies with the fol-  
lowing logical characteristics:  
Synchronising Word  
Frame Structure  
9 quaternary symbols in each direction  
represent a non-scrambled synchronis-  
ing word. They are used to generate  
frame clocks. If they are out of position  
for 60 ... 200 consecutive frames, the  
line resynchronization procedure is  
started. The quaternary values and the  
frame position are as follows:  
The information flow across the sub-  
scriber line uses frames as shown in Fig-  
ure 10. The length of such a frame cor-  
responds to 120 quaternary symbols  
being transmitted within 1.5 ms. The  
frame structure is detailed as follows:  
B+B+D - Data  
108 quaternary symbols represent 216  
bits of scrambled and encoded B+B+D  
data. The 108 quaternary symbols are  
transmitted in succession. These blocks  
are assembled as follows:  
1. From LT to NT or analog loop in LT  
(loop 1) or analog loop on NT, and  
from NT to LT.  
Data of  
B1 + B2 + D + B1 + B2 + D  
Number of bits  
SW Polarity:  
ISW Polarity:  
+3  
-3  
+3  
-3  
-3  
+3  
-3  
+3  
-3  
+3  
+3  
-3  
-3  
+3  
+3  
-3  
+3  
-3  
8
8 2 8 8 2  
Quad  
Position  
1-9  
10-117  
19-234  
118-120  
235-240  
Bit  
Position  
1-18  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
ISW  
SW  
SW  
SW  
SW  
SW  
SW  
SW  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
M1  
M1  
M1  
M1  
M1  
M1  
M1  
M1  
M6  
M6  
M6  
M6  
M6  
M6  
M6  
M6  
Frame 1  
Frame 2  
Frame 3  
Frame 4  
Frame 5  
Frame 6  
Frame 7  
Frame 8  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
2B+D  
SW-Sync Word  
ISW-Inverted SW  
M1-M6  
Mantenance Channel  
Fig.9: Frame and Superframe Structure  
21  
MTC-20276 INTQ  
Maintenance and Service Channel  
3 quaternary symbols per frame are  
transmitted to convey maintenance and  
embedded operations channel informa-  
tion. This information is contained in a  
superframe consisting of 8 frames (dura-  
tion: 12 ms). The start of a superframe  
in up and downstream directions is mar-  
ket by a single inversion of the synchro-  
nisation word (ISW). The quaternary  
symbol sequences represent data that  
can be transmitted at a rate of 4 kbits/s.  
They are transmitted immediately before  
the sync word (SW).  
The M symbol is used for various pur-  
poses incluiding:  
1. Maintenance Channel (control test  
loops and report frame errors)  
2. Service channel (carry transparent  
user data in both directions)  
In detail the following convention  
applies (NT to LT):  
Table 12  
M1  
M2  
M3  
M4  
ACT  
PS1  
PS2  
NTM  
CSO  
1
M5  
M6  
Frame1  
Frame 2  
Frame 3  
Frame 4  
Frame 5  
Frame 6  
Frame 7  
Frame 8  
EOC a1  
EOC dm  
EOC i3  
EOC i6  
EOC a1  
EOC dm  
EOC i3  
EOC i6  
EOC a2  
EOC i1  
EOC i4  
EOC i7  
EOC a2  
EOC i1  
EOC i4  
EOC i7  
EOC a3  
EOC i2  
EOC i5  
EOC i8  
EOC a3  
EOC i2  
EOC i5  
EOC i8  
1
1
1
FEBE  
CRC 1  
CRC 3  
CRC 5  
CRC 7  
CRC9  
CRC 11  
CRC 2  
CRC4  
CRC6  
CRC8  
CRC10  
CRC 12  
SAI  
1
Service and Maintenance Data Convention  
Table 13: Messages required for command/response EOC mode  
origin (o) & destination (d) & transfer (t)  
Message  
Message  
code  
Network  
NT1  
REG  
Operate 2B+D Loopback  
Operate B1-channel Loopback (note)  
Operate B2-channel Loopback (note)  
Request Corrupted CRC  
Notify of Corrupted CRC  
Return to Normal  
Hold State  
Unable to Comply Acknowledgement  
0101 0000  
0101 0001  
0101 0010  
0101 0011  
0101 0100  
1111 1111  
0000 0000  
1010 1010  
o
o
o
o
o
o
d/o  
d
d
d
d
d
d
d
o/d  
o
t/d  
t/d  
t/d  
t/d  
t/d  
t/d  
o/d/t  
t/o  
Note: In order to perform B1 or B2 channel loopback, the S-bus of the MTC-20276 needs to be fully activated.  
22  
MTC-20276 INTQ  
Table 14  
Symbol  
ACT  
CRC  
Description  
Activation bit (set to ONE during activation)  
Cyclic Redundancy check: covers 2B+D & M4:  
1= most significant bit;  
2= next most significant bit, etc.  
CSO  
EOC  
Cold-start-only bit (ONE indicates cold-start-only)  
Embedded operations channel:  
a = address bit;  
dm = data/message indicator;  
i = information (data/message).  
Far end block error bit (ZERO for errored multiframe).  
NT in test mode bit (ZERO indicates test mode).  
Power status bits (ZERO indicates power problems).  
S-activation indicator bit (optional, set = 1 to activate S/T  
FEBE  
NTM  
PS1/PS2  
SAI  
Note: Transmission errors in the data  
protected by the Cyclic Redundancy  
Check are detected during each super-  
frame and reported back to the LT in the  
next superframe.  
This is for loop quality checking only  
and does not invoke retransmission of  
any sort.  
Encoding  
In the receive direction, the first symbol  
of the quaternary frame is always con-  
verted (after descrambling) into the first  
two bits of a B1 channel.  
The exact convertion is done according  
to the following rules (ANSI specifica-  
tion):  
The encoding of a binary bit stream is  
such that 2 binary bits correspond to 1  
quaternary symbol. The first symbol of a  
frame will always contain the informa-  
tion of the first 2 bits of a B1 channel  
(although these bits are of course scram-  
bled).  
Table 15  
Quaternal Symbol  
First bit (Sign)  
Second Bit (Magnitude)  
+3  
+1  
-1  
1
1
0
0
0
1
1
0
-3  
23  
MTC-20276 INTQ  
Scrambling  
Ds  
-1  
-1  
-1  
-1  
-1  
X
X
X
X
X
The received binary data stream is  
divided by generating polynomials.  
The scrambler contains supervision cir-  
cuitry which flags if a continuous series  
of ones or zeros have been detected at  
the output for a complete 1 ms frame.  
-18  
Ds.X  
-23  
Ds.X  
Di  
-18  
Ds.X  
-23  
: XOR function  
Ds = Di  
Ds.X  
Fig.10: NT Transmit Scrambler  
Descrambling  
Ds  
-1  
X
-1  
X
-1  
X
-1  
X
-1  
X
The quaternary signals received on  
each side of the subscriber line are con-  
verted back into a binary bit stream  
and multiplied by the generating poly-  
nomials in order to recover the original  
data.  
-5  
Ds.X  
-23  
Ds.X  
D0  
-5  
Ds.X  
-23  
: XOR function  
Ds = Di  
Ds.X  
Fig.11: NT Receive Descrambler  
Activation and Deactivation  
the INTQ is reset via the pin NRESET  
(hardware reset).  
In order to reduce the power consump-  
tion of circuits connected to the sub-  
scriber line, INTQ can be switched to  
stand-by or powered down during idle  
periods. The components are powered  
up again during the line activation pro-  
cedure. Two states are defined:  
Maximum activation time (from com-  
mand ACT to indication CT) without  
repeater:  
Both reset requests cause a reset for var-  
ious function blocks via the  
activation/deactivation control and the  
reset logic. The INTQ is initialised such  
that a “cold start” (resetting of the coeffi-  
cients) is possible.  
170 ms under normal conditions  
(starting with stored coefficients)  
1 s after reset of the coefficients.  
- Power-down state  
The deactivation procedure consists of  
two phases:line deactivation of the NT  
can be initiated only by INFO U0.  
Power consumption of the majority of  
the functions is reduced by stopping the  
clocks; maximum power reduction;  
Analog Loop (Loop 2 in NT)  
Deactivation time (from Command  
DEAC to Indication DC) is in the order  
of 4 ms.  
- Power-up state  
For maintenance purposes a loop can  
be closed by applying the correct com-  
mand into the M channel or into the  
GCI C/I channel, described in the next  
section.  
All functions powered up; GCI interface  
is activated; exchange of C/I messages  
is possible.  
Reset  
The activation procedure consists of  
three phases:awake ( see the following  
sections), synchronise, and connect  
through.  
The INTQ can be reset via an external  
pin (NRESET = LOW) or via the com-  
mand RES in the C/I channel. Normally  
24  
MTC-20276 INTQ  
GCI Interface, Common Functions  
Data Format and Timing of the GCI Interface  
(DIN, DOUT, DCLK, DFR)  
Continuous Modes  
Nominal bitrate of data (DIN and DOUT)  
Nominal frequency of clock (DCLK)  
Peak-to-peak output jitter (DCLK)  
256 kbit/s  
512 kHz  
166 ns  
Nominal frequency of frame clock (DFR)  
Mark-to-space ratio of DFR, i (input)  
Mark-to-space ratio of DFR, o (output)  
8 kHz  
1:2 . . . 2:1  
0.4:0.6 . . . 0.6:0.4  
Figure 13 shows the timing of data and  
clocks at the digital interface 256 kbit/s  
(continuous modes).  
Transitions of the data occur after even  
numbered rising edges of the DCLK.  
The data is valid on the odd  
numbered rising edges of the DCLK.  
Even-numbered rising edges of the  
clock are defined as the second rising  
edge following the rising edge of  
the frame clock and every second rising  
edge thereafter.The maximum allowed  
jitter is shown in figure 14.  
The start of the frame is marked by the  
rising edge of the frame clock DFR.  
One frame contains four time slots. The  
data streams at DIN and DOUT consist  
of four bytes per frame. See figure 15.  
The input data DIN and the output data  
DOUT are synchronous and in phase.  
In the power-down state, the signal at  
DIN and at DOUT is high and the sig-  
nal at DFR and DCLK is low.  
Fig.12: Timing of Data and Clocks at the GCI Interface  
25  
MTC-20276 INTQ  
The GCI Interface  
At the digital control interface the S-inter-  
face block is connected via a bidirec-  
tional serial interface, a digital bus  
called the General Circuit Interface  
(GCI), also called the ISDN Oriented  
Modular (IOM) interface. This bus is log-  
ically organized as many parallel point  
to point links, each at 256 kbit/s. The  
description of the GCI is available in the  
related documents and on page 23.  
The Physical Organization of  
the GCI Bus  
The bus has a clock and frame signal as  
timing, and two data lines, one for each  
direction.  
Fig.13: Maximum Admissable Peak-To-Peak Input Jitter of Clocks  
(DCLK, DFR) at the GCI  
In NT mode the S-interface receives the  
GCI timing.  
or downlink ISDN circuit. Commands  
and Indications are debounced to avoid  
erroneous behaviour.  
Frame Format  
4 bytes are transmitted in each frame:  
1st byte B1:  
B-channel (64 kbit/s data), transparent  
General Content of the  
GCI Bus  
The GCI interface is organized with 4  
channels at 64 kbit/s: B1, B2, M  
(Maintenance or Monitor), and B1*  
channel.  
The M-channel is a 64 kbit/s channel. It  
has a byte oriented structure, and the  
content is indicated and acknowledged  
with the MR and MX bits, the two last  
bits in the B1* channel. Content of the  
channel: write and read access of inter-  
nal S-interface registers.  
2nd byte B2:  
B-channel (64 kbit/s data), transparent  
3rd byte B2*:  
Monitor channel, DIN: 8 bit address,  
MSB first, DOUT: 8 bit data  
The B1 and B2 channels are transpar-  
ent, switched at 64 kbit/s.  
In ISDN applications the B1* channel  
contains two D-channel bits, 4 bits C/I  
channel with the commands (towards S-  
interface) or the indications (from S-inter-  
face), and two extra bits (MR and MX)  
to control the M-channel.  
Power-down on GCI  
4th byte B1*:  
For maximal power saving the GCI bus  
can be halted completely, and reactivat-  
ed asynchronously from either side of  
the bus.  
2 bit D-channel (16 kbit/s data)  
4 bit C/l channel A1, A2, A3, A4  
A, E bit used to control the transfer of  
information on the Monitor channel  
The D-channel contains HDLC messages.  
It is transported transparently (NT) or ter-  
minated by an HDLC transceiver (LT-  
S/LT-T/TE). In the TE/LT-T a D-channel  
access protocol exists on the S-bus,  
which must be controlled by the S-inter-  
face, and obeyed by the HDLC transmit-  
ter.  
-
Fig.14: GCI Frame Format  
Via the Command/Indication (C/I)  
channel, Commands to, and state Indi-  
cations from the S-interface are  
exchanged with a control element  
(microcontroller) or with another uplink  
26  
MTC-20276 INTQ  
External GCI Interfaces  
Fig.15: External GCI Interface  
G1 External GCI Interface  
G1 interface characteristics:  
- G1 DOUT: output, data channel,  
256 KHz  
- G1 DIN: input in NTplus mode,  
output in normal mode; data channel,  
256 KHz  
The S-interface block is the slave of the  
GCI interface, so the GCI clock (DCLK)  
and the GCI frame (DFR) signals at the  
G2 interface are inputs of the INTQ .  
Figure 16 shows a schematic represen-  
tation of the two possible modes of the  
GCI ports.  
In normal mode, corresponding to pin  
G2 interface characteristics:  
- G2 DOUT,: output, data channel,  
256 KHz  
- G2 DIN,: input, data channel,  
256 KHz  
GMODE low, the two internal GCI inter- - G1 DFR: output, frame clock, 8 KHz  
faces are connected. The G1 interface is - G1 DCLK:output,clock, 512 KHz  
used as a monitorpoint.  
In NTplus mode, corresponding to pin  
GMODE being high, the GCI interface  
coming from the U-interface block is con-  
nected to the G1 External GCI.  
- G2 DFR: input, frame clock, 8 KHz  
- G2 DCLK: input, clock, 512 KHz  
G2 External GCI Interface  
In normal mode, corresponding to pin  
GMODE low, the two internal GCI inter-  
faces are connected together. G2 inter-  
face has no function.  
The S-interface block is connected to the  
G2 External GCI.  
The U-interface block is the master of the  
GCI interface and thus controls the GCI  
clock (DCLK) and the GCI frame (DFR).  
DCLK and DFR signals at the G1 inter-  
face are outputs of the INTQ.  
In NTplus mode, corresponding to pin  
GMODE high, the GCI interface of the  
S-interface block is connected to the G2  
External GCI.  
27  
MTC-20276 INTQ  
U-Interface Command List  
The evaluation of any command is done  
according to a double last look criteri-  
on: any command is recognized only  
after the same command has been  
detected in two successive frames. Until  
then the preceding command is consid-  
ered valid.  
The indications are transmitted continu-  
ously in each frame. Under no circum-  
stances can an indication that is not  
included in the list be transmitted.  
The maintenance and Service Channel,  
and the B2* Channel are not used by  
the U-interface block.  
If commands are received that are not  
included in the list, the last recognized  
command is considered valid. Com-  
mands which are logically impossible to  
receive in the current state are ignored  
(ref. TS 102 080).  
Command and Indicate (C/l) Channel (A bits)  
Command (DIN) (from GCI to U).  
Table 16  
Awake  
0000: AW  
This command is to be used when the deactivated module interface is to be set in  
the power-up state. The control may be represented by a steady-state binary ‘0’  
condition at DIN. The module interface will be activated, i.e. provided with bit and  
frame clocks for synchronous transmission.  
Any other command may now be applied.  
The command AW, however, maintains the activated state of the module interface  
without emission of any signal at U0.  
Activate  
1000: ACT  
1100: SY  
1111: DC  
Layer 1 is activated at the U0 interface, starting with transmission of the wake-up  
signal INFO U1W. After execution of the wakeup procedure, the transmitter  
generates INFO U1A during synchronization process. When synchronization is  
completed successfully, the transmitter outputs INFO U1.  
Synchronized  
When the synchronization process of the receiver is completed successfulIy, the  
transmitter outputs INFO U3. After reception of INFO U4H, Connect Through (CT)  
is indicated and the INTQ will be connected through from module interface to line  
interface (transparent).  
Deactivate  
Confirmation  
This control has to be used if the reciever is to be able to recognize awake-  
signals at interface U0, but the transmitter still is disabled. If no wake-up signal is  
recognized, the INTQ is set to its power-down state. The module interface will  
be deactivated.  
28  
MTC-20276 INTQ  
Indication (DOUT) (From U to GCI)  
Deactivate  
0000: DEAC  
0010: TM1  
0100: RESYN  
1000: ACT  
1010: L2  
A request to deactivate level 1 (INFO U0) has been detected. INFO U0  
is transmitted at U0.  
Test mode 1  
Forces S-interface in test mode 1, sending single zeros.  
Not supported by the U-interface but recognized by the S-interface (NT mode only)  
Resynchro-  
nization  
The receiver has lost framing and is attempting to resynchronize. The INTQ  
remains connected through from module interface to line interface (transparent).  
Activate  
The synchronous state of the receiver is established (without a loop 2 or a loop 4  
command). The transmitter outputs INFO U1.  
Loop 2  
The synchronous state of the receiver is established with a loop 2 command.  
The transmitter outputs INFO U3.  
Connection  
Through  
1100: CT  
INFO U4H has been detected at the U-interface.  
The INTQ will be connected through from module interface to line interface  
(transparent).  
Connection  
Through  
with Loop 2  
1110: CTL2  
1111: DC  
INFO U4H and a loop 2 command have been detected at the U-interface.  
The INTQ will be connected through from module interface to line interface  
(transparent).  
Deactivated  
Confirmation  
The transmitter is disabled, but the receiver remains enabled to detect wake-up  
signals at the U-interface. The INTQ is set in its power-down state, as long as  
wake-up signals are not recognized.  
When a wake-up procedure is finished, INFO U1A is transmitted.  
Power Down of the Interfaces  
In the following description, the U-inter-  
face port of the GCI interface (G1) is the  
master, and the S port of the GCI (G2)  
is the slave.  
Transition from Synchronous  
to Power-Down State  
The corresponding procedure is shown  
in figure 17. After a DC code has been  
detected at the module interface of the  
master in two successive frames from the  
slave, the master responds by indicating  
DC four times and then the master turns  
off the timing signals at the end of bit  
A4 of the fourth DC indication. After this  
time, the DOUT pins of master and slave  
must be kept HIGH (quiescent condi-  
tion).  
29  
MTC-20276 INTQ  
Fig.16 Transition to Power-Down State  
Wake-up Originated by Slave  
Transition from power-down to  
synchronous operation is initiated by  
the slave by transmitting LOW at  
DOUT. See the figure above.  
The master responds by turning timing  
signals on within the wake-up time  
Taw (typical 4 ms, max. 10 ms). To  
ensure continuous supply of timing sig-  
nals by the master the slave must keep  
DOUT LOW.  
After the timing signals have been  
detected by the slave, the slave must  
transmit AW for at least two frames  
(e.g. 8 frames). Then the slave may  
insert a valid code in the C/I channel  
(e.g. ACT).  
Monitoring of pin DOUT for LOW by  
the master will start only after the tim-  
ing signals have been turned off.  
30  
MTC-20276 INTQ  
It is required that the clock signals at  
DCLK and DFR will have the nominal  
frequency with the specified tolerance  
from the moment they are turned on.  
The slave may deactivate the master if  
only AW (not yet ACT) has been detect-  
ed by the DC command or by transmit-  
ting continuous HIGH at DOUT. The  
master will respond by turning off the  
timing signals. See figure 18.  
Fig.17: Wake-up Initialisation Procedure, upstream  
Wake-up Originated by the  
Master  
Transition of the device from power-  
down to synchronous state can  
be initiated by the master by turning on  
clock signals DCLK and DFR. Simultane-  
ously, the master must apply the desired  
command code in the C/I channel.  
The slave may enter the power-up  
state immediately after clock signals  
have been applied, and the received  
command code has been evaluated.  
See figure 19.  
Fig.18: Wake-up Initialisation Procedure, downstream  
31  
MTC-20276 INTQ  
S-Interface Commands and Indications Summary.  
Table 17  
NT  
Downstr  
Command  
Upstr.  
Indicat.  
Downstr  
Upstr.  
Command Indicat  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
DR  
TIM  
1000  
1001  
1010  
1001  
1100  
1101  
1110  
1111  
ARd  
ARu  
RES  
(lsl)  
-
-
ssz=TM1  
-
ARL  
-
TM2  
-
-
-
RSYd  
RSYu  
AId  
AIu  
-
-
-
-
-
-
ei  
-
AIL  
-
did=DC  
DIu  
Commands (Downstream) in NT Mode  
Table 18  
0000  
0001  
0010  
0011  
0100  
1000  
1010  
1100  
1110  
1111  
DR  
Deactivate  
Request  
Forces the S-interface block to deactivate the S-bus (=INFO0)  
followed by DIu and did=DC  
RES  
RESET  
Forces S-interface to soft reset, extended mode only,  
S-interface accepts it in basic mode (merged)  
ssz  
= TM1  
TEST-MODE 1  
TEST-MODE 2  
Forces S-interface to test-mode 1, sending  
single zeros  
TM2  
RSYd  
ARd  
ARL  
AId  
Forces S-interface to test-mode 2, extended mode  
only, sending continuous zeros.  
Resynchon-  
izing down  
The U-interface is not synchronous,  
S-interface sends INFO2 {or SCZ}, see remark 1 below  
Activation  
Request down  
MTC-20172 S-interface forced to INFO2 transmission,  
receiver indicates the S-bus reaction  
Activat. req  
with S-loop  
INFO2 transmission on the S-bus  
test loop2 switched (transparent loop)  
Activation  
Indication  
INFO4 transmission, normally only after  
AIu indication is received  
AIL  
Activ. Indic.  
with S-loop  
INFO4 transmission  
test loop2 switched (transparent loop)  
did=  
DC  
Deactivate  
Confirmation  
Deactivation confirmation, entering the  
power down state, INFO0 sent, critical  
timing to halt the clocks.  
Remark 1: When the U-interface is  
resynchronizing, the S-interface will  
send INFO2.  
Remark 2: During loops, the S-inter-  
face simply ignores the incoming  
INFO3 from the S-bus. The receiver syn-  
chronizes on looped INFO2/4.  
32  
MTC-20276 INTQ  
Indications (Upstream) in NT Mode  
Table 19  
0000  
TIM  
Timing  
Request  
The S-interface requires GCI clocks.  
0100  
RSYu  
Resynchron-  
izing  
The S-bus receiver tries to synchronize  
0101  
0110  
---------  
ei  
---------  
---------  
Error  
RSTB and SCZ- pin both low simultaneously  
Indication  
Activation  
Request up  
1000  
1100  
1111  
ARu  
AIu  
DIu  
INFO1 received (actually any AMI signal)  
Activation  
Indication up  
Receiver synchronized on INFO2/3/4  
(INFO3 normally, INFO2/4 in loop)  
Deactivation  
Indication  
Timer (32 ms) expired, or INFO0 received  
(16 ms) after DR (deactiv. request)  
The S-Interface  
Functional Overview  
For transmission of data over the sub-  
scriber premises, the S-interface pro-  
vides the S0-interface. This interface  
enables full duplex transmission of data  
(2B + 1 D-channel) over 4 wires at a  
nominal data rate of 192 kBits/s. An  
Alternating Mark Invert (AMI) code is  
used for the line transmission. The trans-  
mission of data over the S0-interface  
consists of frames of 250 µs. Each  
frame is 48 bits wide, and contains 4  
data bytes (2 B1, 2 B2) and 4 D-bits.  
The frame structures are shown in  
fig.20.  
The first bit of the transmitted frame from  
TE to NT is delayed for 2 bit periods  
with respect to the frame received from  
the NT. Furthermore, an echo bit (E-bit)  
for the D-channel and an activation bit  
(A-bit) are provided, where DC-balanc-  
ing is done by means of the L-bits.  
A frame start is marked using a first  
code violation (no mark inversion).  
To allow secure synchronization of the  
receiver, a second code violation is gen-  
erated before the 14th bit of the frame.  
To guarantee this second violation, an  
auxiliary framing bit pair FA and N  
(from NT to TE) or the framing bit FA  
with associated balance bit (from TE to  
NT) are introduced.  
General Description  
of the S-bus Interface  
The S-interface can be used on the S-bus necessary for the adaption of the S-inter-  
tive timing for extended bus or point to  
point.  
configured as a point-to-point connec-  
tion or as a passive bus. The bus con-  
nection can handle up to 8 terminals. It  
is either a short bus with the terminals  
dispersed over a length of 200m, or  
an extended bus with a cluster of termi-  
nals within a 25 m range.  
face, especially transmitter and receiver  
stages.  
The S-bus tranceiver stages must be con-  
nected to the bus via external interface  
circuitry (2:1 transformer) and protec-  
tion. When the S-interface is in unpow-  
ered state (supply voltage = 0 V) the S-  
bus transmitter is high ohmic (see CCITT  
I.430).  
- S-bus outputs are balanced, allow  
ing bus operation;  
- S-bus inputs are balanced;  
- Out-of-band noise is filtered;  
The chip handles full-duplex transmission - RX has AGC and an adaptive  
of two B-channels (64 kbit/s each) and  
one D-channel (16 kbit/s). It handles  
also the echo E-channel, the multifram-  
ing S and Q bits, ...  
threshold, and corrects long-line  
distortion by optimizing the sample  
moment.  
- NT receiver bus type is selectable:  
short bus with fixed timing, or adap-  
The S-interface contains all circuit parts  
33  
MTC-20276 INTQ  
B2  
D
L.  
F
L.  
B1  
E
D
A
FA  
N
NT to TE  
B2  
E
D
M
B1  
E
D
S
E
D
L.  
F
L.  
2 BITS OFFSET  
D
L.  
F
L.  
B1  
L.  
D
L.  
FA  
L
B2  
TE to NT  
L.  
D
L.  
B1  
L.  
D
L.  
B2  
L.  
D
L.  
F
L.  
F : FRAMING BIT  
N : = FA  
L : DC BALANCING BIT  
D : D-CHANNEL BIT  
B1 : BIT OF CHANNEL B1  
B2 : BIT OF CHANNEL B2  
A : ACTIVATION BIT  
S : S-BIT  
E : D-CHANNEL ECHO-BIT  
FA : AUXILIARY FRAMING BIT  
M : MULTIFRAMING BIT  
Fig.19: So-Frame Format  
34  
MTC-20276 INTQ  
The S -interface can be used in a point-  
to-point and in a point to multipoint con-  
figuration (including extended passive  
bus). In the first configuration, the length  
of the cable is limited to aprox. 1.2 km  
(see fig.21).  
Controlled access to the shared data  
channels is realized within the S-inter-  
face by a D-channel access procedure.  
Each terminal can be given a certain  
priority for D access. Via the echo bit,  
which is the reflection of the received D  
channel at the NT, it is possible for the  
terminal to detect the status of the D-  
channel. In order to try to gain access  
over the D-channel, a terminal has to  
see 8 to 11 consecutive ones in the  
echo-channel. The exact number  
depends on the priority given to the ter-  
minal. When several terminals try to  
gain access at the same time, collisions  
occur on the S-bus. The terminal that  
transmitted "one" but sees a “zero” in  
the echo channel detects the collision  
and loses the D-channel access.  
The terminal that transmitted the "zero"  
gains the access. When a successful D-  
channel message is transmitted, the pri-  
ority is decreased by 1 in order to guar-  
antee fairness with the other terminals.  
The status of the D-channel of the TE/LTT  
is at the 5th bit position of the monitor  
byte. This enables the control of the D-  
channel by an external HDLC controller.  
In the bus configuration (point to multi-  
point), up to 8 terminals may be con-  
nected to the S0-interface (fig.22)  
The terminals must be connected in a  
range of 150 m. For the extended pas-  
sive bus, the terminals must be clustered  
within a 25m range with a maximum  
cable length of about 1 km.  
To avoid bus mismatching when multi-  
ple TEs are connected, the driver stages  
present a high impedance when they  
are not powered.  
<= 1.2 Km  
NT/INT  
TE/LTT  
GCI  
GCI  
T
R
T
R
S i/f  
S i/f  
Fig.20: Point to Point Configuration  
<150 m  
NT/INT  
R
GCI  
T
T
R
S i/f  
MAX 8  
S i/f  
S i/f  
T
R
TERMINATING RESISTOR  
of 100  
TE # 8  
TE # 1  
Fig.21:Point to Multipoint Configuration  
35  
MTC-20276 INTQ  
Test Modes Summary  
S-Interface  
General Overview  
Test loops may be closed in the S-inter-  
face, where all three channels (B1, B2  
and D) are looped back as close as  
possible to the So-interface.  
The block diagram of the S-interface is  
shown in fig.22.  
The B and D data are stored in the  
buffer and multiplexed together with  
M, C/I, MX and MR into a digital V*  
GCI frame. The pointer structure of the  
buffer guarantees a minimum round-  
trip delay. If the clock wander  
becomes too big, a warning is given  
in the C/I channel, and the internal  
pointers are reinitialized.  
Data from the So-interface is received  
by the S-interface receiver, which has  
a balanced input, an AGC stage, a fil-  
ter and comparators with dynamically  
adapted thresholds. The timing of the  
received S0-frame is fixed (Only NT).  
Loop 2 is a transparent loop where the  
transmitted So-frame is also switched  
on the S-bus. Activation from the So-  
interface is not possible.  
Both loops are initiated over the C/I-  
channel and under control of a layer 2  
component.  
In the fixed timing case, the timing is  
locked to the transmitted frame, and  
the tolerable phase delay on the  
received So-frame is limited. In adap-  
tive timing mode, delays up to 48 µs  
can be tolerated. The start of the  
received frame is detected in the FL-  
detection unit. An adaptive algorithm  
is used for compensation of the slope  
of the FL transition. A digital PLL recov-  
ers the received bit clock (192 kHz).  
Activation/deactivation procedures  
are handled in the status controller.  
Two basic modes are available:  
A V* mode, compatible with the U-  
interface block, and a GCI compatible  
mode. The S-interface automatically  
selects the connect mode.  
For further testing of the subscriber line,  
two test signals can be transmitted over  
the So-interface: A 96 kHz test  
sequence sending continuous AMI  
marks, and a 2 kHz test sequence  
sending single AMI marks. Both test  
modes are under control of the C/I  
channel, as well as TSP pin.  
The S/Q control module handles the  
multiframing on the S and the Q chan-  
nel of the So-interface. This function is  
disabled in the INT.  
A second digital PLL generates the  
transmit bit clock (192 kHz), which is  
locked to the GCI frame. It is possible  
to compensate external circuits (e.g.  
filters) by adjusting the internal phase  
of the bit clocks by means of a register  
accessible by the monitor channel.  
In order to reduce the power consump-  
tion of the components connected to  
the subscriber line, the S-interface  
are switched to a power down mode  
during idle periods.  
These circuits work with a 7680 kHz  
100 ppm clock. This clock is internal-  
ly delivered to the S-interface by the U-  
interface block.  
Analog  
transmitter  
S, Q  
SX  
P
s_transmitter  
DPLL  
S/Q control  
buffer  
M control  
B, D  
SX  
N
The serial B and D data from the V*  
GCI digital-interface is stored into a  
buffer with a dynamic pointer struc-  
ture, and is presented to the S_trans-  
mitter where the So-frame formatting is  
done. In the other direction, the  
S_receiver unit disassembles the  
received So-frame.  
B, D  
B, D  
FL detection  
DIN  
DOUT  
DFR  
V*/GCI  
MUX  
Analog  
receiver  
DCLK  
SR  
P
SR  
N
B, D  
S, Q  
status  
controller  
C/I  
s_receiver  
activity  
detector  
7680 kHz  
oscillator  
asynchronous  
power up/down  
CHP boundary  
XTI from U side  
Fig.22: Block Diagram of the S-interface  
36  
MTC-20276 INTQ  
GCI Clock Synchronization in  
the ISDN Environment for the  
Upstream S-Interface (NT)  
Conclusion: the S-interface block has 3  
different clocks, which are locked in fre-  
quency, but with unknown phase rela-  
tion. Because the clocks are derived via  
DPLL blocks the phase relation is not  
constant, but has some jitter and wan-  
der.  
Activation of the  
S-Interface in NT mode  
Activation through the S-bus will be seen  
by the signal detector. The S-interface  
does not need a GCI clock to activate  
the GCI interface, which it does by  
asynchronously pulling the data line  
low. The master on the bus answers  
with GCI and frame, followed by com-  
mands via the C/I channel. The bus  
master also delivers the 7.68 MHz fre-  
quency simultaneously with GCI activa-  
tion.  
In general the downstream devices are  
slaved to the upstream devices.  
The S-interface is master of the S-bus,  
and can sample the received (upstream)  
S-bus frames with a receive clock at  
exactly the transmit frequency, but with  
an unknown phase.  
Clock Speed  
The master clock runs at 7680 kHz +/-  
100 PPM.  
The S-interface receives the GCI timing,  
and must derive the 192 kHz S-bus bit-  
clock from it. As the GCI timing is not  
necessarily a multiple of 192 kHz, the  
S-interface generates a 192 kHz TX and  
RX clock from a clock input at 7680  
kHz +/- 100 ppm. The 192 kHz is not  
a pure divide by 40 of the X-tal, but is  
locked to the 8 kHz frame signal of the  
GCI-interface. This is a DPLL action  
where the 192 kHz clock period can be  
adjusted 1/40 of the 192 kHz clock  
period every 250 us. Note that jitter on  
the 192 kbit S-bus signals is a combina-  
tion of the jitter on the 7680 kHz before  
the DPLL and the effects of the DPLL lock-  
ing to the GCI 8 kHz frame.  
Internally the S-bus transceiver part runs  
at 192 kHz, derived from the master  
clock, but locked to the ISDN network  
clock with a phase locked loop, adjust-  
ing one 7.68 MHz period every 250  
us. The ISDN network clock is sent  
downstream via the S-bus or the GCI  
interface.  
Activation through the GCI bus consists  
of clock and frame delivery, followed  
by commands via the C/I channel. The  
S-interface will activate the S-bus trans-  
ceiver according to the commands,  
including the internal clock distribution.  
If the master clock must be delivered to  
S-interface. Note that the internal clock  
distribution to the S-tranceiver section is  
delayed for 2 ms (using the GCI frame-  
clock).  
The GCI part runs at the clockspeed of  
its interface, which is 512 kHz in NT  
mode.  
Power Saving/Deactiv-  
ation of the S-Interface  
The S-interface is controlled via the GCI  
interface. This interface is designed to  
be shut down and consequently reacti-  
vated. Shutting the bus down is com-  
manded by the controller on the bus.  
Once the command is acknowledged,  
there exists a fixed procedure to halt the  
clock (by the controller in NT). Reacti-  
vating the bus can be done by the S-  
interface or the controller.  
The S-bus RX clock in fixed timing (short  
passive bus) is derived from the same  
clock input with the same frequency cor-  
rection as the transmit clock, but with a  
phase offset. The corrections of 1/40 of  
a bit period are used in open loop here.  
The S-bus RX clock in adaptive timing  
(extended bus, point to point) is also  
derived from the same master clock.  
However, the receiver must optimize the  
symbol sampling moment. This is an  
extra phase correction, which tracks  
wander and jitter of the received data.  
The receiver tracks the RX data by lock-  
ing on the F/L transitions.  
When the GCI bus is going to be shut  
down, the S-bus transceiver is put to idle  
also. The S-bus transceiver enables an  
asynchronous signal detector, which  
can reactivate the S-interface on receipt  
of INFO via the S-bus. Then the S-inter-  
face shuts down the internal 7.68 MHz  
clock distribution. If the clock is external-  
ly provided it can be put to idle also,  
after the GCI bus has become idle.  
The S-interface can receive activation  
via the S-bus during the process of shut-  
ting down via the GCI bus.  
Note: The timing stays identical for an  
internal loop from TX to RX, because  
then the S-interface uses adaptive RX  
timing as well. Even an external S-bus  
loop can be applied, provided that the  
receiver does NOT work with fixed RX  
timing.  
37  
MTC-20276 INTQ  
Detailed Operational Description  
of the S-bus Interface  
Introduction  
Balance Bits  
a binary 0, even if all other bits (2 to  
13) are binary one. After the FA the  
next violation will be the F flag itself, at  
a distance much larger than13 bit posi-  
tions. This distance rule allows for fast  
and reliable frame flag detection.  
In this section, external and internal  
operational details of the S-bus interface  
are given. Detailed interface timing and  
electrical specifications are given in  
related documents.  
Inside the frame more balance bits are  
present serving two purposes:  
1) In both directions they guarantee that  
the polarity of the first bit or F-bit is con-  
stant. They also increase the mark densi-  
ty on the link.  
General Characteristics  
Frame Synchronization  
Multiframing Exceptions  
2) Moreover, in uplink direction the bits  
in the frame can be generated by differ-  
ent terminals. Therefore, the frame is  
subdivided in groups of bits, each sent  
by a single terminal and terminated also  
with a balance bit. The first binary ’0’ of  
each group of bits except for the fram-  
ing signal is coded as a negative pulse.  
The balance L-bit finishes those group  
with a positive mark if needed, to avoid  
violations of the mark inversion scheme.  
This allows the different B and D chan-  
nel bits to be sent by different transmit-  
ters on a bus, because the AMI polarity  
is always fixed. Thus no AMI violation  
can be caused by the multipoint nature  
of the bus.  
The S-interface realizes full-duplex trans-  
mission of two B-channels (64 kbit/s  
each) and one D-channel (16 kbit/s).  
Additionally the S-interface allows con-  
trolled access to the common D-channel  
and the activation/ deactivation of each  
connected device.  
AMI violation delay in multiframing:  
At the TE/LT-T position the received FA  
bit is occasionally a binary 1 in case  
of multiframing. However, then the N  
bit at position 15 is a binary one,  
because it is the binary inverse of the  
FA. This guarantees a second violation  
within 14 positions after the F-bit.  
Transmission Rate  
AMI violation exception in multiframing:  
At the NT/LT-S position the received FA  
bit is occasionally a binary 1 in case of  
multiframing. FA is followed by a bal-  
ance bit L, which is then also at binary  
1. If all B and D bits between F-L and  
FA-L are also at binary 1, then there is  
no second violation within the 14 posi-  
tions. If the remaining bits (B and D  
channels) are also at 1 in the remain-  
der of the 48 bit frame, then the second  
violation will be absent and next F-bit  
will be no violation! This can delay the  
synchronization and could trigger an  
invalid loss of synchronization.  
The delayed synchronization during  
multiframing is unavoidable. To avoid  
an invalid loss of sync at the NT/LT-S  
when multiframing is on, all incorrect  
second violations (too late or missing) in  
uplink direction are ignored if the FA bit  
was a binary 1 in the corresponding 48  
bit frame in downlink direction. Missing  
violation at the F-bit position are  
The nominal transmission rate is 192  
kbit/s in each direction. There is no  
requirement for special bit sequences in  
the B-channels.  
Frame Structure  
AMI Violations for  
Data is transmitted within a frame of 48  
bits in each direction. The nominal  
frame period is 250 us which gives a  
frequency of 4 kHz. The frame structure  
is not depending on ’bus’ or ’point-to-  
point’ configuration.  
Frame Synchronization  
For synchronization purposes the AMI is  
violated twice per frame. A 48 bit  
frame always starts with a positive pulse  
(F-bit) followed by a negative balance  
bit L. The F-bit is a violation, because  
the last mark of the previous frame is  
positive also. The first binary ’0’ follow-  
ing a framing signal (F, L) is always  
negative, and is a second violation.  
AMI S-bus Coding  
For both directions a pseudo-ternary  
coding (AMI) is used. A binary ’1’ (high  
level logic) is coded as ’no signal’  
whereas a binary ’0’ sequence is repre-  
sented by alternating positive and nega-  
tive pulses.  
Frame Synchronization  
Distance Rule  
The polarity inversions, coupled with a  
minimal density of marks per frame,  
reduce the low frequency components  
of the signal. The 4 kHz frame always  
starts with a positive pulse (F-bit), fol-  
lowed by a negative balance bit L.  
There are two AMI violations in the  
frame: the F-bit at the beginning is at a  
fixed position. The second violation  
must follow the F-bit within 13 bit posi-  
tions, because the frame contains an FA  
(auxiliary flag) at position 14, which is  
ignored if the preceeding 48 bit frame  
(downlink) had the FA-bit at one.  
38  
MTC-20276 INTQ  
Table 20  
Synchronization Principles -  
Adaptive Bit Timing  
Signals from network to terminal Signals from terminal to network  
1) The receiver first finds the AMI viola-  
tions by oversampling.  
INFO0  
INFO2  
No signal, open circuit  
INFO0  
No signal, open circuit  
2) Immediate bit-synchronization is  
given by the F-L transition.  
3) The distance rule of the next violation  
within 14 positions is used to validate  
the F-bit.  
Frame with all bits of  
INFO1  
Continuous signal with  
the following pattern:  
positive zero,  
B, D, and E-Echo channels,  
and A bit at binary zero,  
FA, M, S, N and L bits  
follow the coding rules  
negative ZERO, six ONEs  
4) Frame synchronization is acquired  
after 3 correct frames, with a correct F-  
bit violation and a second one within  
14 bit positions.  
5) The F-L transition determines the  
adaptive bit sampling.  
INFO4  
Frame with operational  
data on B, D, and E-Echo  
channels. Bit A set to  
binary ONE. FA, M, S, N, L  
bits follow to coding  
INFO3  
Synchronized frames with  
operational data on B, D  
channels. FA and L bits  
according to normal coding  
6) At NT/LT-S loss of sync after two  
frames not having F violation or second  
violation following the distance rule (at  
14 bits), when no multiframing is active.  
The downlink signal stays active, but  
changes automatically from INFO4 to  
INFO2. In case of multiframing we  
ignore missing second violation within  
the 14 bit distance, or the missing viola-  
tion at the next F-bit for uplink frames  
with the corresponding downlink FA bit  
at binary 1.  
TEST1  
TEST2  
Send Single Zeros (SSZ),  
AMI marks, 250 us distance  
forced via pin (NT) or C/I  
TEST1  
TEST2  
Send Single Zeros (SSZ),  
AMI marks, 250 us distance  
forced via pin (NT) or C/I  
Send Continuous Zeros  
(SCZ), alternating marks,  
forced via pin (NT) or C/I  
Send Continuous Zeros  
(SCZ), alternating marks  
forced via pin (NT) or C/I  
Transmitted Frames  
- N-bit coded as N = .NOT. FA (applies  
to INFO2 and INFO4);  
- M-bit at binary zero, except when mul-  
tiframing;  
In the MTC-20276, the S-interface can  
transmit different signals called INFO 0,  
2, 4 and 2 test signals.  
Synchronization Principles -  
Fixed Bus Timing  
- FA-bit, additional flag (bin. zero),  
except when multiframing.  
The B-channel and D-channel are trans-  
parently transmitted on the S-bus. When  
idle those channels are all binary 1.  
On a short passive bus the position of  
the bit sampling can be fixed.  
Without multiframing active S, FA, M  
bits are binary zeros. Multiframing is  
allowed to be active during INFO2 and  
INFO4 and influences the S, FA, M bits.  
The points 3), 4) and 6) of the previous  
paragraph are executed. No oversam-  
pling is done, no DPLL action is needed  
to track the F-L adge.  
Note that the fixed timing is changed  
automatically to adaptive timing, when  
internal S-bus loops are commanded.  
When external S-bus loops are used  
(e.g. for production test) only adaptive  
timing is suitable!  
Details on Downlink Frames  
The downlink frames transmitted by  
upstream devices contain an E-bit.  
During INFO4 the E-bit is the echoed  
D-channel-bit received from the down-  
stream devices. This D-echo-channel is  
used for D-channel access procedure.  
Details on Uplink Frames  
The INFO3 frame transmitted at termi-  
nal-side consists of several groups of  
bits, each of them DC-balanced by an  
adjacent symmetry bit L.  
Two L-bits are used for DC-balancing,  
after the F-bit and the last bit the frame.  
In downlink direction some special bits  
are used:  
- A-bit used for activation (A=1 for  
INFO4, A=0 for INFO2);  
The uplink D-channel requires an access  
protocol. Downlink multiframing influ-  
ences the FA-bit in uplink (Q-channel):  
If the S-interface receives the FA-bit as  
binary 0 (electrical mark) it will always  
answer with binary 0.  
If the S-interface sees the FA-bit as bina-  
ry 1 it answers with binary 1, when mul-  
tiframing is not active.  
Pulse Polarity in the S-bus  
Frame  
The receiver is polarity independent.  
The transmitter in NT mode has no  
polarity requirements.  
- S-bit coded as binary zero, if no multi-  
framing active;  
39  
MTC-20276 INTQ  
S-bus Transmitter Timing  
and Framing  
transformer, the internal filters and dri-  
ver delays. The total delay of the exter-  
nal devices was estimated at 100 ns,  
the internal delay is implementation  
related.  
Violation Validation  
During the hunt for frame synchroniza-  
tion the F/L transition forces the RX bit  
sampling clock and bit counter in an  
deterministic state, which is optimal. The  
RX part now hunts for a next violation.  
In fact the next mark must be a viola-  
tion. This violation (polarity should be  
opposite, but this is ignored) must arrive  
before the counter indicates 14  
The transmitter data are sent at 192  
kHz. The 192 kHz are derived from the  
master frequency of 7.68 MHz, by divi-  
sion by 40. The transmitter framing is at  
4 kHz. The timing is slaved to the down-  
link clocks, the 4 kHz S-bus frame is  
locked in phase to the available down-  
link framing.  
The frame synchronization knows the F  
position, and applies the rules  
explained earlier (i.e. without over- sam-  
pling). The NT in fixed bus mode can  
be forced to loop the S-bus signals inter-  
nally! Then S-interface applies adaptive  
timing, to test a maximal functionality.  
received bits. If the second violation is  
found before 14 received bits, the F/L  
must be validated for 2 more consecu-  
Transmitter Timing and Fram-  
ing at the NT  
tive frames.  
In all following frames  
With a DPLL the 192 kHz is locked to  
the GCI interface, by synchronizing the  
S-bus frame with the GCI frame. The  
DPLL locks the falling edge of the F/L  
frame signal on the GCI frame signal.  
Jitter is according to the CCITT I.430  
spec.  
Frame Synchronization  
Details in Adaptive Tim-  
ing  
the F/L transition is oversampled to lock  
the RX bit sampling clocks with DPLL  
movements of 1 period of 7.68 MHz. If  
the F/L validation is not correct during  
the 2 subsequent frames, the S-interface  
restarts its hunt.  
During synchronization the device over-  
samples the incoming bits with a fixed  
threshold, which is at 33 % of the nomi-  
nal pulse height, with AGC active.  
RX Bit Synchronization NT  
Adaptive Bus  
S-bus Reciever Timing  
and Synchronization  
First Violation Detection  
Bit synchronization is done only by  
detection of the F-L zero crossing. This is  
optimal for short busses and extended  
busses, where multiple signal sources  
are present, each with an independent  
bit timing. Only the F/L is a ”stable”  
combination of all electrical drivers on  
the bus. For long point to point links the  
same technique is used, although aver-  
aging of all zero crossings would be  
better, theoretically.  
RX Frame Sync and Bit Sam-  
pling in NT Short Passive Bus  
Mode  
The oversampling is done at the 7.68  
Mhz master clock, or at a factor 40. A  
simple voting technique is used to detect  
a violation: the detector output incre-  
ments a counter as long as the detected  
bits are marks of the same polarity or  
zeros. When a polarity change of the  
marks is seen, the counter is cleared.  
Whenever a sequence of more than  
50 oversampled marks of the same  
polarity are seen, the receiver decides  
that a violation came in. The number 50  
must not be too large, to allow synchro-  
nization on signals with flat edges.  
The bit-sampling moment is fixed, and  
coupled with the TX bit clock, which is  
derived from the master clock, and  
locked to the GCI frame. The RX bit  
counters (counting the position of the  
uplink bits in the frame) are also locked  
to the downlink/TX bit counter. Uplink  
data are 2 counts late.  
Each time the bit counters indicate the  
reception of F/L, the RX part oversam-  
ples the transition at 7.68 MHz.  
The fixed bit sampling moment is  
advanced 5 periods of the 7.68 MHz  
clock, before the edges of the S-inter-  
face transmit data stream. This is need-  
ed to allow an advance of 7% or 3  
periods of the uplink data, allowed  
according to the CCITT to be sent by TE  
at zero distance, combined with a 1  
period jump of the downlink data clock  
derived from the master clock.  
The F/L crossing is used for several pur-  
poses:  
After finding a single violation, the over-  
sampling looks for the mark-to-zero and  
the subsequent zero-to- opposite-mark  
transition which it uses to estimate the  
actual F/L crossing; see next para-  
graph.  
1) It gives an immediate estimate of the  
RX data optimal sampling moment, after  
a first violation is found, via oversam-  
pling.  
2) It indicates how to correct the RX 192  
kHz sampling clock each frame by one  
7.68 MHz period (DPLL action in adap-  
tive RX sampling).  
This relationship is valid on the S-bus  
itself. Inside the S-interface the actual bit  
sampling must be delayed to account  
for the nominal delay of the external  
40  
MTC-20276 INTQ  
The ”F-L zero crossing” is not detected.  
The S-interface detects the transition  
mark-zero (instant t1) and the subse-  
quent zero-opposite-mark (instant t2).  
During the F/L bits the device oversam-  
ples the incoming signal with a fixed  
threshold, which is ALWAYS at 33 % of  
the nominal pulse height.  
Continuous Bit Synchroniza-  
tion at Each F/L Crossing  
Once the receiver is synchronized on  
the data, the F/L edge is used on each  
frame to validate the sampling moment.  
The oversampling clock is used in the  
F/L window to validate the zero crossing.  
Frame Relation Between  
GCI and S-Interface  
If the S-interface is in the Network posi-  
tion, the 192 kHz S-bus bit clock is  
derived from the master clock, which is  
locked to the 8 kHz frame of the GCI  
bus.  
The leading edge of the F-bit starts the  
frame on the S-bus. The DPLL forces this  
F-bit edge in a fixed range relative to  
the frame signal of the GCI bus.  
The F-bit start is situated in a 520 ns  
zone starting with the edge beween  
bit0 and bit1 on the GCI bus. The  
uncertainty is caused by the DPLL  
actions which will correct the 192 kHz  
S-bus clock in steps of 130 ns, i.e. one  
7.68 MHz period.  
At instant t2 (zero to opposite mark tran-  
sition) the state of the counter generat-  
ing the 192 kHz clock from the 7.68  
MHz is compared with the optimal  
value, which should be loaded for an  
immediate bit synchronization as  
explained above. If the difference (in #  
of periods of 7.68 MHz) is -1, 0, or 1,  
the counter is not changed, to provide  
hysteresis. If the difference is larger, the  
counters are adjusted with only 1 1/40,  
to limit the DPLL reaction.  
In between t1 and t2 the RX part counts  
”Y”, the number of zeros, ignoring pos-  
sible marks. The zero count Y is less  
than the t2-t1, because noise could  
force marks to be seen by the receiver  
during the interval.  
The number ”Y” of intermediate zeros is  
used to estimate the slope of the arriving  
signal, to predict the edge of the F/L  
transition. Y is limited to 15, which cor-  
responds to a first order time constant of  
2 us for the S-bus data, filtered by the S-  
interface input filter. This is 2.5 times  
slower than the worst case point to point  
signal as specified in CCITT I.430.  
This phase relation optimizes the total  
roundtrip delay on the S-bus for each B-  
channel, if the GCI clock is 512 kHz.  
The delay of the NT with S-bus looped  
is only 125 us for both B-channels at the  
GCI side.  
In this manner the sampling moment is  
adjusted with one 7.68 MHz period,  
every 250 us. At the TE this allows a  
maximal frequency error of the X-tal of  
500 PPM.  
Note that Y could be larger than 15 if  
the zero crossing is sought on a mark  
which is followed by a zero bit, i.e.  
when the violation is not the F bit fol-  
lowed by L.  
E-Channel Generation  
Timing Relation Between  
RX and TX on the S-bus  
in NT Mode  
At the NT site the S-interfaceA mirrors  
the uplink D-bits in the downlink E-chan-  
nel. The purpose of the E-channel is to  
control the D-channel access from multi-  
ple TEs on the S-bus.  
In INFO2 the E-bits are zero, in INFO4  
the E-channel mirrors the preceding D-  
channel bit received in the S-bus receiver.  
The delay between transmitted and  
received frames at NT is 2 bits plus the  
roundtrip delay across the S-interface,  
in normal operation. Worst case delay  
between downlink frames and uplink  
frames is 42 us (see CCITT) or 8 bits.  
Longer delays cause problems to cor-  
rectly send the E-channel bits. In loop-  
back mode, the delay is zero.  
Immediate Bit Synchroni-  
zation at Instant t2  
When the receiver is not synchronized  
the receiver is oversampling and hunts  
for violations.  
The F/L crossing is found at instant t2  
and the 192 kHz bit clock is preset to  
predict an optimal sampling moment.  
The data edge is estimated at instant  
( t2 - 2.00*Y ).  
The optimal sampling precedes the theo-  
retical edge by 8 periods of the 7.68  
MHz clock. The advance is needed to  
allow a jitter of +/- 7% (15% or 6 peri-  
ods of 7.68 MHz) of the data, allowed  
according to the CCITT to be sent by  
any TE, combined with a 1 period DPLL  
correction needed at the NT to correct  
for its own X-tal.  
The E-channel can be blocked to trans-  
mit only 0 via DEX1 and DEX0 bits.  
The receiver in NT is conceived to  
accept any delay, while in adaptive  
sampling mode. This is convenient when  
looping the S-bus signals. E-channel  
operation is only correct if the delay is 0  
to 8 bits.  
Multiframing - S and Q  
Channels  
The S-interface block supports multi-  
framing according to I.430 but multi-  
framing is disabled on chip.  
41  
MTC-20276 INTQ  
S-Interface Programming  
M-Channel Messages and Registers  
In the INTQ, the S-interface block can  
operate in its normal mode, or can be  
selected to operate in a reduced func-  
tion mode compatible with earlier  
devices.  
General Content of  
M-Channel Operations  
M-Channel Messages  
In the S-interface block, the M-channel  
messages are limited to double bytes.  
The first nybble of the message is a  
general address, defined in the GCI  
standards. In the S-interface this  
address nibble is limited to:  
M-Channel Format - Bit and  
Byte Numbering Convention  
The M-channel is a byte oriented chan-  
nel. Bytes (also called octets) are trans-  
mitted in ascending numerical order.  
Within a byte the most significant bit is  
transmitted first.  
Introduction  
In the S-interface block, the M-Channel  
is used for the transfer of operation and  
maintenance information:  
1000b, used to read or write internal  
registers.  
All other values are ignored.  
The WRITE and READ operations of  
internal registers;  
- Test and identification registers;  
- Mode registers, overriding the default  
state, changing the modes without  
having to change straps;  
- Control registers to change auxilliary  
inputs and outputs;  
- Status registers, e.g. alarm and error  
monitoring;  
Byte Transfer Procedure  
S and Q Channel Messages  
To transfer a message composed of sub-  
sequent bytes on the GCI M-channel  
each byte is presented by the transmitter  
and acknowledged by the receiver. For  
that purpose the two M-channels (to and  
from the S-interface) have separate  
handshake bits, the MR and MX bits in  
the B1*-channel. The MX bit signals the  
presence of new information in the M-  
byte, the MR bit signals the reading of  
the information by the receiver.  
This feature is disabled on the INTQ.  
Internal Register M-Channel  
Messages  
All internal register operations on the  
M-channel are double byte messages.  
Both READ and WRITE operations are  
possible. After every operation, the  
M-channel must go idle again.  
M-Channel Receiver and  
Transmitter  
Concatenation of double byte messa-  
ges could result in errors. Messages  
which are aborted are ignored. The S- Idle M-Channel  
interface block debounces the different The procedure starts from idle, where  
In the S-interface the M-channel tran-  
ceiver works half-duplex, with mes-  
sages lenght 2 bytes, with the M-  
channel going to idle after every mes-  
sage, to allow a change of direction  
in the S-interface M-transceiver.  
bytes of the message.  
MX and MR are both inactive at 1. The  
M-channel content during idle is invalid  
and should be at FFh. However, the idle  
value received by the S-interface is  
ignored.  
A WRITE operation is a one way mes-  
sage, acknowledged only via the MR  
bit. However, every register can be  
read. A READ operation results in an  
answer, delivering the CONTENT.  
The READ operation causes the two  
directions of the M-channel to be  
logically dependent! After the READ  
message to the S-interface block the  
incoming M-channel must return to  
IDLE. The M-transceiver in the S-  
interface block gives priority to the  
delivery of the CONTENT before  
it can handle the next incoming  
READ/WRITE.  
Start of Message (SOM) and  
First Byte Transfer  
From the idle state a start of message  
transmission is initiated by the sender  
with the transition of the MX-bit from  
inactive to the active state. The data to  
be transmitted are passed in the M-byte  
starting in the same frame as the MX-bit  
activation. In normal operation the first  
byte must be kept constant in the M-  
channel until the SOM is acknowledged  
by the receiver.  
42  
MTC-20276 INTQ  
In the next frame the MR bit must go  
back to active.  
Acknowledge of the SOM  
and First Byte  
interface aborts a message only when it  
is forced in hard reset.  
On detection of the SOM the receiver  
will read the M-byte. It will acknowl-  
edge reception, provided that identical  
data were seen in the M-channel during  
two consecutive frames. To acknowl-  
edge SOM and the first byte, the MR bit  
goes from inactive to the active state,  
remaining there, until:  
End of Message (EOM)  
Once the sender has received the  
acknowledge of the last byte, it changes  
the content to FFh, moves the MX to  
inactive and keeps it inactive for at least  
two frames.  
Acknowledge Abort  
The sender acknowledges the abort  
request by entering the idle state.  
Reset of the M-Channel  
Transceiver  
Acknowledge of EOM  
1) a next byte is transferred, with MX  
indication, see next paragraph;  
2) an EOM is signalled by the transmit-  
ter;  
3) the receiver wants to abort the mes-  
sage.  
After the EOM of the sender, the receiv-  
er acknowledges the EOM by putting  
MR bit in the inactive state for at least  
two frames, keeping it there until the  
transmitter goes active again.  
At reset, the M-channel transceiver is  
forced to the idle state.  
All message bytes are put to idle, the  
MX and MR bits are forced to 1,  
aborting any ongoing message.  
Sender Not Ready  
Further Byte Transfers  
If the sender is not ready (second byte  
or subsequent) the MX bit will be kept in  
the active state and the channel byte  
stays constant.  
In the case of the second byte transfer,  
the sender must detect the transition of  
the MR bit of the receiver from inactive  
to the active state (negative edge 1 to  
0), before transmitting the second byte,  
Receiver Not Ready  
see previous paragraph.  
The  
If the receiver is not ready for the first  
byte it keeps the MR in the inactive  
state. If the receiver is not ready for the  
second byte, it refuses to acknowledge  
the bytes by keeping MR in the active  
state.  
sender indicates a new byte of informa-  
tion by the transition of the MX bit from  
active to inactive, for exactly one frame.  
The data is valid in the same frame. The  
next frame the MX bit goes from inac-  
tive to active, and the valid data are  
repeated. The data are thus repeated  
for minimally two frames. The sender  
repeats the data in all subsequent  
frames until the receiver returns the MR  
bit inactive, to acknowledge the data  
(see next paragraph), or to abort the  
message.  
IDLE Forced From Sender  
If the first byte is never acknowledged,  
i.e. MR staying at 1, the sender can  
force the M-channel and MX to IDLE.  
If the reception of a subsequent byte is  
not (or not yet) acknowledged (MR is  
staying active at 0) by the receiver, the  
sender can put the M-channel and MX  
to IDLE. The receiver should return MR  
to inactive. The last byte or even the  
complete message are never really  
acknowledged by the receiver.  
Further Byte Acknowledge-  
ment  
Each subsequent byte (signaled by MX  
going high for one frame, see previous  
paragraph) is acknowledged by the  
receiver once it has seen two consecu-  
tive identical bytes in the M-channel. It  
acknowledges it by putting the MR  
inactive (at 1) for exactly one frame.  
Abort Request From Receiver  
The receiver can abort a message after  
the SOM acknowledge or any subse-  
quent byte acknowledge by forcing MR  
inactive for at least two frames. The S-  
43  
MTC-20276 INTQ  
Write Operation  
For a Write operation, the double byte messages is as follows:  
Table 21  
To S i/f  
block  
byte 1:  
byte 2:  
1
0
0
0
X
ADR2  
ADR1  
ADRO  
CONTENT (MSB first to LSB last)  
There is no outgoing message in reac-  
tion to the WRITE.  
The second nibble is address of the  
internal register, limited from 1 to 6 in  
the S-interface block. The write  
addresses must differ from 0000, oth-  
erwise the READ operation is  
assumed.  
Read Operation and Content  
For a READ operation, the double byte messages is as follows:  
Table 22  
To S i/f  
block  
byte 1:  
byte 2:  
1
X
0
X
0
X
0
X
0
X
0
0
0
ADR2  
ADR1  
ADRO  
The second nibble is all zero for an  
internal READ operation. The fourth  
nibble is the address of the register,  
from 0 to 6.  
The answer is the CONTENT message, two bytes as follows:  
From S i/f byte 1:  
block byte 2:  
1
0
0
0
1
ADR2  
ADR1  
ADRO  
CONTENT (MSB first to LSB last)  
The second nibble is the address of  
the internal register. The second byte  
contains the content of the register.  
Detailed Bitmap of the Internal Registers  
Table 23  
Address name  
sent first  
Bits  
0
sent last Access  
0h  
1h  
2h  
3h  
ID  
VN  
0
0
1
0
1
0
1
1
1
0
X
0
X
0
X
read  
read  
0
CONF  
OUT  
BT1/SC  
BTO  
DEX1  
DEXO  
MFE  
LTS/T  
DELT  
rd/wr  
rd/wr  
RES  
0
RES  
0
RES  
0
RES  
0
-
1
TEST  
0
RES  
0
RES  
0
4h  
5h  
6h  
7h  
IN1  
IN2  
1
1
1
1
1
1
1
1
1
XTR1  
0
1
read  
read  
(TEST)  
RES  
SCLK  
RES  
XTR4  
RES  
XTR3  
RES  
XTR2  
RES  
XTR0  
BER  
PERF  
TEST  
read  
device test only; not used in normal operation  
rd/wr  
44  
MTC-20276 INTQ  
Identification Register Read Only Address 0h  
Table 24  
ID  
0
1
1
0
1
1
0
X
0
X
0
X
Version Number Register Read and Write Address 1h  
Table 25  
VN  
0
0
0
0
The version number of the device starts at 00h.  
Configuration Register Read and Write Address 2h  
Table 26  
CONF  
reset  
BT1/SC  
0
BT0  
0
DEX1  
0
DEX0  
0
-
1
MFE  
0
RES  
0
DELT  
0
BT1/SC BT0  
bus type selection  
0
1
1
X
0
1
bus type according to BUS pin; value at reset;  
bus type = Adaptive; BUS pin ignored, pin usable as l/O;  
bus type = Fixed; BUS pin ignored.  
DEX1  
DEX0 Common Echo Bus mode selection  
0
1
1
X
0
1
E-channel activated.  
E-channel activated.  
E-channel forced to ‘0’.  
BUSY  
MFE  
READ only bit. Must be writen at 0, writing BUSY at 1 triggers testmodes.  
Multiframing enable if 1; Reset value is 0. Always write as 0.  
Multiframing is disabled in the MTC-20276.  
RES  
DELT  
Not used in this configuration. Always write 0. (Reserved)  
Not used in this configuration. Always write 0.  
Output Register Read and Write Address 3h  
Table 27  
OUT  
reset  
RES  
0
RES4  
0
RES  
0
RES  
0
-
1
TEST  
0
RES  
0
RES  
0
Note: The RES pins are reserved and cannot be used in this configuration.  
TEST Must be written 0, writing TEST 1 triggers test modes.  
45  
MTC-20276 INTQ  
IN1 and IN2 Registers Read Only Addresses 4h and 5h  
Table 28  
IN1  
Reads  
1
1
1
1
1
1
1
1
1
1
0
1
0
IN2  
Reads  
(TEST)  
x
S-bus mode  
x
TSP  
x
The bits represent the binary level of the  
input pin. All values are sampled asyn-  
chronously at the moment the content  
message is assembled.  
S-bus mode Selection  
TSP  
0
1
Selection  
Transmit single Pulse U+S  
Normal mode  
0
1
Adaptative timing (PTP and EPB)  
Fixed timing (SPB)  
Performance Register Read Only Address 6h  
Table 29  
PERF  
RES  
RES  
RES  
RES  
1
RES  
0
BER  
The RES bits are reserved and cannot  
be used in this configuration.  
BER:Bit Error Rate. This indicate that  
the SIC blocks has seen excessive bit  
errors, indicating a link transmission  
problem.  
RES  
BER  
Always reads as 0  
Set each time the BER signal goes low, reset after being read.  
M-Channel operation messages overview  
Table 30  
to the SIC block  
from the SIC block  
content message  
register name  
read messsage  
write message  
byte 1  
byte 2  
00h  
byte 1  
byte 2  
byte 1  
88h  
byte 2  
content  
content  
content  
content  
content  
content  
content  
identification  
version number  
configuration  
output  
80h  
80h  
80h  
80h  
80h  
80h  
80h  
-
-
01h  
-
-
89h  
02h  
82h  
83h  
content  
content  
8Ah  
8Bh  
03h  
input1  
04h  
(test only)  
(test only)  
8Ch  
8Dh  
8Eh  
input2  
05h  
performance  
test  
06h  
-
-
(test only)  
(test only)  
(test only)  
46  
MTC-20276 INTQ  
Package Specification  
Device Branding  
ALCATEL 2840  
YYWW INTQ  
MTC 20276 PQ -C  
QNTB-MMM ARM  
LLLLLLLLL AA  
Fig.23: Device Marking-PQ  
Order number MTC-20276 PQ-I or C  
47  
MTC-20276 INTQ  
44PQFP Mechanical Specification  
.529(13.45)  
.510(12.95)  
.398(10.10)  
.390(9.90)  
TYP.006(0.15)  
.041(1.03)  
.026(0.65)  
44 LEAD PQFP / DQFP  
.018(0.45)  
.010(0.25)  
.529(13.45)  
.510(12.95)  
.398(10.10)  
.390(9.90)  
TYP .0315(0.80)  
0°- 10°  
0°- 10°  
Pin 1  
MAX .096(2.45)  
.087(2.20)  
.075(1.90)  
MIN .002(0.05)  
TYP .063(1.60)  
Drawing revision: 11  
Date: 07-06-95  
General dimensions  
DWG.NR.90-0010  
All dimensions are in inches and parenthetically in millimeters. Inches dimensions are approximated.  
48  
MTC-20276 INTQ  
MTC-20276 INTQ Compliance Issues  
Compatibility with ETSI/ANSI Specs  
This application note discusses the func-  
tional implementation of certain system  
features which are either optional or not  
clearly defined in the prevailing interna-  
tional standards ETSI TS 102 080 and  
ANSI T1.601-1990.  
of INFO1 (i.e. arrival into state NT7).  
2. ’success’ is arrival into state ’active’  
(NT8).  
EOC Message Notification of  
Corrupted CRC: Impact on  
FEBE_from_NT ?  
The MTC-20276 uses the first interpretation.  
ETSI TS 102 080. ANSI T1.601 do not  
describe an NT- action that should be  
the consequence of the above EOC  
message. One could argue that the  
FEBE bit sent by the NT should then be  
fixed to 0 or 1. However, we currently  
keep the definition of FEBE that reflects  
the comparison between the NT-comput-  
ed CRC and the CRC received in the  
frame (as is the case when the CRC is  
not corrupted).  
TL:Tolerance on Recognised  
10khz  
EOC Data Channel  
The tolerance is not clear in ETSI TS 102  
080. Currently, 8.6khz and 11.7khz  
are used as specified pass/fail points  
(i.e. a factor of 1.36 between these 2  
frequencies, as in the implementation of  
4B3T in the MTC-20277 INTT device).  
This is not implemented. The ETSI TS  
102 080 and ANSI T1.601-1990  
mention this data channel, but do not  
describe how it should be used.  
NTM Bit Is Not Supported (SET  
to 1)  
Autoact  
This is an optional feature of ETSI TS  
102 080.  
Reset of the chip (or power-up) automati-  
cally causes an activation (as in ETSI TS  
102 080, ANSI - clause 6.4, ANSI.  
Table C.1).  
ANSI NT Maintenance Modes  
Metallic Loop Terminator for North  
American applications only. (ANSI Sec-  
tion 6.5)  
AIB Bit Is Ignored  
This is an optional feature of ETSI ETS  
102080.  
ACT-bit (NT->LT) During 2B+D  
Loopback  
There is a difference between ETSI TS  
102 080-1995 and ANSI T1.601 for  
the 2B+D loopback case:  
- act bit (NT->LT):  
ANSI: always 0  
ETSI: 0 until synchronised on its own  
transmitted INFO2, then 1  
- start of upstream transparency:  
ANSI: on receipt of 2B+D loopback  
request  
ETSI: on receipt of ’act-bit = 1’ from LT.  
The ETSI approach is chosen, as ANSI  
is in the process of aligning itself to ETSI  
(the contribution has been voted on the  
ANSI T1E1.4 living list).  
Loss of Signal in State NT5  
ETSI TS 102 080 and ANSI specify ‘no  
action’, when the signal is lost in state  
NT5. This means that the system does  
not deactivate until the 15s timer M4 is  
expired. The implementation is as  
described in TS 102 080/ANSI.  
After U-only Activation, the  
Loopbacks (2B+D, B1, B2) Are  
Not Transparent.  
This is a logical consequence of the fact  
that only the U is activated. However,  
ETSI TS 102 080 does not describe the  
characteristics of the loopbacks in U-  
only activation (and in normal activa-  
tion, the loopbacks should be transpar-  
ent).  
Response to EOC-message  
’Notification of Corrupted CRC’  
ETSI TS 102 080 and ANSI do not  
explicitly state what the NT has to send  
back. The INTQ sends back ’unable to  
comply’.  
The Event ’UOA=0 and DEA=1’  
in State NT6(a) and NT6 Trig-  
gers Transition to NT8(A) (TS  
102 080)  
ETSI TS 102 080 specifies as next state  
’NT8(a) or NT8(c)’. The MTC-20276  
uses NT8(a).  
Time Between end EC-training  
and Going into Power-down  
ETSI TS 102 080 specifies this time as  
480ms. The current MTC-20276 imple-  
mentation uses 960ms, to allow a test  
S/T Only Activation  
This feature is described in ANSI92, in  
Section C.5. It occurs when the NT does system to respond more slowly than  
New INFO1 Received  
ETSI TS 102 080 is ambiguous (in  
not acquire the superframe marker with-  
in 15s. This feature appears to be  
480ms.  
NOTE 12, p. 84):It states ”when INFO1 optional, but is not stated as such. It  
remains continuously after the NT fails to appears not to be present in ETSI TS  
bring up the network side and returns to  
state NT1, the NT does not go again  
into state NT2 unless a new transition  
from INFO0 to INFO1 is received”.  
Two interpretations are possible:  
102 080, and to cause different behav-  
iour from the TS 102 080 activation  
tables (i.e. the actions on event ’15s  
expired’ in states 3, 4, 5) and in the  
ANSI tables C.1 and C.4. Currently, it  
is not implemented.  
1. ’success’ is INFO3 reception instead  
49  
MTC-20276 INTQ  
Note  
50  
MTC-20276 INTQ  
Note  
51  
MTC-20276 INTQ  
Alcatel Microelectronics acknowledges the trademarks of all companies referred to in this document.  
This document contains information on a new product.  
Alcatel Microelectronics reserves the right to make  
changes in specifications at any time and without notice.  
The information furnished by Alcatel Microelectronics in  
this document is believed to be accurate and reliable.  
However, no responsibility is assumed by Alcatel Microelec-  
tronics for its use, nor for any infringements of patents or  
other rights of third parties resulting from its use.  
No licence is granted under any patents or patent rights  
of Alcatel Microelectronics.  
Alcatel Microelectronics  
info@mie.alcatel.be  
http://www.alcatel.com/telecom/micro  
Headquarters  
Marketing &  
Sales Offices  
Manufacturing & Cus- Design Centre  
tomer Service  
Benelux & Nordic  
Countries (Sales)  
Excelsiorlaan 44-46  
1930 Zaventem  
Belgium  
Central Europe  
Arabellastraße 4  
81925 Munich  
Germany  
Stuttgart Office  
Schwieberdingertraße 9  
70435 Stuttgart  
Germany  
United Kingdom  
Guildgate House  
Shute End  
Wokingham, Berkshire  
RG40 1BH  
UK  
Sweden  
Westerring 15  
9700 Oudenaarde  
Belgium  
Arrendatorsvägen 1  
SE-14162 Huddinge  
Sweden  
Tel. +32 55 33 24 70  
Fax +32 55 33 27 68  
Tel. +32 2 718 18 11  
Fax +32 2 725 37 49  
info@mie.alcatel.be  
Tel. +49 89 920 07 70  
Fax +49 89 910 15 59  
Tel. +49 711 821 45 304 Tel. +44 118 979 7102  
Fax +49 711 821 44 619 Fax +44 118 979 7103  
Tel. +46 8711 0540  
Fax +46 8711 9052  
Sales &  
Design Centres  
Representatives  
Southern Europe  
10, rue Latécoère, B.P.57  
78140 Vélizy Cedex  
France  
Italy  
USA  
Northern Germany  
TRIAS  
Moerser Landstraße 408  
47802 Krefeld  
Germany  
Japan  
Taiwan ROC  
Via Trento 30  
20059 Vimercate MI  
Italy  
M/S 412-115  
1225 N. Alma Road  
Richardson  
TX 75081-2206  
USA  
Alcatel ITS Japan Ltd  
Alcatel Microelectronics  
Yebisu Garden Pl Tower 24 Tower A, 17F, N°116, Sect  
20-3 Ebisu 4-chome,  
Shibuya-ku  
Tokyo, 150, Japan  
1 Hsin-Tai 5th Rd, Hsi-Chih  
Taipei County  
Taiwan, R.O.C.  
Tel. +33 1 46 32 53 86  
Fax +33 1 46 32 55 68  
Tel. +39 039 686 4520  
Fax +39 039 686 6899  
Tel. +1 972 996 2489  
Fax +1 972 996 2503  
Tel. +49 2151 95 30 111 Tel. +81 3 5424 8561  
Fax +49 2151 95 30 115 Fax +81 3 5424 8581  
Tel. +886 2 2696-2618  
Fax +886 2 2696-2562  
Premier Technical Sales SAN DIEGO, CA, 2011 Via Tiempo, Cardiff, CA 92007, Tel. (760) 943 6222, Fax (760) 943 0425  
SANTA CLARA, CA, 3235 Kifer Road, Suite 110, Santa Clara, CA 95051, Tel. (408) 736 2260, Fax (408) 736 2826  
TUSTIN, CA, 2660 Walnut Ave, Unit H, Tustin, CA 92680, Tel. (714) 573 8242, Fax (714) 573 4942  
ATLANTA, GA, 135 Arden Way, Peachtree City, GA 30269, Tel. (770) 632 9648, Fax (770) 486 4098  
BOSTON, MA, 33 Boston Post Road West, Suite 270, Marlboro, MA 01752, Tel. (508) 460 1730, Fax (508) 460 1731  
PORTLAND, OR, 5319 S.W. Westgate Dr. Suite 136, Portland, OR 97221, Tel. (503) 297 3956, Fax (503) 297 4956  
AUSTIN, TX, 12148 Jollyville Road, Unit 422, Austin, TX 78759, Tel. (512) 257 8218, Fax (512) 257 1714  
DALLAS, TX, 800 East Campbell Road, Suite 199, Richardson, TX 75081, Tel. (972) 680 5233, Fax (972) 680 5234  
OTTAWA, ONTARIO, CANADA, 43 Pretty Street, Stittsville, Ontario, K2S1A4 Canada, Tel. (613) 836 1779, Fax (613) 836 4459  

相关型号:

MTC-20277-PCINTT

DATACOM, ISDN CONTROLLER, PQCC44, PLASTIC, LCC-44
ONSEMI

MTC-20277PC-I

ISDN Controller, 1-Func, CMOS, PQCC44, PLASTIC, LCC-44
AMI

MTC-20277PQ-C

ISDN Controller, 1-Func, CMOS, PQFP44, PLASTIC, QFP-44
AMI

MTC-20277PQ-I

ISDN Controller, 1-Func, CMOS, PQFP44, PLASTIC, QFP-44
AMI

MTC-20278PQ-C

ISDN Controller, 1-Func, PQFP80, PLASTIC, QFP-80
ONSEMI

MTC-20278PQ-I

ISDN Controller, 1-Func, PQFP80, PLASTIC, QFP-80
AMI

MTC-20279PQ-C

DATACOM, ISDN CONTROLLER, PQFP80, PLASTIC, QFP-80
ONSEMI

MTC-20279PQ-C

ISDN Controller, 1-Func, PQFP80, PLASTIC, QFP-80
AMI

MTC-20279PQ-I

DATACOM, ISDN CONTROLLER, PQFP80, PLASTIC, QFP-80
ONSEMI

MTC-20279PQ-I

ISDN Controller, 1-Func, PQFP80, PLASTIC, QFP-80
AMI

MTC-20280PQ-C

ISDN Controller, 1-Func, PQFP100, PLASTIC, QFP-100
AMI

MTC-20285

ISDN Controller, 1-Func, PQFP144, PLASTIC, QFP-144
AMI