NCP1523B [ONSEMI]

3 MHz, 600 mA, High−Efficiency, Adjustable Output Voltage Step−down Converter; 3兆赫600毫安,高效率,可调输出电压的降压转换器
NCP1523B
型号: NCP1523B
厂家: ONSEMI    ONSEMI
描述:

3 MHz, 600 mA, High−Efficiency, Adjustable Output Voltage Step−down Converter
3兆赫600毫安,高效率,可调输出电压的降压转换器

转换器
文件: 总16页 (文件大小:262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP1523  
3 MHz, 600 mA,  
High−Efficiency, Adjustable  
Output Voltage Step−down  
Converter  
http://onsemi.com  
MARKING  
The NCP1523 step−down PWM DC−DC converter is optimized for  
portable applications powered from 1−cell Li−ion or 3 cell  
Alkaline/NiCd/NiMH batteries. The device is available in an  
adjustable output voltage from 0.9 V to 3.3 V. It uses synchronous  
rectification to increase efficiency and reduce external part count. The  
device also has a built−in 3 MHz (nominal) oscillator which reduces  
component size by allowing use of a small inductor and capacitors.  
NCP1523 is available in automatic switching PWM/PFM  
(NCP1523FCT2G) improving system efficiency and in PWM mode  
only (NCP1523BFCT2G) offering a very efficient load transient  
solution.  
DIAGRAM  
A1  
NCPxxxxG  
AYWW  
FLIP−CHIP−8  
CASE 766AE  
A1  
NCPxxxx = Device Code  
xxxx = 1523 or 523B  
Assembly Location  
Year  
Work Week  
Pb−Free Package  
Additional features include integrated soft−start, cycle−by−cycle  
current limiting and thermal shutdown protection. The NCP1523 is  
available in a space saving, 8 pin chip scale package.  
A
Y
WW  
G
=
=
=
=
Features  
Sources up to 600 mA  
PIN CONNECTIONS  
3 MHz Switching Frequency  
Up to 93% Efficiency  
A1  
B1  
C1  
A2  
Synchronous rectification for higher efficiency  
Thermal limit protection  
PIN: A1 − GND  
A2 − V  
IN  
B2  
C2  
B1 − SW  
B2 − EN  
C1 − GND  
C2 − ADJ  
Shutdown current consumption of 0.3 A  
These are Pb−Free Devices  
D1  
D2  
D1 − V  
OUT  
Special Features for NCP1523FCT2G  
D2 − FB  
Auto PFM/PWM mode solution  
High efficiency at light load  
Top View  
(Bumps Below)  
Special Features for NCP1523BFCT2G  
ORDERING INFORMATION  
Load Transient Highly Efficient Solution  
Very small Output Voltage Ripple  
Adjustable Output Voltage from 0.9 V to 3.3 V  
Device  
Package  
Shipping  
NCP1523FCT2G  
(NCP1523)  
FLIP−CHIP−8  
(Pb−Free)  
3000 /  
Tape & Reel  
Typical Applications  
NCP1523BFCT2G FLIP−CHIP−8  
(NCP1523B) (Pb−Free)  
3000 /  
Tape & Reel  
Cellular Phones, Smart Phones and PDAs  
Digital Still Cameras  
MP3 Players and Portable Audio Systems  
Wireless and DSL Modems  
Portable Equipment  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
©
Semiconductor Components Industries, LLC, 2007  
1
Publication Order Number:  
February, 2007 − Rev. 2  
NCP1523/D  
NCP1523  
L
V
IN  
A2  
C1  
A1  
B2  
B1  
D1  
C2  
D2  
SW  
V
OUT  
V
IN  
C
IN  
C
OUT  
V
OUT  
GND  
GND  
EN  
ADJ  
FB  
R1  
R2  
OFF ON  
Figure 1. NCP1523 Typical Applications  
TYPICAL APPLICATIONS  
SW  
B1  
V
IN  
A2  
2.2 H  
V
Q1  
BATTERY  
Q2  
4.7 F  
4.7 F  
Mode  
Control  
V
OUT  
GND  
C1  
D1  
I
LIMIT  
ADJ  
C2  
Comp  
GND  
A1  
R1  
R2  
Reference Voltage  
Logic Control &  
Thermal Shutdown  
EN  
B2  
Enable  
FB  
D2  
Figure 2. Simplified Block Diagram  
http://onsemi.com  
2
 
NCP1523  
PIN FUNCTION DESCRIPTION  
Pin  
A1  
A2  
B1  
B2  
Pin Name  
Type  
Description  
GND  
Power Ground  
Power Input  
Analog Output  
Digital Input  
Ground connection for the NFET Power Stage and the analog sections.  
Power Supply Input for the PFET Power Stage and the Analog Sections of the IC.  
Connection from Power MOSFETs to the Inductor.  
V
IN  
W
S
EN  
Enable for Switching Regulator. This pin is active high. This pin contains an internal  
pulldown resistor.  
C1  
C2  
D1  
D2  
GND  
ADJ  
Power Ground  
Analog Input  
Analog Input  
Analog Input  
Ground connection for the NFET Power Stage and the analog sections.  
This pin is the compensation input. R1 is connected to this pin.  
V
This pin is connected of the converter’s output. This is the sense of the output voltage.  
OUT  
FB  
Feedback voltage from the output of the power supply. This is the input to the error  
amplifier.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
−0.3  
7
Unit  
V
Minimum Voltage All Pins  
V
MIN  
MAX  
MAX  
Maximum Voltage All Pins (Note 1)  
Maximum Voltage Enable, FB, SW  
Thermal Resistance, Junction−to−Air (Note 2)  
Operating Ambient Temperature Range  
Storage Temperature Range  
V
V
V
V
+ 0.3  
V
IN  
R
JA  
159  
°C/W  
°C  
T
A
−40 to 85  
−55 to 150  
−40 to 125  
"100  
T
°C  
STG  
Junction Operating Temperature  
T
°C  
J
Latch−up Current Maximum Rating T = 85°C (Note 4)  
L
U
mA  
A
ESD Withstand Voltage (Note 3)  
Human Body Model  
V
ESD  
2.0  
200  
kV  
V
Machine Model  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. According to JEDEC standard JESD22−A108B  
2
2. For the 8−Pin Chip Scale Package, the R  
is highly dependent of the PCB heatsink area. R  
= 159°C/W with 50 mm PCB heatsink area.  
JA  
JA  
3. This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) $2.0 kV per JEDEC standard: JESD22−A114  
Machine Model (MM) $200 V per JEDEC standard: JESD22−A115  
4. Latchup current maximum rating per JEDEC standard: JESD78.  
http://onsemi.com  
3
 
NCP1523  
ELECTRICAL CHARACTERISTICS FOR NCP1523  
(Typical values are referenced to T = +25°C, Minimum and Maximum values are referenced −40°C to +85°C ambient temperature,  
A
unless otherwise noted, operating conditions V = 3.6 V, V  
= 1.2 V unless otherwise noted)  
IN  
OUT  
Symbol  
Rating  
Min  
Typ  
Max  
Unit  
V
V
Input Voltage Range  
2.7  
5.5  
IN  
V
Under Voltage Lockout (V Falling)  
2.4  
60  
V
UVLO  
IN  
I
I
Quiescent Current (Light Load Mode)  
Standby Current, EN Low  
95  
1.2  
A  
A  
MHz  
mA  
V
q
0.3  
3
STB  
F
Oscillator Frequency  
2.400  
3.600  
OSC  
I
Peak Inductor Current  
1200  
0.6  
LIM  
V
V
Feedback Reference Voltage  
FB Pin Tolerance Overtemperature  
Reference Voltage Line Regulation  
Output Voltage Accuracy (Note 5)  
Minimum Output Voltage  
REF  
−3  
3
%
FBtol  
V
0.1  
%
FB  
OUT  
OUT  
OUT  
V
V
V
−3%  
V
+3%  
V
nom  
0.9  
2.3  
V
Maximum Output Voltage  
V
V
Output Voltage Line Regulation (V from 2.7 to 5.5) I = 100 mA  
0.1  
%
OUT  
IN  
O
V
Voltage Load Regulation (I = 150 mA to 600 mA)  
0.001  
%/mA  
%
LOADREG  
O
Duty Cycle  
100  
R
R
P−Channel On−Resistance  
N−Channel On−Resistance  
P−Channel Leakage Current  
N−Channel Leakage Current  
Enable Pin High  
300  
300  
m
m
SWH  
SWL  
I
I
0.05  
0.01  
A
LeakH  
LeakL  
A  
V
V
V
1.2  
ENH  
Enable Pin Low  
0.4  
V
ENL  
T
Soft Start Time  
350  
450  
s
START  
5. The overall output voltage tolerance depends upon the accuracy of the external resistor (R1, R2).  
http://onsemi.com  
4
 
NCP1523  
ELECTRICAL CHARACTERISTICS FOR NCP1523B  
(Typical values are referenced to T = +25°C, Minimum and Maximum values are referenced −40°C to +85°C ambient temperature,  
A
unless otherwise noted, operating conditions V = 3.6 V, V  
= 1.2 V unless otherwise noted)  
IN  
OUT  
Symbol  
Rating  
Min  
Typ  
Max  
Unit  
V
V
Input Voltage Range  
2.7  
5.2  
IN  
V
Under voltage Lockout (V Falling)  
2.4  
V
UVLO  
IN  
I
Quiescent Current − No Switching  
Quiescent Current − Oscillator Running  
250  
2.5  
350  
A  
mA  
q
I
Standby Current, EN Low  
0.3  
3
1.2  
A  
MHz  
mA  
V
STB  
F
Oscillator Frequency  
2.400  
3.600  
OSC  
LIM  
I
Peak Inductor Current  
1200  
0.6  
V
V
Feedback Reference Voltage  
FB Pin Tolerance Overtemperature  
Reference Voltage Line Regulation  
Output Voltage Accuracy (Note 6)  
Minimum Output Voltage (Note 7)  
Maximum Output Voltage  
REF  
−3  
3
%
FBtol  
V  
0.1  
%
FB  
OUT  
OUT  
OUT  
V
V
V
−3%  
V
+3%  
V
nom  
0.9  
3.3  
V
V
V
Output Voltage Line Regulation (V = 2.7 – 5.2) I = 100 mA (Note 7)  
0.1  
%
OUT  
IN  
O
V
Voltage Load Regulation (I = 1 mA to 600 mA) (Note 7)  
0.001  
%/mA  
%
LOADREG  
O
Duty Cycle  
100  
R
R
P−Channel On−Resistance  
N−Channel On−Resistance  
P−Channel Leakage Current  
N−Channel Leakage Current  
Enable Pin High  
300  
300  
m
m
SWH  
SWL  
I
I
0.05  
0.01  
A
LeakH  
LeakL  
A  
V
V
V
1.2  
ENH  
Enable Pin Low  
0.4  
V
ENL  
T
Soft−Start Time  
350  
450  
s
START  
6. The overall output voltage tolerance depends upon the accuracy of the external resistor (R1, R2).  
7. Electrical values are guaranteed for drop between input and output voltages less than 4.0 V (Page 13).  
http://onsemi.com  
5
 
NCP1523  
TABLE OF GRAPHS  
TYPICAL CHARACTERISTICS  
Efficiency  
NCP1523FCT2G  
NCP1523BFCT2G  
20, 21, 22  
23  
vs. Load Current  
vs. Input Voltage  
vs. Temperature  
vs. Input Voltage  
vs. Load Current  
vs. Temperature  
vs. Output Current  
vs. Temperature  
6, 7, 8  
V
Output Voltage  
OUT  
F
Frequency Variation  
Load Regulation  
9, 10  
11  
19  
24  
OSC  
V
V
OUT  
OUT  
25  
Line Regulation  
26  
27  
V
V
Load Transient Response  
Line Transient Response  
Shutdown Current  
15, 16  
32, 33  
31  
OUT  
OUT  
I
vs. Input Voltage  
vs. Temperature  
vs. Temperature  
5
3
stb  
28  
29  
18  
I
Quiescent Current  
PWM Mode Operation  
PFM Mode Operation  
PFM/PWM Threshold  
Soft Start  
4
q
13  
14  
12  
17  
vs. Input Voltage  
T
start  
30  
http://onsemi.com  
6
NCP1523  
NCP1523 CHARACTERISTICS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
= 2.7 V  
IN  
V
= 5.5 V  
IN  
EN = V  
IN  
10  
0
I
= 0 mA  
OUT  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
−40  
10  
60  
110  
V
, INPUT VOLTAGE (V)  
IN  
TEMPERATURE (°C)  
Figure 3. Quiescent Current vs. Supply  
Voltage  
Figure 4. Quiescent Current vs. Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
90  
80  
70  
60  
50  
40  
30  
−40°C  
25°C  
105°C  
EN = GND  
I
= 0 mA  
OUT  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
10  
100  
1000  
V
, INPUT VOLTAGE (V)  
IN  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 5. Shutdown Current vs. Supply  
Voltage  
Figure 6. Efficiency vs. Output Current  
(VOUT = 1.8 V, VIN = 3.6 V)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
−40°C  
−40°C  
25°C  
25°C  
105°C  
105°C  
1
10  
100  
1000  
1
10  
100  
1000  
I
, OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 7. Efficiency vs. Output Current  
(VOUT = 0.9 V, VIN = 3.6 V)  
Figure 8. Efficiency vs. Output Current  
(VOUT = 2.0 V, VIN = 3.6 V)  
http://onsemi.com  
7
 
NCP1523  
NCP1523 CHARACTERISTICS  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
I
= 400 mA  
OUT  
I
= 400 mA  
OUT  
I
= 600 mA  
OUT  
I
= 600 mA  
OUT  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
−40  
−20  
0
20  
40  
60  
80  
V
, INPUT VOLTAGE (V)  
IN  
TEMPERATURE (°C)  
Figure 9. Frequency vs. Input Voltage  
Figure 10. Frequency vs. Temperature  
5.0  
3.0  
300  
250  
200  
150  
100  
50  
V
= 0.9 V  
OUT  
1.0  
−1.0  
−3.0  
−5.0  
V
= 2.0 V  
OUT  
0
0
100  
200  
300  
400  
500  
600  
2.7  
3.2  
3.7  
V , INPUT VOLTAGE (V)  
IN  
4.2  
4.7  
5.2  
I
, OUTPUT CURRENT (mA)  
OUT  
Figure 11. Load Regulation  
Figure 12. PFM/PWM Threshold vs. Input  
Voltage  
Figure 13. Step Down Converter PFM Mode  
Operation  
Figure 14. Step Down Converter PWM Mode  
Operation  
http://onsemi.com  
8
NCP1523  
NCP1523 CHARACTERISTICS  
Figure 15. Load Transient Response in PFM  
Operation (10 mA to 100 mA)  
Figure 16. Load Transient Response Between  
PFM and PWM Operation (100 mA to 200 mA)  
Figure 17. Soft Start Time (VIN = 3.6 V)  
http://onsemi.com  
9
NCP1523  
NCP1523B CHARACTERISTICS  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
V
LX  
2 V/Div  
V
IN  
2 V/Div  
V
OUT  
10 mV/Div  
I
OUT  
200 mA/Div  
2.5  
2.4  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
V , INPUT VOLTAGE (V)  
in  
Figure 18. PWM Mode of Operation  
(VIN = 3.6 V, VOUT = 1.2 V, IOUT = 300 mA, 255C)  
Figure 19. Switching Frequency vs. Input  
Voltage (VOUT = 1.2 V, IOUT = 300 mA, 255C)  
100  
90  
80  
70  
90  
80  
70  
60  
50  
2.7 V  
3.6 V  
−40°C  
25°C  
85°C  
V
= 5.2 V  
in  
60  
50  
40  
30  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
I
, OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 20. Efficiency vs. Output Current  
Figure 21. Efficiency vs. Output Current  
(VOUT = 1.2 V, VIN = 3.6 V)  
(VOUT = 1.2 V, 255C)  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
3.3 V  
1.2 V  
−40°C  
0.9 V  
25°C  
85°C  
40  
30  
40  
30  
2.5  
3.0  
3.5  
V , INPUT VOLTAGE (V)  
IN  
4.0  
4.5  
5.0  
5.5  
0
100  
200  
300  
400  
500  
600  
I
, OUTPUT CURRENT (mA)  
OUT  
Figure 22. Efficiency vs. Output Current  
Figure 23. Efficiency vs. Input Current  
(VOUT = 1.2 V, IOUT = 100 mA)  
(VIN = 3.6 V, 255C)  
http://onsemi.com  
10  
NCP1523  
NCP1523B CHARACTERISTICS  
6
4
3
2
1
4
2
3.6 V  
0
−40°C  
0
2.7 V  
−1  
25°C  
85°C  
−2  
V
in  
= 5.5 V  
−2  
−4  
−6  
−3  
−4  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
(mA)  
400  
500  
600  
I
I
(mA)  
out  
OUT  
Figure 24. Load Regulation vs. Input Voltage  
Figure 25. Load Regulation vs. Temperature  
(VIN = 3.6 V, VOUT = 1.2 V)  
(VOUT = 1.2 V, 255C)  
6
6
5
5
4
4
3
3
I
= 600 mA  
OUT  
2
2
1 mA  
1
1
−40°C  
0
0
100 mA  
85°C  
25°C  
−1  
−2  
−3  
−4  
−1  
−2  
−3  
−4  
−5  
−6  
−5  
−6  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V , INPUT VOLTAGE (V)  
in  
in  
Figure 26. Line Regulation vs. Output Current  
Figure 27. Line Regulation vs. Temperature  
(VOUT = 1.2 V, IOUT = 100 mA)  
(VOUT = 1.2 V, 255C)  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
V
= 4.2 V  
in  
2.7 V  
3.6 V  
2.7  
2.5  
0.05  
0
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 28. Shutdown Current vs. Temperature  
(VOUT = 3.6 V)  
Figure 29. Quiescent Current vs. Temperature  
http://onsemi.com  
11  
NCP1523  
NCP1523B CHARACTERISTICS  
500 mV/Div  
20 mV/Div  
V
OUT  
V
OUT  
2 V/Div  
EN  
200 mA/Div  
500 mV/Div  
V
IN  
I
OUT  
Figure 30. Soft Start Time  
(VIN = 3.6 V, VOUT = 1.2 V, IOUT = 600 mA)  
Figure 31. Line Transient Response  
(VIN step = 600 mV, VOUT = 1.2 V)  
20 mV/Div  
16 mV  
50 mV/Div  
45 mV  
V
V
OUT  
OUT  
I
50 mA/Div  
200 mA/Div  
OUT  
I
OUT  
Figure 32. Load Transient Response  
Figure 33. Load Transient Response  
(VIN = 3.6 V, VOUT = 1.2 V, 0 mA to 95 mA step)  
(VIN = 3.6 V, VOUT = 1.2 V, 0 mA to 400 mA step)  
http://onsemi.com  
12  
NCP1523  
OPERATION DESCRIPTION  
Overview  
PWM Operating Mode at Light Load: NCP1523B Only  
At low light conditions, NCP1523BFCT2G works also in  
PWM mode offering very good load transient results from  
light load to full charge. When there is no load on the output,  
the PMOS Q1 remains ON during a small pulse according  
to the flip−flop driven by the internal oscillator and the error  
comparator. If the drop between input and output voltage is  
higher than 4.0 V, the structure reaches the minimum ON  
The NCP1523 uses a constant frequency, voltage mode  
step−down architecture. Both the main (P−channel  
MOSFET) and synchronous (N−channel MOSFET)  
switches are internal.  
It delivers a constant voltage from either a single Li−Ion  
or three cell NiMH/NiCd battery to portable devices such as  
cell phones and PDA. The output voltage is sets by external  
resistor divider and has a voltage tolerance of 3% with 90%  
efficiency or better. The NCP1523 sources up to 600 mA  
depending on external components chosen.  
Additional features include soft−start, under voltage  
protection, current overload protection, and thermal  
shutdown protection. As shown in Figure 1, only six  
external components are required for implementation. The  
part uses an internal reference voltage of 0.6 V. It is  
recommended to keep the part in shutdown until the input  
voltage is 2.7 V or higher.  
time (T  
). In this particular case, the part can not supply  
ONmin  
correctly the desired output voltage and shows a small  
output voltage deregulation. For an output voltage  
configured to 0.9 V, 4.9 V is the maximum input voltage  
which guarantees the correct output value; for an output set  
to 1.5 V, the maximum input is 5.5 V.  
Cycle−by−Cycle Current Limitation  
From the block diagram (Figure 3), an I  
comparator is  
LIM  
used to realize cycle−by−cycle current limit protection. The  
comparator compares the SW pin voltage with the reference  
voltage, which is biased by a constant current. If the inductor  
PWM Operating Mode: NCP1523 & NCP1523B  
current reaches the limit, the I  
comparator detects the  
LIM  
In this mode, the output voltage of the NCP1523 is  
regulated by modulating the on−time pulse width of the  
main switch Q1 at a fixed frequency of 3 MHz. The  
switching of the PMOS Q1 is controlled by a flip−flop  
driven by the internal oscillator and a comparator that  
compares the error signal from an error amplifier with the  
PWM ramp. At the beginning of each cycle, the main switch  
Q1 is turned ON by the rising edge of the internal oscillator  
clock. The inductor current ramps up until the sum of the  
current sense signal and compensation ramp becomes higher  
than the amplifier’s error voltage. Once this has occurred,  
the PWM comparator resets the flip−flop, Q1 is turned OFF  
and the synchronous switch Q2 is turned ON. Q2 replaces  
the external Schottky diode to reduce the conduction loss  
and improve the efficiency. To avoid overall power loss, a  
certain amount of dead time is introduced to ensure Q1 is  
completely turned OFF before Q2 is being turned ON.  
SW voltage falling below the reference voltage and releases  
the signal to turn off the switch Q1. The cycle−by−cycle  
current limit is set at 1200 mA (nom).  
Soft Start  
The NCP1523 uses soft−start to limit the inrush current  
when the device is initially powered up or enabled.  
Soft−start is implemented by gradually increasing the  
reference voltage until it reaches the full reference voltage.  
During startup, a pulsed current source charges the internal  
soft−start capacitor to provide gradually increasing  
reference voltage. When the voltage across the capacitor  
ramps up to the nominal reference voltage, the pulsed  
current source will be switched off and the reference voltage  
will switch to the regular reference voltage.  
Shutdown Mode  
When a voltage less than 0.4 V is applied on the EN pin,  
the NCP1523 will be disabled. In shutdown mode, the  
internal reference, oscillator and most of the control  
circuitries are turned off. Therefore, the typical current  
consumption will be 0.3 A (typical value). Applying a  
voltage above 1.2 V to EN pin will enable the device for  
normal operation. The device will go through soft−start to  
normal operation. EN pin should be activated after the input  
voltage is applied.  
PFM Operating Mode at Light Load: NCP1523 Only  
The NCP1523FCT2G works with two mode of operation  
PWM/PFM depending on the current required. Under light  
load conditions, the NCP1523FCT2G enters in low current  
PFM mode of operation to reduce power consumption (I =  
Q
60 A typ). The output regulation is implemented by pulse  
frequency modulation. If the output voltage drops below the  
threshold of PM comparator (typically V −2%), a new  
nom  
Thermal Shutdown  
cycle will be initiated by the PM comparator to turn on the  
switch Q1. Q1 remains ON until the peak inductor current  
Internal Thermal Shutdown circuitry is provided to  
protect the integrated circuit in the event that the maximum  
junction Temperature is exceeded. If the junction temperature  
exceeds 160_C, the device shuts down. In this mode switch  
Q1 and Q2 and the control circuits are all turned off. The  
device restarts in soft start after the temperature drops below  
135°C. This feature is provided to prevent catastrophic  
failures from accidental device overheating.  
reaches 200 mA (nom). Then I  
comparator goes high to  
LIM  
switch OFF Q1. After a short dead time delay, switch  
rectifier Q2 is turn ON. The Negative current detector  
(NCD) will detect when the inductor current drops below  
zero and the output voltage decreases through discharging  
the output capacitor. When the output voltage falls below the  
threshold of the PFM comparator, a new cycle starts  
immediately.  
http://onsemi.com  
13  
NCP1523  
APPLICATION INFORMATION  
Output Voltage Selection  
The device operates with inductance value between 1 H  
and maximum of 4.7 H.  
The output voltage is programmed through an external  
resistor divider connected from ADJ to FB then to GND. For  
low power consumption and noise immunity, the resistor  
from FB to GND (R2) should be in the [100 k− 600 k]  
range. If R2 is 200 kgiven the V is 0.6 V, the current  
through the divider will be 3 A.  
If the corner frequency is moved, it is recommended to  
check the loop stability depending of the output ripple  
voltage accepted and output current required. For lower  
frequency, the stability will be increase; a larger output  
capacitor value could be chosen without critical effect on the  
system. On the other hand, a smaller capacitor value  
increases the corner frequency and it should be critical for  
the system stability. Take care to check the loop stability.  
The phase margin is usually higher than 45°.  
FB  
The formula below gives the value of V  
desired R1 and the R1 value,  
, given the  
OUT  
R1  
R2  
  ǒ1 )  
Ǔ
V
OUT  
+ V  
FB  
V  
: output voltage (volts)  
OUT  
Table 2. L−C FILTER EXAMPLE  
V : feedback voltage = 0.6 V  
FB  
Inductance (L)  
H  
Output Capacitor (C  
)
R1: feedback resistor from V  
R2: feedback resistor from FB to GND  
to FB  
OUT  
OUT  
1
10 F  
4.7 F  
2.2 F  
2.2 H  
4.7 H  
Input Capacitor Selection  
In PWM operating mode, the input current is pulsating  
with large switching noise. Using an input bypass capacitor  
can reduce the peak current transients drawn from the input  
supply source, thereby reducing switching noise  
significantly. The capacitance needed for the input bypass  
capacitor depends on the source impedance of the input  
supply.  
Inductor Selection  
The inductor parameters directly related to device  
performances are saturation current and DC resistance and  
inductance value. The inductor ripple current (I )  
decreases with higher inductance:  
L
The maximum RMS current occurs at 50% duty cycle  
with maximum output current, which is IO, max/2.  
For NCP1523, a low profile ceramic capacitor of 4.7 F  
should be used for most of the cases. For effective bypass  
results, the input capacitor should be placed as close as  
V
L   f  
V
OUT  
OUT  
SW  
ǒ1−  
Ǔ
I  
+
L
V
IN  
I
=
p
e
a
k
t
o
p
e
a
k
i
n
d
u
c
t
o
r
r
i
p
p
l
e
c
u
r
r
e
n
t
L
L = inductor value  
possible to the V Pin.  
f
= Switching frequency  
IN  
SW  
The Saturation current of the inductor should be rated  
higher than the maximum load current plus half the ripple  
current:  
Table 1. LIST OF INPUT CAPACITOR  
Murata  
GRM188R60J475KE  
GRM21BR71C475KA  
JMK212BY475MG  
C2012X5R0J475KT  
C1608X5R0J475KT  
I  
2
L
I
+ I )  
O(MAX)  
L(MAX)  
Taiyo Yuden  
TDK  
I
I
Maximum inductor current  
Maximum Output current  
L(MAX)  
O(MAX)  
The inductor’s resistance will factor into the overall  
efficiency of the converter. For best performances, the DC  
resistance should be less than 0.3 for good efficiency.  
Output L−C Filter Design Considerations:  
The NCP1523 is built in 3 MHz frequency and uses  
voltage mode architecture. The correct selection of the  
output filter ensures good stability and fast transient  
response.  
Due to the nature of the buck converter, the output L−C  
filter must be selected to work with internal compensation.  
For NCP1523, the internal compensation is internally fixed  
and it is optimized for an output filter of L = 2.2 H and  
Table 3. LIST OF INDUCTOR  
FDK  
TDK  
MIPW3226 Series  
VLF3010AT Series  
TFC252005 Series  
LQ CBL2012  
Taiyo Yuden  
Coil Craft  
DO1605−T Series  
LPO3010  
C
OUT  
= 4.7 F  
The corner frequency is given by:  
1
1
f +  
c
+
+ 49.5 KHz  
Ǹ
Ǹ
2 L   C  
OUT  
2 2.2 H   4.7 F  
http://onsemi.com  
14  
NCP1523  
Output Capacitor Selection  
Table 4. LIST OF OUTPUT CAPACITOR ROHS  
Selecting the proper output capacitor is based on the  
desired output ripple voltage. Ceramic capacitors with low  
ESR values will have the lowest output ripple voltage and  
are strongly recommended. The output capacitor requires  
either an X7R or X5R dielectric.  
Murata  
GRM188R60J475KE  
GRM21BR71C475KA  
GRM188R60OJ106ME  
JMK212BY475MG  
JMK212BJ106MG  
4.7 F  
10 F  
4.7 F  
10 F  
4.7 F  
Taiyo Yuden  
TDK  
The output ripple voltage in PWM mode is given by:  
1
ǒ
) ESRǓ  
V  
+ I   
L
OUT  
C2012X5R0J475KT  
C1608X5R0J475KT  
C2012X5R0J106KT  
4   f  
  C  
SW  
OUT  
In PFM mode (at light load), the output voltage is  
regulated by pulse frequency modulation. The output  
voltage ripple is independent of the output capacitor value.  
It is set by the threshold of PM comparator.  
10 F  
http://onsemi.com  
15  
NCP1523  
PACKAGE DIMENSIONS  
8 PIN FLIP−CHIP, 2.05x1.05, 0.5P  
CASE 766AE−01  
ISSUE C  
NOTES:  
D
A
B
E
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. COPLANARITY APPLIES TO SPHERICAL  
CROWNS OF SOLDER BALLS.  
2X  
0.10  
C
TERMINAL A1  
LOCATOR  
MILLIMETERS  
DIM MIN  
MAX  
2X  
0.10  
C
TOP VIEW  
A
−−− 0.655  
A1 0.210 0.270  
A2 0.335 0.385  
b
D
D1  
E
0.290 0.340  
2.050 BSC  
1.500 BSC  
1.050 BSC  
0.500 BSC  
A2  
A1  
0.10  
0.05  
C
C
e
C
A
SEATING  
PLANE  
8X  
SIDE VIEW  
D1  
NOTE 3  
8X  
b
e
e/2  
0.05  
0.03  
C
C
A
B
1
2
A
B
C
D
e
BOTTOM VIEW  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP1523/D  

相关型号:

NCP1523BFCT2G

3 MHz, 600 mA, High−Efficiency, Adjustable Output Voltage Step−down Converter
ONSEMI

NCP1523FCT2G

3 MHz, 600 mA, High−Efficiency, Adjustable Output Voltage Stepdown Converter
ONSEMI

NCP1523_07

3 MHz, 600 mA, High−Efficiency, Adjustable Output Voltage Step−down Converter
ONSEMI

NCP1526

400 mA, 1.2 V, High−Efficiency, Step−Down Converter with Low Noise Voltage Regulator Optimized for RF Module
ONSEMI

NCP1526MUTXG

400 mA, 1.2 V, High−Efficiency, Step−Down Converter with Low Noise Voltage Regulator Optimized for RF Module
ONSEMI

NCP1529

High Efficiency DC-DC Converters
ONSEMI

NCP1529ASNT1G

SWITCHING REGULATOR, 2200kHz SWITCHING FREQ-MAX, PDSO5, LEAD FREE, TSOP-5
ROCHESTER

NCP1529ASNT1G

1.7MHz, 1A, High Efficiency, Low Ripple, Adjustable Output Voltage Step-down Converter
ONSEMI

NCP1529MU12TBG

1.7MHz, 1A, High Efficiency, Low Ripple, Adjustable Output Voltage Step-down Converter
ONSEMI

NCP1529MU135TBG

1.7MHz, 1A, High Efficiency, Low Ripple, Adjustable Output Voltage Step-down Converter
ONSEMI

NCP1529MUTBG

暂无描述
ONSEMI

NCP1529_10

1.7MHz, 1A, High Efficiency, Low Ripple, Adjustable Output Voltage Step-down Converter
ONSEMI