NCP176BMX280TCG [ONSEMI]

LDO 稳压器,500 mA,超低漏,高 PSRR,带启用;
NCP176BMX280TCG
型号: NCP176BMX280TCG
厂家: ONSEMI    ONSEMI
描述:

LDO 稳压器,500 mA,超低漏,高 PSRR,带启用

光电二极管 输出元件 稳压器 调节器
文件: 总11页 (文件大小:256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP176  
Fast Transient Response  
Low Voltage 500 mA LDO  
The NCP176 is CMOS LDO regulator featuring 500 mA output  
current. The input voltage is as low as 1.4 V and the output voltage can  
be set from 0.7 V.  
www.onsemi.com  
Features  
Operating Input Voltage Range: 1.4 V to 5.5 V  
Output Voltage Range: 0.7 to 3.6 V (0.1 V steps)  
Quiescent Current typ. 60 mA  
XDFN6  
MX SUFFIX  
CASE 711AT  
Low Dropout: 130 mV typ. at 500 mA, V  
High Output Voltage Accuracy 0.8% (V  
= 2.5 V  
OUT  
> 1.8 V)  
OUT  
Stable with Small 1 mF Ceramic Capacitors  
Over−current Protection  
PIN CONNECTIONS  
Built−in Soft Start Circuit to Suppress Inrush Current  
Thermal Shutdown Protection: 165°C  
OUT  
FB  
1
2
3
6
5
4
IN  
With (NCP176A) and Without (NCP176B) Output Discharge  
N/C  
EN  
Function  
GND  
Available in XDFN6 1.2 mm x 1.2 mm x 0.4 mm Package  
These are Pb−free Devices  
XDFN6 (Top View)  
Typical Applications  
MARKING DIAGRAM  
Battery Powered Equipment  
Portable Communication Equipment  
Cameras, Image Sensors and Camcorders  
XX M  
VIN  
VOUT  
XX = Specific Device Code  
IN  
OUT  
M
= Date Code  
CIN  
1 mF  
COUT  
1 mF  
NCP176  
ON  
EN  
FB  
GND  
OFF  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 10 of this data sheet.  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
July, 2015 − Rev. 3  
NCP176/D  
NCP176  
IN  
OUT IN  
FB  
OUT  
FB  
VOLTAGE REFERENCE  
AND  
VOLTAGE REFERENCE  
AND  
SOFT−START  
SOFT−START  
EN  
EN  
0.7 V  
0.7 V  
THERMAL  
SHUTDOWN  
THERMAL  
SHUTDOWN  
GND  
GND  
NCP176A (with output discharge)  
NCP176B (without output discharge)  
Figure 2. Internal Block Diagram  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No.  
XDFN6  
Pin  
Name  
Description  
1
OUT  
FB  
LDO output pin  
2
Feedback input pin  
Ground pin  
3
GND  
EN  
4
5
Chip enable input pin (active “H”)  
N/C  
IN  
Not internally connected. This pin can be tied to the ground plane to improve thermal dissipation.  
Power supply input pin  
6
EPAD  
EPAD  
It is recommended to connect the EPAD to GND, but leaving it open is also acceptable  
Table 2. ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
IN  
Value  
−0.3 to 6.0  
−0.3 to VIN + 0.3  
−0.3 to 6.0  
Internally Limited  
150  
Unit  
Input Voltage (Note 1)  
V
V
Output Voltage  
OUT  
EN  
Chip Enable Input  
V
Output Current  
I
mA  
°C  
°C  
V
OUT  
Maximum Junction Temperature  
Storage Temperature  
T
J(MAX)  
T
STG  
−55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)  
ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78  
Table 3. THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Resistance, Junction−to−Air, XDFN6 1.2 mm x 1.2 mm  
R
123  
°C/W  
q
JA  
www.onsemi.com  
2
 
NCP176  
Table 4. ELECTRICAL CHARACTERISTICS V = V  
+ 1 V (V  
> 1.5 V) or V = 2.5 V (V  
1.5 V),  
IN  
OUT−NOM  
OUT−NOM  
IN  
OUT−NOM  
V
= 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C. The specifications in bold are guaranteed at −40°C T 85°C.  
EN  
OUT  
IN  
OUT  
J
J
Parameter  
Test Conditions  
Symbol  
Min  
1.4  
Typ  
Max  
5.5  
Unit  
V
Input Voltage  
V
IN  
Output Voltage  
T = +25°C  
V
V
V
V
1.8 V  
< 1.8 V  
1.8 V  
< 1.8 V  
V
OUT  
−0.8  
−18  
−1.5  
−55  
+0.8  
+18  
+1.5  
+50  
0.1  
%
J
OUT  
OUT  
OUT  
OUT  
mV  
%
−40°C T 85°C  
J
mV  
%/V  
Line Regulation  
V
IN  
= V  
+ 0.5 V to 5.25 V  
LineReg  
LoadReg  
0.02  
OUT−NOM  
V
1.4 V  
IN  
Load Regulation  
1 mA I  
500 mA  
1
5.0  
380  
275  
230  
190  
165  
90  
mV  
mV  
OUT  
Dropout Voltage (Note 3)  
I
= 500 mA  
1.4 V V  
1.8 V V  
2.1 V V  
2.5 V V  
3.0 V V  
< 1.8 V  
< 2.1 V  
< 2.5 V  
< 3.0 V  
< 3.6 V  
V
DO  
295  
200  
160  
130  
110  
60  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Quiescent Current  
I
= 0 mA  
I
Q
mA  
mA  
mA  
mA  
V
OUT  
Standby Current  
V
= 0 V  
I
0.05  
1
EN  
STBY  
Output Current Limit  
Short Circuit Current  
Enable Threshold Voltage  
V
OUT  
= V  
− 100 mV  
I
OUT  
500  
550  
1.0  
OUT−NOM  
V
OUT  
= 0 V  
I
750  
SC  
EN Input Voltage “H”  
EN Input Voltage “L”  
VEN = VIN = 5.5 V  
V
ENH  
V
ENL  
0.4  
0.6  
Enable Input Current  
I
0.15  
75  
mA  
EN  
Power Supply Rejection  
Ratio  
f = 1 kHz, Ripple 0.2 Vp−p,  
= V + 1.0 V, I = 30 mA  
PSRR  
dB  
V
IN  
OUT−NOM  
OUT  
(V  
OUT  
2.0V, V = 3.0 V)  
IN  
Output Noise  
f = 10 Hz to 100 kHz  
V
OUT  
1.8 V  
mV  
RMS  
20x  
V
V
OUT−NOM  
V
OUT  
< 1.8 V  
40x  
OUT−NOM  
Output Discharge Resistance  
(NCP176A option only)  
V
IN  
= 4.0 V, V = 0 V, V  
= V  
R
60  
165  
20  
W
°C  
EN  
OUT  
OUT−NOM  
ACTDIS  
Thermal Shutdown  
Temperature  
Temperature rising from T = +25°C  
T
SD  
J
Thermal Shutdown  
Hysteresis  
Temperature falling from T  
T
°C  
SD  
SDH  
3. Measured when the output voltage falls −3% below the nominal output voltage (voltage measured under the condition V = V  
+ 0.5V).  
IN  
OUT−NOM  
www.onsemi.com  
3
 
NCP176  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 1 V (V  
> 1.5 V) or V = 2.5 V (V  
1.5 V), V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C.  
OUT J  
OUT−NOM  
OUT−NOM  
IN  
OUT−NOM  
EN  
OUT  
IN  
1.255  
1.245  
1.235  
1.225  
1.215  
1.205  
1.195  
1.185  
1.175  
1.165  
1.827  
1.821  
1.815  
1.809  
1.803  
1.797  
1.791  
1.785  
V
= 1.8 V  
40  
OUT−NOM  
V
= 1.2 V  
40  
OUT−NOM  
1.779  
1.773  
1.155  
1.145  
−40  
−20  
0
20  
60  
80  
−40  
−20  
0
20  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. Output Voltage vs. Temperature  
Figure 4. Output Voltage vs. Temperature  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
0.10  
V
V
V
= 1.2 V  
= 1.8 V  
= 3.3 V  
OUT−NOM  
OUT−NOM  
OUT−NOM  
0.08  
0.06  
0.04  
0.02  
0
−0.02  
−0.04  
V
= V  
+ 0.5 V to 5.25 V, V 1.4 V  
OUT−NOM IN  
V
= 3.3 V  
40  
−0.06  
IN  
OUT−NOM  
3.26  
3.25  
−0.08  
−0.10  
−40  
−20  
0
20  
60  
80  
−40  
−20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Output Voltage vs. Temperature  
Figure 6. Line Regulation vs. Temperature  
5
4
V
V
V
= 1.2 V  
= 1.8 V  
= 3.3 V  
OUT−NOM  
OUT−NOM  
OUT−NOM  
3
2
1
0
−1  
−2  
I
= 1 mA to 500 mA  
−3  
OUT  
−4  
−5  
−40  
−20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 7. Load Regulation vs. Temperature  
www.onsemi.com  
4
NCP176  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 1 V (V  
> 1.5 V) or V = 2.5 V (V  
1.5 V), V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C.  
OUT J  
OUT−NOM  
OUT−NOM  
IN  
OUT−NOM  
EN  
OUT  
IN  
275  
250  
225  
200  
175  
150  
125  
100  
75  
275  
V
= 1.8 V  
V
= 1.8 V  
250  
225  
200  
175  
150  
125  
100  
OUT−NOM  
OUT−NOM  
I
= 500 mA  
= 250 mA  
OUT  
T = 85°C  
J
T = 25°C  
J
I
I
OUT  
T = −40°C  
J
75  
50  
= 100 mA  
= 10 mA  
OUT  
50  
25  
0
25  
0
I
OUT  
0
100  
200  
300  
400  
500  
−40  
−20  
0
20  
40  
60  
80  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 8. Dropout Voltage vs. Output Current  
Figure 9. Dropout Voltage vs. Output Current  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
V
= 3.3 V  
V
= 3.3 V  
OUT−NOM  
OUT−NOM  
I
= 500 mA  
= 250 mA  
OUT  
T = 85°C  
J
T = 25°C  
J
I
I
OUT  
60  
60  
T = −40°C  
J
40  
40  
= 100 mA  
= 10 mA  
OUT  
20  
0
20  
0
I
OUT  
0
100  
200  
300  
400  
500  
−40  
−20  
0
20  
40  
60  
80  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 10. Dropout Voltage vs. Output Current  
Figure 11. Dropout Voltage vs. Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
V
V
V
= 1.2 V  
= 1.8 V  
= 3.3 V  
OUT−NOM  
OUT−NOM  
OUT−NOM  
I
= 0 mA  
0
OUT  
10  
0
−40  
−20  
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 12. Quiescent Current vs. Temperature  
www.onsemi.com  
5
NCP176  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 1 V (V  
= 0 V  
> 1.5 V) or V = 2.5 V (V  
1.5 V), V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C.  
OUT−NOM  
OUT−NOM  
IN  
OUT−NOM  
EN  
OUT  
IN  
OUT  
J
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
90  
V
V
V
= 1.2 V  
= 1.8 V  
= 3.3 V  
OUT−NOM  
OUT−NOM  
OUT−NOM  
V
EN  
I
= 0 mA  
85  
80  
75  
70  
65  
60  
OUT  
T = 85°C  
J
T = 25°C  
J
T = −40°C  
J
55  
50  
V
= 1.8 V  
5.0  
OUT−NOM  
0.1  
0
−40  
−20  
0
20  
40  
60  
80  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.5  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 13. Standby Current vs. Temperature  
Figure 14. Quiescent Current vs. Input Voltage  
300  
250  
200  
150  
100  
1000  
950  
V
= 0 V  
OUT−FORCED  
V
= 1.8 V  
OUT−NOM  
900  
850  
800  
750  
700  
650  
600  
T = 85°C  
J
V
V
V
= 1.2 V  
= 1.8 V  
= 3.3 V  
OUT−NOM  
OUT−NOM  
OUT−NOM  
T = 25°C  
50  
0
J
T = −40°C  
J
550  
500  
0
100  
200  
300  
400  
500  
−40  
−20  
0
20  
40  
60  
80  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 15. Ground Current vs. Output Current  
Figure 16. Short Circuit Current vs.  
Temperature  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
1.0  
0.9  
0.8  
0.7  
0.6  
V
= V  
− 0.1 V  
OUT−FORCED  
OUT−NOM  
OFF −> ON  
ON −> OFF  
V
= 1.2 V  
OUT−NOM  
V
= 3.3 V  
OUT−NOM  
V
= 1.8 V  
OUT−NOM  
0.5  
0.4  
V
= 1.8 V  
0
OUT−NOM  
550  
500  
−40  
−20  
0
20  
40  
60  
80  
−40  
−20  
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Output Current Limit vs.  
Temperature  
Figure 18. Enable Threshold Voltage vs.  
Temperature  
www.onsemi.com  
6
NCP176  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
0.6  
0.5  
0.4  
0.3  
0.2  
+ 1 V (V  
> 1.5 V) or V = 2.5 V (V  
1.5 V), V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C.  
OUT J  
OUT−NOM  
OUT−NOM  
IN  
OUT−NOM  
EN  
OUT  
IN  
80  
70  
60  
50  
40  
30  
V
V
V
= 1.8 V  
OUT−NOM  
= 5.5 V  
= 5.5 V  
IN  
EN  
V
V
V
V
= 1.8 V  
OUT−NOM  
20  
= 4.0 V  
= 0 V  
IN  
0.1  
0
EN  
10  
0
= V  
OUT−FORCED  
OUT−NOM  
−40  
−20  
0
20  
40  
60  
80  
−40  
−20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. Enable Input Current vs.  
Temperature  
Figure 20. Output Discharge Resistance vs.  
Temperature (NCP176A option only)  
6
5
4
3
2
90  
80  
V
V
= 1.8 V, V = 2.8 V  
IN  
OUT−NOM  
OUT−NOM  
= 3.3 V, V = 4.3 V  
IN  
70  
60  
50  
40  
30  
20  
C
= 1 mF X7R 0805  
OUT  
Integral noise:  
10 Hz − 100 kHz: 54 mVrms  
10 Hz − 1 MHz: 62 mVrms  
C
= 1 mF X7R 0805  
= 30 mA  
OUT  
I
OUT  
1
0
V
V
= 1.8 V, V = 3.0 V  
IN  
OUT−NOM  
OUT−NOM  
10  
0
= 3.3 V, V = 4.3 V  
IN  
10  
100  
1K  
10K  
100K  
1M  
10M  
10  
100  
1K  
10K  
100K  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Power Supply Rejection Ratio  
Figure 22. Output Voltage Noise Spectral  
Density  
V
= 3.3 V  
V
= 3.3 V  
OUT−NOM  
OUT−NOM  
I
IN  
I
IN  
V
IN  
V
IN  
V
OUT  
V
OUT  
1 ms/div  
50 ms/div  
Figure 23. Turn−ON/OFF − VIN driven (slow)  
Figure 24. Turn−ON − VIN driven (fast)  
www.onsemi.com  
7
NCP176  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 1 V (V  
> 1.5 V) or V = 2.5 V (V  
1.5 V), V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C.  
OUT J  
OUT−NOM  
OUT−NOM  
IN  
OUT−NOM  
EN  
OUT  
IN  
V
IN  
V
= 3.3 V  
OUT−NOM  
V
= 1.2 V  
OUT−NOM  
V
EN  
3.3 V  
V
IN  
V
OUT  
t
R
= t = 1 ms  
F
2.3 V  
I
IN  
V
OUT  
1.2 V  
100 ms/div  
20 ms/div  
Figure 25. Turn−ON/OFF − EN driven  
Figure 26. Line Transient Response  
V
= 3.3 V  
OUT−NOM  
V
IN  
4.8 V  
V
IN  
V
V
= 1.2 V  
OUT−NOM  
500 mA  
= 2.2 V  
IN  
t
R
= t = 1 ms  
F
I
3.8 V  
1 mA  
t
R
= t = 1 ms  
F
OUT  
V
OUT  
1.2 V  
V
OUT  
3.3 V  
20 ms/div  
10 ms/div  
Figure 27. Line Transient Response  
Figure 28. Load Transient Response  
220  
1.6  
1.4  
V
IN  
200  
180  
V = 3.3 V  
OUT−NOM  
P
, 2 oz Cu  
, 1 oz Cu  
D(MAX)  
V
IN  
= 4.3 V  
500 mA  
1.2  
1.0  
0.8  
0.6  
0.4  
t
R
= t = 1 ms  
F
P
D(MAX)  
I
1 mA  
OUT  
160  
140  
120  
100  
q
, 1 oz Cu  
JA  
V
OUT  
1.2 V  
q
, 2 oz Cu  
JA  
80  
60  
0.2  
0
0
100  
200  
300  
400  
500  
600  
10 ms/div  
2
PCB COPPER AREA (mm )  
Figure 29. Load Transient Response  
Figure 30. qJA and PD(MAX) vs. Copper Area  
www.onsemi.com  
8
 
NCP176  
APPLICATIONS INFORMATION  
Enable Operation  
General  
The NCP176 is a high performance 500 mA low dropout  
The LDO uses the EN pin to enable/disable its operation  
and to deactivate/activate the output discharge function  
(A−version only).  
If the EN pin voltage is < 0.4 V the device is disabled and  
the pass transistor is turned off so there is no current flow  
between the IN and OUT pins. On A−version the active  
discharge transistor is active so the output voltage is pulled  
to GND through 60 W (typ.) resistor.  
linear regulator (LDO) delivering excellent noise and  
dynamic performance. Thanks to its adaptive ground current  
behavior the device consumes only 60 mA of quiescent  
current (no−load condition).  
The regulator features low noise of 48 mV , PSRR of  
RMS  
75 dB at 1 kHz and very good line/load transient  
performance. Such excellent dynamic parameters, small  
dropout voltage and small package size make the device an  
ideal choice for powering the precision noise sensitive  
circuitry in portable applications.  
If the EN pin voltage is > 1.0 V the device is enabled and  
regulates the output voltage. The active discharge transistor  
is turned off.  
A logic EN input provides ON/OFF control of the output  
voltage. When the EN is low the device consumes as low as  
50 nA typ. from the IN pin.  
The device is fully protected in case of output overload,  
output short circuit condition or overheating, assuring a very  
robust design.  
The EN pin has internal pull−down current source with  
value of 150 nA typ. which assures the device is turned off  
when the EN pin is unconnected. In case when the EN  
function isn’t required the EN pin should be tied directly to  
IN pin.  
Output Current Limit  
Output current is internally limited to a 750 mA typ. The  
LDO will source this current when the output voltage drops  
down from the nominal output voltage (test condition is  
Input Capacitor Selection (CIN)  
Input capacitor connected as close as possible is necessary  
to ensure device stability. The X7R or X5R capacitor should  
be used for reliable performance over temperature range.  
The value of the input capacitor should be 1 mF or greater for  
the best dynamic performance. This capacitor will provide  
a low impedance path for unwanted AC signals or noise  
modulated onto the input voltage.  
There is no requirement for the ESR of the input capacitor  
but it is recommended to use ceramic capacitor for its low  
ESR and ESL. A good input capacitor will limit the  
influence of input trace inductance and source resistance  
during load current changes.  
V
– 100mV). If the output voltage is shorted to  
OUT−NOM  
ground, the short circuit protection will limit the output  
current to 750 mA typ. The current limit and short circuit  
protection will work properly over the whole temperature  
and input voltage ranges. There is no limitation for the short  
circuit duration.  
Thermal Shutdown  
When the LDO’s die temperature exceeds the thermal  
shutdown threshold value the device is internally disabled.  
The IC will remain in this state until the die temperature  
decreases by value called thermal shutdown hysteresis.  
Once the IC temperature falls this way the LDO is back  
enabled. The thermal shutdown feature provides the  
protection against overheating due to some application  
failure and it is not intended to be used as a normal working  
function.  
Output Capacitor Selection (COUT  
)
The LDO requires an output capacitor connected as close  
as possible to the output and ground pins. The recommended  
capacitor value is 1 mF, ceramic X7R or X5R type due to its  
low capacitance variations over the specified temperature  
range. The LDO is designed to remain stable with minimum  
effective capacitance of 0.8 mF. When selecting the capacitor  
the changes with temperature, DC bias and package size  
needs to be taken into account. Especially for small package  
size capacitors such as 0201 the effective capacitance drops  
rapidly with the applied DC bias voltage (refer the  
capacitor’s datasheet for details).  
Power Dissipation  
Power dissipation caused by voltage drop across the LDO  
and by the output current flowing through the device needs  
to be dissipated out from the chip. The maximum power  
dissipation is dependent on the PCB layout, number of used  
Cu layers, Cu layers thickness and the ambient temperature.  
The maximum power dissipation can be computed by  
following equation:  
There is no requirement for the minimum value of  
equivalent series resistance (ESR) for the C  
but the  
OUT  
maximum value of ESR should be less than 0.5 W. Larger  
capacitance and lower ESR improves the load transient  
response and high frequency PSRR. Only ceramic  
capacitors are recommended, the other types like tantalum  
capacitors not due to their large ESR.  
TJ * TA  
qJA  
PD(MAX)  
+
[W]  
(eq. 1)  
Where (T T ) is the temperature difference between the  
J
A
junction and ambient temperatures and θ is the thermal  
JA  
resistance (dependent on the PCB as mentioned above).  
www.onsemi.com  
9
NCP176  
The power dissipated by the LDO for given application  
conditions can be calculated by the next equation:  
100 kHz) can be tuned by the selection of C  
and proper PCB layout. A simple LC filter could be added  
to the LDO’s IN pin for further PSRR improvement.  
capacitor  
OUT  
ǒ
Ǔ
(eq. 2)  
PD + VIN @ IGND ) VIN * VOUT @ IOUT [W]  
Enable Turn−On Time  
The enable turn−on time is defined as the time from EN  
assertion to the point in which V  
nominal value. This time is dependent on various  
application conditions such as V , C and T .  
Where I  
the output load current.  
Connecting the exposed pad and N/C pin to a large ground  
planes helps to dissipate the heat from the chip.  
The relation of θ and P  
Cu layer thickness could be seen on the Figure 30.  
is the LDO’s ground current, dependent on  
GND  
will reach 98% of its  
OUT  
OUT−NOM OUT  
A
to PCB copper area and  
JA  
D(MAX)  
PCB Layout Recommendations  
To obtain good transient performance and good regulation  
characteristics place C and C capacitors as close as  
Reverse Current  
The PMOS pass transistor has an inherent body diode  
IN  
OUT  
possible to the device pins and make the PCB traces wide.  
In order to minimize the solution size, use 0402 or 0201  
capacitors size with appropriate effective capacitance.  
Larger copper area connected to the pins will also improve  
the device thermal resistance. The actual power dissipation  
can be calculated from the equation above (Power  
Dissipation section). Exposed pad and N/C pin should be  
tied to the ground plane for good power dissipation.  
which will be forward biased in the case when V  
> V .  
OUT  
IN  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
Power Supply Rejection Ratio  
The LDO features very high power supply rejection ratio.  
The PSRR at higher frequencies (in the range above  
ORDERING INFORMATION TABLE  
Part Number  
Voltage Option  
1.0 V  
Marking  
AA  
Option  
Package  
Shipping  
NCP176AMX100TCG  
NCP176AMX120TCG  
NCP176AMX180TCG  
NCP176AMX300TCG  
NCP176AMX330TCG  
NCP176BMX100TCG  
NCP176BMX120TCG  
NCP176BMX180TCG  
NCP176BMX300TCG  
NCP176BMX330TCG  
1.2 V  
AE  
1.8 V  
AF  
With output discharge  
3.0 V  
AC  
3.3 V  
AD  
XDFN6  
(Pb−Free)  
3000 / Tape & Reel  
1.0 V  
DA  
1.2 V  
DE  
1.8 V  
DF  
Without output discharge  
3.0 V  
DC  
3.3 V  
DD  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
10  
NCP176  
PACKAGE DIMENSIONS  
XDFN6 1.20x1.20, 0.40P  
CASE 711AT  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.25mm FROM TERMINAL TIPS.  
4. COPLANARITY APPLIES TO THE PAD AS  
WELL AS THE TERMINALS.  
D
A
B
EXPOSED Cu  
MOLD CMPD  
DETAIL A  
OPTIONAL  
CONSTRUCTION  
PIN ONE  
REFERENCE  
E
MILLIMETERS  
DIM  
A
MIN  
0.30  
0.00  
0.13  
MAX  
0.45  
0.05  
0.23  
2X  
0.05  
C
A1  
b
2X  
0.05  
C
1.20 BSC  
D
TOP VIEW  
0.84  
1.04  
D2  
E
1.20 BSC  
0.20  
0.40 BSC  
0.40  
E2  
e
A
DETAIL A  
0.05  
0.05  
C
C
L
0.15  
0.05 REF  
0.25  
L1  
A1  
RECOMMENDED  
MOUNTING FOOTPRINT*  
SEATING  
PLANE  
NOTE 4  
C
SIDE VIEW  
D2  
6X  
0.35  
1.08  
PACKAGE  
OUTLINE  
DETAIL A  
6X  
L1  
E2  
1
3
1.40  
6X  
L
0.40  
1
0.40  
PITCH  
6X  
0.24  
6
4
DIMENSIONS: MILLIMETERS  
6X b  
e
M
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
0.10  
C A B  
BOTTOM VIEW  
NOTE 3  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation  
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable  
copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP176/D  

相关型号:

NCP176BMX300TCG

Fast Transient Response Low Voltage 500 mA LDO
ONSEMI

NCP176BMX330TCG

Fast Transient Response Low Voltage 500 mA LDO
ONSEMI

NCP177

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX070TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX090TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX100TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX110TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX120TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX125TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX135TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX150TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI

NCP177AMX180TCG

Linear Voltage Regulator - Fast Transient Response, Enable
ONSEMI