NCP4641H080T1G [ONSEMI]

Wide Input Range, Voltage Regulator;
NCP4641H080T1G
型号: NCP4641H080T1G
厂家: ONSEMI    ONSEMI
描述:

Wide Input Range, Voltage Regulator

文件: 总14页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP4641  
150 mA, Wide Input Range,  
Voltage Regulator  
The NCP4641 is a CMOS 150 mA linear voltage regulator with  
high input voltage and ultralow supply current. It incorporates  
multiple protection features such as peak current limit, short circuit  
current limit and thermal shutdown to ensure a very robust device.  
A high maximum input voltage tolerance of 50 V and a wide  
temperature range make the NCP4641 suitable for a variety of  
demanding applications.  
www.onsemi.com  
MARKING  
DIAGRAMS  
Features  
XXX  
XMM  
Operating Input Voltage Range: 4 V to 36 V  
Output Voltage Range: 2.0 to 12.0 V (0.1 steps)  
SOIC6TL  
CASE 751BR  
1
2% Output Voltage Accuracy  
Output Current: min 150 mA (V = 8 V, V  
= 5 V)  
IN  
OUT  
Line Regulation: 0.05%/V  
Peak Current Limit Circuit  
Short Current Limit Circuit  
Thermal Shutdown Circuit  
Available in SOT895 and SOIC6TL Package  
These are PbFree Devices  
1
XXX  
XMM  
SOT89 5  
CASE 528AB  
Typical Applications  
Power source for home appliances  
XXXX = Specific Device Code  
MM = Date Code  
Power source for car audio equipment, navigation system  
Power source for notebooks, digital TVs, cordless phones and private  
LAN systems  
Power source for office equipment machines such as copiers,  
printers, facsimiles, scanners, projectors, etc.  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 12 of  
this data sheet.  
NCP4641x  
VIN  
VOUT  
VIN  
VOUT  
C1  
100n  
C2  
100n  
CE  
GND  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2014  
1
Publication Order Number:  
October, 2014 Rev. 1  
NCP4641/D  
NCP4641  
VIN  
VOUT  
Internal  
VR  
Vref  
Current Limit  
Short Protection  
Thermal Shutdown  
CE  
GND  
Figure 2. Simplified Schematic Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
SOT89  
Pin No.  
SOIC6TL  
Pin Name  
VIN  
Description  
5
2
6
2
Input pin  
GND  
Ground pin, all ground pins must be connected together when it is  
mounted on board  
4
4
5
GND  
GND  
Ground pin, all ground pins must be connected together when it is  
mounted on board  
Ground pin, all ground pins must be connected together when it is  
mounted on board  
3
1
3
1
CE  
Chip enable pin (“H” active)  
Output pin  
VOUT  
www.onsemi.com  
2
NCP4641  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage  
V
IN  
IN  
0.3 to 50  
Peak Input Voltage (Note 1)  
Output Voltage  
V
60  
V
V
OUT  
0.3 to VIN + 0.3 50  
V
Chip Enable Input  
V
CE  
0.3 to VIN + 0.3 50  
V
Output Current  
I
250  
900  
mA  
mW  
OUT  
Power Dissipation SOT89  
Power Dissipation SOIC6TL  
Junction Temperature  
P
D
1700  
T
J
40 to 150  
55 to 125  
2000  
°C  
°C  
V
Storage Temperature  
T
STG  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Duration time = 200 ms  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, SOT89  
R
111  
°C/W  
q
JA  
Thermal Resistance, JunctiontoAir  
Thermal Characteristics, SOIC6TL  
Thermal Resistance, JunctiontoAir  
R
59  
°C/W  
q
JA  
www.onsemi.com  
3
 
NCP4641  
ELECTRICAL CHARACTERISTICS T = 25°C  
A
Parameter  
Operating Input Voltage  
Output Voltage  
Test Conditions  
Symbol  
VIN  
Min  
4
Typ  
Max  
36  
Unit  
V
V
IN  
= VOUT + 3 V, I  
= 1 mA  
= 1 mA, T = 40 to  
VOUT  
x0.98  
x1.02  
V
OUT  
Output Voltage Temp. Coeffi-  
cient  
V
IN  
= VOUT + 3 V, I  
100  
ppm/°C  
OUT  
105°C  
A
Line Regulation  
Load Regulation  
V
= VOUT + 1.5 V to 36 V, I  
= 1 mA  
Line  
Reg  
0.05  
10  
0.20  
25  
%/V  
mV  
IN  
OUT  
V
IN  
= VOUT + 3 V,  
2.0 V V  
< 5.0 V  
Load  
Reg  
OUT  
OUT  
IOUT = 1 mA to 40 mA  
5.0 V V  
< 12.0 V  
< 3.7 V  
< 4.0 V  
< 5.0 V  
< 12.0 V  
< 3.0 V  
< 5.0 V  
< 12.0 V  
20  
35  
Dropout Voltage  
I
= 20 mA  
2.0 V V  
3.7 V V  
4.0 V V  
VDO  
(Note 3)  
0.60  
0.40  
0.35  
V
OUT  
OUT  
OUT  
OUT  
OUT  
0.35  
0.25  
0.20  
5.0 V V  
Output Current  
V
IN  
= VOUT + 3 V  
2.0 V V  
3.0 V V  
IOUT  
100  
120  
150  
mA  
OUT  
OUT  
OUT  
5.0 V V  
Short Current Limit  
Quiescent Current  
Standby Current  
V
= 0 V  
I
50  
9
mA  
mA  
mA  
V
OUT  
SC  
V
IN  
= VOUT + 3 V, IOUT = 0 mA  
IQ  
20  
1
V
IN  
= 36 V, V = 0 V  
ISTB  
VCEH  
VCEL  
0.1  
CE  
CE Pin Threshold Voltage  
CE Input Voltage “H”  
CE Input Voltage “L”  
1.5  
0.3  
Thermal Shutdown Temperature  
T
SD  
T
SR  
150  
125  
°C  
°C  
Thermal Shutdown Release  
Temperature  
Power Supply Rejection Ratio  
Output Noise Voltage  
VIN = 6 V, V  
= 3.0 V, IOUT = 30 mA, f = 1 kHz  
PSRR  
VN  
27  
dB  
OUT  
V
OUT  
= 3.0 V, I  
= 30 mA, f = 10 Hz to  
112  
mV  
rms  
OUT  
100 kHz  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. Dropout voltage for 2.0 V V  
< 3.7 V can be computed by this formula: V = 4 V V  
OUT  
DO  
OUTSET  
www.onsemi.com  
4
 
NCP4641  
TYPICAL CHARACTERISTICS  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6.0  
7.0 V  
7.5 V  
5.0  
V
= 5.0 V  
IN  
6.5 V  
5.5 V  
V
IN  
= 8.5 V  
4.0  
8.0 V  
3.0  
6.0 V  
2.0  
1.0  
0.0  
0
50  
100  
150  
(mA)  
200  
250  
300  
0
50  
100  
150  
(mA)  
200  
250  
300  
I
I
OUT  
OUT  
Figure 3. Output Voltage vs. Output Current  
Figure 4. Output Voltage vs. Output Current  
3.0 V Version (TJ = 25 5C)  
5.0 V Version (TJ = 25 5C)  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
10.5 V  
11 V  
105°C  
11.5 V  
T = 25°C  
J
10 V  
40°C  
0
50  
100  
150  
(mA)  
200  
250  
300  
0
25  
50  
75  
100  
125  
150  
I
I
(mA)  
OUT  
OUT  
Figure 5. Output Voltage vs. Output Current  
Figure 6. Dropout Voltage vs. Output Current  
3.0 V Version  
8.0 V Version (TJ = 25 5C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
105°C  
T = 25°C  
J
105°C  
T = 25°C  
J
40°C  
40°C  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
(mA)  
100  
125  
150  
I
(mA)  
I
OUT  
OUT  
Figure 7. Dropout Voltage vs. Output Current  
5.0 V Version  
Figure 8. Dropout Voltage vs. Output Current  
8.0 V Version  
www.onsemi.com  
5
NCP4641  
TYPICAL CHARACTERISTICS  
3.05  
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
5.05  
V
IN  
= 8.0 V  
V
IN  
= 5.0 V  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
40  
20  
0
20  
40  
60  
80  
100  
40  
20  
0
20  
40  
60  
80  
100  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Output Voltage vs. Temperature,  
3.0 V Version  
Figure 10. Output Voltage vs. Temperature,  
5.0 V Version  
16  
14  
12  
10  
8
8.10  
8.08  
8.06  
8.04  
8.02  
8.00  
7.98  
7.96  
7.94  
7.92  
7.90  
V
IN  
= 11 V  
V
= 5.0 V  
OUT  
8.0 V  
6
3.0 V  
4
2
0
40  
20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
30  
35  
T , JUNCTION TEMPERATURE (°C)  
J
V
IN  
, INPUT VOLTAGE (V)  
Figure 11. Output Voltage vs. Temperature,  
8.0 V Version  
Figure 12. Supply Current vs. Input Voltage  
14  
12  
10  
8
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
= 3.0 V  
OUT  
1 mA  
5.0 V  
20 mA  
6
8.0 V  
4
I
= 40 mA  
OUT  
2
0
40  
20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
30  
35  
T , JUNCTION TEMPERATURE (°C)  
J
V , INPUT VOLTAGE (V)  
IN  
Figure 13. Supply Current vs. Temperature  
Figure 14. Output Voltage vs. Input Voltage,  
3.0 V Version  
www.onsemi.com  
6
NCP4641  
TYPICAL CHARACTERISTICS  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1 mA  
1 mA  
20 mA  
20 mA  
I
= 40 mA  
OUT  
I
= 40 mA  
10  
OUT  
1.0  
0.0  
0
5
10  
15  
20  
25  
30  
35  
0
5
15  
20  
25  
30  
35  
V
IN  
, INPUT VOLTAGE (V)  
V , INPUT VOLTAGE (V)  
IN  
Figure 15. Output Voltage vs. Input Voltage,  
5.0 V Version  
Figure 16. Output Voltage vs. Input Voltage,  
8.0 V Version  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
30 mA  
0.1  
30 mA  
0.1  
100 mA  
1
100 mA  
1
0.01  
10  
100  
1000  
0.01  
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 17. PSRR, 3.0 V Version, VIN = 6.0 V  
Figure 18. PSRR, 5.0 V Version, VIN = 8.0 V  
12  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
8
6
I
= 1 mA  
OUT  
4
2
30 mA  
0.1  
100 mA  
1
0
0.01  
0.01  
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 19. PSRR, 8.0 V Version, VIN = 11 V  
Figure 20. Output Voltage Noise, 3.0 V Version,  
IN = 6.0 V, IOUT = 30 mA  
V
www.onsemi.com  
7
NCP4641  
TYPICAL CHARACTERISTICS  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0.01  
0
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 21. Output Voltage Noise, 5.0 V Version,  
Figure 22. Output Voltage Noise, 8.0 V version,  
V
IN = 8.0 V, IOUT = 30 mA  
V
IN = 11.0 V, IOUT = 30 mA  
12  
10  
8
6
4
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
2
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
t (ms)  
Figure 23. Line Transients, 3.0 V Version,  
tR = tF = 5 ms, IOUT = 1 mA  
14  
12  
10  
8
6
6.00  
5.50  
5.00  
4.50  
4.00  
3.50  
4
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
t (ms)  
Figure 24. Line Transients, 5.0 V Version,  
tR = tF = 5 ms, IOUT = 1 mA  
www.onsemi.com  
8
NCP4641  
TYPICAL CHARACTERISTICS  
17  
15  
13  
11  
9
9.00  
8.50  
8.00  
7.50  
7.00  
6.50  
7
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
t (ms)  
Figure 25. Line Transients, 8.0 V Version,  
tR = tF = 5 ms, IOUT = 1 mA  
200  
150  
100  
50  
0
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 26. Load Transients, 3.0 V Version,  
IOUT = 1 – 20 mA, tR = tF = 50 ms, VIN = 6.0 V  
200  
150  
100  
50  
0
2.83  
2.81  
2.79  
2.77  
2.75  
2.73  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 27. Load Transients, 5.0 V Version,  
IOUT = 1 – 20 mA, tR = tF = 50 ms, VIN = 8.0 V  
www.onsemi.com  
9
NCP4641  
TYPICAL CHARACTERISTICS  
200  
150  
100  
50  
0
5.05  
5.03  
5.01  
4.99  
4.97  
4.95  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 28. Load Transients, 8.0 V Version,  
IOUT = 1 – 20 mA, tR = tF = 50 ms, VIN = 11.0 V  
8
Chip Enable  
6
4
2
0
4
3
I
= 20 mA  
OUT  
I
= 1 mA  
OUT  
2
I
= 150 mA  
OUT  
1
0
1  
0
50 100 150 200 250 300 350 400 450 500  
t (ms)  
Figure 29. Startup, 3.0 V Version, VIN = 6.0 V  
10  
8
Chip Enable  
6
4
2
8
6
0
I
= 20 mA  
OUT  
4
I
= 1 mA  
OUT  
I
= 150 mA  
OUT  
2
0
2  
0
50 100 150 200 250 300 350 400 450 500  
t (ms)  
Figure 30. Startup, 5.0 V Version, VIN = 8.0 V  
www.onsemi.com  
10  
NCP4641  
TYPICAL CHARACTERISTICS  
16  
12  
8
Chip Enable  
4
0
I
= 20 mA  
OUT  
8
6
I
= 1 mA  
OUT  
4
I
= 150 mA  
OUT  
2
0
2  
0
50 100 150 200 250 300 350 400 450 500  
t (ms)  
Figure 31. Startup, 8.0 V Version, VIN = 11.0 V  
www.onsemi.com  
11  
NCP4641  
APPLICATION INFORMATION  
A typical application circuit for NCP4641 series is shown  
in Figure 32.  
connected to CE pin. Do not keep CE pin not connected or  
between VCEH and VCEL voltage levels. Otherwise output  
voltage would be unstable or indefinite and unexpected  
would flow internally.  
NCP4641x  
VOUT  
VIN  
VOUT  
VIN  
CE  
Thermal  
C1  
100 n  
C2  
100 n  
As a power across the IC increase, it might become  
necessary to provide some thermal relief. The maximum  
power dissipation supported by the device is dependent  
upon board design and layout. Mounting pad configuration  
on the PCB, the board material, and also the ambient  
temperature affect the rate of temperature increase for the  
part. When the device has good thermal conductivity  
through the PCB the junction temperature will be relatively  
low in high power dissipation applications.  
GND  
Figure 32. Typical Application Schematic  
The IC includes internal thermal shutdown circuit that  
stops operation of regulator, if junction temperature is  
higher than 150°C. After that, when junction temperature  
decreases below 125°C, the operation of voltage regulator  
would restart. While high power dissipation condition is, the  
regulator starts and stops repeatedly and protects itself  
against overheating.  
Input Decoupling Capacitor (C1)  
The device is stable without any input capacitance, but if  
input line is long and has high impedance or if more stable  
operation is needed, input capacitor C1 should be connected  
as close as possible to the IC. Recommended range of input  
capacitor value is 100 nF to 10 mF.  
Output Decoupling Capacitor (C2)  
PCB Layout  
The NCP4641 can work stable without output capacitor,  
but if faster response and higher stability reserve is needed,  
output capacitor should be connected as close as possible to  
the device. Recommended range of output capacitance is  
100 nF to 10 mF. Larger values of output capacitance and  
lower ESR improves dynamic parameters.  
Pins number 2 and 4 of SOT895 package and pins  
number 2, 4 and 5 of SOIC6TL must be wired to the GND  
plane while it is mounted on board. Make VIN and GND  
lines sufficient. If their impedance is high, noise pickup or  
unstable operation may result. Connect capacitors C1 and  
C2 as close as possible to the IC, and make wiring as short  
as possible.  
Enable Operation  
The enable pin CE may be used for turning the regulator  
on and off. The device is activated when high level is  
ORDERING INFORMATION  
Nominal Output  
Voltage  
Device  
Description  
Marking  
Package  
Shipping  
NCP4641H030T1G  
3.0 V  
Enable High  
M030  
SOT895  
(PbFree)  
1000 / Tape & Reel  
NCP4641H033T1G  
NCP4641H050T1G  
NCP4641H080T1G  
3.3 V  
5.0 V  
8.0 V  
Enable High  
Enable High  
Enable High  
M033  
M050  
M080  
SOT895  
(PbFree)  
1000 / Tape & Reel  
1000 / Tape & Reel  
1000 / Tape & Reel  
SOT895  
(PbFree)  
SOT895  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*To order other package and voltage variants, please contact your ON Semiconductor sales representative.  
www.onsemi.com  
12  
 
NCP4641  
PACKAGE DIMENSIONS  
SOIC6 (HSOP6)  
CASE 751BR  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
b1  
A
D
F
2. CONTROLLING DIMENSION: MILLIMETERS  
3. DIMENSION b AND b1 DO NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWAQBLE PROTRUSION SHALL  
BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL  
CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL  
NOT EXCEED 0.15 mm PER SIDE. DIMENSIONS D  
AND E ARE DETERMINED AT DATUM F.  
5. DATUMS A AND B ARE DETERMINED AT DATUM F.  
6. A1 IS DEFINED AS THE VERTICAL DISTANCE  
FROM THE SEATING PLANE TO THE LOWEST  
POINT ON THE PACKAGE BODY.  
6
4
A3  
L2  
E
H
1
3
L
SEATING  
C
PLANE  
4X b  
DETAIL A  
M
0.12  
C A-B D  
B
MILLIMETERS  
DIM  
A
A1  
A3  
b
b1  
D
E
MIN  
1.45  
0.05  
0.15  
0.30  
1.57  
4.72  
3.70  
MAX  
1.85  
0.25  
0.30  
0.50  
1.77  
5.32  
4.10  
6X  
D
e
0.10 C  
A1  
DETAIL A  
SEATING  
PLANE  
C
A
3.81 BSC  
e
H
L
L2  
5.70  
0.40  
6.30  
0.80  
RECOMMENDED  
SOLDERING FOOTPRINT*  
0.25 BSC  
3.81  
PITCH  
6X  
1.05  
6.40  
1
2X  
1.87  
4X  
0.60  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
13  
NCP4641  
PACKAGE DIMENSIONS  
SOT89, 5 LEAD  
CASE 528AB  
ISSUE O  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. LEAD THICKNESS INCLUDES LEAD FINISH.  
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS.  
5. DIMENSIONS L, L2, L3, L4, L5, AND H ARE MEA-  
SURED AT DATUM PLANE C.  
E
H
MILLIMETERS  
DIM MIN  
MAX  
1.60  
0.52  
0.57  
0.50  
4.60  
1.80  
2.60  
1.60  
4.45  
1.50  
1.20  
1.35  
1.05  
0.60  
A
b
1.40  
0.32  
0.37  
0.30  
4.40  
1.40  
2.40  
1.40  
4.25  
1.10  
0.80  
0.95  
0.65  
0.20  
1
b1  
c
D
TOP VIEW  
SIDE VIEW  
D2  
E
e
c
A
H
L
L2  
L3  
L4  
L5  
0.10  
C
C
RECOMMENDED  
e
b1  
e
MOUNTING FOOTPRINT*  
b
L2  
4X  
0.57  
1.75  
L
1
2
3
4
1.50  
0.45  
2.79  
L5  
4.65  
5
L3  
D2  
BOTTOM VIEW  
L4  
1.65  
1.30  
1
2X  
0.62  
2X  
1.50  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation  
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable  
copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP4641/D  

相关型号:

NCP4671DMX06TCG

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
ONSEMI

NCP4671DMX09TCG

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
ONSEMI

NCP4671DMX12TCG

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
ONSEMI

NCP4671DMX13TCG

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
ONSEMI

NCP4671DMX15TCG

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
ONSEMI

NCP4671DSN06T1G

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
ONSEMI

NCP4671DSN09T1G

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
ONSEMI

NCP4671DSN10T1G

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
ONSEMI

NCP4671DSN12T1G

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
ONSEMI

NCP4671DSN13T1G

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
ONSEMI

NCP4671DSN15T1G

400 mA, Dual Rail Ultra Low Dropout Linear Regulator
ONSEMI

NCP4672

Dual Linear Voltage Regulators with Vin and Vout Voltage Detector
ONSEMI