NCP5007SNT1 [ONSEMI]

Compact Backlight LED Boost Driver; 紧凑型背光LED升压驱动器
NCP5007SNT1
型号: NCP5007SNT1
厂家: ONSEMI    ONSEMI
描述:

Compact Backlight LED Boost Driver
紧凑型背光LED升压驱动器

显示驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总22页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP5007  
Compact Backlight LED  
Boost Driver  
The NCP5007 is a high efficiency boost converter operating in a  
current control loop, based on a PFM mode, to drive White LEDs. The  
current mode regulation allows a uniform brightness of the LEDs. The  
chip has been optimized for small ceramic capacitors and is capable of  
supplying up to 1.0 W output power.  
http://onsemi.com  
Features  
MARKING  
DIAGRAM  
Inductor Based Converter brings High Efficiency  
Constant Output Current Regulation  
2.7 to 5.5 V Input Voltage Range  
5
TSOP−5  
(SOT23−5, SCR59−5)  
SN SUFFIX  
DCLYW  
5
V to 22 V Output Compliance Allows up to 5 LEDs to be Driven  
out  
1
CASE 483  
1
in Series which Provides Automatic LED Current Matching  
Built−in Output Overvoltage Protection  
0.3 mA Standby Quiescent Current  
DCL = Device Code  
Y
= Year  
Includes Dimming Function (PWM)  
Enable Function Driven Directly from Low Battery Voltage Source  
Thermal Shutdown Protection  
W
= Work Week  
All Pins are Fully ESD Protected  
Low EMI Radiation  
PIN CONNECTIONS  
Pb−Free Package is Available  
FB  
1
2
5
4
V
bat  
Typical Applications  
LED Display Back Light Control  
High Efficiency Step Up Converter  
GND  
EN  
V
out  
3
(Top View)  
V
bat  
V
bat  
ORDERING INFORMATION  
U1  
EN  
C1  
Device  
Package  
Shipping  
3
5
V
bat  
NCP5007SNT1  
TSOP−5 3000 Tape & Reel  
4.7 mF  
NCP5007SNT1G  
TSOP−5 3000 Tape & Reel  
(Pb−Free)  
GND  
L1  
22 mH  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
D1  
2
1
4
V
out  
GND  
GND  
FB  
MBR0530  
C2  
1.0 mF  
NCP5007  
D6  
D5  
D4  
D3  
D2  
R1  
5.6 W  
GND  
GND  
Figure 1. Typical Application  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
July, 2004 − Rev. 4  
NCP5007/D  
 
NCP5007  
Thermal  
Shutdown  
Current Sense  
V
bat  
Vsense  
V
5
4
bat  
V
out  
EN  
3
100 k  
GND  
Q1  
CONTROLLER  
GND  
2
+
FB  
1
300 k  
GND  
+200 mV  
Band Gap  
Figure 2. Block Diagram  
http://onsemi.com  
2
 
NCP5007  
PIN FUNCTION DESCRIPTION  
Pin  
Symbol  
Type  
Description  
1
FB  
ANALOG  
INPUT  
This pin provides the output current range adjustment by means of a sense resistor connected  
to the analog control or with a PWM control. The dimming function can be achieved by applying  
a PWM voltage technique to this pin (see Figure 29). The current output tolerance depends  
upon the accuracy of this resistor. Using a "5% metal film resistor, or better, yields good output  
current accuracy. Note: A built−in comparator switches OFF the DC−DC converter if the voltage  
sensed across this pin and ground is higher than 700 mV typical.  
2
3
GND  
EN  
POWER  
This pin is the system ground for the NCP5007 and carries both the power and the analog  
signals. High quality ground must be provided to avoid spikes and/or uncontrolled operation.  
Care must be observed to avoid high−density current flow in a limited PCB copper track so a  
robust ground plane connection is recommended.  
DIGITAL  
INPUT  
This is an Active−High logic input which enables the boost converter. The built−in pulldown  
resistor disables the device when the EN pin is left open. Note the logic switching level of this  
input has been optimized to allow it to be driven from standard or 1.8 V CMOS logic levels.  
The LED brightness can be controlled by applying a pulse width modulated signal to the enable  
pin (see Figure 30).  
4
V
out  
POWER  
This pin is the power side of the external inductor and must be connected to the external  
Schottky diode. It provides the output current to the load. Since the boost converter operates in  
a current loop mode, the output voltage can range up to +22 V but shall not exceed this limit.  
However, if the voltage on this pin is higher than the OVP threshold (Over Voltage Protection)  
the device enters a shutdown mode. To restart the chip, one must either apply a low to high logic  
signal to the EN pin, or switch off the V supply.  
bat  
A capacitor must be used on V to avoid false triggering of the OVP (Overvoltage Protect)  
out  
circuit. This capacitor filters the noise created by the fast switching transients. In order to limit  
the inrush current and still have acceptable startup time the capacitor value should range  
between 1.0 mF and 8.2 mF max. To achieve high efficiency this capacitor should be ceramic  
(ESR t 100 mW).  
Care must be observed to avoid EMI through the PCB copper tracks connected to this pin.  
5
V
bat  
POWER  
The external voltage supply is connected to this pin. A high quality reservoir capacitor must be  
connected across pin 5 and Ground to achieve the specified output voltage parameters. A  
4.7 mF/6.3 V, low ESR capacitor must be connected as close as possible across pin 5 and  
ground pin 2. The X5R or X7R ceramic MURATA types are recommended.  
The return side of the external inductor shall be connected to this pin. Typical application will  
use a 22 mH, size 1210, to handle the 10 to 100 mA output current range. When the desired  
output current is above 20 mA, the inductor shall have an ESR v1.5 W to achieve good  
efficiency over the V range. The output current tolerance can be improved by using a larger  
bat  
inductor value.  
http://onsemi.com  
3
NCP5007  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
6.0  
Unit  
V
Power Supply  
V
bat  
Output Power Supply Voltage Compliance  
V
out  
28  
V
Digital Input Voltage  
Digital Input Current  
EN  
−0.3 v V v V +0.3  
V
mA  
in  
bat  
1.0  
ESD Capability (Note 1)  
Human Body Model (HBM)  
Machine Model (MM)  
V
ESD  
2.0  
200  
kV  
V
TSOP5 Package  
Power Dissipation @ T = +85°C (Note 2)  
P
160  
250  
mW  
°C/W  
A
D
Thermal Resistance, Junction−to−Air  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Maximum Junction Temperature  
R
q
JA  
T
A
−25 to +85  
−25 to +125  
+150  
°C  
°C  
°C  
°C  
T
J
T
Jmax  
Storage Temperature Range  
T
stg  
−65 to +150  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) "2.0 kV per JEDEC standard: JESD22−A114  
Machine Model (MM) "200 V per JEDEC standard: JESD22−A115  
2. The maximum package power dissipation limit must not be exceeded.  
3. Latchup current maximum rating: "100 mA per JEDEC standard: JESD78.  
4. Moisture Sensivity Level (MSL): 1 per IPC/JEDEC standard: J−STD−020A.  
POWER SUPPLY SECTION (Typical values are referenced to T = +25°C, Min & Max values are referenced −25°C to +85°C ambient  
a
temperature, unless otherwise noted.)  
Rating  
Pin  
4
Symbol  
Min  
2.7  
22  
Typ  
Max  
5.5  
Unit  
V
Power Supply  
V
bat  
Output Load Voltage Compliance  
Continuous DC Current in the Load  
5
V
24.5  
V
out  
out  
5
I
50  
mA  
@ V = 3   LED, L = 22 mH, ESR < 1.5 W, V = 3.6 V  
out  
bat  
Standby Current @ I = 0 mA, EN = L, V = 3.6 V  
4
I
0.45  
mA  
out  
bat  
stdb  
Standby Current @ I = 0 mA, EN = L, V = 5.5 V  
4
4
I
1.0  
3.0  
mA  
out  
bat  
stdb  
Inductor Discharging Time @ V = 3.6 V, L = 22 mH, 3   LED,  
Toffmax  
320  
ns  
bat  
I
= 10 mA  
out  
Thermal Shutdown Protection  
T
160  
30  
°C  
°C  
SD  
Thermal Shutdown Protection Hysteresis  
T
SDH  
http://onsemi.com  
4
 
NCP5007  
ANALOG SECTION (Typical values are referenced to T = +25°C, Min & Max values are referenced −25°C to +85°C ambient  
a
temperature, unless otherwise noted.)  
Rating  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
Low Level Input Voltage  
1
EN  
1.3  
0.4  
V
EN Pull Down Resistor  
1
4
5
R
170  
100  
200  
100  
230  
kW  
mV  
ms  
EN  
Feedback Voltage Threshold  
FB  
Output Current Stabilizes @ 5% time delay following a  
I
outdly  
DC−DC startup @ V = 3.6 V, L = 22 mH, I = 20 mA  
bat  
out  
Internal Switch ON Resistor @ T  
= +25°C  
5
QR  
1.7  
W
amb  
DSON  
5. The overall tolerance depends upon the accuracy of the external resistor.  
THEORY OF OPERATION  
The DC−DC converter is designed to supply a constant  
current to the external load, the circuit being powered from  
a standard battery supply. Since the regulation is made by  
means of a current loop, the output voltage will vary  
depending upon the dynamic impedance presented by the  
load.  
Considering a high intensity LED, the output voltage can  
range from a low of 6.4 V (two LED in series biased with a  
low current), up to 22 V, the maximum the chip can sustain  
continuously. The basic DC−DC structure is depicted in  
Figure 3.  
With a 22 V operating voltage capability, the power  
device Q1 can accommodate a high voltage source without  
any leakage current degradation.  
V
bat  
L1  
22 mH  
Vdsense  
POR  
4
D1  
Vds  
Q1  
TIME_OUT  
ZERO_CROSSING  
GND  
RESET  
LOGIC  
CONTROL  
Vdsense  
GND  
+
R1  
1
V(Ipeak)  
+
R2  
xR  
C2  
Vs  
Vref  
GND  
GND  
Figure 3. Basic DC−DC Converter Structure  
http://onsemi.com  
5
 
NCP5007  
Basically, the chip operates with two cycles:  
flip−flop resets, the NMOS is deactivated and the current is  
dumped into the load. Since the timing is application  
dependent, the internal timer limits the Toff cycle to 320 ns  
(typical), making sure the system operates in a continuous  
mode to maximize the energy transfer.  
Cycle #1 : time t1, the energy is stored into the inductor  
Cycle #2 : time t2, the energy is dumped to the load  
The POR signal sets the flip−flop and the first cycle takes  
place. When the current hits the peak value, defined by the  
error amplifier associated with the loop regulation, the  
First Startup  
Normal Operation  
Ipeak  
I
L
Iv  
t1  
t2  
0 mA  
t
t
t
Ids  
0 mA  
Io  
0 mA  
Figure 4. Basic DC−DC Operation  
Based on the data sheet, the current flowing into the  
inductor is bounded by two limits:  
Ipeak Value: Internally fixed to 350 mA typical  
Iv Value: Limited by the fixed Toff time built in the  
chip (320 ns typical)  
The system operates in a continuous mode as depicted in  
Of course, from a practical stand point, the inductor must  
be sized to cope with the peak current present in the circuit  
to avoid saturation of the core. On top of that, the ferrite  
material shall be capable to operate at high frequency  
(1.0 MHz) to minimize the Foucault’s losses developed  
during the cycles.  
The operating frequency can be derived from the  
Figure 4 and t & t times can be derived from basic  
1
2
electrical parameters. Let V = Vo − V , rearranging  
bat  
equations. (Note: The equations are for theoretical analysis  
only, they do not include the losses.)  
Equation 1:  
dI * L  
E
di  
dt  
(eq. 5)  
ton +  
(eq. 1)  
E + L *  
Since toff is nearly constant (according to the 320 ns  
typical time), the dI is constant for a given load and  
inductance value. Rearranging Equation 5 yields:  
Let E = V , then:  
bat  
(Ip * Iv) * L  
(eq. 2)  
(eq. 3)  
t1 +  
t2 +  
Vbat  
V*dt * L  
L
(Ip * Iv) * L  
Vo * Vbat  
(eq. 6)  
ton +  
E
Let E = V , and Vopk = output peak voltage, then:  
bat  
Since t = 320 ns typical and Vo = 22 V maximum, then  
2
(assuming a typical V = 3.0 V):  
(Vopk * Vbat) * dt  
bat  
(eq. 7)  
ton +  
Vbat  
t2 * (Vo * Vbat)  
DI +  
Finally, the operating frequency is:  
L
(eq. 4)  
1
(eq. 8)  
F +  
* 9  
320e  
* (22 * 3.0)  
* 6  
ton ) toff  
DImax +  
+ 276 mA  
22e  
The output power supplied by the NCP5007 is limited to  
one watt: Figure 5 shows the maximum power that can be  
delivered by the chip as a function of the input voltage.  
http://onsemi.com  
6
 
NCP5007  
1200  
400  
3 LED  
L = 22µH  
= 10W  
T = +25°C  
A
R
1000  
800  
sense  
350  
300  
2 LED  
4 LED  
5 LED  
600  
250  
200  
400  
200  
0
P
out  
= f(V ) @ R  
= 2.0 W  
bat  
sense  
150  
6
2
3
4
5
2
3
4
5
6
V
bat  
(V)  
V
bat  
(V)  
Test conditions: 5 LEDs in series, steady state operation  
Figure 5. Maximum Output Power as a Function of  
the Battery Supply Voltage  
Figure 6. Typical Inductor Peak Current as a  
Function of Vbat Voltage  
120  
100  
2 LED  
3 LED  
80  
60  
40  
20  
0
4 LED  
5 LED  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
bat  
Test conditions: L = 22 mH, Rsense = 2.0 W, Tamb = +25°C  
Figure 7. Maximum Output Current as a Function of Vbat  
http://onsemi.com  
7
 
NCP5007  
Output Current Range Set−Up  
The current regulation is achieved by means of an external sense resistor connected in series with the LED string.  
V
bat  
L1  
22 mH  
V
out  
D1  
4
FB  
1
Q1  
CONTROLLER  
GND  
R1  
xW  
GND  
Figure 8. Output Current Feedback  
Feedback Threshold  
200 mV  
10 mA  
The current flowing through the LED creates a voltage  
drop across the sense resistor R1. The voltage drop is  
constantly monitored internally, and maximum peak current  
allowed in the inductor is set accordingly in order to keep  
constant this voltage drop (and thus the current flowing  
through the LED). For example, should one need a 10 mA  
output current, the sense resistor should be sized according  
to the following equation:  
(eq. 9)  
R
+
+
+ 20 W  
1
I
out  
A standard 5% tolerance resistor, 22 W SMD device,  
yields 9.09 mA, good enough to fulfill the back light  
demand. The typical application schematic diagram is  
provided in Figure 9.  
V
bat  
U1  
3
C1  
5
4
Pulse  
EN  
V
bat  
4.7 mF  
GND  
L1  
22 mH  
D1  
2
1
V
out  
GND  
GND  
FB  
MBR0530  
C2  
1.0 mF  
NCP5007  
D6  
D5  
D4  
D3  
D2  
R1  
GND  
GND  
22 W  
LED  
LED  
LED  
LED  
LED  
Figure 9. Basic Schematic Diagram  
http://onsemi.com  
8
 
NCP5007  
Output Load Drive  
The Schottky diode D1, associated with capacitor C2 (see  
Figure 9), provides a rectification and filtering function.  
When a pulse−operating mode is required:  
A PWM mode control can be used to adjust the output  
current range by means of a resistor and a capacitor  
connected across FB pin. On the other hand, the  
Schottky diode can be removed and replaced by at least  
one LED diode, keeping in mind such LED shall  
sustain the large pulsed peak current during the  
operation.  
In order to take advantage of the built−in Boost  
capabilities, one shall operate the NCP5007 in the  
continuous output current mode. Such a mode is achieved by  
using and external reservoir capacitor (see Table 1) across  
the LED.  
At this point, the peak current flowing into the LED diodes  
shall be within the maximum ratings specified for these  
devices. Of course, pulsed operation can be achieved, thanks  
to the EN signal pin 3, to force high current into the LED  
when necessary.  
TYPICAL OPERATING CHARACTERISTICS  
100  
100  
90  
4 LED/10 mA  
4 LED/4 mA  
90  
80  
80  
5 LED/4 mA  
70  
5 LED/10 mA  
70  
60  
50  
40  
30  
2 LED/10 mA  
3 LED/10 mA  
3 LED/4 mA  
2 LED/4 mA  
60  
50  
40  
30  
20  
10  
0
20  
10  
0
2.50  
3.00  
3.50  
4.00  
Vbat (V)  
4.50  
5.00  
5.50  
2.50  
3.00  
3.50  
4.00  
4.50  
5.00  
5.50  
Vbat (V)  
Figure 10. Overall Efficiency vs. Power Supply −  
Figure 11. Overall Efficiency vs. Power Supply −  
Iout = 4.0 mA, L = 22 mH  
Iout = 10 mA, L = 22 mH  
100  
90  
100  
90  
3 LED/15 mA  
3 LED/20 mA  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
5 LED/20 mA  
5 LED/15 mA  
2 LED/15 mA  
4 LED/15 mA  
2 LED/20 mA  
4 LED/20 mA  
2.50  
3.00  
3.50  
4.00  
4.50  
5.50  
2.50  
3.00  
3.50  
4.00  
4.50  
5.00  
5.50  
5.00  
Vbat (V)  
Vbat (V)  
Figure 12. Overall Efficiency vs. Power Supply −  
Figure 13. Overall Efficiency vs. Power Supply −  
Iout = 15 mA, L = 22 mH  
Iout = 20 mA, L = 22 mH  
http://onsemi.com  
9
 
NCP5007  
TYPICAL OPERATING CHARACTERISTICS  
(All curve conditions: L = 22 mH, Cin = 4.7 mF, C = 1.0 mF, Typical curve @ T = +25°C)  
out  
a
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
2 LED/40 mA  
3 LED/40 mA  
I
= 20 mA Nom  
OUT  
5 LED/40 mA  
4 LED/40 mA  
15  
10  
5
I
= 10 mA Nom  
OUT  
L = 22 mH  
T = 25°C  
A
0
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.50  
3.00  
3.50  
4.00  
(V)  
4.50  
5.00  
5.50  
V
bat  
V
BAT  
Figure 14. Overall Efficiency vs. Power Supply −  
Figure 15. Current Variation vs. Power Supply with  
3 Series LED’s  
Iout = 40 mA, L = 22 mH  
25  
20  
15  
10  
25  
20  
15  
10  
I
= 20 mA Nom  
I
= 20 mA Nom  
OUT  
OUT  
I
= 10 mA Nom  
I
= 10 mA Nom  
OUT  
OUT  
5
0
5
0
L = 22 mH  
T = 25°C  
A
L = 22 mH  
T = 25°C  
A
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
BAT  
BAT  
Figure 16. Current Variation vs. Power Supply with  
4 Series LED’s  
Figure 17. Current Variation vs. Power Supply with  
5 Series LED’s  
205  
5
4
3
2
204  
203  
202  
201  
200  
199  
198  
197  
V
bat  
= 3.1 V thru 5.5 V  
1
0
V
bat  
= 3.1V thru 5.5V  
−1  
−2  
−3  
196  
195  
−40  
−4  
−5  
−40  
−20  
0
20  
40  
60  
80  
100  
−20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Feedback Voltage Stability  
Figure 19. Feedback Voltage Variation  
http://onsemi.com  
10  
 
NCP5007  
TYPICAL OPERATING CHARACTERISTICS  
(All curve conditions: L = 22 mH, Cin = 4.7 mF, C = 1.0 mF, Typical curve @ T = +25°C)  
out  
a
2.5  
2.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
−40°C thru 125°C  
2 LED  
1.5  
1.0  
0.5  
0
3 LED  
4 LED  
5 LED  
2.7  
3.3  
3.9  
4.5  
5.1  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
bat  
, BATTERY VOLTAGE (V)  
V
bat  
Figure 20. Standby Current  
Figure 21. Typical Operating Frequency  
26  
V
bat  
= 3.6V  
V
V
= 2.7V  
25  
bat  
= 5.5V  
bat  
24  
23  
22  
−40 −20  
0
20  
40  
60  
80  
100 120130  
TEMPERATURE(°C)  
Figure 22. Overvoltage Protection  
http://onsemi.com  
11  
NCP5007  
TYPICAL OPERATING WAVEFORMS  
V
out  
Inductor  
Current  
Conditions: V = 3.6 V, L = 22 mH, 5 LED, I = 15 mA  
bat  
out  
out  
Figure 23. Typical Power Up Response  
V
out  
Inductor  
Current  
Conditions: V = 3.6 V, L = 22 mH, 5 LED, I = 15 mA  
bat  
out  
out  
Figure 24. Typical Startup Inductor Current and Output Voltage  
http://onsemi.com  
12  
 
NCP5007  
TYPICAL OPERATING WAVEFORMS  
Inductor  
Current  
Conditions: V = 3.6 V, L = 22 mH, 5 LED, I = 15 mA  
bat  
out  
out  
Figure 25. Typical Inductor Current  
V
out  
Ripple  
50 mV/div  
Inductor  
Current  
Conditions: V = 3.6 V, L = 22 mH, 5 LED, I = 15 mA  
bat  
out  
out  
Figure 26. Typical Output Voltage Ripple  
http://onsemi.com  
13  
 
NCP5007  
TYPICAL OPERATING WAVEFORMS  
Output Voltage  
Inductor Current  
Test Conditions: L = 22 mH, I = 15 mA, V = 3.6 V, Ambient Temperature, LED = 5  
out  
bat  
Figure 27. Typical Output Peak Voltage  
http://onsemi.com  
14  
 
NCP5007  
TYPICAL APPLICATIONS CIRCUITS  
Standard Feedback  
The standard feedback provides constant current to the  
LEDs, independently of the V supply and number of  
LEDs in series. Figure 28 depicts a typical application to  
supply 13 mA to the load.  
bat  
V
bat  
V
bat  
U1  
EN  
C1  
3
5
4
V
bat  
4.7 mF  
L1  
22 mH  
GND  
D1  
2
1
GND  
FB  
GND  
V
out  
MBR0530  
NCP5007  
C2  
1.0 mF  
R1  
D6  
D5  
D4  
D3  
D2  
GND  
GND  
15 W  
LED LED LED  
LED  
LED  
Figure 28. Basic DC Current Mode Operation with  
Analog Feedback  
PWM Operation  
Although the pulsed mode will provide a good dimming  
function, it will yield high switching transients which are  
difficult to filter out in the control loop. As such this first  
approach is not recommended. The output current depends  
upon the duty cycle of the signal presented to the node pin 1:  
this is very similar to the digital control shown in Figure 30.  
The average mode yields a noise−free operation since the  
converter operates continuously, together with a very good  
dimming function. The cost is an extra resistor and one extra  
capacitor, both being low cost parts.  
The analog feedback pin 1 provides a way to dim the LED  
by means of an external PWM signal as depicted in  
Figure 29. Taking advantage of the high internal impedance  
presented by the FB pin, one can set up a simple R/C network  
to accommodate such a dimming function. Two modes of  
operation can be considered:  
Pulsed mode, with no filtering  
Averaged mode with filtering capacitor  
http://onsemi.com  
15  
 
NCP5007  
V
bat  
V
bat  
U1  
EN  
C1  
3
5
4
V
bat  
4.7 mF  
L1  
22 mH  
Average Network  
R2  
D1  
GND  
2
1
GND  
FB  
GND  
V
out  
R3  
PWM  
MBR0530  
10 k  
150 k  
NCP5007  
C2  
1.0 mF  
C3  
100 nF  
R4  
5.6 k  
GND  
GND  
GND  
R1  
10 W  
D6  
D5  
D4  
D3  
D2  
LED LED LED  
Sense Resistor  
LED  
LED  
NOTE: RC filter R2 and C3 is optional (see text)  
Figure 29. Basic DC Current Mode Operation with PWM Control  
To implement such a function, lets consider the feedback  
input as an operational amplifier with a high impedance input  
(reference schematic Figure 29). The analog loop will keep  
going to balance the current flowing through the sense  
resistor R1 until the feedback voltage is 200 mV. An extra  
resistor (R4) isolates the FB node from low resistance to  
ground, making possible to add an external voltage to this pin.  
The time constant R2/C3 generates the voltage across C3,  
added to the node pin 1, while R2/R3/R4/R1/C3 create the  
discharge time constant. In order to minimize the pick up  
noise at FB node, the resistors shall have relative medium  
value, preferably well below 1.0 MW. Consequently, let  
R2 = 150 k, R3 = 10 k and R4 = 5.6 k. In addition, the  
feedback delay to control the luminosity of the LED shall be  
acceptable by the user, 10 ms or less being a good  
compromise. The time constant can now be calculated based  
on a 400 mV offset voltage at the C3/R2/R3 node to force  
zero current to the LED. Assuming the PWM signal comes  
from a standard gate powered by a 3.0 V supply, running at  
5.0 kHz, then full dimming of the LED can be achieved with  
a 95% span of the Duty Cycle signal.  
Digital Control  
An alternative method of controlling the luminosity of the  
LEDs is to apply a PWM signal to the EN pin (see  
Figure 30). The output current depends upon the Duty  
Cycle, but care must be observed as the DC−DC converter  
is continuously pulsed ON/OFF and noise is likely to be  
generated.  
V
bat  
U1  
3
C1  
5
4
Pulse  
EN  
V
bat  
4.7 mF  
L1  
22 mH  
GND  
D1  
2
1
GND  
FB  
GND  
V
out  
MBR0530  
NCP5007  
C2  
1.0 mF  
R1  
5.6 W  
D6  
D5  
D4  
D3  
D2  
GND  
GND  
NOTE: Pulse width and frequency depends upon the application constraints.  
Figure 30. Typical Semi−Pulsed Mode of Operation  
http://onsemi.com  
16  
 
NCP5007  
Typical LEDs Load Mapping  
Since the output power is battery limited (see Figure 5),  
one can arrange the LEDs in a variety of different  
configurations. Powering ten LEDs can be achieved by a  
series/parallel combination as depicted in Figure 31.  
50 mA  
75 mA  
Load  
Load  
D1  
LED  
D5  
LED  
D1  
LED  
D3  
LED  
D5  
LED  
D7  
LED  
D9  
LED  
D2  
LED  
D6  
LED  
D2  
LED  
D4  
LED  
D6  
LED  
D8  
LED  
D10  
LED  
D3  
LED  
D7  
LED  
Sense  
Resistor  
R1  
2.7 W  
D4  
LED  
D8  
LED  
GND  
60 mA  
Load  
Sense  
R1  
D1  
LED  
D4  
LED  
D7  
LED  
D10  
LED  
D13  
LED  
3.9 W  
Resistor  
GND  
D2  
LED  
D5  
LED  
D8  
LED  
D11  
LED  
D14  
LED  
D3  
LED  
D6  
LED  
D9  
LED  
D12  
LED  
D15  
LED  
Test conditions:  
V
L
C
= 3.6 V  
= 22 mH  
= 1.0 mF  
bat  
out  
out  
Sense  
Resistor  
R1  
3.3 W  
GND  
Figure 31. Examples of Possible LED Arrangements  
http://onsemi.com  
17  
 
NCP5007  
ON Semiconductor provides a demo board to evaluate the performance of the NCP5007. The schematic for that demo board  
is illustrated in Figure 32.  
TP3  
V
bat  
V
bat  
C1  
V
bat  
S2  
S1  
4.7 mF/10 V  
3
2
1
GND  
SELECT  
MANUAL  
JP1  
ISense  
U1  
EN  
GND  
R3  
3
5
V
bat  
3
2
1
TP1  
V
out  
L1  
22 mH  
10 k  
2
1
GND  
GND  
D1  
S3  
V
out  
4
3
2
1
R2  
R5  
0 R  
MBR0530  
BRIGHTNESS  
FB  
C3  
GND  
10 k  
NCP5007  
MODULATION  
Jumper = 0 W  
R1  
TP2  
FB  
J3  
150 k  
GND  
R4  
C2  
100 nF  
5.6 k  
V
bat  
J2  
2
1
D6  
D5  
D4  
D3  
LED  
D2  
R10  
10 R  
Z1  
GND  
PWR  
J1  
LED LED LED  
LED  
GND  
V
bat  
1
2
Figure 32. NCP5007 Demo Board Schematic Diagram  
http://onsemi.com  
18  
 
NCP5007  
Table 1. Recommended External Parts  
Part  
Manufacturer  
Description  
Part Number  
MBR0530T1  
30 V Low Vf Schottky Diode  
20 V Low Vf Schottky Diode  
20 V Low Vf Schottky Diode  
Ceramic Cap. 1.0 mF/16 V  
Ceramic Cap. 4.7 mF/6.3 V  
Inductor 22 mH  
ON Semiconductor  
ON Semiconductor  
ON Semiconductor  
MURATA  
SOD−123 (1.6 x 3.2 mm)  
SOD−323 (1.25 x 2.5 mm)  
SOD−563 (1.6 x 1.6 mm)  
GRM42−X7R  
NSR0320MW2T1  
NSR0320XV6T1  
GRM42−6X7R−105K16  
GRM40−X5R−475K6.3  
1008PS−223MC  
MURATA  
GRM40−X5R  
CoilCraft  
1008PS−Shielded  
Power Wafer  
Inductor 22 mH  
CoilCraft  
LPQ4812−223KXC  
Figure 33. NCP5007 Demo Board PCB: Top Layer  
Figure 34. NCP5007 Demo Board Top Silkscreen  
http://onsemi.com  
19  
 
NCP5007  
FIGURES INDEX  
Figure 1: Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2: Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Figure 3: Basic DC−DC Converter Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4: Basic DC−DC Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 5: Maximum Output Power as a Function of the Battery Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 6: Typical Inductor Peak Current as a Function of V Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
bat  
Figure 7: Maximum Output Current as a Function of V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
bat  
Figure 8: Output Current Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 9: Basic Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 10: Overall Efficiency vs. Power Supply − I = 4.0 mA, L = 22 mH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
out  
Figure 11: Overall Efficiency vs. Power Supply − I = 10 mA, L = 22 mH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
out  
Figure 12: Overall Efficiency vs. Power Supply − I = 15 mA, L = 22 mH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
out  
Figure 13: Overall Efficiency vs. Power Supply − I = 20 mA, L = 22 mH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
out  
Figure 14: Overall Efficiency vs. Power Supply − I = 40 mA, L = 22 mH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
out  
Figure 15: Feedback Voltage Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 16: Feedback Voltage Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 17: Standby Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 18: Typical Operating Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 19: Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 23: Typical Power Up Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 24: Typical Startup Inductor Current and Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 25: Typical Inductor Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 26: Typical Output Voltage Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 27: Typical Output Peak Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 28: Basic DC Current Mode Operation with Analog Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 29: Basic DC Current Mode Operation with PWM Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 30: Typical Semi−Pulsed Mode of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 31: Examples of Possible LED Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 32: NCP5007 Demo Board Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 33: NCP5007 Demo Board PCB: Top Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 34: NCP5007 Demo Board Top Silkscreen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
NOTE CAPTIONS INDEX  
Note 1:  
Note 2:  
Note 3:  
Note 4:  
Note 5:  
This device series contains ESD protection and exceeds the following tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
The maximum package power dissipation limit must not be exceeded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Latchup current maximum rating: "100 mA per JEDEC standard: JESD78 . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Moisture Sensivity Level (MSL): 1 per IPC/JEDEC standard: J−STD−020A . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
The overall tolerance depends upon the accuracy of the external resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
ABBREVIATIONS  
EN  
Enable  
FB  
Feed Back  
POR  
Power On Reset: Internal pulse to reset the chip when the power supply is applied  
http://onsemi.com  
20  
NCP5007  
PACKAGE DIMENSIONS  
TSOP−5  
SN SUFFIX  
CASE 483−02  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. A AND B DIMENSIONS DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
D
5
4
3
B
C
S
1
2
L
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
G
A
B
C
D
G
H
J
K
L
M
S
2.90  
1.30  
0.90  
0.25  
0.85  
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
A
J
0.013 0.100 0.0005 0.0040  
0.05 (0.002)  
0.10  
0.20  
1.25  
0
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
H
M
K
10  
0
10  
_
_
_
_
2.50  
3.00 0.0985 0.1181  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
21  
NCP5007  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP5007/D  

相关型号:

NCP5007SNT1G

Compact Backlight LED Boost Driver
ONSEMI

NCP5007_06

Compact Backlight LED Boost Driver
ONSEMI

NCP5008

Backlight LED Boost Driver
ONSEMI

NCP5008/D

White LED Driver
ONSEMI

NCP5008DMR2

Backlight LED Boost Driver
ONSEMI

NCP5008DMR2G

Backlight LED Boost Driver
ONSEMI

NCP5008_06

Backlight LED Boost Driver
ONSEMI

NCP5009

Backlight LED Boost Driver
ONSEMI

NCP5009DMR2

Backlight LED Boost Driver
ONSEMI

NCP500D

150 mA CMOS Low Noise Low-Dropout Voltage Regulator
ONSEMI

NCP500SN185T1

150 mA CMOS Low Noise Low-Dropout Voltage Regulator
ONSEMI

NCP500SN185T1G

150 mA CMOS Low Noise Low−Dropout Voltage Regulator
ONSEMI