NCP565MN28T2G [ONSEMI]

1.5 A Low Dropout Linear Regulator; 1.5低压差线性稳压器
NCP565MN28T2G
型号: NCP565MN28T2G
厂家: ONSEMI    ONSEMI
描述:

1.5 A Low Dropout Linear Regulator
1.5低压差线性稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总17页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP565/NCV565  
1.5 A Low Dropout  
Linear Regulator  
The NCP565/NCV565 low dropout linear regulator will provide  
1.5 A at a fixed output voltage or an adjustable voltage down to 0.9 V.  
The fast loop response and low dropout voltage make this regulator  
ideal for applications where low voltage and good load transient  
response are important. Device protection includes current limit, short  
circuit protection, and thermal shutdown.  
http://onsemi.com  
MARKING  
DIAGRAMS  
Features  
2
1
D PAK 3  
2
NC  
y565D2Txx  
AWLYWWG  
CASE 936  
FIXED  
Ultra Fast Transient Response (t1.0 ms)  
Low Ground Current (1.5 mA at Iload = 1.5 A)  
Low Dropout Voltage (0.9 V at Iload = 1.5 A)  
Low Noise (28 mVrms)  
3
Tab = Ground  
Pin 1. V  
in  
2. Ground  
3. V  
out  
0.9 V Reference Voltage  
Adjustable Output Voltage from 7.7 V down to 0.9 V  
1.2 V, 1.5 V, 2.8 V, 3.0 V, 3.3 V Fixed Output Versions. Other Fixed  
NC  
y565D2T  
AWLYWWG  
2
D PAK 5  
Voltages Available on Request  
1
CASE 936A  
ADJUSTABLE  
5
Current Limit Protection (3.3 A Typ)  
Thermal Shutdown Protection (160°C)  
NCV Prefix for Automotive and Other Applications Requiring Site  
xx = 12 or 33  
y
A
Tab = Ground  
Pin 1. N.C.  
and Change Controls  
= P or V  
= Assembly Location  
2. V  
3. Ground  
4. V  
5. Adj  
in  
PbFree Packages are Available  
WL = Wafer Lot  
= Year  
WW = Work Week  
out  
Y
Typical Applications  
Servers  
G
= PbFree  
ASIC Power Supplies  
Post Regulation for Power Supplies  
Constant Current Source  
P565  
DFN6, 3x3.3  
CASE 506AX  
MNxx  
AYWWG  
G
1
xx  
=
Voltage Rating  
AJ = Adjustable  
30 = 3.0V  
33 = 3.3 V  
12 = 1.2 V  
15 = 1.5 V  
28 = 2.8 V  
AYW  
565yy G  
G
SOT223  
CASE 318E  
1
Tab = V  
Pin 1. Ground  
yy  
= Voltage Rating  
out  
12 = 1.2 V  
2. V  
3. V  
out  
in  
A
Y
W
G
=
=
=
=
Assembly Location  
Year  
Work Week  
PbFree Package  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 13 of this data sheet.  
© Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
November, 2010 Rev. 15  
NCP565/D  
NCP565/NCV565  
Vin  
Vin  
Vin  
Vout  
Vout  
Vout  
Vin  
Vout  
ADJ  
NCP565  
GND  
NCP565  
GND  
C1  
5.6 pF  
R1  
R2  
Cout  
Cout  
Cin  
Cin  
Figure 1. Typical Application Schematic,  
Fixed Output  
Figure 2. Typical Application Schematic,  
Adjustable Output  
PIN DESCRIPTION  
2
2
D PAK 5  
D PAK 3  
DFN6  
SOT223  
Pin No.  
Pin No.  
Pin No.  
Pin No.  
Pin No.  
Adj. Version Fixed Version Adj. Version Fixed Version Fixed Version  
Symbol  
Description  
1
1, 2  
3
1, 2, 5  
N.C.  
2
1
2, Tab  
3
3
6
4
3
1
V
in  
Positive Power Supply Input Voltage  
Ground Power Supply Ground  
Regulated Output Voltage  
3, Tab  
6
4
5
4
2, Tab  
V
out  
5
Adj  
This pin is to be connected to the sense  
resistors on the output. The linear  
regulator will attempt to maintain 0.9 V  
between this pin and ground. Refer to  
the Application Information section for  
output voltage setting.  
V
in  
Vout Vin  
Vout  
V
ref  
= 0.9 V  
V
ref  
= 0.9 V  
Current  
Limit  
Sense  
Current  
Limit  
Sense  
Output  
Stage  
Output  
Stage  
Voltage  
Reference  
Block  
Voltage  
Reference  
Block  
ADJ  
Thermal  
Shutdown  
Block  
Thermal  
Shutdown  
Block  
GND  
GND  
Figure 3. Block Diagram, Fixed Output  
Figure 4. Block Diagram, Adjustable Output  
http://onsemi.com  
2
NCP565/NCV565  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 1)  
Output Pin Voltage  
Adjust Pin Voltage  
V
in  
18  
V
0.3 to V + 0.3  
V
out  
in  
V
adj  
0.3 to V + 0.3  
V
in  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
NOTE: This device series contains ESD protection and exceeds the following tests:  
Human Body Model JESD 22A114B  
Machine Model JESD 22A115A  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics SOT223 (Notes 1, 2)  
°C/W  
Thermal Resistance, JunctiontoAmbient  
Thermal Resistance, JunctiontoPin  
RqJA  
RqJP  
107  
12  
Thermal Characteristics DFN6 (Notes 1, 2)  
Thermal Resistance, JunctiontoAmbient  
Thermal Resistance, JunctiontoPin  
°C/W  
°C/W  
RqJA  
RqJP  
176  
37  
2
Thermal Characteristics D PAK (5ld) (Notes 1, 2)  
Thermal Resistance, JunctiontoCase  
Thermal Resistance, JunctiontoAmbient  
Thermal Resistance, JunctiontoPin  
RqJC  
RqJA  
RqJP  
3
105  
4
OPERATING RANGES  
Rating  
Symbol  
Value  
Unit  
Operating Input Voltage (Note 1)  
V
in  
V
+ V ,  
DO  
V
out  
2.5 (Note 3) to 9  
Operating Junction Temperature Range  
TJ  
40 to 150  
°C  
°C  
°C  
Operating Ambient Temperature Range  
T
A
40 to 125  
Storage Temperature Range  
Tstg  
55 to 150  
1. Refer to Electrical Characteristics and Application Information for Safe Operating Area.  
2
2. As measured using a copper heat spreading area of 50 mm , 1 oz copper thickness.  
3. Minimum V = (V + V ) or 2.5 V, whichever is higher.  
in  
out  
DO  
http://onsemi.com  
3
 
NCP565/NCV565  
ELECTRICAL CHARACTERISTICS (V = V + 1.6 V, V = 0.9 V, T = 25°C, C = C = 150 mF, unless otherwise noted, Note 4.)  
in  
out  
out  
A
in  
out  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ADJUSTABLE OUTPUT VERSION  
Reference Voltage (10 mA < I < 1.5 A; V + 1.6 V < V < 9.0 V; T = 10 to 105°C)  
V
V
0.882  
0.9  
0.9  
0.918  
(+2%)  
V
V
out  
out  
in  
A
ref  
(2%)  
Reference Voltage (10 mA < I < 1.5 A; V + 1.6 V < V < 9.0 V; T = 40 to 125°C)  
0.873  
(3%)  
0.927  
(+3%)  
out  
out  
in  
A
ref  
ADJ Pin Current (Note 5)  
Line Regulation (I = 10 mA) (Note 5)  
I
30  
0.03  
0.03  
0.9  
3.3  
85  
nA  
%
Adj  
Reg  
out  
line  
Load Regulation (10 mA < I < 1.5 A) (Note 5)  
Reg  
%
out  
load  
Dropout Voltage (I = 1.5 A, V = 2.5 V) (Note 6)  
Vdo  
1.3  
V
out  
out  
Current Limit  
Ripple Rejection (120 Hz; I = 1.5 A) (Note 5)  
I
1.6  
A
lim  
RR  
RR  
dB  
dB  
mA  
mVrms  
_C  
out  
Ripple Rejection (1 kHz; I = 1.5 A) (Note 5)  
75  
out  
Ground Current (I = 1.5 A)  
I
1.5  
28  
3.0  
out  
GND  
Output Noise Voltage (f = 100 Hz to 100 kHz, I = 1.5 A) (Note 5)  
V
out  
n
Thermal Shutdown Protection (Note 5)  
T
SHD  
160  
FIXED OUTPUT VOLTAGE (V = V + 1.6 V, T = 25°C, C = C = 150 mF, unless otherwise noted, Note 4.)  
in  
out  
A
in  
out  
Output Voltage (10 mA < I < 1.5 A; 2.8 V < V < 9.0 V; T = 10 to 105°C)  
V
out  
1.176  
1.2  
1.2  
1.5  
1.5  
2.8  
2.8  
3.0  
3.0  
1.224  
(+2%)  
V
V
V
V
V
V
V
V
out  
in  
A
1.2 V version  
(2%)  
Output Voltage (10 mA < I < 1.5 A; 2.8 V < V < 9.0 V; T = 40 to 125°C)  
V
out  
1.164  
(3%)  
1.236  
(+3%)  
out  
in  
A
1.2 V version  
Output Voltage (10 mA < I < 1.5 A; 3.1 V < V < 9.0 V; T = 10 to 105°C)  
V
out  
1.470  
(2%)  
1.530  
(+2%)  
out  
in  
A
1.5 V version  
Output Voltage (10 mA < I < 1.5 A; 3.1 V < V < 9.0 V; T = 40 to 125°C)  
V
out  
1.455  
(3%)  
1.545  
(+3%)  
out  
in  
A
1.5 V version  
Output Voltage (10 mA < I < 1.5 A; 4.4 V < V < 9.0 V; T = 10 to 105°C)  
V
out  
2.744  
(2%)  
2.856  
(+2%)  
out  
in  
A
2.8 V version  
Output Voltage (10 mA < I < 1.5 A; 4.4 V < V < 9.0 V; T = 40 to 125°C)  
V
out  
2.716  
(3%)  
2.884  
(+3%)  
out  
in  
A
2.8 V version  
Output Voltage (10 mA < I < 1.5 A; 4.6 V < V < 9.0 V; T = 10 to 105°C)  
V
out  
2.940  
(2%)  
3.060  
(+2%)  
out  
in  
A
3.0 V version  
Output Voltage (10 mA < I < 1.5 A; 4.6 V < V < 9.0 V; T = 40 to 125°C)  
V
out  
2.910  
(3%)  
3.090  
(+3%)  
out  
in  
A
3.0 V version  
Output Voltage (10 mA < I < 1.5 A; 4.9 V < V < 9.0 V; T = 10 to 105°C)  
V
out  
3.234  
3.3  
3.3  
3.366  
(+2%)  
V
V
out  
in  
A
3.3 V version  
(2%)  
Output Voltage (10 mA < I < 1.5 A; 4.9 V < V < 9.0 V; T = 40 to 125°C)  
V
out  
3.201  
(3%)  
3.399  
(+3%)  
out  
in  
A
3.3 V version  
Line Regulation (I = 10 mA) (Note 5)  
Reg  
0.03  
0.03  
0.9  
3.3  
85  
%
%
out  
line  
Load Regulation (10 mA < I < 1.5 A) (Note 5)  
Reg  
load  
out  
Dropout Voltage (I = 1.5 A, V = 2.5 V) (Note 6)  
Vdo  
1.3  
V
out  
out  
Current Limit  
Ripple Rejection (120 Hz; I = 1.5 A) (Note 5)  
I
lim  
1.6  
A
RR  
RR  
dB  
dB  
mA  
mVrms  
_C  
out  
Ripple Rejection (1 kHz; I = 1.5 A) (Note 5)  
75  
out  
Ground Current (I = 1.5 A)  
I
1.5  
38  
3.0  
out  
GND  
Output Noise Voltage (f = 100 Hz to 100 kHz, V = 1.2 V, I = 1.5 A) (Note 5)  
V
n
out  
out  
Thermal Shutdown Protection (Note 5)  
T
SHD  
160  
4. Performance guaranteed over specified operating conditions by design, guard banded test limits, and/or characterization, production tested at  
T = T = 25_C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
J
A
5. Typical values are based on design and/or characterization.  
6. Dropout voltage is a measurement of the minimum input/output differential at full load.  
http://onsemi.com  
4
 
NCP565/NCV565  
TYPICAL CHARACTERISTICS  
3.302  
3.300  
3.298  
3.296  
3.294  
3.292  
0.9005  
0.9000  
0.8995  
0.8990  
0.8985  
0.8980  
0.8975  
0.8970  
V
= 4.9 V  
in  
V
= 2.5 V  
in  
V
= 3.3 V  
out(nom)  
V
= 0.9 V  
out(nom)  
3.290  
3.288  
50 25  
0
25  
50  
75  
100  
125 150  
50 25  
0
25  
50  
75  
100 125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 6. Output Voltage vs. Temperature  
Figure 5. Output Voltage vs. Temperature  
3.80  
3.70  
3.60  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
= 1.5 A  
out  
I
= 50 mA  
out  
50 25  
0
25  
50  
75  
100  
125 150  
50 25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. Short Circuit Current Limit  
vs. Temperature  
Figure 8. Dropout Voltage vs. Temperature  
1.80  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.60  
1.55  
1.50  
1.45  
1.40  
I
= 1.5 A  
out  
1.35  
1.30  
1.35  
0
300  
600  
, OUTPUT CURRENT (mA)  
out  
900  
1200  
1500  
50 25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
I
Figure 9. Ground Current vs. Temperature  
Figure 10. Ground Current vs. Output Current  
http://onsemi.com  
5
NCP565/NCV565  
TYPICAL CHARACTERISTICS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
Unstable  
100  
10  
1
I
= 1.5 A  
out  
V
= 3.3 V  
out  
Stable  
500  
C
= 10 mF  
out  
0
250  
750  
1000  
1250  
1500  
10  
100  
1000  
10000  
100000 1000000  
F, FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
Figure 11. Ripple Rejection vs. Frequency  
Figure 12. Output Capacitor ESR Stability vs.  
Output Current  
10  
0
10  
0
10  
20  
30  
40  
10  
V
= 4.59 V  
= 0.9 V  
V = 4.59 V  
in  
in  
20  
30  
40  
V
out  
V
out  
= 0.9 V  
1.50  
1.00  
0.50  
0
1.50  
1.00  
0.50  
0
0
50 100  
150 200 250 300 350 400  
TIME (nS)  
0
0.5  
1.0  
1.5 2.0  
2.5 3.0  
3.5  
4.0  
TIME (ms)  
Figure 13. Load Transient from 10 mA to 1.5 A  
Figure 14. Load Transient from 10 mA to 1.5 A  
50  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
V
= 4.59 V  
= 0.9 V  
V
V
= 4.59 V  
= 0.9 V  
in  
in  
out  
out  
1.50  
1.00  
0.50  
1.50  
1.00  
0.50  
0
0
50  
200  
250 300 350  
0
50  
100 150  
400  
0
0.2  
0.4 0.6  
0.8  
1.0 1.2  
1.4  
1.6  
TIME (nS)  
TIME (ms)  
Figure 15. Load Transient from 1.5 A to 10 mA  
Figure 16. Load Transient from 1.5 A to 10 mA  
http://onsemi.com  
6
 
NCP565/NCV565  
TYPICAL CHARACTERISTICS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
V
= 3.0 V  
= 0.9 V  
= 1.5 A  
in  
V
out  
V
= 3.0 V  
50  
in  
I
out  
V
out  
= 0.9 V  
= 10 mA  
40  
30  
20  
10  
0
I
out  
Start 1.0 kHz  
Stop 100 kHz  
Start 1.0 kHz  
Stop 100 kHz  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 17. Noise Density vs. Frequency  
Figure 18. Noise Density vs. Frequency  
NOTE: Typical characteristics were measured with the same conditions as electrical characteristics.  
http://onsemi.com  
7
NCP565/NCV565  
Adjustable Operation  
APPLICATION INFORMATION  
The typical application circuit for the adjustable output  
regulators is shown in Figure 2. The adjustable device  
develops and maintains the nominal 0.9 V reference voltage  
between Adj and ground pins. A resistor divider network R1  
and R2 causes a fixed current to flow to ground. This current  
creates a voltage across R1 that adds to the 0.9 V across R2  
and sets the overall output voltage.  
The NCP565 low dropout linear regulator provides  
adjustable voltages at currents up to 1.5 A. It features ultra  
fast transient response and low dropout voltage. These  
devices contain output current limiting, short circuit  
protection and thermal shutdown protection.  
Input, Output Capacitor and Stability  
The output voltage is set according to the formula:  
An input bypass capacitor is recommended to improve  
transient response or if the regulator is located more than a  
few inches from the power source. This will reduce the  
circuit’s sensitivity to the input line impedance at high  
frequencies and significantly enhance the output transient  
response. Different types and different sizes of input  
capacitors can be chosen dependent on the quality of power  
supply. A 150 mF OSCON 16SA150M type from Sanyo  
should be adequate for most applications. The bypass  
capacitor should be mounted with shortest possible lead or  
track length directly across the regulator’s input terminals.  
The output capacitor is required for stability. The NCP565  
remains stable with ceramic, tantalum, and aluminum−  
electrolytic capacitors with a minimum value of 1.0 mF with  
ESR between 50 mW and 2.5 W. The NCP565 is optimized  
for use with a 150 mF OSCON 16SA150M type in parallel  
with a 10 mF OSCON 10SL10M type from Sanyo. The  
10 mF capacitor is used for best AC stability while 150 mF  
capacitor is used for achieving excellent output transient  
response. The output capacitors should be placed as close as  
possible to the output pin of the device. If not, the excellent  
load transient response of NCP565 will be degraded.  
R1 ) R2  
ǒ
Ǔ* I  
V
+ V  
 
  R2  
out  
ref  
Adj  
R2  
The adjust pin current, I , is typically 30 nA and  
Adj  
normally much lower than the current flowing through R1  
and R2, thus it generates a small output voltage error that can  
usually be ignored.  
Load Transient Measurement  
Large load current changes are always presented in  
microprocessor applications. Therefore good load transient  
performance is required for the power stage. NCP565 has  
the feature of ultra fast transient response. Its load transient  
responses in Figures 13 through 16 are tested on evaluation  
board shown in Figure 19. On the evaluation board, it  
consists of NCP565 regulator circuit with decoupling and  
filter capacitors and the pulse controlled current sink to  
obtain load current transitions. The load current transitions  
are measured by current probe. Because the signal from  
current probe has some time delay, it causes  
unsynchronization between the load current transition and  
output voltage response, which is shown in Figures 13  
through 16.  
GEN  
V
out  
V  
CC  
V
NCP565  
RL  
V
in  
Evaluation Board  
Pulse  
GND  
+
+
GND  
Scope Voltage Probe  
Figure 19. Schematic for Transient Response Measurement  
http://onsemi.com  
8
 
NCP565/NCV565  
PCB Layout Considerations  
several capacitors in parallel. This reduces the overall ESR  
and reduces the instantaneous output voltage drop under  
transient load conditions. The output capacitor network  
should be as close as possible to the load for the best results.  
The schematic of NCP565 typical application circuit, which  
this PCB layout is base on, is shown in Figure 20. The output  
voltage is set to 3.3 V for this demonstration board according  
to the feedback resistors in the Table 1.  
Good PCB layout plays an important role in achieving  
good load transient performance. Because it is very sensitive  
to its PCB layout, particular care has to be taken when  
tackling Printed Circuit Board (PCB) layout. The figures  
below give an example of a layout where parasitic elements  
are minimized. For microprocessor applications it is  
customary to use an output capacitor network consisting of  
V
out  
2
4
5
V
V
out  
V
in  
in  
NCP565  
1
Adj  
NC  
C
C
C
C
C
3
1
2
4
3
150 m  
150 m  
10 m  
150 m  
150 m  
GND  
3
GND  
GND  
R
R
2
1
15.8 k  
42.2 k  
C
6
5.6 p  
Figure 20. Schematic of NCP565 Typical Application Circuit  
Figure 21. Top Layer  
http://onsemi.com  
9
 
NCP565/NCV565  
Figure 22. Bottom Layer  
NCP565  
ON Semiconductor  
www.onsemi.com  
D1  
R2  
R1  
C6  
VIN  
VOUT  
C2  
C3  
C5  
C1  
GND  
GND  
July, 2003  
Figure 23. Silkscreen Layer  
http://onsemi.com  
10  
NCP565/NCV565  
Table 1. Bill of Materials for NCP565 Adj Demonstration Board  
Item  
Used #  
Component  
Designators  
Suppliers  
Part Number  
1
4
Radial Lead Aluminum Capacitor  
C1, C2, C3, C5  
Sanyo Oscon  
16SA150M  
150 mF/16 V  
2
1
Radial Lead Aluminum Capacitor  
C4  
Sanyo Oscon  
10SL10M  
10 mF/10 V  
3
4
5
6
1
1
1
1
SMT Chip Resistor (0805) 15.8 K 1%  
SMT Chip Resistor (0805) 42.2 K 1%  
SMT Ceramic Capacitor (0603) 5.6 pF 10%  
NCP565 Low Dropout Linear Regulator  
R2  
R1  
C6  
U1  
Vishay  
Vishay  
CRCW08051582F  
CRCW08054222F  
VJ0603A5R6KXAA  
NCP565D2TR4  
Vishay  
ON Semiconductor  
http://onsemi.com  
11  
NCP565/NCV565  
Protection Diodes  
Thermal Considerations  
When large external capacitors are used with a linear  
regulator it is sometimes necessary to add protection diodes.  
If the input voltage of the regulator gets shorted, the output  
capacitor will discharge into the output of the regulator. The  
discharge current depends on the value of the capacitor, the  
This series contains an internal thermal limiting circuit  
that is designed to protect the regulator in the event that the  
maximum junction temperature is exceeded. This feature  
provides protection from a catastrophic device failure due to  
accidental overheating. It is not intended to be used as a  
substitute for proper heat sinking. The maximum device  
power dissipation can be calculated by:  
output voltage and the rate at which V drops. In the  
in  
NCP565 linear regulator, the discharge path is through a  
large junction and protection diodes are not usually needed.  
If the regulator is used with large values of output  
capacitance and the input voltage is instantaneously shorted  
to ground, damage can occur. In this case, a diode connected  
as shown in Figure 24 is recommended.  
T
* T  
A
J(max)  
P
+
D
R
qJA  
200  
180  
160  
140  
DFN 1 oz Cu  
DFN 2 oz Cu  
1N4002 (Optional)  
V
in  
V
out  
V
V
out  
in  
SOT223 1 oz Cu  
C
NCP565  
120  
100  
80  
SOT223 2 oz Cu  
Adj  
C
C
2
2
1
D PAK 1 oz Cu  
Adj  
GND  
R
R
1
2
2
D PAK 2 oz Cu  
60  
40  
0
50 100 150 200 250 300 350 400 450 500  
COPPER HEATSPREADER AREA (mm sq)  
Figure 25. Thermal Resistance  
Figure 24. Protection Diode for Large  
Output Capacitors  
http://onsemi.com  
12  
 
NCP565/NCV565  
ORDERING INFORMATION  
Device  
Nominal Output Voltage**  
Package  
Shipping  
2
NCP565D2T  
D PAK 5  
2
50 Units / Tube  
NCP565D2TG  
D PAK 5  
(PbFree)  
2
NCP565D2TR4  
D PAK 5  
Adj  
2
800 / Tape & Reel  
3000 / Tape & Reel  
NCP565D2TR4G  
D PAK 5  
(PbFree)  
NCP565MNADJT2G  
DFN6  
(PbFree)  
2
NCP565D2T12  
D PAK 3  
2
50 Units / Tube  
NCP565D2T12G  
D PAK 3  
(PbFree)  
2
NCP565D2T12R4  
NCP565D2T12R4G  
D PAK 3  
2
800 / Tape & Reel  
D PAK 3  
Fixed (1.2 V)  
(PbFree)  
NCP565MN12T2G  
NCP565ST12T3G  
NCP565MN15T2G  
NCP565MN28T2G  
NCP565MN30T2G  
NCP565D2T33G  
NCP565D2T33R4G  
NCP565MN33T2G  
DFN6  
3000 / Tape & Reel  
4000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
50 Units / Tube  
(PbFree)  
SOT223  
(PbFree)  
DFN6  
(PbFree)  
Fixed (1.5 V)  
Fixed (2.8 V)  
Fixed (3.0 V)  
DFN6  
(PbFree)  
DFN6  
(PbFree)  
2
D PAK 3  
(PbFree)  
2
D PAK 3  
800 / Tape & Reel  
3000 / Tape & Reel  
Fixed (3.3 V)  
(PbFree)  
DFN6  
(PbFree)  
2
NCV565D2TG*  
D PAK 5  
50 Units / Tube  
Adj  
(PbFree)  
NCV565D2TR4G*  
NCV565D2T12R4G*  
800 / Tape & Reel  
2
D PAK 3  
800 / Tape & Reel  
4000 / Tape & Reel  
(PbFree)  
Fixed (1.2 V)  
NCV565ST12T3G*  
SOT223  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV prefix is for automotive and other applications requiring site and change controls.  
**For other fixed output versions, please contact the factory. The max Vout available for SOT223 is 1.2 V.  
http://onsemi.com  
13  
NCP565/NCV565  
PACKAGE DIMENSIONS  
D2PAK 3  
D2T SUFFIX  
CASE 93603  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS  
A AND K.  
TERMINAL 4  
T−  
OPTIONAL  
CHAMFER  
K
E
A
U
4. DIMENSIONS U AND V ESTABLISH A MINIMUM  
MOUNTING SURFACE FOR TERMINAL 4.  
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH OR GATE PROTRUSIONS. MOLD FLASH  
AND GATE PROTRUSIONS NOT TO EXCEED  
0.025 (0.635) MAXIMUM.  
S
V
P
B
H
F
1
2
3
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN MAX  
9.804 10.236  
M
L
A
B
C
D
E
F
0.386  
0.356  
0.170  
0.026  
0.045  
0.403  
0.368  
0.180  
0.036  
0.055  
J
D
9.042  
4.318  
0.660  
1.143  
9.347  
4.572  
0.914  
1.397  
N
G
M
0.010 (0.254)  
T
R
0.051 REF  
0.100 BSC  
0.539 0.579 13.691 14.707  
0.125 MAX  
0.050 REF  
1.295 REF  
G
H
J
2.540 BSC  
3.175 MAX  
1.270 REF  
K
L
SOLDERING FOOTPRINT*  
C
0.000  
0.088  
0.018  
0.058  
0.010  
0.102  
0.026  
0.078  
0.000  
0.254  
2.591  
0.660  
1.981  
M
N
P
R
S
U
V
2.235  
0.457  
1.473  
10.49  
5_REF  
5_REF  
0.116 REF  
0.200 MIN  
0.250 MIN  
2.946 REF  
5.080 MIN  
6.350 MIN  
8.38  
16.155  
3.25X04  
2X  
1.016  
5.080  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
14  
NCP565/NCV565  
PACKAGE DIMENSIONS  
D2PAK 5  
CASE 936A02  
ISSUE C  
NOTES:  
TERMINAL 6  
T−  
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
OPTIONAL  
CHAMFER  
U
U1  
A
E
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A AND K.  
4. DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING  
SURFACE FOR TERMINAL 6.  
S
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR  
GATE PROTRUSIONS. MOLD FLASH AND GATE  
PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM.  
K
V
B
V1  
H
INCHES  
MILLIMETERS  
1
2
3
4 5  
DIM  
A
B
C
D
MIN  
MAX  
0.403  
0.368  
0.180  
0.036  
0.055  
MIN  
9.804  
9.042  
4.318  
0.660  
1.143  
MAX  
10.236  
9.347  
4.572  
0.914  
1.397  
M
L
0.386  
0.356  
0.170  
0.026  
0.045  
D
M
0.010 (0.254)  
T
P
N
E
G
R
G
H
0.067 BSC  
1.702 BSC  
0.539  
0.579 13.691  
14.707  
K
L
M
N
P
0.050 REF  
1.270 REF  
0.000  
0.088  
0.018  
0.058  
0.010  
0.102  
0.026  
0.078  
0.000  
2.235  
0.457  
1.473  
0.254  
2.591  
0.660  
1.981  
C
SOLDERING FOOTPRINT*  
R
S
U
V
U1  
V1  
5_ REF  
5_ REF  
0.116 REF  
0.200 MIN  
0.250 MIN  
2.946 REF  
5.080 MIN  
6.350 MIN  
8.38  
0.33  
0.297  
0.038  
0.305  
0.046  
7.544  
0.965  
7.747  
1.168  
1.702  
0.067  
10.66  
0.42  
1.016  
0.04  
3.05  
0.12  
16.02  
0.63  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
15  
NCP565/NCV565  
PACKAGE DIMENSIONS  
SOT223 (TO261)  
CASE 318E04  
ISSUE N  
D
b1  
NOTES:  
6. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
7. CONTROLLING DIMENSION: INCH.  
MILLIMETERS  
INCHES  
NOM  
0.064  
0.002  
0.030  
0.121  
0.012  
0.256  
0.138  
0.091  
0.037  
−−−  
4
2
DIM  
A
A1  
b
b1  
c
D
E
e
e1  
L
L1  
MIN  
1.50  
0.02  
0.60  
2.90  
0.24  
6.30  
3.30  
2.20  
0.85  
0.20  
1.50  
6.70  
0°  
NOM  
1.63  
0.06  
0.75  
3.06  
0.29  
6.50  
3.50  
2.30  
0.94  
−−−  
1.75  
7.00  
MAX  
MIN  
0.060  
0.001  
0.024  
0.115  
0.009  
0.249  
0.130  
0.087  
0.033  
0.008  
0.060  
0.264  
0°  
MAX  
0.068  
0.004  
0.035  
0.126  
0.014  
0.263  
0.145  
0.094  
0.041  
−−−  
H
E
E
1.75  
0.10  
0.89  
3.20  
0.35  
6.70  
3.70  
2.40  
1.05  
−−−  
2.00  
7.30  
10°  
1
3
b
e1  
e
0.069  
0.276  
0.078  
0.287  
10°  
C
q
H
E
A
q
0.08 (0003)  
A1  
L
L1  
SOLDERING FOOTPRINT  
3.8  
0.15  
2.0  
0.079  
6.3  
0.248  
2.3  
0.091  
2.3  
0.091  
2.0  
0.079  
mm  
inches  
1.5  
0.059  
ǒ
Ǔ
SCALE 6:1  
http://onsemi.com  
16  
NCP565/NCV565  
PACKAGE DIMENSIONS  
DFN6, 3x3.3, 0.95 PITCH  
CASE 506AX01  
ISSUE O  
A
NOTES:  
D
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
B
E
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.25 AND 0.30 mm  
FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
PIN 1  
REFERENCE  
MILLIMETERS  
DIM MIN  
0.80  
A1 0.00  
NOM MAX  
A
−−−  
−−−  
0.90  
0.05  
2X  
0.15  
C
A3  
b
0.20 REF  
−−−  
3.00 BSC  
−−−  
3.30 BSC  
−−−  
0.30  
0.40  
2.10  
1.30  
2X  
D
D2 1.90  
E
E2 1.10  
0.15  
C
TOP VIEW  
e
K
L
0.95 BSC  
−−−  
−−−  
0.10 C  
0.08 C  
0.20  
0.40  
−−−  
0.60  
0.15  
A
L1 0.00  
−−−  
6X  
SEATING  
PLANE  
(A3)  
C
SIDE VIEW  
D2  
A1  
SOLDERING FOOTPRINT*  
4X  
e
3.60  
6X L  
6X  
0.50  
K
1.35  
1
6
3
4
1
E2  
0.95  
PITCH  
2.15  
6X L1  
6X b (NOTE 3)  
0.10 C A B  
0.05  
6X  
0.83  
BOTTOM VIEW  
DIMENSIONS: MILLIMETERS  
C
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
The product described herein (NCP565), may be covered by one or more of the following U.S. patents: 5,920,184; 5,834,926.  
There may be other patents pending.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP565/D  

相关型号:

NCP565MN30T2G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565MN33T2G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565MNADJT2G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565ST12T3G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565_07

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565_10

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565_16

80 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP566

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP5661

Low Output Voltage,Ultra-Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661DT12RKG

Low Output Voltage,Ultra−Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661DT18RKG

Low Output Voltage, Ultra-Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661DT25RKG

Low Output Voltage, Ultra-Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI