NCP6343BFCCT1G [ONSEMI]

3 A 处理器 - 带动态电压缩放的内存供应,I2C 编程瞬变负载帮助器;
NCP6343BFCCT1G
型号: NCP6343BFCCT1G
厂家: ONSEMI    ONSEMI
描述:

3 A 处理器 - 带动态电压缩放的内存供应,I2C 编程瞬变负载帮助器

文件: 总32页 (文件大小:984K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Synchronous Buck  
Converter - Step Down  
3.0 A  
NCP6343  
The NCP6343 is a synchronous buck converter optimized to supply  
the different sub systems of portable applications powered by one cell  
LiIon or three cell Alkaline/NiCd/NiMH batteries. The device is able  
to deliver up to 3.0 A, with programmable output voltage from 0.6 V  
to 1.4 V. It can share the same output rail with another DCDC and  
works as a transient load helper. Operation at a 3 MHz switching  
frequency allows the use of small components. Synchronous  
rectification and automatic PWM/PFM transitions improve overall  
solution efficiency. The NCP6343 is in a space saving, low profile  
1.99 x 1.34 mm CSP15 package.  
www.onsemi.com  
MARKING  
DIAGRAM  
6343x  
ALYWW  
G
WLCSP15  
CASE 567GB  
x
= P: Prototype  
= Blank: 1.225 V 2.0 A  
Features  
= A: 1.225 V 3.0 A  
= B: 1.225 V 3.0 A  
= D: 1.18125 V 3.0 A  
= M: 0.925 V 3.0 A  
= S: 1.050 V 3.0 A  
= V: 1.225 V 3.0 A  
= X: 1.225 V 3.0 A  
= Assembly Location  
= Wafer Lot  
Input Voltage Range from 2.3 V to 5.5 V: Battery and 5 V Rail  
Powered Applications  
Programmable Output Voltage: 0.6 V to 1.4 V in 6.25 mV Steps  
Modular Output Stage Drive Strength for Increased Efficiency  
Depending on the Output Current  
A
L
Y
3 MHz Switching Frequency with On Chip Oscillator  
Uses 470 nH Inductor and 22 mF Capacitors for Optimized Footprint  
= Year  
WW = Work Week  
and Solution Thickness  
G
= PbFree Package  
PFM/PWM Operation for Optimum Increased Efficiency  
PbFree indicator, G or microdot (G),  
Ultra Low 0.8 mA Off Mode Current  
Low 35 mA Quiescent Current  
may or may not be present  
2
I C Control Interface with Interrupt and Dynamic Voltage Scaling  
PINOUT DIAGRAM  
NCP6343  
Support  
2
3
1
Thermal Protections and Temperature Management  
Transient Load Helper: Share the Same Rail with Another DCDC  
Small 1.99 x 1.34 mm / 0.4 mm Pitch CSP Package  
These are PbFree Devices  
A
B
C
D
E
PVIN  
SW  
PGND  
Typical Applications  
Smartphones  
Webtablets  
PVIN  
PVIN  
AVIN  
SW  
PGND  
EN  
PGND  
PGND  
SDA  
NCP6343  
References  
Oscillator  
A1  
PVIN  
B1  
Supply Input  
AVIN  
D1  
E1  
Supply Input  
C1  
Core  
10 uF  
AGND  
DCDC  
3.0 A  
SW  
A2  
B2  
470 nH  
22 uF  
Thermal  
Protection  
A3  
B3  
C3  
C2  
PGND  
FB  
Enable Control EN  
Input  
D2  
AGND  
SCL  
FB  
Operating  
Mode  
Control  
I@C  
E3  
Core  
Processor  
Memory  
DCDC  
3 MHz  
Controller  
SDA  
SCL  
D3  
E2  
Sense  
22 uF  
Processor I@C  
(Top View)  
15Pin 0.40 mm pitch WLCSP  
Control Interface  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 30 of  
this data sheet.  
Figure 1. Typical Application Circuit  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
August, 2020 Rev. 13  
NCP6343/D  
NCP6343  
SUPPLY  
INPUT  
PVIN  
POWER  
INPUT  
AVIN  
AGND  
Core  
3.0 A  
DCDC  
ANALOG  
GROUND  
Thermal  
SW  
MODULAR  
DRIVER  
Protection  
SWITCH  
NODE  
Output Voltage  
Monitoring  
ENABLE  
CONTROL  
INPUT  
3 MHz DCDC  
Converter  
Operating  
PGND  
EN  
Mode Control  
Controller  
POWER  
GROUND  
2
PROCESSOR I C  
Logic Control  
Interrupt  
SCL  
SDA  
2
I C  
FB  
Sense  
CONTROL  
INTERFACE  
FEEDBACK  
Figure 2. Simplified Block Diagram  
www.onsemi.com  
2
NCP6343  
NCP6343  
2
3
1
A
B
C
D
E
PVIN  
SW  
SW  
PGND  
PVIN  
PVIN  
AVIN  
PGND  
PGND  
SDA  
PGND  
EN  
AGND  
SCL  
FB  
Figure 3. Pin Out (Top View)  
Table 1. PIN FUNCTION DESCRIPTION  
Pin  
Name  
Type  
Description  
REFERENCE  
D1  
E1  
AVIN  
AGND  
Analog  
Input  
Analog Supply. This pin is the device analog and digital supply. Could be connected directly to  
the VIN plane or to a dedicated 1.0 mF ceramic capacitor. Must be equal to PVIN.  
Analog  
Ground  
Analog Ground. Analog and digital modules ground. Must be connected to the system ground.  
CONTROL AND SERIAL INTERFACE  
D2  
E2  
EN  
Digital Input  
Digital Input  
Enable Control. Active high will enable the part. Do not leave this pin floating.  
2
SCL  
I C interface Clock line. There is an internal pull down resistor on this pin; could be left open if not  
used  
2
D3  
SDA  
Digital  
I C interface Bidirectional Data line. There is an internal pull down resistor on this pin; could be  
Input/Output left open if not used  
DCDC CONVERTER  
A1, B1,  
C1  
PVIN  
Power Input  
Switch Supply. These pins must be decoupled to ground by a 10 mF ceramic capacitor. It should  
be placed as close as possible to these pins. All pins must be used with short heavy connections.  
Must be equal to AVIN.  
A2, B2  
SW  
Power  
Output  
Switch Node. These pins supply drive power to the inductor. Typical application uses 0.470 mH  
inductor; refer to application section for more information.  
All pins must be used with short heavy connections.  
A3, B3,  
C3, C2  
PGND  
FB  
Power  
Switch Ground. This pin is the power ground and carries the high switching current. High quality  
ground must be provided to prevent noise spikes. To avoid highdensity current flow in a limited  
PCB track, a local ground plane that connects all PGND pins together is recommended. Analog  
and power grounds should only be connected together in one location with a trace.  
Ground  
E3  
Analog  
Input  
Feedback Voltage input. Must be connected to the output capacitor positive terminal with a  
trace, not to a plane. This is the positive input to the error amplifier.  
www.onsemi.com  
3
NCP6343  
Table 2. MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Analog and power pins: AVIN, PVIN, SW, FB  
V
A
0.3 to + 6.0  
V
Digital pins: SCL, SDA, EN:  
Input Voltage  
V
DG  
0.3 to V +0.3 6.0  
V
A
Input Current  
I
10  
mA  
DG  
Human Body Model (HBM) ESD Rating (Note 1)  
Machine Model (MM) ESD Rating (Note 1)  
ESD HBM  
ESD MM  
2000  
150  
V
V
Charged Device Model (CDM) ESD Rating (Note 1)  
ESD CDM  
2000  
V
Latch Up Current: (Note 2)  
Digital Pins  
I
LU  
mA  
10  
100  
All Other Pins  
Storage Temperature Range  
Maximum Junction Temperature  
Moisture Sensitivity (Note 3)  
T
65 to + 150  
40 to +150  
Level 1  
°C  
°C  
STG  
T
JMAX  
MSL  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. This device series contains ESD protection and passes the following ratings:  
Human Body Model (HBM) 2.0 kV per JEDEC standard: JESD22A114.  
Machine Model (MM) 150 V per JEDEC standard: JESD22A115.  
Charged Device Model (CDM) 2.0 kV per JEDEC standard: JESD22C101 Class IV.  
2. Latch up Current per JEDEC standard: JESD78 class II.  
3. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: JSTD020A.  
Table 3. OPERATING CONDITIONS (Note 4)  
Symbol  
AV PV  
Parameter  
Conditions  
Min  
2.3  
40  
40  
Typ  
Max  
5.5  
+85  
+125  
Unit  
V
Power Supply  
AVIN = PVIN  
IN,  
IN  
T
A
Ambient Temperature Range  
25  
25  
°C  
T
J
Junction Temperature Range (Note 5)  
Thermal Resistance Junction to Ambient (Note 6)  
Power Dissipation Rating (Note 7)  
°C  
R
CSP15 on Demoboard  
65  
°C/W  
mW  
mW  
mH  
q
JA  
P
P
T
A
85°C  
615  
923  
0.47  
D
Power Dissipation Rating (Note 7)  
T = 65°C  
A
D
L
Inductor for DCDC converter (Note 4)  
Output Capacitor for DCDC Converter (Note 4)  
Input Capacitor for DCDC Converter (Note 4)  
Co  
28  
4.7  
55  
mF  
Cin  
mF  
4. Including deratings (Refer to the Application Information section of this document for further details)  
5. The thermal shutdown set to 150°C (typical) avoids potential irreversible damage on the device due to power dissipation.  
6. The R  
is dependent of the PCB heat dissipation.  
q
JA  
7. The maximum power dissipation (P ) is dependent by input voltage, maximum output current and external components selected.  
D
125 * TA  
RqJA  
+
PD  
www.onsemi.com  
4
 
NCP6343  
Table 4. ELECTRICAL CHARACTERISTICS (Note 9)  
Min and Max Limits apply for T = 40°C to +85°C, AVIN = PVIN = 3.6 V and default configuration, unless otherwise specified.  
A
Typical values are referenced to T = +25°C, AVIN = PVIN = 3.6 V and default configuration, unless otherwise specified.  
A
Symbol  
SUPPLY CURRENT: Pins AVIN – PVINx  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I
Operating quiescent current PWM DCDC active in Forced PWM  
no load  
12  
35  
7
20  
70  
15  
mA  
mA  
mA  
Q PWM  
I
Operating quiescent current PFM  
DCDC active in Auto mode  
no load minimal switching  
Q PFM  
I
Product sleep mode current  
EN high, DCDC off or  
SLEEP  
EN low and Sleep_Mode high  
V
IN  
= 2.5 V to 5.5 V  
I
Product in off mode  
EN and Sleep_Mode low  
mA  
OFF  
V
= 2.5 V to 5.5 V (All other parts)  
(NCP6343XFCCT1G)  
0.8  
7
5
15  
IN  
DCDC CONVERTER  
PV  
Input Voltage Range  
2.3  
2.0  
2.5  
3.0  
1  
5.5  
V
A
IN  
OUTMAX  
I
Maximum Output Current  
Ipeak[1..0] = 00/01 (Note 10)  
Ipeak[1..0] = 10 (Note 10)  
Ipeak[1..0] = 11 (Note 10)  
D
Output Voltage DC Error  
Forced PWM mode  
No load  
1
%
VOUT  
Forced PWM mode, V range,  
1  
1  
1
2
IN  
I
up to I  
(Note 10)  
OUT  
OUTMAX  
Auto mode, V range,  
IN  
(Note 10)  
OUTMAX  
I
up to I  
OUT  
F
Switching Frequency  
2.7  
3
3.3  
64  
MHz  
SW  
R
PChannel MOSFET  
On Resistance  
From PVIN to SW (all Modules)  
V = 5.0 V  
IN  
36  
mW  
ONHS  
R
NChannel MOSFET  
On Resistance  
From SW to PGND (all Modules)  
V = 5.0 V  
IN  
19  
40  
mW  
ONLS  
I
Peak Inductor Current  
Open loop – Ipeak[1..0] = 00/01  
Open loop – Ipeak[1..0] = 10  
Open loop – Ipeak[1..0] = 11  
2.5  
3.0  
3.5  
2.9  
3.4  
3.9  
0.2  
0
3.3  
3.8  
4.3  
A
PK  
DC  
Load Regulation  
Line Regulation  
I
from 0 A to I (Note 10)  
OUTMAX  
%/A  
%
LOAD  
OUT  
DC  
I
= 3 A  
LINE  
OUT  
2.3 V V 5.5 V (Note 10)  
IN  
AC  
Transient Load Response  
Transient Line Response  
tr = ts = 100 ns  
50  
30  
mV  
mV  
LOAD  
Load step 1.3 A (Note 10)  
AC  
tr = ts = 10 ms  
100 mA Load (Note 10)  
LINE  
D
Maximum Duty Cycle  
Turn on time  
100  
80  
%
t
t
Time from EN transitions from Low to  
High to 95% of Output Voltage  
100  
ms  
START  
(DELAY[2..0] = 000b and DVSup = 0)  
Turn on time  
Time from EN transitions from Low to  
High to 95% of Output Voltage  
(DELAY[2..0] = 000b and DVSup = 1)  
425  
25  
550  
35  
ms  
START  
R
DCDC Active Output Discharge  
Vout = 1.225 V  
W
DISDCDC  
2
8. Devices that use nonstandard supply voltages which do not conform to the intent I C bus system levels must relate their input levels to  
the V voltage to which the pullup resistors R are connected.  
DD  
P
9. Refer to the Application Information section of this data sheet for more details.  
10.Guaranteed by design and characterized.  
www.onsemi.com  
5
 
NCP6343  
Table 4. ELECTRICAL CHARACTERISTICS (Note 9)  
Min and Max Limits apply for T = 40°C to +85°C, AVIN = PVIN = 3.6 V and default configuration, unless otherwise specified.  
A
Typical values are referenced to T = +25°C, AVIN = PVIN = 3.6 V and default configuration, unless otherwise specified.  
A
Symbol  
EN  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
High input voltage  
1.05  
V
V
IH  
V
Low input voltage  
0.4  
4.5  
IL  
T
FTR  
Digital input X Filter  
EN rising and falling  
DBN_Time = 01 (Note 10)  
0.5  
ms  
I
Digital input X PullDown  
(input bias current)  
0.05  
1.00  
mA  
PD  
2
I C  
V 2  
I CINT  
High level at SCL/SCA line  
SCL, SDA low input voltage  
SCL, SDA high input voltage  
1.7  
5.0  
0.5  
V
V
V
V 2  
I CIL  
SCL, SDA pin (Notes 8, 10)  
SCL, SDA pin (Notes 8, 10)  
V 2  
I CIH  
0.8 *  
V 2  
I CINT  
V 2  
I COL  
SDA low output voltage  
I
= 3 mA (Note 10)  
0.4  
3.4  
V
SINK  
2
F
SCL  
I C clock frequency  
(Note 10)  
MHz  
TOTAL DEVICE  
V
Under Voltage Lockout  
V
V
falling  
rising  
2.3  
V
UVLO  
IN  
V
Under Voltage Lockout  
Hysteresis  
60  
200  
mV  
UVLOH  
IN  
T
Thermal Shut Down Protection  
Warning Rising Edge  
150  
135  
105  
30  
°C  
°C  
°C  
°C  
°C  
°C  
SD  
T
WARNING  
2
T
Pre Warning Threshold  
I C default value  
PWTH  
T
Thermal Shut Down Hysteresis  
Thermal warning Hysteresis  
Thermal prewarning Hysteresis  
SDH  
WARNINGH  
T
15  
T
6
PWTH H  
2
8. Devices that use nonstandard supply voltages which do not conform to the intent I C bus system levels must relate their input levels to  
the V voltage to which the pullup resistors R are connected.  
DD  
P
9. Refer to the Application Information section of this data sheet for more details.  
10.Guaranteed by design and characterized.  
www.onsemi.com  
6
 
NCP6343  
TYPICAL OPERATING CHARACTERISTICS AV = PV = 3.6 V, T = +25°C  
IN  
IN  
J
DCDC = 1.225 V, Ipeak = 3.9 A (Unless otherwise noted). L = 0.47 mH PIFE20161B – Cout = 2x 22 mF 0603, Cin = 4.7 mF 0603.  
95  
95  
90  
85  
80  
+25°C  
+85°C  
V
= 5.0 V  
= 2.9 V  
IN  
90  
85  
80  
40°C  
V
IN  
= 3.6 V  
V
IN  
75  
70  
75  
70  
0
0
0
1000  
2000  
3000  
1
1
1
10  
100  
(mA)  
1000  
10,000  
I
(mA)  
I
OUT  
OUT  
Figure 4. Efficiency vs. ILOAD and VIN  
VOUT = 1.39375 V, SPM6530 Inductor  
Figure 5. Efficiency vs. ILOAD and Temperature  
V
OUT = 1.39375 V, SPM6530 Inductor  
95  
90  
95  
90  
+25°C  
V
= 5.0 V  
IN  
40°C  
+85°C  
85  
80  
85  
80  
V
IN  
= 3.6 V  
V
IN  
= 2.9 V  
75  
70  
75  
70  
1000  
2000  
3000  
10  
100  
(mA)  
1000  
10,000  
I
(mA)  
I
OUT  
OUT  
Figure 6. Efficiency vs. ILOAD and VIN  
VOUT = 1.225 V, SPM6530 Inductor  
Figure 7. Efficiency vs. ILOAD and Temperature  
V
OUT = 1.225 V, SPM6530 Inductor  
90  
85  
80  
75  
70  
90  
85  
80  
75  
70  
+25°C  
V
IN  
= 5.0 V  
40°C  
+85°C  
V
IN  
= 3.6 V  
V
IN  
= 2.9 V  
65  
60  
65  
60  
1000  
2000  
3000  
10  
100  
(mA)  
1000  
10,000  
I
(mA)  
I
OUT  
OUT  
Figure 8. Efficiency vs. ILOAD and VIN  
VOUT = 0.60 V, SPM6530 Inductor  
Figure 9. Efficiency vs. ILOAD and Temperature  
OUT = 0.60 V, SPM6530 Inductor  
V
www.onsemi.com  
7
NCP6343  
TYPICAL OPERATING CHARACTERISTICS AV = PV = 3.6 V, T = +25°C  
IN  
IN  
J
DCDC = 1.225 V, Ipeak = 3.9 A (Unless otherwise noted). L = 0.47 mH PIFE20161B – Cout = 2x 22 mF 0603, Cin = 4.7 mF 0603.  
95  
95  
90  
85  
80  
+25°C  
+85°C  
90  
85  
80  
40°C  
V
= 5.0 V  
= 2.9 V  
IN  
V
IN  
= 3.6 V  
V
IN  
75  
70  
75  
70  
0
1000  
2000  
3000  
1
10  
100  
(mA)  
1000  
10,000  
I
(mA)  
I
OUT  
OUT  
Figure 10. Efficiency vs. ILOAD and VIN  
VOUT = 1.225 V, PIFE20161B Inductor  
Figure 11. Efficiency vs. ILOAD and Temperature  
OUT = 1.225 V, PIFE20161B Inductor  
V
1.237  
1.231  
1.225  
1.0  
0.5  
0
V
= 3.6 V  
IN  
V
IN  
= 2.9 V  
+25°C  
+85°C  
V
= 5.0 V  
IN  
40°C  
1.219  
1.213  
0.5  
1.0  
0
1000  
2000  
3000  
0
1000  
2000  
3000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 12. VOUT Accuracy vs. ILOAD and VIN  
VOUT = 1.225 V  
Figure 13. VOUT Accuracy vs. ILOAD and  
Temperature, VOUT = 1.225 V, VIN = 3.6 V  
0.610  
0.605  
0.600  
1.410  
1.405  
V
V
= 3.6 V  
= 2.9 V  
IN  
V
V
= 3.6 V  
= 2.9 V  
IN  
1.400  
1.395  
1.390  
IN  
IN  
V
IN  
= 5.0 V  
V
IN  
= 5.0 V  
0.595  
0.590  
1.385  
1.380  
0
1000  
2000  
3000  
0
1000  
2000  
3000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 14. VOUT Accuracy vs. ILOAD and VIN  
VOUT = 0.60 V  
Figure 15. VOUT Accuracy vs. ILOAD and VIN  
VOUT = 1.39375 V  
www.onsemi.com  
8
NCP6343  
TYPICAL OPERATING CHARACTERISTICS AV = PV = 3.6 V, T = +25°C  
IN  
IN  
J
DCDC = 1.225 V, Ipeak = 3.9 A (Unless otherwise noted). L = 0.47 mH PIFE20161B – Cout = 2x 22 mF 0603, Cin = 4.7 mF 0603.  
75  
35  
30  
25  
20  
+85°C  
65  
55  
45  
+85°C  
+25°C  
+25°C  
40°C  
40°C  
35  
25  
15  
10  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
5.5  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
5.5  
5.5  
V
V
IN  
IN  
Figure 16. HSS RON vs. VIN and Temperature  
Figure 17. LSS RON vs. VIN and Temperature  
5
4
3
15  
10  
+85°C  
+25°C  
40°C  
2
+85°C  
5
0
+25°C  
40°C  
1
0
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
V
V
IN  
IN  
Figure 18. IOFF vs. VIN and Temperature  
Figure 19. ISLEEP vs. VIN and Temperature  
100  
80  
20  
60  
+25°C  
+85°C  
15  
10  
40  
+85°C  
40°C  
2.5  
40°C  
20  
0
+25°C  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
V
V
IN  
IN  
Figure 20. IQ PFM vs. VIN and Temperature  
Figure 21. IQ PWM vs. VIN and Temperature  
www.onsemi.com  
9
NCP6343  
TYPICAL OPERATING CHARACTERISTICS AV = PV = 3.6 V, T = +25°C  
IN  
IN  
J
DCDC = 1.225 V, Ipeak = 3.9 A (Unless otherwise noted). L = 0.47 mH PIFE20161B – Cout = 2x 22 mF 0603, Cin = 4.7 mF 0603.  
600  
600  
500  
500  
400  
Enter PWM  
Exit PWM  
Enter PWM  
Exit PWM  
400  
300  
200  
300  
200  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
Figure 22. Switchover Point VOUT = 1.225 V  
Figure 23. Switchover Point VOUT = 1.39375 V  
17 mV  
6.2 mV  
3.01 MHz  
Figure 24. PWM Ripple  
Figure 25. PFM Ripple  
85.8 ms  
Normal  
PowerUp  
Figure 26. Normal Power Up, VOUT = 1.225 V  
www.onsemi.com  
10  
NCP6343  
TYPICAL OPERATING CHARACTERISTICS AV = PV = 3.6 V, T = +25°C  
IN  
IN  
J
DCDC = 1.225 V, Ipeak = 3.9 A (Unless otherwise noted). L = 0.47 mH PIFE20161B – Cout = 2x 22 mF 0603, Cin = 4.7 mF 0603.  
51 mV  
50 mV  
43 mV  
44 mV  
0.1 A / 1.4 A / 0.1 A  
0.1 A / 1.4 A / 0.1 A  
Figure 27. Transient Load 0.1 1.4 A  
Transient Line 4.2 3.6 V Auto Mode  
Figure 28. Transient Load 0.1 1.4 A  
Transient Line 3.6 4.2 V Auto Mode  
52 mV  
42 mV  
51 mV  
48 mV  
1 A / 1.3 A / 1 A  
1 A / 1.3 A / 1 A  
Figure 29. Transient Load 1.0 2.3 A  
Transient Line 4.2 3.6 V Auto Mode  
Figure 30. Transient Load 1.0 2.3 A  
Transient Line 3.6 4.2 V Auto Mode  
48 mV  
41 mV  
38 mV  
41 mV  
1 A / 1.3 A / 1 A  
1 A / 1.3 A / 1 A  
Figure 31. Fast Transient Load  
Figure 32. Fast Transient Load  
0.1 1.4 A Auto Mode  
1.0 2.3 A Auto Mode  
www.onsemi.com  
11  
NCP6343  
DETAILED OPERATING DESCRIPTION  
Forced PWM  
Detailed Descriptions  
The NCP6343 is voltage mode stand alone synchronous  
DC to DC converter optimized to supply different sub  
systems of portable applications powered by one cell LiIon  
or three cells Alkaline/NiCd/NiMh. The IC can deliver up to  
The NCP6343 can be programmed to only use PWM and  
disable the transition to PFM if so desired. (PWM bits of  
COMMAND register).  
Output Stage  
2
3 A at an I C selectable voltage ranging from 0.60 V to  
NCP6343 is a high output current capable integrated DC  
to DC converter. To supply such a high current, the internal  
MOSFETs need to be large. The output stage is composed  
of 8 modules that can be individually Enabled / Disabled by  
setting the MODULE register.  
1.40 V. It can share the same output rail with another DCDC  
and works as a transient load helper without sinking current  
on shared rail. A 3 MHz switching frequency allows the use  
of smaller output filter components. Synchronous  
rectification and automatic PWM/PFM transitions improve  
overall solution efficiency. Forced PWM is also  
configurable. Operating modes, configuration, and output  
power can be easily selected either by programming a set of  
Inductor Peak Current Limitation  
NCP6343 is a 2.0 A to 3.0 A output current capable.  
During normal operation, peak current limitation will  
monitor and limit the current through the inductor. This  
current limitation is particularly useful when size and/or  
height constrain inductor power. The user can select peak  
current to keep inductor within its specifications. The peak  
current can be set by writing IPEAK[1..0] bits in LIMCONF  
register.  
2
registers using an I C compatible interface capable of  
2
operation up to 3.4 MHz. Default I C settings are factory  
programmable.  
DC to DC Buck Operation  
The converter is a synchronous rectifier type with both  
high side and low side integrated switches. Neither external  
transistor nor diodes are required for NCP6343 operation.  
Feedback and compensation network are also fully  
integrated. The converter can operate in two different  
modes: PWM and PFM. The transition between PWM/PFM  
modes can occur automatically or the switcher can be placed  
Table 5. Ipeak VALUES  
IPEAK[1..0]  
Default Inductor Peak Current (A)  
2.9 A for 2.0 A output current  
2.9 A for 2.0 A output current  
3.4 A for 2.5 A output current  
3.9 A for 3.0 A output current  
00  
01  
10  
11  
2
in forced PWM mode by I C programming (PWM bits of  
COMMAND register).  
PWM (Pulse Width Modulation) Operating Mode  
In medium and high load conditions, NCP6343 operates  
in PWM mode from a fixed clock and adapts its duty cycle  
to regulate the desired output voltage. In this mode, the  
inductor current is in CCM (Continuous Current Mode) and  
the voltage is regulated by PWM. The internal NMOSFET  
switch operates as synchronous rectifier and is driven  
complementary to the PMOSFET switch. In CCM, the  
lower switch (NMOSFET) in a synchronous converter  
provides a lower voltage drop than the diode in an  
asynchronous converter, which provides less loss and higher  
efficiency.  
Output Voltage  
Output voltage is set internally by integrated resistor  
bridge and error amplifier that drives the PWM/PFM  
controller. No extra component is needed to set output  
voltage. However, writing in the Vout[6..0] bits of the PROG  
register will change settings. Output voltage level can be  
programmed in the 0.6 V to 1.4 V range by 6.25 mV steps.  
Under Voltage Lock Out (UVLO)  
NCP6343 core does not operate for voltages below the  
Under Voltage lock Out (UVLO) level. Below UVLO  
threshold, all internal circuitry (both analog and digital) is  
held in reset.  
PFM (Pulse Frequency Modulation) Operating Mode  
In order to save power and improve efficiency at low loads  
the NCP6343 operates in PFM mode as the inductor drops  
into DCM (Discontinuous Current Mode). The upper FET  
on time is kept constant and the switching frequency is  
variable. Output voltage is regulated by varying the  
switching frequency which becomes proportional to loading  
current. As it does in PWM mode, the internal NMOSFET  
operates as synchronous rectifier after each PMOSFET  
onpulse. When load increases and current in inductor  
becomes continuous again, the controller automatically  
turns back to PWM mode.  
NCP6343 operation is guaranteed down to VUVLO when  
battery voltage is dropping off. To avoid erratic on / off  
behavior, a maximum 200 mV hysteresis is implemented.  
Restart is guaranteed at 2.5 V when VBAT voltage is  
recovering or rising.  
Thermal Management  
Thermal shutdown (TSD)  
The thermal capability of IC can be exceeded due to step  
down converter output stage power level. A thermal  
protection circuitry is therefore implemented to prevent the  
IC from damage. This protection circuitry is only activated  
www.onsemi.com  
12  
NCP6343  
Active Output Discharge  
when the core is in active mode (output voltage is turned on).  
During thermal shut down, output voltage is turned off.  
When NCP6343 returns from thermal shutdown, it can  
restart in 2 different configurations depending on REARM  
bit in the LIMCONF register (see register description  
section):  
To make sure that no residual voltage remains in the power  
supply rail, an active discharge path can ground the  
NCP6343 output voltage.  
For maximum flexibility, this feature can be easily  
disabled or enabled with DISCHG bit in PGOOD register  
However the discharged path is activated during the first  
100 ms after battery insertion.  
If REARM = 0 then NCP6343 does not restart after  
TSD. To restart, an EN pin toggle is required.  
If REARM = 1, NCP6343 restarts with register values  
Enabling  
set prior to thermal shutdown.  
The EN pin controls NCP6343 start up: EN pin Low to  
High transition starts the power up sequencer. If EN is made  
low, the DC to DC converter is turned off and device enters:  
A Thermal shut down interrupt is raised upon this event.  
Thermal shut down threshold is set at 150°C (typical)  
when the die temperature increases and, in order to avoid  
erratic on / off behavior, a 30°C hysteresis is implemented.  
After a typical 150°C thermal shut down, NCP6343 will  
resume to normal operation when the die temperature cools  
to 120°C.  
2
In Sleep Mode if Sleep_Mode I C bit is high,  
2
In Off Mode if Sleep_Mode I C bit is low.  
When EN pin is set to a high level, the DC to DC converter  
can be enabled / disabled depending of the state of the EN  
2
bit of the PROG register: If EN I C bit is high, DCDC is  
activated, If EN I C is low the DC to DC converter is turned  
2
Thermal Warnings  
off and device enters:  
In addition to the TSD, the die temperature monitoring  
will flag potential die over temperature. A thermal warning  
and thermal prewarning are implemented which can  
inform the processor through two different interrupts  
2
In Sleep Mode if Sleep_Mode I C bit is high,  
2
In Off Mode if Sleep_Mode I C bit is low.  
The EN pin should not be left floating.  
2
(accessible via I C) that NCP6343 is close to its thermal  
Power Up Sequence (PUS)  
shutdown so that preventive measures to cool down die  
temperature can be taken by software.  
In order to power up the circuit, the input voltage AVIN  
has to rise above the VUVLO threshold. This triggers the  
internal core circuitry power up which is the “Wake Up  
Time” (including “Bias Time”).  
This delay is internal and cannot be bypassed. EN pin  
transition within this delay corresponds to the “Initial power  
up sequence” (IPUS):  
The Warning threshold is set by hardware to 135°C typical  
when the die temperature increases. The PreWarning  
threshold is set by default to 105°C, but can be changed by  
user by setting the TPWTH[1..0] bits in the LIMCONF  
register.  
AVIN  
UVLO  
POR  
EN  
DELAY[2..0]  
VOUT  
~ 50 us  
32 us  
Wake up  
Time  
Init  
Time  
DVS ramp  
Time  
Figure 33. Initial Power Up Sequence  
www.onsemi.com  
13  
NCP6343  
Normal, Quick and Fast Power Up Sequence  
In addition a user programmable delay will also take place  
between end of Core circuitry turn on (Wake Up Time and  
Bias Time) and Init time: The DELAY[2..0] bits of TIME  
register will set this user programmable delay with a 2 ms  
resolution. With default delay of 0 ms, the NCP6343 IPUS  
takes roughly 85 ms, means DCDC output voltage will be  
ready within 110 ms.  
The previous description applies only when the EN  
transitions during the internal core circuitry power up (Wake  
up and calibration time). Otherwise 3 different cases are  
possible:  
Enabling the part by setting EN pin from Off Mode will  
result in “Normal power up sequence” (NPUS, with  
DELAY;[2..0]).  
Enabling the part by setting EN pin from Sleep Mode will  
result in “Quick power up sequence” (QPUS, with  
DELAY;[2..0]).  
2
NOTE: During the Wake Up time, the I C interface is not  
2
active. Any I C request to the IC during this time period will  
result in a NACK reply.  
Enabling the part by setting EN bits of the PROG register  
(whereas EN is already high results in “Fast power up  
sequence” (FPUS, without DELAY[2..0]).  
AVIN  
UVLO  
POR  
EN  
O
F
F
DELAY[2..0]  
VOUT  
M
O
D
E
20 us  
32 us  
TFTR Bias  
Time  
Init  
Time  
DVS ramp  
Time  
Figure 34. Normal Power Up Sequence (EN pin)  
AVIN  
UVLO  
POR  
EN  
S
L
E
E
P
M
O
D
E
DELAY[2..0]  
VOUT  
32 us  
TFTR  
Init  
Time  
DVS ramp  
Time  
Figure 35. Quick Power Up Sequence (EN pin)  
AVIN  
UVLO  
POR  
EN I@C  
S
L
E
E
P
M
O
D
E
VOUT  
32 us  
Init  
Time  
DVS ramp  
Time  
Figure 36. Fast Power Up Sequence (EN bit)  
www.onsemi.com  
14  
NCP6343  
In addition the delay set in DELAY[2..0] bits in TIME  
register will apply only for the EN pins turn ON sequence  
(NPUS and QPUS).  
In Auto mode when output voltage has not to be  
discharged. Note that approximately 30 ms is needed to  
transition from PFM mode to PWM mode.  
Note that the sleep mode needs about 150 ms to be  
established.  
V2  
Output  
Voltage  
Internal  
Reference  
nV  
DC to DC converter Shut Down  
When shutting down the device, no shut down sequence  
is required. Output voltage is disabled and, depending on the  
DISCHG bit state of PGOOD register, output may be  
discharged.  
nt  
V1  
Figure 38. DVS in Auto Mode Diagram  
Shutdown is initiated by either grounding the EN pin  
2
(Hardware Shutdown) or by clearing the EN I C bit  
Power Good  
(Software shutdown) in PROG register.  
To indicate the output voltage level is established, a power  
good signal is available.  
In hardware shutdown (EN = 0), the internal core is still  
2
active and I C accessible.  
The power good signal is high when the channel is off and  
goes low when enabling the channel. Once the output  
voltage reaches 95% of the expected output level, the power  
good logic signal becomes high (ACK_PG, SEN_PG bits).  
During operation when the output drops below 90% of the  
programmed level the power good logic signal goes low,  
indicating a power failure. When the voltage rises again to  
above 95% the power good signal goes high again.  
During a positive DVS sequence, when target voltage is  
higher than initial voltage, the Power Good logic signal will  
be set low during output voltage ramping and transition to  
high once the output voltage reaches 95% of the target  
voltage. When the target voltage is lower than the initial  
voltage, Power Good logic signals will remain at high level  
during transition.  
NCP6343 shuts internal core down when AVIN falls  
below UVLO.  
Dynamic Voltage Scaling (DVS)  
This converter supports dynamic voltage scaling (DVS)  
allowing the output voltage to be reprogrammed via I C  
2
commands and provides the different voltages required by  
the processor. The change between set points is managed in  
a smooth fashion without disturbing the operation of the  
processor.  
When programming a higher voltage, output raises with  
controlled dV/dt defined by DVSup bit in TIME register  
(default 6.25 mV/0.166 ms). When programming a lower  
voltage, output will decrease in equidistant steps defined by  
DVSdown[1..0] bits in TIME register (default  
6.25 mV/2.666 ms).  
DVS sequence is automatically initiated by changing  
output voltage settings.  
The DVS transition mode can be changed with the  
DVSMODE bit in COMMAND register:  
In forced PWM mode when accurate output voltage  
control is needed.  
Power Good signal during normal operation can be  
disabled by clearing the PGDCDC bit in PGOOD register.  
Power Good operation during DVS can be controlled by  
setting / clearing the bit PGDVS in PGOOD register  
DCDC_EN  
95%  
90%  
32 us  
min  
DCDC  
3.5  
14 us  
3.5−  
14 us  
V2  
Internal  
Output  
3.5 us  
Reference  
Voltage  
nV  
PG  
nt  
Figure 39. Power Good Signal  
V1  
Figure 37. DVS in Forced PWM Mode Diagram  
www.onsemi.com  
15  
NCP6343  
Interrupt  
Individual bits generating interrupts will be set to 1 in the  
INT_ACK register (I C read only registers), indicating the  
2
The interrupt controller continuously monitors internal  
interrupt sources, generating an interrupt signal when a  
system status change is detected (dual edge monitoring).  
interrupt source. INT_ACK register is automatically reset  
2
by an I C read. The INT_SEN register (read only register)  
contains real time indicators of interrupt sources.  
When the host reads the INT_ACK registers the interrupt  
register INT_ACK is cleared.  
Table 6. INTERRUPT SOURCES  
Interrupt Name  
TSD  
Description  
Thermal Shut Down  
Figure 40 is UVLO event example:  
INT_SEN/INT_MSK/INT_ACK and an I C read access  
2
TWARN  
TPREW  
UVLO  
Thermal Warning  
behavior.  
Thermal Pre Warning  
Under Voltage Lock Out  
DCDC current Over / below limit  
Power Good  
IDCDC  
PG  
UVLO  
SEN_UVLO  
ACK_UVLO  
read  
read  
read  
read  
I@C access on INT_ACK  
Figure 40. Interrupt Operation Example  
Configurations  
Default output voltages, enables, DCDC modes, current limit and other parameters can be factory programmed upon request.  
The default configuration predefined is depicted below:  
Table 7. DEFAULT CONFIGURATIONS  
Configuration  
NCP6343  
NCP6343A  
NCP6343B  
NCP6343D  
2
Default I C address  
0x1C  
12h  
xxh  
0x14  
12h  
xxh  
0x1C  
12h  
xxh  
0x14  
12h  
xxh  
PID product id.  
RID revision id.  
FID feature id.  
00h  
02h  
01h  
03h  
VOUT  
1.225 V  
Auto mode  
6.25mV/0.166ms  
2.9 A  
1.225 V  
Forced PWM mode  
6.25mV/0.166ms  
3.9 A  
1.225 V  
Auto mode  
1.18125 V  
Forced PWM mode  
6.25mV/0.166ms  
3.9 A  
MODE  
DVS Up Timing  
Default IPEAK  
Marking  
6.25mV/0.166ms  
3.9 A  
6343  
6343A  
6343B  
6343D  
OPN  
NCP6343FCT1G  
NCP6343AFCCT1G  
NCP6343BFCCT1G  
NCP6343DFCCT1G  
Table 8. DEFAULT CONFIGURATIONS  
Configuration  
NCP6343AV  
NCP6343S  
NCP6343M  
NCP6343X  
2
Default I C address  
0x14  
12h  
xxh  
0x10  
12h  
xxh  
0x18  
12h  
xxh  
0x1C  
12h  
xxh  
PID product id.  
RID revision id.  
FID feature id.  
02h  
00h  
00h  
01h  
VOUT  
1.225 V  
Auto mode  
1.050 V  
Auto mode  
0.925 V  
Auto mode  
1.225 V  
Auto mode  
MODE  
DVS Up Timing  
Default IPEAK  
Marking  
6.25mV/2.666ms  
3.9 A  
6.25mV/2.666ms  
3.9 A  
6.25mV/2.666ms  
3.9 A  
6.25mV/0.166ms  
3.9 A  
6343V  
6343S  
6343M  
6343X  
OPN  
NCP6343AVFCCT1G  
NCP6343SFCCT1G  
NCP6343MFCCT1G  
NCP6343XFCCT1G  
www.onsemi.com  
16  
NCP6343  
2
I C Compatible Interface  
2
NCP6343 can support a subset of I C protocol Detailed below.  
I2C Communication Description  
FROM MCU to NCPxxxx  
FROM NCPxxxx to MCU  
READ OUT  
FROM PART  
START  
ACK  
ACK  
/ACK  
STOP  
IC ADDRESS  
1
DATA 1  
DATA n  
à
1
READ  
/ACK  
ACK  
WRITE INSIDE  
PART  
START  
ACK  
ACK  
STOP  
IC ADDRESS  
0
DATA 1  
DATA n  
If PART does not Acknowledge, the /NACK will be followed by a STOP or Sr.  
If PART Acknowledges, the ACK can be followed by another data or Stop or Sr  
à
0
WRITE  
Figure 41. General Protocol Description  
The first byte transmitted is the Chip address (with the  
LSB bit set to 1 for a read operation, or set to 0 for a Write  
operation). The following data will be:  
In case of a Write operation, the register address  
(@REG) pointing to the register we want to write in  
followed by the data we will write in that location. The  
writing process is autoincremental, so the first data  
will be written in @REG, the contents of @REG are  
incremented and the next data byte is placed in the  
location pointed to by @REG + 1 ..., etc.  
In case of read operation, the NCP6343 will output the  
data from the last register that has been accessed by the  
last write operation. Like the writing process, the  
reading process is autoincremental.  
Read Out from Part  
The Master will first make a “Pseudo Write” transaction  
with no data to set the internal address register. Then, a stop  
then start or a Repeated Start will initiate the read transaction  
from the register address the initial write transaction has  
pointed to:  
FROM MCU to NCPxxxx  
FROM NCPxxxx to MCU  
SETS INTERNAL  
REGISTER POINTER  
START  
ACK  
ACK  
STOP  
IC ADDRESS  
0
REGISTER ADDRESS  
à
0
WRITE  
START  
ACK  
ACK  
/ACK  
STOP  
IC ADDRESS  
1
DATA 1  
DATA n  
REGISTER ADDRESS  
VALUE  
REGISTER ADDRESS + (n 1)  
VALUE  
n REGISTERS READ  
à
1
READ  
Figure 42. Read Out from Part  
The first WRITE sequence will set the internal pointer to the register we want access to. Then the read transaction will start  
at the address the write transaction has initiated.  
www.onsemi.com  
17  
NCP6343  
Transaction with Real Write then Read  
With Stop Then Start  
FROM MCU to NCPxxxx  
FROM NCPxxxx to MCU  
SETS INTERNAL  
REGISTER POINTER  
WRITE VALUE IN  
REGISTER REG0  
WRITE VALUE IN  
REGISTER REG0 + (n 1)  
START  
ACK  
ACK  
ACK  
ACK  
STOP  
IC ADDRESS  
0
REGISTER REG0 ADDRESS  
REG VALUE  
REG + (n 1) VALUE  
n REGISTERS WRITE  
à
0
WRITE  
START  
ACK  
ACK  
/ACK  
STOP  
IC ADDRESS  
1
DATA 1  
DATA k  
REGISTER ADDRESS + (n 1) +  
(k 1) VALUE  
REGISTER REG + (n 1)  
VALUE  
k REGISTERS READ  
à
1
READ  
Figure 43. Write Followed by Read Transaction  
Write In Part  
Write operation will be achieved by only one transaction. After chip address, the MCU first data will be the internal register  
we want access to, then following data will be the data we want to write in Reg, Reg + 1, Reg + 2, ...., Reg +n.  
Write n Registers:  
FROM MCU to NCPxxxx  
FROM NCPxxxx to MCU  
WRITE VALUE IN  
REGISTER REG0  
SETS INTERNAL  
REGISTER POINTER  
WRITE VALUE IN  
REGISTER REG0 + (n 1)  
START  
ACK  
ACK  
ACK  
ACK  
STOP  
IC ADDRESS  
0
REGISTER REG0 ADDRESS  
REG VALUE  
REG + (n 1) VALUE  
n REGISTERS WRITE  
à
0
WRITE  
Figure 44. Write In n Registers  
I2C Address  
2
NCP6343 has four available I C address selectable by factory settings (ADD0 to ADD3). Different address settings can be  
generated upon request to ON Semiconductor. The default address is set to 38h / 39h since the NCP6343 supports 7bit address  
only and ignores A0.  
Table 9. I2C ADDRESS  
2
I C Address  
Hex  
A7  
A6  
A5  
A4  
0
A3  
A2  
A1  
A0  
R/W  
W 0x20  
R 0x21  
0
0
1
0
0
0
ADD0  
(NCP6343S)  
Add  
0x10  
0
W 0x28  
R 0x29  
0
0
0
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
R/W  
ADD1  
(NCP6343AV, NCP6343D)  
Add  
0x14  
1
W 0x30  
R 0x31  
R/W  
ADD2  
(NCP6343M)  
Add  
0x18  
1
W 0x38  
R 0x39  
R/W  
ADD3 (default)  
(NCP6343, NCP6343B, NCP6343X)  
Add  
0x1C  
www.onsemi.com  
18  
NCP6343  
Register Map  
Table 10 describes I C registers.  
2
Registers can be:  
R
RC  
Read only register  
Read then Clear  
RW  
Read and Write register  
Reserved  
Spare  
Address is reserved and register is not physically designed  
Address is reserved and register is physically designed  
Table 10. I2C REGISTERS MAP DEFAULT CONFIGURATION (NCP6343)  
Add.  
00h  
Register Name  
Type  
RC  
R
Def.  
00h  
00h  
Function  
INT_ACK  
INT_SEN  
Interrupt register  
01h  
Sense register (real time status)  
Reserved for future use  
02h  
03h  
PID  
R
12h  
Metal  
00h  
Product Identification  
04h  
RID  
R
Revision Identification  
05h  
FID  
R
Feature Identification (trim)  
06h to 10h  
11h  
Reserved for future use  
PROG  
PGOOD  
TIME  
RW  
RW  
RW  
RW  
RW  
RW  
E4h  
00h  
19h  
00h  
80h  
23h  
Output voltage settings and (trim)  
Power good and active discharge settings (partial trim)  
Enabling and DVS timings (trim)  
Enabling and Operating mode Command register (partial trim)  
Active module count settings  
12h  
13h  
14h  
COMMAND  
MODULE  
LIMCONF  
15h  
16h  
Reset and limit configuration register (partial trim)  
Reserved for future use  
17h to 1Fh  
20h to FFh  
Reserved. Test Registers  
Table 11. I2C REGISTERS MAP DEFAULT CONFIGURATION (NCP6343A)  
Add.  
00h  
Register Name  
Type  
RC  
R
Def.  
00h  
00h  
Function  
INT_ACK  
INT_SEN  
Interrupt register  
01h  
Sense register (real time status)  
Reserved for future use  
02h  
03h  
PID  
R
12h  
Metal  
02h  
Product Identification  
04h  
RID  
R
Revision Identification  
05h  
FID  
R
Feature Identification (trim)  
06h to 10h  
11h  
Reserved for future use  
PROG  
PGOOD  
TIME  
RW  
RW  
RW  
RW  
RW  
RW  
E4h  
00h  
19h  
80h  
80h  
E3h  
Output voltage settings and (trim)  
Power good and active discharge settings (partial trim)  
Enabling and DVS timings (trim)  
Enabling and Operating mode Command register (partial trim)  
Active module count settings  
12h  
13h  
14h  
COMMAND  
MODULE  
LIMCONF  
15h  
16h  
Reset and limit configuration register (partial trim)  
Reserved for future use  
17h to 1Fh  
20h to FFh  
Reserved. Test Registers  
www.onsemi.com  
19  
 
NCP6343  
Table 12. I2C REGISTERS MAP DEFAULT CONFIGURATION (NCP6343B)  
Add.  
00h  
Register Name  
Type  
RC  
R
Def.  
00h  
00h  
Function  
INT_ACK  
INT_SEN  
Interrupt register  
01h  
Sense register (real time status)  
Reserved for future use  
02h  
03h  
PID  
R
12h  
Metal  
01h  
Product Identification  
04h  
RID  
R
Revision Identification  
05h  
FID  
R
Feature Identification (trim)  
06h to 10h  
11h  
Reserved for future use  
PROG  
PGOOD  
TIME  
RW  
RW  
RW  
RW  
RW  
RW  
E4h  
00h  
19h  
00h  
80h  
E3h  
Output voltage settings and (trim)  
Power good and active discharge settings (partial trim)  
Enabling and DVS timings (trim)  
Enabling and Operating mode Command register (partial trim)  
Active module count settings  
12h  
13h  
14h  
COMMAND  
MODULE  
LIMCONF  
15h  
16h  
Reset and limit configuration register (partial trim)  
Reserved for future use  
17h to 1Fh  
20h to FFh  
Reserved. Test Registers  
Table 13. I2C REGISTERS MAP DEFAULT CONFIGURATION (NCP6343D)  
Add.  
00h  
Register Name  
Type  
RC  
R
Def.  
00h  
00h  
Function  
INT_ACK  
INT_SEN  
Interrupt register  
01h  
Sense register (real time status)  
Reserved for future use  
02h  
03h  
PID  
R
12h  
Metal  
03h  
Product Identification  
04h  
RID  
R
Revision Identification  
05h  
FID  
R
Feature Identification (trim)  
06h to 10h  
11h  
Reserved for future use  
PROG  
PGOOD  
TIME  
RW  
RW  
RW  
RW  
RW  
RW  
DDh  
00h  
19h  
80h  
80h  
E3h  
Output voltage settings and (trim)  
Power good and active discharge settings (partial trim)  
Enabling and DVS timings (trim)  
Enabling and Operating mode Command register (partial trim)  
Active module count settings  
12h  
13h  
14h  
COMMAND  
MODULE  
LIMCONF  
15h  
16h  
Reset and limit configuration register (partial trim)  
Reserved for future use  
17h to 1Fh  
20h to FFh  
Reserved. Test Registers  
www.onsemi.com  
20  
NCP6343  
Table 14. I2C REGISTERS MAP DEFAULT CONFIGURATION (NCP6343AV)  
Add.  
00h  
Register Name  
Type  
RC  
R
Def.  
00h  
00h  
Function  
INT_ACK  
INT_SEN  
Interrupt register  
01h  
Sense register (real time status)  
Reserved for future use  
02h  
03h  
PID  
R
12h  
Metal  
02h  
Product Identification  
04h  
RID  
R
Revision Identification  
05h  
FID  
R
Feature Identification (trim)  
06h to 10h  
11h  
Reserved for future use  
PROG  
PGOOD  
TIME  
RW  
RW  
RW  
RW  
RW  
RW  
E4h  
00h  
1Dh  
00h  
80h  
E3h  
Output voltage settings and (trim)  
Power good and active discharge settings (partial trim)  
Enabling and DVS timings (trim)  
Enabling and Operating mode Command register (partial trim)  
Active module count settings  
12h  
13h  
14h  
COMMAND  
MODULE  
LIMCONF  
15h  
16h  
Reset and limit configuration register (partial trim)  
Reserved for future use  
17h to 1Fh  
20h to FFh  
Reserved. Test Registers  
Table 15. I2C REGISTERS MAP DEFAULT CONFIGURATION (NCP6343S)  
Add.  
00h  
Register Name  
Type  
RC  
R
Def.  
00h  
00h  
Function  
INT_ACK  
INT_SEN  
Interrupt register  
01h  
Sense register (real time status)  
Reserved for future use  
02h  
03h  
PID  
R
12h  
Metal  
00h  
Product Identification  
04h  
RID  
R
Revision Identification  
05h  
FID  
R
Feature Identification (trim)  
06h to 10h  
11h  
Reserved for future use  
PROG  
PGOOD  
TIME  
RW  
RW  
RW  
RW  
RW  
RW  
C8h  
00h  
1Dh  
00h  
80h  
E3h  
Output voltage settings and (trim)  
Power good and active discharge settings (partial trim)  
Enabling and DVS timings (trim)  
Enabling and Operating mode Command register (partial trim)  
Active module count settings  
12h  
13h  
14h  
COMMAND  
MODULE  
LIMCONF  
15h  
16h  
Reset and limit configuration register (partial trim)  
Reserved for future use  
17h to 1Fh  
20h to FFh  
Reserved. Test Registers  
www.onsemi.com  
21  
NCP6343  
Table 16. I2C REGISTERS MAP DEFAULT CONFIGURATION (NCP6343M)  
Add.  
00h  
Register Name  
Type  
RC  
R
Def.  
00h  
00h  
Function  
INT_ACK  
INT_SEN  
Interrupt register  
01h  
Sense register (real time status)  
Reserved for future use  
02h  
03h  
PID  
R
12h  
Metal  
00h  
Product Identification  
04h  
RID  
R
Revision Identification  
05h  
FID  
R
Feature Identification (trim)  
06h to 10h  
11h  
Reserved for future use  
PROG  
PGOOD  
TIME  
RW  
RW  
RW  
RW  
RW  
RW  
B4h  
00h  
1Dh  
00h  
80h  
E3h  
Output voltage settings and (trim)  
Power good and active discharge settings (partial trim)  
Enabling and DVS timings (trim)  
Enabling and Operating mode Command register (partial trim)  
Active module count settings  
12h  
13h  
14h  
COMMAND  
MODULE  
LIMCONF  
15h  
16h  
Reset and limit configuration register (partial trim)  
Reserved for future use  
17h to 1Fh  
20h to FFh  
Reserved. Test Registers  
Table 17. I2C REGISTERS MAP DEFAULT CONFIGURATION (NCP6343X)  
Add.  
00h  
Register Name  
Type  
RC  
R
Def.  
00h  
00h  
Function  
INT_ACK  
INT_SEN  
Interrupt register  
01h  
Sense register (real time status)  
Reserved for future use  
02h  
03h  
PID  
R
12h  
Metal  
01h  
Product Identification  
04h  
RID  
R
Revision Identification  
05h  
FID  
R
Feature Identification (trim)  
06h to 10h  
11h  
Reserved for future use  
PROG  
PGOOD  
TIME  
RW  
RW  
RW  
RW  
RW  
RW  
E4h  
00h  
19h  
00h  
80h  
E3h  
Output voltage settings and (trim)  
Power good and active discharge settings (partial trim)  
Enabling and DVS timings (trim)  
Enabling and Operating mode Command register (partial trim)  
Active module count settings  
12h  
13h  
14h  
COMMAND  
MODULE  
LIMCONF  
15h  
16h  
Reset and limit configuration register (partial trim)  
Reserved for future use  
17h to 1Fh  
20h to FFh  
Reserved. Test Registers  
www.onsemi.com  
22  
NCP6343  
Registers Description  
Table 18. INTERRUPT ACKNOWLEDGE REGISTER  
Name: INTACK  
Address: 00h  
Default: 00000000b (00h)  
Type: RC  
Trigger: Dual Edge [D7..D0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK_TSD  
ACK_TWARN  
ACK_TPREW  
Spare = 0  
Spare= 0  
ACK_UVLO  
ACK_IDCDC  
ACK_PG  
Bit  
Bit Description  
ACK_PG  
ACK_IDCDC  
ACK_UVLO  
ACK_TPREW  
ACK_TWARN  
ACK_TSD  
Power Good Sense Acknowledgement  
0: Cleared  
1: DCDC Power Good Event detected  
DCDC Over Current Sense Acknowledgement  
0: Cleared  
1: DCDC Over Current Event detected  
Under Voltage Sense Acknowledgement  
0: Cleared  
1: Under Voltage Event detected  
Thermal Pre Warning Sense Acknowledgement  
0: Cleared  
1: Thermal Pre Warning Event detected  
Thermal Warning Sense Acknowledgement  
0: Cleared  
1: Thermal Warning Event detected  
Thermal Shutdown Sense Acknowledgement  
0: Cleared  
1: Thermal Shutdown Event detected  
Table 19. INTERRUPT SENSE REGISTER  
Name: INTSEN  
Type: R  
Address: 01h  
Default: 00000000b (00h)  
Trigger: N/A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN_TSD  
SEN_TWARN  
SEN_TPREW  
Spare = 0  
Spare = 0  
SEN_UVLO  
SEN_IDCDC  
SEN_PG  
Bit  
Bit Description  
SEN_PG  
SEN _IDCDC  
SEN _UVLO  
SEN _TPREW  
SEN _TWARN  
SEN _TSD  
Power Good Sense  
0: DCDC Output Voltage below target  
1: DCDC Output Voltage within nominal range  
DCDC over current sense  
0: DCDC output current is below limit  
1: DCDC output current is over limit  
Under Voltage Sense  
0: Input Voltage higher than UVLO threshold  
1: Input Voltage lower than UVLO threshold  
Thermal Pre Warning Sense  
0: Junction temperature below thermal prewarning limit  
1: Junction temperature over thermal prewarning limit  
Thermal Warning Sense  
0: Junction temperature below thermal warning limit  
1: Junction temperature over thermal warning limit  
Thermal Shutdown Sense  
0: Junction temperature below thermal shutdown limit  
1: Junction temperature over thermal shutdown limit  
www.onsemi.com  
23  
NCP6343  
Table 20. PRODUCT ID REGISTER  
Name: PID  
Type: R  
Address: 03h  
Default: 00010010b (12h)  
Reset on N/A  
Trigger: N/A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PID_7  
PID_6  
PID_5  
PID_4  
PID_3  
PID_2  
PID_1  
PID_0  
Table 21. REVISION ID REGISTER  
Name: RID  
Type: R  
Address: 04h  
Default: Metal  
Trigger: N/A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Spare = 0  
Spare = 0  
Spare = 0  
Spare = 0  
RID_3  
RID_2  
RID_1  
RID_0  
Bit  
RID[3..0]  
Bit Description  
Revision Identification  
0000: First silicon  
0100: Optimized silicon  
1000: Production  
Table 22. FEATURE ID REGISTER  
Name: FID  
Type: R  
Address: 05h  
Default: Metal  
Trigger: N/A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Spare = 0  
Spare = 0  
Spare = 0  
Spare = 0  
FID_3  
FID_2  
FID_1  
FID_0  
Bit  
FID[3..0]  
Bit Description  
Feature Identification  
0000: Default Configuration  
Table 23. DC to DC VOLTAGE PROG REGISTER  
Name: PROG  
Type: RW  
Address: 11h  
Default: See Register map  
Trigger: N/A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN  
Vout[6..0]  
Bit  
Bit Description  
Vout[6..0]  
Sets the DC to DC converter output  
0000000b = 600 mV 1111111b = 1393.75 mV (steps of 6.25 mV)  
EN  
EN Pin Gating  
0: Disabled  
1: Enabled  
www.onsemi.com  
24  
NCP6343  
Table 24. POWER GOOD REGISTER  
Name: PGOOD  
Address: 12h  
Default: See Register map  
Type: RW  
Trigger: N/A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Spare = 0  
Spare = 0  
Spare = 0  
DISCHG  
Spare = 0  
Spare = 0  
PGDVS  
PGDCDC  
Bit  
Bit Description  
PGDCDC  
PGDVS  
Power Good Enabling  
0 = Disabled  
1 = Enabled  
Power Good Active On DVS  
0 = Disabled  
1 = Enabled  
DISCHG  
Active discharge bit Enabling  
0 = Discharge path disabled  
1 = Discharge path enabled  
Table 25. TIMING REGISTER  
Name: TIME  
Address: 13h  
Default: See Register map  
Type: RW  
Trigger: N/A  
D7  
D6  
D5  
D4  
D3  
D2  
DVSup  
D1  
D0  
DELAY[2..0]  
DVSdown[1..0]  
DBN_Time[1..0]  
Bit  
Bit Description  
DBN_Time[1..0]  
EN debounce time  
00 = No debounce  
01 = 12 ms  
10 = 23 ms  
11 = 34 ms  
DVSup  
DVS Speed for up DVS  
0 = 6.25 mV step / 0.166 ms  
1 = 6.25 mV step / 2.666 ms  
DVSdown[1..0]  
DVS Speed for down DVS  
00 = 6.25 mV step / 0.333 ms  
01 = 6.25 mV step / 0.666 ms  
10 = 6.25 mV step / 1.333 ms  
11 = 6.25 mV step / 2.666 ms  
DELAY[2..0]  
Delay applied upon enabling (ms)  
000b = 0 ms 111b = 14 ms (Steps of 2 ms)  
www.onsemi.com  
25  
NCP6343  
Table 26. COMMAND REGISTER  
Name: COMMAND  
Type: RW  
Address: 14h  
Default: See Register map  
Trigger: N/A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PWM  
Spare = 0  
DVSMODE  
Sleep_Mode  
Spare = 0  
Spare = 0  
Spare = 0  
Spare = 0  
Bit  
Bit Description  
Sleep_Mode  
DVSMODE  
PWM  
Sleep mode  
0 = Low Iq mode when EN low  
1 = Force product in sleep mode  
DVS transition mode selection  
0 = Auto  
1 = Forced PWM  
DCDC Operating mode  
0 = Auto  
1 = Forced PWM  
Table 27. OUTPUT STAGE MODULE SETTINGS REGISTER  
Name: MODULE  
Type: RW  
Address: 15h  
Default: See Register map  
Trigger: N/A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MODUL[3..0]  
Spare =0  
Spare =0  
Spare =0  
Spare =0  
Bit  
MODUL [3..0]  
Bit Description  
Number of modules  
0000 = 1 Module 0111 ~ 1111 = 8 Modules (Steps of 1)  
Table 28. LIMITS CONFIGURATION REGISTER  
Name: LIMCONF  
Type: RW  
Adress: 16h  
Default: See Register map  
Trigger: N/A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
IPEAK[1..0]  
Bit  
TPWTH[1..0]  
Spare = 0  
FORCERST  
RSTSTATUS  
REARM  
Bit Description  
REARM  
Rearming of device after TSD  
0: No rearming after TSD  
2
1: Rearming active after TSD with no reset of I C registers: new powerup sequence is initiated with  
2
previously programmed I C registers values  
RSTSTATUS  
FORCERST  
TPWTH[1..0]  
Reset Indicator Bit  
0: Must be written to 0 after register reset  
1: Default (loaded after Registers reset)  
Force Reset Bit  
0 = Default value. Self cleared to 0  
1: Force reset of internal registers to default  
Thermal preWarning threshold settings  
00 = 83°C  
01 = 94°C  
10 = 105°C  
11 = 116°C  
IPEAK  
Inductor peak current settings  
00 = 2.9 A (Iload 2.0 A)  
01 = 2.9 A (Iload 2.0 A)  
10 = 3.4 A (Iload 2.5 A)  
11 = 3.9 A (Iload 3.0 A)  
www.onsemi.com  
26  
NCP6343  
APPLICATION INFORMATION  
NCP6243  
Core  
References  
Oscillator  
A1  
B1  
PVIN  
SW  
Supply  
Input  
D1  
E1  
AVIN  
Supply  
Input  
C1  
10 mF  
AGND  
DCDC  
3.0 A  
A2  
B2  
470 nH  
Thermal  
Protection  
22 mF  
A3  
B3  
PGND  
FB  
C3  
Enable  
Control  
Input  
EN  
D2  
C2  
Operating  
Mode  
E3  
Core  
Processor  
Memory  
DCDC  
3 MHz  
Controller  
D3  
E2  
SDA  
SCL  
Control  
Processor  
Sense  
2
22 mF  
I C  
2
I C Control  
Interface  
Figure 45. Typical Application Schematic  
Output Filter Design Considerations  
The output filter introduces a double pole in the system at  
a frequency of:  
Components Selection  
Inductor Selection  
The inductance of the inductor is determined by given  
peaktopeak ripple current I of approximately 20% to  
50% of the maximum output current I  
tradeoff between transient response and output ripple. The  
1
fLC  
+
Ǹ
L_PP  
2 @ p @ L @ C  
for a  
OUT_MAX  
NCP6343 internal compensation network is optimized for  
a typical output filter comprising a 470 nH inductor and  
22 mF capacitor as describes in the basic application  
schematic is described by Figure 16.  
inductance corresponding to the given current ripple is:  
ǒV  
Ǔ
IN * VOUT @ VOUT  
IN @ fSW @ IL_PP  
L +  
V
Voltage Sensing Considerations  
The selected inductor must have high enough saturation  
current rating to be higher than the maximum peak current  
In order to regulate power supply rail, NCP6343 should  
sense its output voltage. Thanks to the FB pin, the IC can  
support two sensing methods:  
that is  
IL_PP  
Normal case: the voltage sensing is achieved close to  
the output capacitor. In that case, FB is connected to the  
output capacitor positive terminal (voltage to regulate).  
Remote sensing: In remote sensing, the power supply  
rail sense is made close to the system powered by the  
NCP6343. The voltage to system is more accurate, since  
PCB line impedance voltage drop is within the regulation  
loop. In that case, we recommend connecting the FB pin  
to the system decoupling capacitor positive terminal.  
I
L_MAX + IOUT_MAX )  
2
The inductor also needs to have high enough current  
rating based on temperature rise concern. Low DCR is good  
for efficiency improvement and temperature rise reduction.  
Table 29 shows recommended.  
Table 29. INDUCTOR SELECTION  
Supplier  
Cyntec  
Cyntec  
TOKO  
TOKO  
TOKO  
TDK  
Part #  
Value (mH) Size (mm) (L x l x T) DC Rated Current (A) DCR Max at 255C (mW)  
PIFE20161BR47MS11  
PIFE25201TR47MS11  
DFE201612PHR47M  
DFE201610RHR47N  
DFE201612RHR47N  
TFM252010AR47M  
SPM6530TR47M170  
0.47  
0.47  
0.47  
0.47  
0.47  
0.47  
0.47  
2.0 x 1.6 x 1.2  
2.5 x 2.0 x 1.0  
2.0 x 1.6 x 1.2  
2.0 x 1.6 x 1.0  
2.0 x 1.6 x 1.2  
2.5 x 2.0 x 1.0  
7.1 x 6.5 x 3.0  
3.9  
4.5  
4.3  
3.3  
3.8  
4.5  
20  
36  
41  
33  
48  
40  
30  
4
TDK  
www.onsemi.com  
27  
 
NCP6343  
Output Capacitor Selection  
The input capacitor also needs to be sufficient to protect  
the device from over voltage spike, and normally at least  
4.7 mF capacitor is required. The input capacitor should be  
located as close as possible to the IC. All PGNDs are  
connected together to the ground terminal of the input cap  
which then connects to the ground plane. All PVIN are  
connected together to the Vbat terminal of the input cap  
which then connects to the Vbat plane.  
The output capacitor selection is determined by output  
voltage ripple and load transient response requirement. For  
high transient load performance high output capacitor value  
must be used. For a given peaktopeak ripple current I  
L_PP  
in the inductor of the output filter, the output voltage ripple  
across the output capacitor is the sum of three components  
as below.  
V
OUT_PP [ VOUT_PP(C) ) VOUT_PP(ESR) ) VOUT_PP(ESL)  
Electrical Layout Considerations  
Good electrical layout is a key to make sure proper  
operation, high efficiency, and noise reduction. Electrical  
layout guidelines are:  
Use wide and short traces for power paths (such as  
PVIN, VOUT, SW, and PGND) to reduce parasitic  
inductance and highfrequency loop area. It is also  
good for efficiency improvement.  
The device should be well decoupled by input capacitor  
and input loop area should be as small as possible to  
reduce parasitic inductance, input voltage spike, and  
noise emission.  
SW node should be a large copper, but compact  
because it is also a noise source.  
Where V  
is a ripple component by an equivalent  
OUT_PP(C)  
total capacitance of the output capacitors, V  
a ripple component by an equivalent ESR of the output  
capacitors, and V is a ripple component by an  
equivalent ESL of the output capacitors. In PWM operation  
mode, the three ripple components can be obtained by  
is  
OUT_PP(ESR)  
OUT_PP(ESL)  
IL_PP  
VOUT_PP(C)  
+
,
and  
V
OUT_PP(ESR)+IL_PP@ESR  
8 @ C @ fSW  
ESL  
ESL ) L  
VOUT_PP(ESL)  
+
@ VIN  
and the peaktopeak ripple current is  
ǒV  
Ǔ
IN * VOUT @ VOUT  
IN @ fSW @ L  
IL_PP  
+
V
It would be good to have separated ground planes for  
PGND and AGND and connect the two planes at one  
point. Try best to avoid overlap of input ground loop  
and output ground loop to prevent noise impact on  
output regulation.  
In applications with all ceramic output capacitors, the  
main ripple component of the output ripple is V  
So that the minimum output capacitance can be calculated  
regarding to a given output ripple requirement V  
PWM operation mode.  
.
OUT_PP(C)  
in  
OUT_PP  
Arrange a “quiet” path for output voltage sense, and  
make it surrounded by a ground plane.  
IL_PP  
CMIN  
+
8 @ VOUT_PP @ fSW  
Thermal Layout Considerations  
Good PCB layout helps high power dissipation from a  
small package with reduced temperature rise. Thermal  
layout guidelines are:  
A four or more layers PCB board with solid ground  
planes is preferred for better heat dissipation.  
More free vias are welcome to be around IC to connect  
the inner ground layers to reduce thermal impedance.  
Use large area copper especially in top layer to help  
thermal conduction and radiation.  
Input Capacitor Selection  
One of the input capacitor selection guides is the input  
voltage ripple requirement. To minimize the input voltage  
ripple and get better decoupling in the input power supply  
rail, ceramic capacitor is recommended due to low ESR and  
ESL. The minimum input capacitance regarding to the input  
ripple voltage V  
is  
IN_PP  
2
( )  
OUT_MAX @ D * D  
I
VOUT  
VIN  
D +  
CIN_MIN  
+
where  
V
IN_PP @ fSW  
Use two layers for the high current paths (PVIN,  
PGND, SW) in order to split current in two different  
paths and limit PCB copper self heating.  
In addition, the input capacitor needs to be able to absorb  
the input current, which has a RMS value of  
Ǹ
I
IN_RMS + IOUT_MAX @ D * D2  
www.onsemi.com  
28  
NCP6343  
(See demo board example Figure 47)  
Figure 46. Layout Recommendation  
Legend:  
In blue are top layer planes and wires  
In white are layer1 plane and wires (just below top layer)  
Big circles gray are normal vias  
Small circles gray are top to layer1 vias  
Figure 47. Demo Board Example  
Input capacitor placed as close as possible to the IC.  
PGND directly connected to Cin input capacitor, and then  
connected to the GND plane: Local mini planes used on the  
top layer (blue) and layer just below top layer (white) with  
laser vias.  
PVIN directly connected to Cin input capacitor, and then  
connected to the Vin plane. Local mini planes used on the top  
layer (blue) and layer just below top layer (white) with laser  
vias.  
SW connected to the Lout inductor with trace between input  
capacitor terminals on top layer (blue) and local mini planes  
on the layer just below top layer (white) with laser vias.  
AVIN connected to the Vin plane just after the capacitor.  
AGND directly connected to the GND plane.  
www.onsemi.com  
29  
 
NCP6343  
ORDERING INFORMATION  
Device  
Marking  
Package  
Comment  
Shipping  
NCP6343FCT1G**  
6343  
6343A  
6343B  
6343D  
6343V  
6343S  
6343M  
6343X  
WLCSP15 without Back Coating  
(Pb–Free)  
I2C address 0x1C  
(0011100x b)  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
NCP6343AFCCT1G**  
NCP6343BFCCT1G**  
NCP6343DFCCT1G**  
NCP6343AVFCCT1G*  
NCP6343SFCCT1G*  
NCP6343MFCCT1G*  
NCP6343XFCCT1G  
WLCSP15 with Back Coating  
(Pb–Free)  
I2C address 0x14  
(0010100x b)  
WLCSP15 with Back Coating  
(Pb–Free)  
I2C address 0x1C  
(0011100x b)  
WLCSP15 with Back Coating  
(Pb–Free)  
I2C address 0x14  
(0010100x b)  
WLCSP15 with Back Coating  
(Pb–Free)  
I2C address 0x14  
(0010100x b)  
WLCSP15 with Back Coating  
(Pb–Free)  
I2C address 0x10  
(0010000x b)  
WLCSP15 with Back Coating  
(Pb–Free)  
I2C address 0x18  
(0011000x b)  
WLCSP15 with Back Coating  
(Pb–Free)  
I2C address 0x1C  
(0011100x b)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*Not recommended for new designs.  
**This device is End of Life. Please contact sales for additional information and assistance with replacement devices.  
www.onsemi.com  
30  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
WLCSP15, 1.34x1.99x0.548  
CASE 567GB  
ISSUE D  
DATE 02 JUN 2022  
GENERIC  
MARKING DIAGRAM*  
XXXXXX  
ALYW  
G
A
L
= Assembly Location  
= Wafer Lot  
Y
W
G
= Year  
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON84651E  
WLCSP15, 1.34X1.99x0.548  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCP6354

3MHz, 2A Fixed-Frequency Synchronous Buck Converter
ONSEMI

NCP6354BMTAATBG

3MHz, 2A Fixed-Frequency Synchronous Buck Converter
ONSEMI

NCP6354_12

3MHz, 2A Fixed-Frequency Synchronous Buck Converter
ONSEMI

NCP6356BFCCT1G

1-CHANNEL POWER SUPPLY SUPPORT CKT, PBGA20
ONSEMI

NCP6356BSFCCT1G

1-CHANNEL POWER SUPPLY SUPPORT CKT, PBGA20
ONSEMI

NCP6356BSNFCCT1G

1-CHANNEL POWER SUPPLY SUPPORT CKT, PBGA20
ONSEMI

NCP6360

nullMini Buck Converter for RF Power Amplifiers
ONSEMI

NCP6360FCCT2G

nullMini Buck Converter for RF Power Amplifiers
ONSEMI

NCP6361

Buck Converter with Bypass Mode for RF Power Amplifiers
ONSEMI

NCP6361AFCCT1G

Buck Converter with Bypass Mode for RF Power Amplifiers
ONSEMI

NCP6361BFCCT1G

Buck Converter with Bypass Mode for RF Power Amplifiers
ONSEMI

NCP639HMN10TCG

1A CMOS Low-Dropout Voltage Regulator
ONSEMI