NCP81565MNTXG [ONSEMI]

6+2 Phase Output Controller with SVID Interface for Computer CPU Applications;
NCP81565MNTXG
型号: NCP81565MNTXG
厂家: ONSEMI    ONSEMI
描述:

6+2 Phase Output Controller with SVID Interface for Computer CPU Applications

文件: 总18页 (文件大小:313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
6 + 2 Phase Output  
Controller with SVID  
Interface for Computer CPU  
Applications  
1
52  
QFN52 6x6, 0.4P  
CASE 485BE  
NCP81565  
MARKING DIAGRAM  
The NCP81565 is a dual rail, six plus two phase buck solution  
optimized for Intel’s IMVP9.1 CPUs. The multiphase rail control  
system is based on DualEdge pulsewidth modulation (PWM)  
combined with DCR current sensing. This provides an ultrafast  
initial response to dynamic load events and reduced system cost. The  
NCP81565 has an ultralow offset current monitor amplifier with  
programmable offset compensation for high accuracy current  
monitoring.  
NCP81565  
AWLYYWWG  
A
WL  
YY  
= Assembly Site  
= Wafer Lot  
= Year  
WW  
G
= Work Week  
= PbFree Package  
Features  
Vin Range 4.5 V to 21 V  
Startup into PreCharged Loads While Avoiding False OVP  
Digital Soft Start Ramp  
ORDERING INFORMATION  
Adjustable Vboot  
Device  
NCP81565MNTXG  
Package  
Shipping  
High Impedance Differential Output Voltage Amplifier  
Dual VID Table Support to be Compatible with IMVP9.1  
Support High Current Extensions  
QFN52  
(PbFree)  
2500 / Tape &  
Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Dynamic Reference Injection  
Programmable Output Voltage Slew Rates  
Dynamic VID FeedForward  
Differential Current Sense Amplifiers for Each Phase  
Programmable Adaptive Voltage Positioning (AVP)  
Adjustable Switching Frequency Range  
Digitally Stabilized Switching Frequency  
UltraSonic Operation  
Supports Acoustic Noise Mitigation Function  
Support for VCCIN_AUX IMON Input  
Meets Intel’s IMVP9.1 Specifications  
Current Mode Dual Edge Modulation for Fast Initial Response to  
Transient Loading  
This is a PbFree Device  
Typical Applications  
Desktop, Notebook and Ultrabook Computers  
© Semiconductor Components Industries, LLC, 2021  
1
Publication Order Number:  
May, 2022 Rev. 0  
NCP81565/D  
NCP81565  
TSENSE  
TSENSEA  
VR_HOT#  
Thermal  
Monitor  
UVLO  
&
VSPA  
VSNA  
ENABLE  
AUXDAC  
GND  
DIFFAMP  
VSP  
VSN  
DAC  
GND  
CSREFA  
ENABLE  
DIFFAMP  
VSP  
VSN  
DAC  
VSPA  
CSREF  
VR Ready  
DIFFA  
Comparator  
ERROR  
AMP  
VSNA  
AUXDAC  
DIFF  
FBA  
ERROR  
AMP  
COMPA  
FB  
VSP  
VSN  
OVP  
OVP  
Current  
Measurement &  
Limit  
ILIMA  
COMP  
AUX  
OVP  
VSPA  
VSNA  
IOUTA  
ILIM  
IOUT  
OVPA  
Current  
Measurement &  
Limit  
ICC*2 MAIN RAIL  
CSSUMA  
CSREFA  
CSAMP  
CSSUM  
CSREF  
CSAMP  
CSCOMPA  
ICC*2_MAIN_RAIL  
CSCOMP  
VSP-VSN  
VSPA-VSNA  
TSENSE  
TSENSEA  
IOUT  
SDIO  
ALERT#  
SCLK  
Data  
SVID  
ADC  
Registers  
Interface  
IOUTA  
ROSC  
MUX  
DAC  
DAC  
DAC  
AUXDAC  
ROSCA  
VBOOT  
SV_ADDR_SR  
PSYS  
ICCMAX_AUXIN  
AUX_IN  
PH_CONFIG  
IPH6  
IPH5  
IPH4  
IPH3  
IPH2  
RAMP6  
CSP6  
CSP5  
CSP4  
CSP3  
CSP2  
CSP1  
RAMP5  
RAMP4  
RAMP3  
RAMP2  
Ramp  
PWM  
Current  
Balance  
IPH1A  
IPH2A  
RAMP1A  
RAMP2A  
CSP1A  
CSP2A  
Generators  
Generators  
PWM  
Current  
Balance  
Generators  
IPH1  
RAMP1  
Power State  
Stage  
Power State Stage  
Figure 1. Internal Block Diagram  
www.onsemi.com  
2
NCP81565  
VIN  
VCC  
EN  
+5V  
VRMP  
VIN  
VR_EN  
DrMOS  
VCCIO  
VCCIO  
DRON  
DRON  
VIN  
SW  
EN  
PWM  
SW1  
PWM1/SV_ADDR_SR  
VCCCORE  
SDIO  
ALERT  
SCLK  
CPU_SDIO  
CPU_ALERT  
CPU_SCLK  
SDIO  
ALERT#  
SCLK  
CSP1  
CSREF  
CSREF  
VIN  
DrMOS  
VPULL-UP  
DRON  
VIN  
SW  
EN  
SW2  
PWM2/VBOOT  
CSP2  
PWM  
VR_HOT#  
VR_RDY  
VR_HOT#  
VR_RDY  
VIN  
CSREF  
CSREF  
CSREF  
CSREF  
CSREF  
DrMOS  
DRON  
DRON  
DRON  
DRON  
VIN  
SW  
EN  
SW3  
PSYS  
PSYS  
PWM3/ICCMAX  
CSP3  
PWM  
(BATTERY CHARGER)  
VIN  
AUX_IN  
AUX_OUT  
DrMOS  
(AUX Power)  
VIN  
SW  
EN  
SW4  
PWM4/ROSC  
CSP4  
PWM  
VCCCORE  
VCCCORE_SENSE  
VSP  
VSN  
VIN  
VSSCORE_SENSE  
GND  
DrMOS  
VIN  
SW  
EN  
SW5  
DIFF  
FB  
PWM5/ROSCA  
CSP5  
PWM  
VIN  
COMP  
DrMOS  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
CSSUM  
VIN  
SW  
EN  
SW6  
PWM6/ICCMAX_AUXIN  
CSP6  
PWM  
NTC  
CSCOMP  
ILIM  
VIN  
IOUT  
ICC*2_MAIN_RAIL  
TSENSE  
NTC  
VCCGT  
VIN  
VCCGT_SENSE  
VSPA  
VSNA  
DrMOS  
DRON  
VSSGT_SENSE  
GND  
VIN  
SW  
EN  
VCCGT  
SW1A  
PWM  
PWM1A/ICCMAXA  
DIFFA  
FBA  
CSP1A  
CSREFA  
CSREFA  
COMPA  
SW1A  
SW2A  
CSSUMA  
VIN  
DrMOS  
NTC  
CSCOMPA  
ILIMA  
DRON  
VIN  
SW  
EN  
SW2A  
PWM2A  
CSP2A  
PWM  
IOUTA  
TSENSEA  
GND  
CSREFA  
NTC  
Figure 2. Typical Application Circuit  
www.onsemi.com  
3
NCP81565  
Figure 3. Pinout Diagram  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
NC  
Description  
1
2
3
4
5
6
7
8
9
No Connect  
EN  
Enable. High enables both rails  
Serial VID data interface  
Serial VID ALERT#  
SDIO  
ALERT#  
SCLK  
VR_RDY  
VCC  
Serial VID clock  
VR_RDY indicates both rails are ready to accept SVID commands  
Power for the internal control circuits. A decoupling capacitor is connected from this pin to ground  
System power signal input. A resistor to ground scales this signal.  
PSYS  
VRMP  
Feedforward input of Vin for the rampslope compensation. The voltage fed into this pin is used to  
control the ramp of the PWM slopes.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
VR_HOT#  
AUX_IN  
OD output. Indicates high VR temperature or per channel OCP condition.  
AUX IMON Input on 0x0Dh SVID domain.  
ICC*2_MAIN_RAIL Pulldown on this pin programs ICCMAX on main rail from 255 to 511A.  
IOUTA  
VSNA  
Total output current monitor for regulator 2.  
Differential output voltage sense negative for regulator 2.  
VSPA  
Differential output voltage sense positive for regulator 2.  
DIFFA  
Output for regulator 2’s differential remote sense amplifier.  
FBA  
Error amplifier voltage feedback for regulator 2.  
COMPA  
CSCOMPA  
ILIMA  
Output of the error amplifier and the inverting inputs of the PWM comparators of output for regulator 2.  
Output of totalcurrentsense amplifier for regulator 2.  
Overcurrent threshold setting – programmed with a resistor to CSCOMPA output for regulator 2.  
Inverting input of totalcurrentsense amplifier of output for regulator 2.  
Totalcurrentsense amplifier reference voltage input output for regulator 2.  
Noninverting input to currentbalance amplifier for Phase 1 output for regulator 2.  
CSSUMA  
CSREFA  
CSP1A  
CSP2A  
Noninverting input to currentbalance amplifier for Phase 2 output for regulator 2. Pull this pin to Vcc  
to disable Phase 2.  
25  
26  
NC  
No Connect  
TSENSEA  
Temperature sense input for regulator 2.  
www.onsemi.com  
4
 
NCP81565  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Description  
27  
PWM1A / ICCMAXA PWM1 output for regulator 2. During startup, ICCMAXA for twophase regulator is programmed with a  
pulldown resistor.  
28  
29  
30  
PWM2A  
DRON  
PWM2 output for regulator 2.  
External FET driver enable for discrete driver or ONSemi DrMOS.  
PWM6 /  
ICCMAX_AUXIN  
PWM6 output for regulator 1 / Pulldown resistor on this pin programs ICCMAX for the AUX_IN monitor-  
ing rail.  
31  
PWM5 / ROSCA  
PWM5 output for regulator 1 / Pulldown on this pin programs RoscA % dependent on main rail value  
and ICCMAX range for main rail.  
32  
33  
34  
35  
PWM4 / ROSC  
PWM4 output for regulator 1 / Pulldown on this pin programs Rosc value for main rail.  
PWM3 / ICCMAX PWM3 output for regulator 1 / Pulldown on this pin programs ICCMAX for regulator 1 during startup.  
PWM2 / VBOOT  
PWM2 output for regulator 1 / Pinprogram for regulator 1 and regulator 2 Vboot.  
PWM1 /  
SV_ADDR_SR  
PWM1 output for regulator 1 / Pulldown on this pin configures SVID address, slew rate and Intel Propri-  
etary Current Protection Feature.  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
TSENSE  
CSP1  
CSP2  
CSP3  
CSP4  
CSP5  
CSP6  
CSREF  
CSSUM  
ILIM  
Temperature sense input for regulator 1.  
Differential current sense positive for Phase 1 of regulator 1.  
Differential current sense positive for Phase 2 of regulator 1.  
Differential current sense positive for Phase 3 of regulator 1.  
Differential current sense positive for Phase 4 of regulator 1.  
Differential current sense positive for Phase 5 of regulator 1.  
Differential current sense positive for Phase 6 of regulator 1.  
Totalcurrentsense amplifier reference voltage input for regulator 1.  
Inverting input of totalcurrentsense amplifier for regulator 1.  
Overcurrent threshold setting – programmed with a resistor to CSCOMP for regulator 1.  
Output of totalcurrentsense amplifier for regulator 1.  
Output of the error amplifier and the inverting inputs of the PWM comparators for regulator 1.  
Error amplifier voltage feedback for regulator 1.  
CSCOMP  
COMP  
FB  
DIFF  
Output of the regulator 1 differential remote sense amplifier.  
Differential output voltage sense positive for regulator 1.  
Differential output voltage sense negative for regulator 1.  
Total output current monitor for regulator 1.  
VSP  
VSN  
IOUT  
FLAG  
GND  
1. ‘Regulator 1’ is referred to as ‘Main’ rail throughout the datasheet. ‘Main’ is the primary rail with the highest phase count.  
2. ‘Regulator 2’ is referred to as ‘A’ rail throughout the datasheet.  
www.onsemi.com  
5
NCP81565  
Table 2. MAXIMUM RATINGS (Note 3)  
V
V
I
I
SINK  
Pin Symbol  
COMP  
MAX  
MIN  
SOURCE  
2 mA  
2 mA  
2 mA  
2 mA  
VCC + 0.3 V  
VCC + 0.3 V  
VCC + 0.3 V  
VCC + 0.3 V  
VCC + 0.3 V  
GND + 0.3 V  
GND + 0.3 V  
VCC + 0.3 V  
VCC + 0.3 V  
VCC + 0.3 V  
6.0 V  
0.3 V  
0.3 V  
2 mA  
2 mA  
2 mA  
2 mA  
1 mA  
2 mA  
2 mA  
2 mA  
2 mA  
COMPA  
CSCOMP  
CSCOMPA  
PWMX  
0.3 V  
0.3 V  
0.3 V  
VSN  
GND – 0.3 V  
GND – 0.3 V  
0.3 V  
1 mA  
1 mA  
2 mA  
2 mA  
2 mA  
VSNA  
DIFF  
DIFFA  
0.3 V  
VR_RDY  
VCC  
0.3 V  
0.3 V  
VRMP  
VCC + 0.3 V  
3.6 V  
0.3 V  
SCLK, SDIO  
All Other Pins  
0.3 V  
VCC + 0.3 V  
0.3 V  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
3. All signals referenced to GND unless noted otherwise  
Table 3. ESD Capability  
Description  
ESD Capability, Human Body Model (Note 4)  
ESD Capability, Charged Device Model (Note 4)  
Symbol  
Typ  
2000  
750  
Unit  
V
ESD  
ESD  
HBM  
CDM  
V
4. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Charged Device Model tested per AECQ100011 (EIA/JESD22C101)  
Latchup Current Maximum Rating: 200 mA per JEDEC standard: JESD78.  
Table 4. RECOMMENDED OPERATING CONDITIONS  
Description  
Symbol  
Min  
4.75  
40  
40  
Max  
5.25  
125  
100  
Unit  
V
VCC Voltage Range  
VCC  
Operating Junction Temperature Range (Note 5)  
Operating Ambient Temperature Range  
T
J
°C  
°C  
T
A
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
5. JEDEC JESD 517 with 0 LFM  
Table 5. THERMAL CHARACTERISTICS  
Description  
Thermal Characteristic QFN Package  
Symbol  
Typ  
Unit  
°C/W  
°C  
R
68  
JA  
Maximum Storage Temperature Range  
T
STG  
40 to +150  
Moisture Sensitivity Level QFN Package  
Soldering Temperature  
MSL  
1
°C  
260  
30  
JunctiontoAmbient, Thermal Resistance (Note 6)  
JunctiontoCase (Top), Thermal Resistance (Note 6)  
JunctiontoBoard Heat Spreader, Thermal Resistance (Note 6)  
JunctiontoCase (Top), Measurement Reference (Note 6)  
6. JEDEC JESD 517 with 0 LFM  
q
°C/W  
°C/W  
°C/W  
°C/W  
JA  
q
18  
JC(TOP)  
q
1.0  
1.1  
JB  
Y
JCT  
www.onsemi.com  
6
 
NCP81565  
Table 6. ELECTRICAL CHARACTERISTICS  
Unless otherwise stated: 40°C < T < 100°C; 4.75 V < V < 5.25 V; C = 0.1 mF  
VCC  
A
CC  
Parameter  
BIAS SUPPLY  
Test Conditions  
Min  
Typ  
Max  
Unit  
VCC Voltage Range  
Quiescent Current  
4.75  
5.25  
V
PS0  
27  
25  
24  
20  
mA  
mA  
mA  
mA  
mA  
mA  
V
PS1  
PS2  
PS3  
PS4  
79  
64  
Enable low  
VCC Rising  
VCC Falling  
UVLO Threshold  
4.5  
4.1  
V
VCC UVLO Hysteresis  
100  
100  
mV  
VRMP  
VIN Supply Range  
VRMP range prior to external voltage divider re-  
sistor network with 1/12 ratio  
4.5  
21  
V
UVLO Threshold  
VRMP Rising  
VRMP Falling  
0.355  
V
V
0.250  
UVLO Hysteresis  
mV  
ENABLE INPUT  
Upper Threshold  
Activation Level  
0.8  
V
V
Lower Threshold  
Deactivation Level  
0.3  
PHASE DETECTION  
CSP Pin Threshold Voltage  
Phase Detect Timer  
IMVP9.1 DAC (PROTOCOL 0Eh)  
System Voltage Accuracy  
VCC0.4  
V
1.5  
ms  
0.25 V < DAC < 0.495 V (at 25°C only)  
0.5 V < DAC < 0.745 V (at 25°C only)  
0.75 V < DAC < 1.52 V (at 25°C only)  
10  
8  
10  
8
mV  
mV  
%
0.5  
0.5  
DAC SLEW RATE  
Soft Start Slew Rate  
Slew Rate Slow  
Slew Rate Fast  
DRON  
1/4 fast  
1/4 fast  
> 10  
mV/ms  
mV/ms  
mV/ms  
Resistor Selectable (Table 9)  
Output High Voltage  
Output Low Voltage  
TSENSE  
Sourcing 1 mA  
Sinking 1 mA  
3
V
V
0.1  
TSENSE Bias Current  
Alert#  
115.5  
120  
556  
595  
124.5  
mA  
mV  
mV  
Assert Threshold  
DeAssert Threshold  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product per-  
formance may not be indicated by the Electrical Characteristics if operated under different conditions.  
N* is the phase configuration number in PS0.  
7. Tested at 25°C / 5 V VCC only.  
8. Guaranteed by characterization, not production tested.  
www.onsemi.com  
7
 
NCP81565  
Table 6. ELECTRICAL CHARACTERISTICS  
Unless otherwise stated: 40°C < T < 100°C; 4.75 V < V < 5.25 V; C = 0.1 mF  
VCC  
A
CC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
TSENSE  
VR_HOT  
Assert Threshold  
DeAssert Threshold  
517  
556  
mV  
mV  
VR_RDY OUTPUT  
Output Low Saturation Voltage  
VR_RDY Rise Time  
I
= 4 mA  
0.1  
110  
20  
0.3  
150  
150  
V
VR_RDY  
1 KW pullup to 3.3 V, C  
= 45 pF  
ns  
ns  
TOT  
VR_RDY Fall Time  
SVID (SDIO and SCLK)  
SVID Voltage Low Level (Note 7)  
SVID Voltage High Level (Note 7)  
SVID Pull Down Resistance  
SDIO Output Low Voltage  
SVID Clock to Data Delay (Note 8)  
SVID Setup Time (Note 8)  
SVID Hold Time (Note 8)  
Pad and Pin Capacitance (Note 7)  
ALERT#  
VIL  
0.45  
V
V
VIH  
0.65  
4
5
W
VOL  
TCO  
0.3  
12  
V
ns  
ns  
ns  
pF  
7
14  
VOL (Output Low)  
0.3  
V
OVP AND UVP  
Absolute Over Voltage Threshold  
10 mV DAC step  
3.3  
2.4  
3.44  
2.5  
3.6  
2.65  
475  
V
V
During Soft Start CSREF Rising  
5 mV DAC step  
During Soft Start CSREF Rising  
Over Voltage Threshold Above DAC  
Over Voltage Delay  
VSPVSNVID Rising  
350  
400  
50  
mV  
ns  
VSPVSN Rising to PWM Low  
Under Voltage Threshold Below DACVSPVSNVID Falling  
DROOP (VUVM)  
440  
400  
360  
mV  
Under Voltage Delay  
5
ms  
PWM OUTPUT  
Output High Voltage  
Output Mid Voltage  
Output Low Voltage  
DIFFERENTIAL AMPLIFIER  
Input Bias Current  
3 dB Bandwidth  
Sourcing 500 mA  
Vcc0.2  
V
V
V
No Load, Power State 2  
Sinking 500 mA  
1.7  
1.8  
1.9  
0.7  
VSP = 1.3 V  
200  
500  
nA  
MHz  
V/V  
CL = 20 pF, RL = 10 kW  
VSP VSN = 0.5 V to 1.3 V  
22.5  
1
Closed Loop DC Gain  
ERROR AMPLIFIER  
Input Bias Current  
DC Gain  
Input = 1.3 V  
400  
400  
nA  
dB  
CL = 20 pF, RL = 10 kW  
80  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product per-  
formance may not be indicated by the Electrical Characteristics if operated under different conditions.  
N* is the phase configuration number in PS0.  
7. Tested at 25°C / 5 V VCC only.  
8. Guaranteed by characterization, not production tested.  
www.onsemi.com  
8
NCP81565  
Table 6. ELECTRICAL CHARACTERISTICS  
Unless otherwise stated: 40°C < T < 100°C; 4.75 V < V < 5.25 V; C = 0.1 mF  
VCC  
A
CC  
Parameter  
ERROR AMPLIFIER  
Test Conditions  
Min  
Typ  
Max  
Unit  
3 dB Bandwidth  
CL = 20 pF, RL = 10 kW  
DVin = 100mV, G=10V/V,  
20  
5
MHz  
Slew Rate  
V/ms  
DVout = 1.5 V to 2.5 V, CL = 20 pf, RL = 10 kW  
OVERCURRENT PROTECTION (ILIM)  
ILim Threshold Current  
(Delayed OCP shutdown)  
PS0  
8.5  
10  
10/N*  
15  
11.5  
16.5  
mA  
mA  
mA  
mA  
ms  
PS1, PS2, PS3  
PS0  
ILim Threshold Current  
(Immediate OCP shutdown)  
13.5  
PS1, PS2, PS3  
Immediate  
Delayed  
15/N*  
1.3  
Shutdown Delay  
50  
ms  
IOUT OUTPUT  
Current Gain  
IOUT/ILIM  
(RLIM = 20 kW, RIOUT = 5 kW,  
Vout = 0.8 V, 1.25 V, 1.52 V)  
9.5  
10  
10.5  
A/A  
PWM GENERATOR  
PWM Minimum Pulse Width  
0% Duty Cycle  
40  
1.3  
ns  
V
Comp Voltage for PWM Held Low  
100% Duty Cycle  
Comp Voltage for PWM Held High  
VIN at 4.5 V  
1.75  
V
100% Duty Cycle  
Comp Voltage for PWM Held High  
VIN at 21 V  
3.4  
V
CURRENT SUMMING AMPLIFIER (CSAMP)  
Offset Voltage  
500  
10  
500  
10  
mV  
mA  
Input Bias Current  
CSSUM = CSREF = 1.0 V  
Open Loop Gain  
80  
10  
dB  
Open Loop Unity Gain Bandwidth  
CURRENT BALANCE AMPLIFIER  
C = 20 pF to GND, R = 10 kW to GND  
MHz  
L
L
Differential Mode Input Voltage Range CSNx = 1.2 V  
100  
100  
mV  
PSYS  
Full Scale Input Voltage  
Disable Threshold  
2.5  
V
V
VCC0.4  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product per-  
formance may not be indicated by the Electrical Characteristics if operated under different conditions.  
N* is the phase configuration number in PS0.  
7. Tested at 25°C / 5 V VCC only.  
8. Guaranteed by characterization, not production tested.  
Start Up  
Following the rise of VCC above the UVLO threshold,  
externally programmed configuration data is collected, and  
all PWM outputs are set to Midlevel to prepare the gate  
drivers of the power stages for activation. When the  
controller is enabled, DRON is asserted (high) to activate the  
external gate drivers. A digital counter steps the DAC up  
from zero to the target boot voltage based on the Soft Start  
Slew Rate in the spec table. As the DAC ramps, the PWM  
outputs of each rail will change from Midlevel to high  
when the first PWM pulse for that rail is produced. When the  
controller is disabled, the PWM signals return to Midlevel.  
The VR_RDY signal is asserted when the controller is ready  
to accept the first SVID command.  
www.onsemi.com  
9
NCP81565  
DEVICE CONFIGURATION  
ICCMAX  
Phase and Rail Configuration  
During startup, the number of operational phases of the  
multiphase rail is determined by the internal circuitry  
monitoring the CSP inputs. If a reduced phase count is  
required, the appropriate CSP pins should be externally  
pulled to VCC with a resistor during startup.  
Resistors to ground on the PWM3/ICCMAX,  
PWM1A/ICCMAXA and PWM6/ICCMAX_AUXIN pins  
programs these registers at the time the part is enabled.  
10 mA is sourced from this pin to generate a voltage on the  
program resistor. The value of the register is set by the  
equation below. The resistor value should be no less than  
10 kW.  
Basic Configuration  
The controller has four basic configuration features. On  
power up a 10 mA current is sourced from these pins through  
a resistor connected to this pin and the resulting voltage is  
measured. The following features will be programmed:  
R @ 10 mA @ 255  
ICCMAX +  
2.5 V  
ICCMAX Additional Capability  
There is an option to extend the current range of the main  
rail by scaling the lsb size (See Table 7). See Table 11 for  
details on how to enable this mode.  
SVID Address  
Slew Rate  
V  
BOOT  
Output Voltage Step  
Table 7. ICCMAX CAPABILITY SCALING  
ICCMAX_ADD[4:0]  
Switching Frequency  
Power  
Power [4:2]  
010  
Current [1:0]  
Switching frequencies between 180 kHz and 1.17 MHz  
are programmed at startup with pulldown resistors on Rosc  
and RoscA pin. Switching frequency options are shown in  
Table 12.  
Scaling  
4 W /bit  
8 W / bit  
ICC Scaling  
1 A / bit  
00  
01  
011  
2 A / bit  
Table  
8
shows the rail configurations when  
ICC*2_MAIN_RAIL mode is enabled and disabled.  
Table 8. RAIL SETTINGS FOR ICC*2_MAIN_RAIL MODE  
ICC*2_MAIN_RAIL  
Disabled  
1A  
Enabled  
2A  
ICCMAX LSB Size  
IOUT LSB Size  
POUT LSB Size  
1A  
2A  
4 W  
8 W  
Main Rail  
HIGHPOWER_ICCMAX_ADD[1:0]  
00  
01  
HIGHPOWER_ICCMAX_ADD[4:2]  
Loadline Weighting  
ICCMAX LSB Size  
010  
011  
93.75%  
187.5%  
1A  
1A  
IOUT LSB Size  
POUT LSB Size  
4 W  
00  
A Rail  
HIGHPOWER_ICCMAX_ADD[1:0]  
HIGHPOWER_ICCMAX_ADD[4:2]  
Loadline Weighting  
010  
93.75%  
1A  
ICCMAX LSB Size  
IOUT LSB Size  
1A  
POUT LSB Size  
4 W  
00  
VCCIN_AUX  
HIGHPOWER_ICCMAX_ADD[1:0]  
HIGHPOWER_ICCMAX_ADD[4:2]  
010  
www.onsemi.com  
10  
 
NCP81565  
Ultrasonic Mode  
Table 10. VBOOT AND OUTPUT VOLTAGE STEP  
The switching frequency of a rail in DCM will decrease  
at very light loads. Ultrasonic Mode forces the switching  
frequency to stay above the audible range.  
Resistor  
V
BOOT  
(V)  
V
BOOT  
(V)  
Output  
(kW)  
Main rail  
A rail  
0 V  
Voltage Step  
10  
0 V  
Both rail  
5 mV/step  
CCM/DCM Operation  
14  
0 V  
1.05 V  
0 V  
In PS0, all rails operate in Continuous Conduction Mode  
(CCM) which uses the dualedge control methodology.  
However, if PS0 is configured as onephase instead of  
multiphase, the control methodology changes to RPM  
operation. RPM has great transient performance in  
onephase CCM operation. The RPM frequency average  
DC value is targeted to be similar to the PS0 Dual Edge  
frequency. However, the switching frequency of RPM  
depends on input voltage, output voltage, load current,  
inductor value, and output capacitor value. In PS1, all rails  
operate in onephase CCM RPM. In PS2 and PS3, all rails  
operate in either CCM or Discontinuous Conduction Mode  
(DCM). It depends on load current in order to prevent loss  
of efficiency from negative inductor current.  
18.7  
24.3  
30.9  
38.3  
47.5  
59  
1.05 V  
1.05 V  
0 V  
1.05 V  
0 V  
B oth rail  
10mV/step  
0 V  
1.8 V  
0 V  
1.8 V  
1.8 V  
0 V  
1.8 V  
0 V  
71.5  
86.6  
105  
127  
154  
187  
221  
280  
Main rail  
5 mV/step.  
A rail  
10 mV/step.  
0 V  
1.8 V  
0 V  
1.05 V  
1.05 V  
0 V  
1.8 V  
0 V  
Main rail  
10 mV/step.  
A rail  
5 mV/step.  
PSYS  
1.8 V  
0 V  
0 V  
The PSYS pin is an analog input to the VR controller. It  
is a system input power monitor that facilitates the  
monitoring of the total platform system power. For more  
information regarding PSYS please contact Intel, Inc.  
1.05 V  
1.05 V  
1.8 V  
AUX_IN  
The AUX_IMON current monitor input is a means of  
measuring the VCCIN_AUX platform VR output current  
using the IMVP9.1 ADC.  
Table 9. SVID ADDRESS AND SLEW RATE  
Intel  
Proprietary  
Current  
Protection  
Feature  
Main Rail  
SVID  
Address  
A Rail  
SVID  
Address  
Programming Pin  
Resistor  
(kW)  
SR  
(mV/ms)  
This is a multifunction select pin used to set the operation  
of multiple features and the combination of these features  
enabled/disable. Items programmed on this pin are  
ICC*2_MAIN_RAIL which allows the user to select if the  
ICCMAX and IOUT reporting for the main rail is a 1 A or  
2 A LSB step size. When off, the resolution is 1 A per LSB.  
When on, the resolution is set to 2 A per LSB which allows  
reporting of over 255 A on the main rail only.  
The other options include dithering and acoustic noise  
solution.  
10  
10  
30  
48  
10  
30  
48  
10  
30  
48  
10  
30  
48  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
2
2
2
2
2
2
ON  
ON  
14  
18.7  
24.3  
30.9  
38.3  
47.5  
59  
ON  
OFF  
OFF  
OFF  
ON  
ON  
71.5  
86.6  
105  
127  
ON  
OFF  
OFF  
OFF  
www.onsemi.com  
11  
NCP81565  
Table 11. PIN OF ICC*2_MAIN_RAIL CONFIGURATION  
Resistor (kW)  
10  
ICC*2 Main Rail  
Acoustic Noise Solution  
Dithering  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
18.7  
30.9  
OFF  
ON  
47.5  
ON  
71.5  
OFF  
OFF  
ON  
OFF  
ON  
105  
ON  
154  
ON  
OFF  
ON  
221  
ON  
ON  
Table 12. SWITCHING FREQUENCY  
R
/R  
OSC OSCA  
Switching Frequency (KHz)  
Control by Pin  
1 Phase ~ 6 Phase  
Resistor (kW)  
10  
180  
225  
270  
315  
360  
405  
450  
495  
540  
630  
720  
810  
900  
990  
1080  
1170  
14  
18.7  
24.3  
30.9  
38.3  
47.5  
59  
71.5  
86.6  
105  
127  
154  
187  
221  
280  
Input Voltage FeedForward (VRMP Pin)  
Ramp generator circuits are provided for the dualedge  
modulator. The ramp generators implement input voltage  
feedforward control by varying the ramp slopes  
proportional to the VRMP pin voltage. The VRMP pin also  
has a UVLO function, which is active only after the  
controller is enabled. The VRMP pin is high impedance  
input when the controller is disabled. For multiphase  
operation, the dualedge PWM ramp amplitude is changed  
according to the following:  
Figure 4. Ramp Feed Forward  
An external voltage divider is required on this VRMP pin.  
In order to scale the voltage seen on the VRMP pin, the  
voltage divider on the pin needs to be setup to maintain a  
VRMPPP + 0.1 @ VVRMP  
www.onsemi.com  
12  
NCP81565  
ratio of 1/12. Typical resistor values may include 1 MW Rup  
/ 90.9 kW Rdown or 1.1 MW Rup / 100 kW Rdown. UVLO  
on VRMP is inactive in PS4 power state and PS3 when a  
VID to 0 V is received.  
senses the inductor temperature, and compensates both the  
DC gain and the filter time constant for the change in DCR  
with temperature. The Phase 1 inductor is chosen for the  
thermistor location so that the temperature of the inductor  
providing current in the PS1 power mode.  
Rup  
Input Voltage  
Feed Forward  
Control  
The DC gain equation for the DC total current signal is:  
VRMP  
VIN  
R
CS1@Rth  
RCS2  
)
Rdown  
R
CS1)Rth  
V
CSCOMP * VCSREF  
+
@ DCR @ IOUT  
Rph  
Set the DC gain by adjusting the value of the Rph resistors  
in order to make the ratio of total current signal to output  
current equal the desired loadline. The values of Rcs1 and  
Rcs2 are set based on the effect of temperature on both the  
thermistor and inductor, and may need to be adjusted to  
eliminate output voltage temperature drift with the final  
product enclosure and cooling.  
Figure 5. Ramp Feed Forward Circuit  
Differential Current Feedback Amplifiers  
Each phase of the rail has a low offset, differential  
amplifier to sense the current of that phase in order to  
balance current. The CSREF and CSPx pins are high  
impedance inputs, but it is recommended that any external  
filter resistor RCSN does not exceed 10 kW to avoid offset  
due to leakage current.  
Rcs1  
Rcs2  
It is also recommended that the voltage sense element be  
no less than 0.5 mW for best current balance.  
Ccs2  
Ccs1  
SWN1  
SWNX  
The external filter RCSN and CCSN time constant should  
match the inductor L/DCR time constant, but fine tuning of  
this time constant is generally not required. Phase current  
signals are summed with the COMP or ramp signals at their  
respective PWM comparator inputs in order to balance  
phase currents via a current mode control approach.  
Rph1  
Rphx  
CSSUM  
CSREF  
cscomp  
CSN1  
CSNX  
Rref1  
Rrefx  
Rilim  
To remote sense  
Cref  
amplier  
buffer  
LPHASE  
CSN @ DCR  
ilim  
RCSN  
DCR  
RCSN  
+
C
LPHASE  
Current Limit Current  
Comparator Mirror  
SWx  
Ciout  
Riout  
VOUT  
CCSN  
CSPx  
Figure 7. Total Current Sense Amplifier  
Figure 6. Per Phase Current Sense Network  
The pole frequency of the CSCOMP filter should be set  
equal to the zero of the output inductor. This causes the total  
current signal to contain only the component of inductor  
voltage caused by the DCR voltage, and therefore to be  
proportional to inductor current. Connecting Ccs2 in  
parallel with Ccs1 allows fine tuning of the pole frequency  
using commonly available capacitor values. It is best to  
perform fine tuning during transient testing.  
Total Current Sense Amplifier  
The multiphase rail uses a patented approach to sum the  
phase currents into a single, temperature compensated, total  
current signal. This signal is then used to generate the output  
voltage droop, total current limit, and the output current  
monitoring functions. The Rref(n) resistors average the  
voltages at the output terminals of the inductors to create a  
low impedance reference voltage at CSREF. The Rph  
resistors sum currents from the switch nodes to the virtual  
CSREF potential created at the CSSUM pin by the amplifier.  
The total current signal is the difference between the  
CSCOMP and CSREF voltages.  
DCR25oC  
2p @ LPHASE  
FZ  
+
1
Fp +  
R
CS1@Rth  
CS1)Rth  
@ ǒC Ǔ  
CS1 ) CCS2  
2p @ ǒ  
Ǔ
RCS2  
)
R
The amplifier filters, and amplifies, the voltage across the  
inductors in order to extract only the voltage across the  
inductor series resistances (DCR). An NTC thermistor (Rth)  
in the feedback network placed near the Phase 1 inductor  
This signal then goes through a standard error  
compensation network and into the inverting input of the  
error amplifier.  
www.onsemi.com  
13  
NCP81565  
The value of the CREF capacitor (in nF) on the CSREF pin  
should be:  
regulator output voltage. The VSP and VSN inputs should  
be connected to the regulator’s output voltage sense points.  
The remote sense amplifier takes the difference of the output  
voltage with the DAC voltage and adds the droop voltage.  
0.02 @ Rph  
Cref +  
Rref  
VDIFFOUT  
+
High Performance Voltage Error Amplifier  
ǒV  
Ǔ ) 1.3 V * V  
ǒ
Ǔ ) V  
ǒ
Ǔ
DROOP * VCSREF  
VSP * VVSN  
DAC  
The Remote Sense Amplifier output feeds a Type III  
compensation network formed by the Error Amplifier and  
external tuning components. The noninverting input of the  
error amplifier is connected to the same reference voltage  
used to bias the Remote Sense Amplifier output.  
Programming the Current Limit  
The current limit thresholds are programmed with a  
resistor between the ILIM and CSCOMP pins. The  
multiphase rails generates a replica of the CSREF pin  
voltage at the ILIM pin, and compares ILIM pin current to  
ICL and ICLM. The controller latches off if ILIM pin  
C2  
C3  
R3  
current exceeds ICL for t  
, and latches off  
OCPDLY  
C1  
R2  
immediately if ILIM pin current exceeds ICLM. Set the  
value of the current limit resistor RLIMIT according to the  
desired current limit Iout LIMIT.  
R1  
DIFFOUT  
FB  
Vref  
Figure 8. Error Amplifier  
COMP  
-
+
EA  
R
CS1@Rth  
RCS2)  
R
CS1)Rth  
@ DCR @ IOUT  
Rph  
LIM  
Loadline Programming (VDROOP  
)
RLIMIT  
+
10 m  
An output loadline is a power supply characteristic  
wherein the regulated (DC) output voltage decreases  
proportional to load current. This characteristic can reduce  
the output capacitance required to maintain output voltage  
within limits during load transients faster than those to  
which the regulation loop can respond.  
Programming IOUT  
The IOUT pin sources a current proportional to the ILIM  
current. The voltage on the IOUT pin is monitored by the  
internal A/D converter and should be scaled with an external  
resistor to ground such that a load equal to ICCMAX  
generates a 2.5 V signal on IOUT.  
A load line is produced by adding a signal proportional to  
output load current (V  
) to the output voltage feedback  
DROOP  
signal – thereby satisfying the voltage regulator at an output  
voltage reduced proportional to load current. The load line  
is programmed by setting the gain of the Total Current Sense  
Amplifier such that the total current signal is equal to the  
desired output voltage droop.  
2.5 V @ RLIM  
RIOUT  
+
R
CS1@Rth  
RCS2)  
R
CS1)Rth  
Rph  
10 @  
@ DCR @ ICCMAX  
R
CS1@Rth  
Programming DAC FeedForward Filter  
RCS2  
)
The multiphase rail outputs a pulse of current from the  
VSN pin upon each increment of the internal DAC  
following a DVID UP command. A parallel RC network  
inserted into the path from VSN to the output voltage return  
sense point, VSS_SENSE, causes these current pulses to  
temporarily decrease the voltage between VSP and VSN.  
This causes the output voltage during DVID to be regulated  
slightly higher, in order to compensate for the response of  
the DROOP function to current flowing into the charging  
R
CS1)Rth  
VDROOP  
+
@ DCR @ IOUT  
Rph  
For the main rail, loadline programming is dependent on its  
programmed ICCMAX value.  
Rcs  
Loadline + DCR   
  Weighting  
Rph  
For ICC*2_MAIN_RAIL configuration enabled,  
weighting = 187.50%.  
For ICC*2_MAIN_RAIL configuration disabled,  
weighting = 93.75%.  
output capacitors. In the following equations, C  
total output capacitance of the system.  
is the  
OUT  
R
FF + Cout @ LL @ 453.6 @ 106  
For the A rail, loadline weighting = 93.75%  
LL @ Cout  
Rail Remote Sense Amplifier  
CFF +  
RFF  
A
high performance high input impedance true  
differential amplifier is provided to accurately sense  
www.onsemi.com  
14  
NCP81565  
TSENSE  
RCOMP 1  
CFILTER  
RNTC  
RCOMP 2  
Figure 10. TSENSE Network  
PWM Comparators  
Figure 9. DAC Feed Forward  
TSENSE Network  
The noninverting input of each comparator (one for each  
phase) is connected to the summation of the error amplifier  
output (COMP) and each phase current (IL×DCR×Phase  
Balance Gain Factor). The inverting input is connected to  
the triangle ramp voltage of that phase. The output of the  
comparator generates the PWM output. During steady state  
PS0 operation, the main rail PWM pulses are centered on the  
valley of the triangle ramp waveforms and both edges of the  
PWM signals are modulated. During a transient event, the  
duty cycle can increase rapidly as the error amp signal  
increases with respect to the ramps, to provide a highly  
linear and proportional response to the step load.  
A temperature sense input is provided for each rail. A  
precision current is sourced from the output of the  
TSENSE/A pins to generate a voltage on the temperature  
sense networks. The voltages on the temperature sense  
inputs are sampled by the internal A/D converter. A 100k  
NTC similar to the Murata NCP15WF104E03RC should be  
used. Rcomp1 in the following Figure is optional, and can  
be used to slightly change the hysteresis. See the  
specification table for the thermal sensing voltage  
thresholds and source current.  
Table 13. PHASE CONFIGURATION  
Phase  
Configuration  
Programming Pin in CSPx  
Unused Pin  
6 + 2  
All CSP pins are connected normally  
No unused Pin  
5 + 2  
CSP1 to CSP5, CSP1A and CSP2A pins connected normally.  
CSP6 connected to VCC through a 2k resistor.  
Float PWM6.  
4 + 2  
3 + 2  
CSP1 to CSP4, CSP1A and CSP2A pins connected normally.  
CSP5 connected to VCC through a 2k resistor.  
Float PWM6 and CSP6.  
Use PWM5 for programming ROSCA only.  
CSP1 to CSP3, CSP1A and CSP2A pins connected normally.  
CSP4 connected to VCC through a 2k resistor.  
Float PWM6, CSP5 and CSP6.  
Use PWM5 for programming ROSCA only.  
Use PWM4 for programming ROSC only.  
2 + 2  
2+1  
CSP1, CSP2, CSP1A and CSP2A pins connected normally.  
CSP3 connected to VCC through a 2k resistor.  
Float PWM6, CSP4, CSP5 and CSP6.  
Use PWM5 for programming ROSCA only.  
Use PWM4 for programming ROSC only.  
Use PWM3 for programming ICCMAX only.  
CSP1, CSP2, CSP1A pins connected normally.  
CSP3 and CSP2A connected to VCC through a 2k resistor.  
Float PWM6, PWM2A, CSP4, CSP5 and  
CSP6.  
Use PWM5 for programming ROSCA only.  
Use PWM4 for programming ROSC only.  
Use PWM3 for programming ICCMAX only.  
2+0  
CSP1, CSP2, pins connected normally.  
CSP3 and CSP1A connected to VCC through a 2k resistor.  
Float PWM6, PWM1A, PWM2A, CSP4, CSP5,  
CSP6 and CSP2A.  
Use PWM5 for programming ROSCA only.  
Use PWM4 for programming ROSC only.  
Use PWM3 for programming ICCMAX only.  
www.onsemi.com  
15  
NCP81565  
FAULT PROTECTION  
Over Current Protection (OCP)  
below the DACDROOP voltage, the UVM comparator  
A programmable total phase current limit is provided that  
is decreased when not operating in PS0 mode. This limit is  
programmed with a resistor between the CSCOMP and  
ILIM pins. The current from the ILIM pin to this resistor is  
compared to the ILIM Threshold Currents.  
If the fault is not removed, the controller shuts down when  
the timer expires. If the current into the pin exceeds ICLM,  
the controller shuts down immediately. To recover from an  
OCP fault, the EN pin or VCC voltage must be cycled low.  
will trip – sending the VR_RDY signal low.  
Output Over Voltage Protection  
The multiphase phase output voltage is monitored for  
OVP at the VSP pin. During normal operation, if an output  
voltage exceeds the DAC voltage by VOVP, the VR_RDY  
flag goes low, and the DAC voltage of the overvoltage rail  
will be slowly ramped down to 0 V to avoid producing a  
negative output voltage. At the same time, the PWM outputs  
of the overvoltage rail are sent low. The PWM output will  
pulse to midlevel during the DAC ramp down period if the  
output decreases below the DAC + OVP threshold as DAC  
decreases. When the DAC gets to zero, the PWMs will be  
held low, and the VR will stay in this mode until the VCC  
voltage or EN is toggled.  
Input Undervoltage Lockouts (UVLO)  
The VR monitors the 5 V VCC supply as well as the  
VRMP pin voltage. Hysteresis is incorporated within these  
monitors.  
Output Under Voltage Monitor  
The multiphase rail output voltage is monitored for under  
voltage at the output of the differential amplifier. If the  
multiphasephase rail output falls more than VUVM2  
Absolute OVP  
During start up, the OVP threshold is set to the absolute  
over voltage threshold. This allows the controller to start up  
without false triggering OVP.  
Figure 11. OVP Threshold Behavior  
www.onsemi.com  
16  
NCP81565  
Figure 12. OVP Behavior at Startup  
Figure 13. OVP During Normal Operation Mode  
Serial VID Interface  
For Intel proprietary interface communication details  
please contact Intel, inc.  
www.onsemi.com  
17  
NCP81565  
PACKAGE DIMENSIONS  
QFN52 6x6, 0.4P  
CASE 485BE  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
L
L
D
A B  
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30mm FROM TERMINAL TIP  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
L1  
LOCATION  
DETAIL A  
MILLIMETERS  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
E
DIM MIN  
MAX  
1.00  
0.05  
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
0.10  
C
EXPOSED Cu  
MOLD CMPD  
0.15  
0.25  
D
D2  
E
6.00 BSC  
4.60  
4.80  
TOP VIEW  
0.10  
C
6.00 BSC  
E2  
e
K
L
L1  
L2  
4.60  
0.40 BSC  
0.30 REF  
0.25  
0.00  
0.15 REF  
4.80  
A
(A3)  
DETAIL B  
DETAIL B  
0.10  
C
C
ALTERNATE  
0.45  
0.15  
CONSTRUCTION  
0.08  
A1  
NOTE 4  
SEATING  
PLANE  
SIDE VIEW  
D2  
C
K
L2  
DETAIL C  
L2  
14  
DETAIL A  
DETAIL C  
27  
8 PLACES  
SOLDERING FOOTPRINT*  
E2  
6.40  
4.80  
52X  
0.63  
52X  
L
1
52  
40  
52X b  
e
0.07  
C
C
A B  
BOTTOM VIEW  
0.05  
NOTE 3  
4.80  
6.40  
0.11  
0.49  
DETAIL D  
PKG  
8 PLACES  
OUTLINE  
DETAIL D  
52X  
0.25  
0.40  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
onsemi Website: www.onsemi.com  
www.onsemi.com  

相关型号:

NCP81566MNTXG

8 + 1 Phase Output Controller with SVID Interface for Computer CPU Applications
ONSEMI

NCP81567MNTXG

6+2 Phase Output Controller with SVID Interface for Computer CPU Applications
ONSEMI

NCP81599MNTXG

I2C Configurable, 4-Switch Buck Boost Controller for USB-PD Power Delivery and Type-C Applications
ONSEMI

NCP9001

1.5 MHz, 600 mA, High−Efficiency, Low Quiescent Current, Adjustable Output Voltage Step−Down Converter
ONSEMI

NCP9001SNT1G

1.5 MHz, 600 mA, High−Efficiency, Low Quiescent Current, Adjustable Output Voltage Step−Down Converter
ONSEMI

NCP9002

1.3 Watt Audio Power Amplifier with Fast Turn On Time
ONSEMI

NCP9002FCT2G

1.3 Watt Audio Power Amplifier with Fast Turn On Time
ONSEMI

NCP9003

Compact Backlight LED Boost Driver
ONSEMI

NCP9003SNT1G

Compact Backlight LED Boost Driver
ONSEMI

NCP9004

2.65 W Filterless Class−D Audio Power Amplifier
ONSEMI

NCP9004FCT1G

2.65 W Filterless Class−D Audio Power Amplifier
ONSEMI

NCPRKIT001

DESIGN ENGINEERING KITS
MURATA