NCS20164DR2G [ONSEMI]

8 MHz, Rail-to-Rail CMOS Operational Amplifier.;
NCS20164DR2G
型号: NCS20164DR2G
厂家: ONSEMI    ONSEMI
描述:

8 MHz, Rail-to-Rail CMOS Operational Amplifier.

文件: 总22页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
8 MHz, Rail-To-Rail, CMOS  
Operational Amplifier  
5
1
SC705  
TSOP5/SOT235  
CASE 419A  
CASE 483  
NCS20161, NCS20162,  
NCS20164, NCV20161,  
NCV20162, NCV20164  
8
1
The NCS20161, NCS20162, and NCS20164 are a family of single,  
dual and quad operational amplifiers (op amps) that provide 8 MHz  
gainbandwidth product while consuming 500 A of quiescent  
current per channel. The NCS2016x has an input offset voltage of  
0.3 mV and operates from 1.8 V to 5.5 V supply over a wide  
temperature range (40C to 125C). The railtorail input and output  
operation allows the use of the entire supply voltage range. Thus, this  
series of op amps offers superior performance over many industry  
standard parts. These devices are AECQ100 qualified when denoted  
by the NCV prefix.  
Micro8]/MSOP8  
SOIC8  
CASE 751  
CASE 846A  
14  
14  
1
1
SOIC14  
CASE 751A  
TSSOP14  
CASE 948G  
With low current consumption and low supply voltage operation in  
industry standard packages, the NCS20161 series is ideal for sensor  
signal conditioning and low voltage current sensing applications in  
automotive, consumer and industrial markets.  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 2 of this data sheet.  
Features  
GainBandwidth Product: 8 MHz  
Low Supply Current per Channel: 500 A typ (V = 5.5 V)  
Low Input Offset Voltage: 0.3 mV  
Wide Supply Range: 1.8 V to 5.5 V  
Wide Temperature Range: 40C to +125C  
RailtoRail Input and Output  
ORDERING INFORMATION  
S
See detailed ordering and shipping information on page 3 of  
this data sheet.  
Unity Gain Stable  
Available in Single, Dual and Quad Packages  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
These Devices are PbFree, Halogen Free/BFR Free and are RoHS  
Compliant  
Applications  
Automotive  
Battery Powered / Portable  
Sensor Signal Conditioning  
Low Voltage Current Sensing  
Filter Circuits  
Unity Gain Buffer  
This document contains information on some products that are still under development.  
onsemi reserves the right to change or discontinue these products without notice.  
Semiconductor Components Industries, LLC, 2021  
1
Publication Order Number:  
May, 2023 Rev. 1  
NCS20161/D  
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
MARKING DIAGRAMS  
Single Channel Configuration  
NCS20161, NCV20161  
5
XXMG  
XXXAYWG  
G
G
1
SC705  
TSOP5/SOT235  
CASE 419A  
CASE 483  
Dual Channel Configuration  
NCS20162, NCV20162  
8
8
20162  
ALYW  
G
XXXX  
AYWG  
G
1
1
Micro8]/MSOP8  
SOIC8  
CASE 751  
CASE 846A  
Quad Channel Configuration  
NCS20164, NCV20164  
14  
14  
XXXX  
XXXX  
ALYWG  
G
20164G  
AWLYWW  
1
1
TSSOP14  
CASE 948G  
SOIC14  
CASE 751A  
XXXXX = Specific Device Code  
= Assembly Location  
WL, L = Wafer Lot  
= Year  
A
Y
WW, W = Work Week  
G or G = PbFree Package  
(Note: Microdot may be in either location)  
www.onsemi.com  
2
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
Single Channel Configuration  
NCS20161, NCV20161  
5
4
1
2
3
5
4
1
2
3
IN+  
VDD  
VDD  
OUT  
OUT  
VSS  
+
VSS  
IN−  
IN+  
IN−  
SC705  
SQ3 Pinout  
SOT235 (TSOP5)  
SN2 Pinout  
Quadruple Channel Configuration  
NCS20164, NCV20164  
Dual Channel Configuration  
OUT 1  
IN1  
IN+ 1  
VDD  
1
2
3
4
5
6
7
14  
OUT 4  
NCS20162, NCV20162  
13 IN4  
1
2
3
4
8
7
6
5
OUT 1  
VDD  
+
+
12 IN+ 4  
OUT 2  
IN2  
IN+ 2  
IN1  
IN+ 1  
VSS  
VSS  
11  
+
10 IN+ 3  
IN+ 2  
IN2  
+
+
+
9
8
IN3  
Micro8/MSOP8, SOIC8  
OUT 2  
OUT 3  
TSSOP14, SOIC14  
Figure 1. Pin Connections  
ORDERING INFORMATION  
Device*  
Configuration  
Automotive  
Marking  
TBD  
Package  
SC70  
Shipping  
NCS20161SQ3T2G**  
NCS20161SN2T1G**  
NCV20161SQ3T2G**  
NCV20161SN2T1G**  
NCS20162DMR2G**  
NCS20162DR2G**  
NCV20162DMR2G**  
NCV20162DR2G**  
NCS20164DR2G  
Single  
No  
Yes  
No  
3000 / Tape and Reel  
3000 / Tape and Reel  
3000 / Tape and Reel  
3000 / Tape and Reel  
4000 / Tape and Reel  
2500 / Tape and Reel  
4000 / Tape and Reel  
2500 / Tape and Reel  
2500 / Tape and Reel  
2500 / Tape and Reel  
2500 / Tape and Reel  
2500 / Tape and Reel  
TBD  
SOT235/TSOP5  
SC70  
TBD  
TBD  
SOT235/TSOP5  
Micro8/MSOP8  
SOIC8  
Dual  
TBD  
20162  
TBD  
Yes  
No  
Micro8/MSOP8  
SOIC8  
20162  
20164G  
TBD  
Quad  
SOIC14  
NCS20164DTBR2G**  
NCV20164DR2G**  
NCV20164DTBR2G**  
TSSOP14  
SOIC14  
Yes  
20164G  
TBD  
TSSOP14  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable.  
**In Development. Contact local sales office for more information.  
www.onsemi.com  
3
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Rating  
Symbol  
Limit  
Unit  
V
Supply Voltage (V – V  
)
V
S
0.3 to 6  
DD  
SS  
Common Mode Input Voltage  
Differential Input Voltage  
Maximum Input Current  
V
V
SS  
0.3 to V +0.3  
V
I
DD  
V
ID  
V
DD  
– V +0.2  
V
SS  
I
I
10  
100  
200  
mA  
mA  
mW  
C  
_C  
_C  
V
Maximum Output Current (Note 2)  
I
O
Continuous Total Power Dissipation (Note 2)  
Maximum Junction Temperature  
P
D
T
J
150  
Storage Temperature Range  
T
65 to 150  
STG  
Mounting Temperature (Infrared or Convection – 20 sec)  
T
260  
mount  
ESD Capability (Note 3)  
Human Body Model  
Charge Device Model  
HBM  
CDM  
2500  
1500  
LatchUp Current (Note 4)  
I
LU  
100  
mA  
Moisture Sensitivity Level (Note 5)  
MSL  
Level 1  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS for Safe Operating Area.  
2. Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction  
temperature of 150C. Output currents in excess of the maximum output current rating over the long term may adversely affect reliability.  
Shorting output to either VDD or VSS will adversely affect reliability.  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per JEDEC standard Js0012017 (AECQ100002)  
ESD Charged Device Model tested per JEDEC standard JS0022014 (AECQ100011)  
4. Latchup Current tested per JEDEC standard JESD78E (AECQ100004)  
5. Moisture Sensitivity Level tested per IPC/JEDEC standard: JSTD020A  
OPERATING RANGES  
Parameter  
Operating Supply Voltage (V V  
Symbol  
Min  
1.8  
Max  
Unit  
V
)
V
S
5.5  
DD  
SS  
Differential Input Voltage  
V
ID  
V
S
V
Common Mode Input Voltage Range  
Ambient Temperature  
V
V
– 0.1  
V + 0.1  
DD  
V
CM  
SS  
T
40  
125  
C  
A
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
4
 
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
ELECTRICAL CHARACTERISTICS AT VS = 1.8 V to 5.5 V  
T = 25C; R 10 kconnected to midsupply; V  
= V  
= midsupply unless otherwise noted.  
A
L
CM  
OUT  
Boldface limits apply over the specified temperature range, T = 40C to 125C. (Note 6)  
A
Parameter  
INPUT CHARACTERISTICS  
Input Offset Voltage  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OS  
V
V
V
= 5 V  
= 5 V  
= 5 V  
0.3  
2.1  
2.6  
mV  
mV  
V/C  
pA  
S
S
S
Offset Voltage Drift  
dV /dT  
OS  
1.5  
5  
Input Bias Current (Note 6)  
Input Offset Current (Note 6)  
Channel Separation  
I
IB  
I
5  
pA  
OS  
DC  
100  
4
dB  
Input Capacitance  
C
pF  
IN  
Common Mode Rejection Ratio  
CMRR  
V
S
V
S
V
S
V
S
= 5.5 V, V  
= 5.5 V, V  
= 1.8 V, V  
= 1.8 V, V  
= V 0.1 V to V 1.4 V  
80  
57  
103  
79  
dB  
CM  
CM  
CM  
CM  
SS  
DD  
= –0.1 V to 5.6 V  
= V 0.1 V to V 1.4 V  
91  
SS  
DD  
= –0.1 V to 1.9 V  
71  
OUTPUT CHARACTERISTICS  
Open Loop Voltage Gain  
A
V
= 1.8 V, V + 0.04 V < V < V – 0.04 V,  
101  
100  
108  
97  
dB  
VOL  
S
SS  
O
DD  
R = 10 kꢁ  
L
V
S
= 5.5 V, V + 0.05 V < V < V – 0.05 V,  
SS O DD  
R = 10 kꢁ  
L
V
S
= 1.8 V, V + 0.06 V < V < V – 0.06 V,  
SS O DD  
R = 2 kꢁ  
L
V
S
= 5.5 V, V + 0.15 V < V < V – 0.15 V,  
113  
SS  
O
DD  
R = 2 kꢁ  
L
Short Circuit Current  
I
Output sourcing current V = 5 V  
40  
50  
3
mA  
mV  
SC  
S
Output sinking current, V = 5 V  
S
Output Voltage Swing from V  
V
OH  
20  
60  
V
= 5.5 V, R = 10 kꢁ  
L
DD  
DD  
S
S
V
V
= 5.5 V, R = 2 kꢁ  
L
Output Voltage Swing from V  
V
SS  
3
20  
60  
mV  
V
V
= 5.5 V, R = 10 kꢁ  
SS  
OL  
S
L
V
= 5.5 V, R = 2 kꢁ  
S
L
AC CHARACTERISTICS  
Unity Gain Bandwidth  
Slew Rate at Unity Gain  
Phase Margin  
UGBW  
SR  
V
V
V
= 5 V, G = +1  
= 5 V, G = +1  
= 5 V, G = +1  
8
3.5  
52  
11  
0.5  
1
MHz  
V/s  
_
S
S
S
m
Gain Margin  
A
m
dB  
Settling Time to 0.1%  
t
t
V
S
V
S
V
S
V
S
= 5 V, V = 2 V step, G = +1, C = 100 pF  
IN L  
s  
S
Settling Time to 0.01%  
Overload Recovery Time  
Open Loop Output Impedance  
NOISE CHARACTERISTICS  
Total Harmonic Distortion plus Noise  
= 5 V, V = 2 V step, G = +1, C = 100 pF  
s  
S
IN  
L
t
= 5 V, V x gain > V  
1
s  
OR  
IN  
S
Z
OL  
= 5 V, f = 10 MHz  
240  
THD+n  
V
S
= 5.5 V, V  
= 2.5 V, V = 1 V  
, G = +1,  
0.0008  
%
CM  
O
RMS  
f = 1 kHz  
Input Referred Voltage Noise  
e
n
V
S
V
S
= 5 V, f = 1 kHz  
= 5 V, f = 10 kHz  
20  
10  
nV/Hz  
6. Performance guaranteed over the indicated operating temperature range by design and/or characterization.  
www.onsemi.com  
5
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
ELECTRICAL CHARACTERISTICS AT VS = 1.8 V to 5.5 V (continued)  
T = 25C; R 10 kconnected to midsupply; V  
= V  
= midsupply unless otherwise noted.  
A
L
CM  
OUT  
Boldface limits apply over the specified temperature range, T = 40C to 125C. (Note 6)  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
NOISE CHARACTERISTICS  
Input Referred Current Noise  
Input Voltage Noise, PeaktoPeak  
SUPPLY CHARACTERISTICS  
Power Supply Rejection Ratio  
Power Supply Quiescent Current  
i
f = 1 kHz  
20  
5
fA/Hz  
VPP  
n
E
V
S
= 5 V, f = 0.1 Hz to 10 Hz  
n
PSRR  
V
S
= 1.8 V – 5.5 V, V  
= V  
8
80  
V/V  
A  
CM  
SS  
I
Q
Per channel, no load  
500  
800  
6. Performance guaranteed over the indicated operating temperature range by design and/or characterization.  
www.onsemi.com  
6
 
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
TYPICAL CHARACTERISTICS  
(AT T = 25C, V  
= MIDSUPPLY, C = 20 PF, R = 10 KTO MIDSUPPLY, UNLESS OTHERWISE NOTED)  
A
CM  
L L  
25  
20  
15  
10  
20  
18  
16  
14  
12  
V
= 5 V  
S
V
= 5 V  
S
105 Units  
105 Units  
10  
8
6
4
2
0
5
0
1.4  
1.0 0.6  
0.2  
0.2  
0.6  
1.0  
1.4  
3  
2  
1  
0
1
2
3
4
INPUT OFFSET VOLTAGE (mV)  
INPUT OFFSET VOLTAGE DRIFT (V/C)  
Figure 2. Input Offset Voltage Distribution  
Figure 3. Input Offset Voltage Drift Distribution  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
0
0
500  
1000  
500  
1000  
V
S
= 5.5 V  
V = 1.8 V  
S
1500  
2000  
1500  
2000  
5 typical units  
5 typical units  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
COMMON MODE VOLTAGE (V)  
0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0.2 0  
COMMON MODE VOLTAGE (V)  
Figure 4. Input Offset Voltage vs. Common  
Mode Voltage at 5.5 V Supply  
Figure 5. Input Offset Voltage vs. Common  
Mode Voltage at 1.8 V Supply  
2000  
2000  
1500  
1000  
500  
1500  
1000  
500  
V
S
= 1.8 V  
V
CM  
= midsupply  
0
0
500  
1000  
500  
1000  
V
= 5.5 V  
S
V
= midsupply  
CM  
1500  
2000  
1500  
2000  
5 typical units  
50 25  
0
25  
50  
75  
100  
125 150  
50 25  
0
25  
50  
75  
100  
125 150  
TEMPERATURE (C)  
TEMPERATURE (C)  
Figure 6. Input Offset Voltage vs. Temperature  
at 5.5 V Supply  
Figure 7. Input Offset Voltage vs. Temperature  
at 1.8 V Supply  
www.onsemi.com  
7
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
TYPICAL CHARACTERISTICS  
(AT T = 25C, V  
= MIDSUPPLY, C = 20 PF, R = 10 KTO MIDSUPPLY, UNLESS OTHERWISE NOTED)  
A
CM  
L
L
120  
100  
80  
160  
140  
120  
100  
80  
V
S
V
S
= 5.5 V  
= 1.8 V  
Phase  
60  
Gain  
40  
60  
20  
40  
0
20  
0
V
S
= 5 V  
100  
20  
10  
10  
0
1K  
10K  
100K  
1M  
10M  
50 25  
0
25  
50  
75  
100  
125 150  
FREQUENCY (Hz)  
TEMPERATURE (C)  
Figure 8. Open Loop Gain vs. Frequency  
Figure 9. Open Loop Gain vs. Temperature  
30  
20  
10  
600  
500  
400  
300  
200  
100  
I
I
I
IB+  
IB  
OS  
V
S
= 5.5 V  
0
10  
20  
30  
A = 1  
V
A = 1  
V
A = 10  
V
0
40  
50  
V
S
= 5.5 V  
100  
100  
1K  
10K  
100K  
1M  
10M  
50 25  
0
25  
50  
75  
100  
125 150  
FREQUENCY (Hz)  
TEMPERATURE (C)  
Figure 10. Closed Loop Gain vs. Frequency  
Figure 11. Input Current vs. Temperature  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
T = 40C  
T = 25C  
T = 85C  
T = 125C  
T = 40C  
T = 25C  
T = 85C  
T = 125C  
A
A
A
A
A
A
A
A
0.1  
0
0.1  
0
V
S
= 5.5 V  
50  
V
S
= 5.5 V  
10  
20  
30  
40  
0
10  
20  
30  
40  
60  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 12. Output Voltage Swing High  
Figure 13. Output Voltage Swing Low  
www.onsemi.com  
8
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
TYPICAL CHARACTERISTICS  
(AT T = 25C, V  
= MIDSUPPLY, C = 20 PF, R = 10 KTO MIDSUPPLY, UNLESS OTHERWISE NOTED)  
A
CM  
L
L
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
V = 10 dBm  
IN  
V
IN  
= 0 dBm  
60  
40  
V
S
V
S
V
S
V
S
= 1.8 V, PSRR+  
= 1.8 V, PSRR−  
= 5.5 V, PSRR+  
= 5.5 V, PSRR−  
20  
V
V
= 1.8 V  
= 5.5 V  
S
S
0
20  
40  
20  
10  
100  
1K  
10K  
100K  
1M  
10M  
10  
1K  
100K  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14. CMRR vs Frequency  
Figure 15. PSRR vs. Frequency  
0
6
5
4
1  
2  
3  
4  
5  
3
2
V
= 5.5 V  
S
1
0
6  
7  
V
= 1.8 V to 5.5 V  
S
V
= 0.1 V to 4.1 V  
CM  
50 25  
0
25  
50  
75  
100  
125 150  
50 25  
0
25  
50  
75  
100  
125 150  
TEMPERATURE (C)  
TEMPERATURE (C)  
Figure 16. CMRR vs Temperature  
Figure 17. PSRR vs. Temperature  
4
180  
V
S
= 5 V  
160  
140  
120  
100  
80  
3
2
1
0
1  
2  
60  
40  
V
S
V
S
= 5.5 V  
= 1.8 V  
3  
4  
20  
0
10  
100  
1K  
10K  
100K  
1M  
TIME (1 s/div)  
FREQUENCY (Hz)  
Figure 18. 0.1 Hz to 10 Hz Noise  
Figure 19. Voltage Noise Density vs.  
Frequency  
www.onsemi.com  
9
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
TYPICAL CHARACTERISTICS  
(AT T = 25C, V  
= MIDSUPPLY, C = 20 PF, R = 10 KTO MIDSUPPLY, UNLESS OTHERWISE NOTED)  
A
CM  
L L  
90  
95  
0
10  
20  
30  
40  
50  
60  
70  
V
= 5.5 V  
S
V = 5.5 V  
S
R = 2.2 kto midsupply  
L
R = 2.2 kto midsupply  
L
V
IN  
= 0.5 V  
RMS  
V = 0.5 V  
IN RMS  
A = 1  
V
A = 1  
V
100  
105  
110  
80  
90  
115  
120  
100  
10  
100  
1K  
10K  
0.001  
0.01  
0.1  
1
FREQUENCY (Hz)  
AMPLITUDE (V  
)
RMS  
Figure 20. THD+n vs. Frequency  
Figure 21. THD+n vs. Output Amplitude  
540  
530  
520  
510  
510  
500  
490  
V
S
= 5.5 V  
480  
470  
500  
490  
460  
450  
480  
470  
50 25  
0
25  
50  
75  
100  
125 150  
1.5 2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0 5.5  
TEMPERATURE (C)  
SUPPLY VOLTAGE (V)  
Figure 22. Quiescent Current Per Channel vs.  
Temperature  
Figure 23. Quiescent Current Per Channel vs.  
Supply Voltage  
0.08  
0.06  
0.04  
0.02  
0
3
2
1
Input  
Output  
Input  
Output  
0.02  
0.04  
0.06  
0.08  
0
1  
2  
3  
V = 5.5 V  
S
V
S
= 5.5 V  
0.10  
0.12  
A = 1  
V
A = 1  
V
TIME (0.2 s/div)  
TIME (1 s/div)  
Figure 24. Small Signal Step Response  
Figure 25. Large Signal Step Response  
www.onsemi.com  
10  
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
TYPICAL CHARACTERISTICS  
(AT T = 25C, V  
= MIDSUPPLY, C = 20 PF, R = 10 KTO MIDSUPPLY, UNLESS OTHERWISE NOTED)  
A
CM  
L L  
4
3
4
3
0.4  
Input  
Output  
V
DD  
0.3  
0.2  
0.1  
0
2
2
1
1
Output  
0
0
V
DD  
V
SS  
= 2.75 V  
= 2.75 V  
1  
2  
1  
2  
0.1  
0.2  
V
SS  
3  
4  
3  
4  
0.3  
0.4  
TIME (100 s/div)  
TIME (1 s/div)  
Figure 26. Power Up  
Figure 27. No Phase Reversal  
60  
40  
20  
0
160  
140  
120  
100  
80  
Sourcing  
Sinking  
V
S
= 5 V  
20  
40  
60  
40  
60  
80  
V
= 5.5 V  
20  
0
S
50  
25  
0
25  
50  
75  
100  
125  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
TEMPERATURE (C)  
Figure 28. Short Circuit Current vs.  
Temperature  
Figure 29. Open Loop Gain vs. Output Voltage  
1.5  
1.0  
1
0
1.5  
1.0  
0.5  
0
5
4
Input  
Output  
Input  
3
0.5  
0
1  
2  
3  
Output  
2
V
= 5.5 V  
A = 1  
C = 100 pF  
S
V
= 5.5 V  
A = 1  
C = 100 pF  
S
V
V
0.5  
1
0.5  
L
L
1.0  
1.5  
4  
5  
1.0  
1.5  
0
1  
TIME (500 ns/div)  
TIME (500 ns/div)  
Figure 30. Output LowtoHigh Settling Time  
Figure 31. Output HightoLow Settling Time  
www.onsemi.com  
11  
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
TYPICAL CHARACTERISTICS  
(AT T = 25C, V  
= MIDSUPPLY, C = 20 PF, R = 10 KTO MIDSUPPLY, UNLESS OTHERWISE NOTED)  
A
CM  
L
L
100  
90  
80  
70  
60  
50  
40  
30  
300  
250  
200  
150  
100  
20  
10  
0
50  
0
V
S
= 5 V  
10M  
100M  
1G  
10G  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 32. EMIRR vs. Frequency  
Figure 33. Open Loop Output Impedance vs.  
Frequency  
0
20  
40  
60  
80  
60  
50  
40  
30  
20  
V
S
= 5 V  
V = 5 V  
S
100  
120  
10  
0
10  
100  
1K  
10K  
100K  
1M  
10M  
0
50  
100  
150  
200  
250  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
Figure 34. Channel Separation vs. Frequency  
Figure 35. Phase Margin vs. Capacitive Load  
www.onsemi.com  
12  
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
TYPICAL CHARACTERISTICS  
(AT T = 25C, V  
= MIDSUPPLY, C = 20 PF, R = 10 KTO MIDSUPPLY, UNLESS OTHERWISE NOTED)  
A
CM  
L
L
50  
45  
50  
45  
V
= 5.5 V  
V = 5.5 V  
S
A = 1  
V
S
A = 1  
V
40  
35  
30  
25  
20  
15  
10  
40  
35  
30  
25  
20  
15  
10  
5
Rising Edge  
Falling Edge  
Rising Edge  
Falling Edge  
5
0
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 36. Overshoot vs. Capacitive Load for  
AV = 1  
Figure 37. Overshoot vs. Capacitive Load for  
AV = 1  
1.5  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5.5 V  
V = 5.5 V  
S
A = 10  
V
S
A = 10  
V
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
Input  
Output  
Input  
Output  
2.5  
3.0  
1.0  
1.5  
TIME (1 s/div)  
TIME (1 s/div)  
Figure 38. Negative Overvoltage Recovery  
Figure 39. Positive Overvoltage Recovery  
www.onsemi.com  
13  
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
APPLICATION INFORMATION  
The NCS20161 family of operational amplifiers is  
manufactured using onsemi’s CMOS process. Products in  
this class are general purpose, unitygain stable amplifiers  
and include single, dual and quad configurations.  
events (within the limits specified) trigger the protection  
structure so the operational amplifier is not damaged.  
In order to safe guard against excessive voltages across the  
op amp’s inputs, external clamp diodes can be used as shown  
in Figure 40. The four lowdrop fast diodes (Schottky  
preferred) are used in parallel with the internal structure to  
divert the excessive energy to the supply rails where it can  
be easily dissipated or absorbed by the supply capacitors.  
The application designer should also take into account that  
these external diodes add leakage currents and parasitic  
capacitance that must be considered when evaluating the  
endtoend performance of the amplifier stage.  
RailtoRail Input with No Phase Reversal  
The NCS2016x operational amplifiers are designed to  
prevent phase reversal or any similar issues when the input  
pins potential exceed the supply voltages by up to 100 mV.  
The input stage of the NCS20161 family consists of two  
differential CMOS input stages connected in parallel: the  
first is constructed using paired PMOS devices and it  
operates at low common mode input voltages (V ); the  
CM  
second stage is build using paired NMOS devices to operate  
Limiting Input Currents  
at high V . The transition between the two input stages  
occurs at a common mode input voltage of approximately  
In order to prevent damage/ improper operation of these  
amplifiers, the application circuit must limit the current  
flowing through the input pins. A possible solution is  
presented in Figure 40 by means of the two added series  
resistors. The minimum value for the input resistors should  
be calculated using Ohm’s Law so they limit the input pin  
current to less than the absolute maximum values specified.  
The application designer should take into account that these  
resistors also add parasitic inductance that must be  
considered when evaluating performance.  
CM  
V
DD  
1.3V.  
Limiting Input Voltages  
In order to prevent damage and/or improper operation of  
these amplifiers, the application circuit must never expose  
the input pins to voltages or currents higher than the  
Absolute Maximum Ratings.  
The internal ESD structure includes special diodes to  
protect the input stages while maintaining a low input bias  
Combining the current limiting resistors with the voltage  
limiting diodes creates a solid input protection structure, that  
can be used to insure reliable operation of the amplifier even  
in the hardest conditions.  
current (I ). The input protection circuitry clamp the inputs  
IB  
when the signals applied exceed more than one diode drop  
below VSS or one diode drop above VDD. Very fast ESD  
V
DD  
V
DD  
V
DD  
SS  
IN+  
+
IN+  
IN+  
+
+
IN−  
IN−  
IN−  
V
V
SS  
V
SS  
Figure 40. Typical Protection of the Operational Amplifier Inputs  
RailtoRail Output  
degraded phase margin  
The maximum output voltage swing is dependent of the  
particular output load. According to the specification, the  
output can reach within 20 mV of either supply rail when  
lowered bandwidth  
gain peaking of the frequency response  
overshoot and ringing of the step response  
load resistance is 10 k. The V and V graphs shows the  
OL  
OH  
While the NCS2016x series op amps are capable of driving  
capacitive loads up to 100 pF, adding a small resistor in  
load drive capabilities of the part under different conditions.  
Output current is internally limited to the typical values  
listed in the Electrical Characteristics table.  
series to the output (R  
in Figure 41) will increase the  
ISO  
phase margin. This leads to higher stability by making the  
equivalent load more resistive at high frequencies.  
Capacitive Loads  
Driving capacitive loads can create stability problems for  
voltage feedback op amps, as it is a known possible cause for:  
www.onsemi.com  
14  
 
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
V
DD  
The unity gain buffer is recommended here (Figure 42).  
The ADC’s internal sampling capacitor requires a buffer  
frontend to recharge it faster than the sampling time, and  
IN+  
+
R
this problem is even worse if more channels are sampled by  
the same ADC using an internal multiplexer. In order to  
achieve a settling time shorter than the multiplexed  
sampling rate, an RC stage is recommended between the  
ISO  
IN−  
C
L
buffer and the ADC input. The R  
resistor’s value should  
ISO  
V
SS  
be low enough to charge the capacitor quickly, but at the  
same time large enough to isolate the capacitive load from  
the amplifier output to preserve phase margin. When  
transients are generated by the sensor’s output, first the two  
amplifier inputs see a high differential voltage between  
them, then the output settles and brings the inverting input  
back to the correct voltage.  
Let us take an example of a 0.1 V to 4 V sensor signal. To  
successfully accommodate it, the differential input range of  
the NCS2016x is close to the supply range and the output  
will match the input. The differential input voltage is limited  
only by the ESD protection structure and not by  
backtoback diodes between inputs.  
Figure 41. Driving Capacitive Loads  
Simulating the application with onsemi’s Spice model is  
a good starting point for selecting the isolation resistor’s  
value. Bench testing the frequency and step response can be  
used to finetune the value according to the desired  
characteristic.  
Unity Gain Bandwidth  
Interfacing a high impedance sensor’s output to  
a relatively lowimpedance ADC input usually requires an  
intermediate stage to avoid unwanted interference of the two  
devices, and this stage needs to have a high input impedance,  
a low output impedance, and high output current.  
V
DD  
ADC  
+
sensor  
R
ISO  
C
C
L
sampling  
V
SS  
Figure 42. Unity Gain Buffer Stage for Sampling with ADC  
Power Supply Bypassing  
crosstalk, increased current consumption, or add noise to the  
supply rails.  
For AC, the power supply pins (VDD and VSS for split  
supply, VDD for single supply) should be bypassed locally  
with a quality capacitor in the range of 100 nF as close as  
possible to the amplifier supply pins. Ceramic capacitors are  
recommended for their low ESR and good high frequency  
response.  
V
DD  
V
DD  
+
+
For DC, a bulk capacitor in the range of 1 F placed within  
inches distance from the op amp can provide the additional  
current needed to drive higher loads.  
Unused Operational Amplifiers  
V
SS  
Occasionally not all the op amp channels offered in the  
quad packages are needed for a specific application. They  
can be connected as “buffering ground” as shown in  
Figure 43, a solution that does not need any extra parts.  
Connecting them differently (inputs split to rails, left  
floating, etc.) can sometimes cause unwanted oscillation,  
Figure 43. Unused Operational Amplifiers  
www.onsemi.com  
15  
 
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
PCB Surface Leakage  
PCB Routing Recommendations  
If it is critical to obtain the lowest input bias current, the  
PCB’s surface leakage should be considered. Dry  
environment surface current increases further when the  
board is exposed to humidity, dust or chemical  
contamination. For harsh environment conditions,  
protecting the entire board surface (with all the exposed  
metal pins and soldered areas) is advised. Conformal coating  
or potting the board in resin proves effective in most cases.  
An alternate solution for reduced leakage is the use of  
guard rings around sensitive pins and pads. A proper guard  
ring should have low impedance and be biased to the same  
voltage as the sensitive pin so that no current flows in  
between them.  
In addition to amplifying the useful signal, op amps can  
also pick the high frequency noise together with the signal  
and amplify it accordingly, if the design allows it. In order  
to reach the values specified in the Electrical Characteristics  
tables and to avoid high frequency interference issues, it is  
recommended that the PCB layout follows the basic  
guidelines listed below:  
A dedicated layer for the ground plane should be  
used whenever possible and all supply decoupling  
capacitors should connect to it by vias  
Copper traces should be as short as possible  
High current paths should not be shared by small  
signal or low current traces  
For an inverting amplifier, the noninverting input is  
usually connected to supply’s ground (or virtual ground at  
half the rail voltage in single supply applications) so it can  
represent a good ring solution. When routing the PCB traces,  
create a closed perimeter around the inverting input pad (which  
carries the signal) and connect it to the noninverting input.  
For a noninverting amplifier, use a similarly shaped  
(rectangle or circle) copper trace around the noninverting  
input pad (which carries the signal) and connect it to the  
inverting input pin, which presents a much lower impedance  
thanks to the feedback network.  
If present, switching power supply blocks should be  
kept away from the analog sensitive areas to avoid  
potential conducted and radiated noise issues  
When different circuit taxonomies share the same  
board, it is recommended to keep separated the  
power areas, the digital areas and the small signal  
analog areas. Smallsignal components in the signal  
path should be placed as close as possible to the  
amplifier input pins  
Metal shielding the sensitive areas and the  
“offender” blocks may be required in some cases  
www.onsemi.com  
16  
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
PACKAGE DIMENSIONS  
SC88A (SC705/SOT353)  
CASE 419A02  
ISSUE M  
www.onsemi.com  
17  
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
X−  
ANSI Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy  
and soldering details, please download the  
onsemi Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
18  
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
PACKAGE DIMENSIONS  
TSOP5  
CASE 483  
ISSUE N  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
C
D
MIN  
2.85  
1.35  
0.90  
0.25  
MAX  
3.15  
1.65  
1.10  
0.50  
DETAIL Z  
J
G
H
J
K
M
S
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
10  
3.00  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
_
_
SIDE VIEW  
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy  
and soldering details, please download the  
onsemi Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
19  
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
PACKAGE DIMENSIONS  
Micro8  
CASE 846A02  
ISSUE K  
*For additional information on our PbFree strategy  
and soldering details, please download the  
onsemi Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
20  
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
PACKAGE DIMENSIONS  
TSSOP14 WB  
CASE 948G  
ISSUE C  
NOTES:  
14X K REF  
1. DIMENSIONING AND TOLERANCING PER  
M
S
S
V
ANSI Y14.5M, 1982.  
0.10 (0.004)  
T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
S
0.15 (0.006) T U  
N
0.25 (0.010)  
14  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
8
2X L/2  
M
B
L
N
U−  
PIN 1  
IDENT.  
F
7
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
DETAIL E  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE W.  
S
K
0.15 (0.006) T U  
A
V−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
K1  
A
B
C
D
F
G
H
J
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
J J1  
1.20  
−−− 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
SECTION NN  
0.65 BSC  
0.026 BSC  
0.60 0.020 0.024  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.50  
0.09  
0.09  
0.19  
J1  
K
W−  
C
K1 0.19  
L
M
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
0
8
0
8
_
_
_
_
SEATING  
PLANE  
T−  
H
G
DETAIL E  
D
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT  
7.06  
1
0.65  
PITCH  
01.34X6  
14X  
1.26  
DIMENSIONS: MILLIMETERS  
www.onsemi.com  
21  
NCS20161, NCS20162, NCS20164, NCV20161, NCV20162, NCV20164  
PACKAGE DIMENSIONS  
SOIC14 NB  
CASE 751A03  
ISSUE L  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF AT  
MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
14  
8
7
A3  
E
H
5. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
L
DETAIL A  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
13X b  
M
M
B
0.25  
A
A1  
A3  
b
D
E
1.35  
0.10  
0.19  
0.35  
8.55  
3.80  
1.75 0.054 0.068  
0.25 0.004 0.010  
0.25 0.008 0.010  
0.49 0.014 0.019  
8.75 0.337 0.344  
4.00 0.150 0.157  
M
S
S
B
0.25  
C A  
DETAIL A  
h
A
X 45  
_
e
H
h
L
1.27 BSC  
0.050 BSC  
6.20 0.228 0.244  
0.50 0.010 0.019  
1.25 0.016 0.049  
5.80  
0.25  
0.40  
0
0.10  
M
A1  
e
M
7
0
7
_
_
_
_
SEATING  
PLANE  
C
SOLDERING FOOTPRINT*  
6.50  
14X  
1.18  
1
1.27  
PITCH  
14X  
0.58  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy  
and soldering details, please download the  
onsemi Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
onsemi Website: www.onsemi.com  
www.onsemi.com  

相关型号:

NCS20166SN2T1G

Precision Operational Amplifier, Low Offset, 10 MHz, Rail-to-Rail Input / Output
ONSEMI

NCS2021SN2T1

OP-AMP, 5000uV OFFSET-MAX, 0.06MHz BAND WIDTH, PDSO5, PLASTIC, SC-59, SOT-23, TSOP-5
ONSEMI

NCS2021SN3T1

OP-AMP, 5000uV OFFSET-MAX, 0.06MHz BAND WIDTH, PDSO5, PLASTIC, SC-59, SOT-23, TSOP-5
ONSEMI

NCS2021SQ2T1

OP-AMP, 5000uV OFFSET-MAX, 0.06MHz BAND WIDTH, PDSO5, SC-70, SC-88A, SOT-353, 5 PIN
ONSEMI

NCS2021SQ3T1

OP-AMP, 5000uV OFFSET-MAX, 0.06MHz BAND WIDTH, PDSO5, SC-70, SC-88A, SOT-353, 5 PIN
ONSEMI

NCS20231

Operational Amplifier
ONSEMI

NCS20231SN2T1G

Operational Amplifier, 36 V, 3 MHz, 0.95 mV Input Offset Voltage, Rail-to-Rail
ONSEMI

NCS20231SQ3T2G

Operational Amplifier, 36 V, 3 MHz, 0.95 mV Input Offset Voltage, Rail-to-Rail
ONSEMI

NCS20231XV53T2G

Operational Amplifier, 36 V, 3 MHz, 0.95 mV Input Offset Voltage, Rail-to-Rail
ONSEMI

NCS20232

Operational Amplifier
ONSEMI

NCS20232DR2G

Operational Amplifier, 36 V, 3 MHz, 0.95 mV Input Offset Voltage, Rail-to-Rail
ONSEMI

NCS20232MUTAG

Operational Amplifier, 36 V, 3 MHz, 0.95 mV Input Offset Voltage, Rail-to-Rail
ONSEMI