NCV4266ST50T3G [ONSEMI]

150 mA Low-Dropout Voltage Regulator with Enable;
NCV4266ST50T3G
型号: NCV4266ST50T3G
厂家: ONSEMI    ONSEMI
描述:

150 mA Low-Dropout Voltage Regulator with Enable

光电二极管 输出元件 调节器
文件: 总11页 (文件大小:122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4266  
150 mA Low-Dropout  
Voltage Regulator with  
Enable  
The NCV4266 is a 150 mA output current integrated low dropout  
regulator family designed for use in harsh automotive environments.  
It includes wide operating temperature and input voltage ranges. The  
device is offered with fixed voltage versions of 3.3 V and 5.0 V  
available in 2% output voltage accuracy. It has a high peak input  
voltage tolerance and reverse input voltage protection. It also  
provides overcurrent protection, overtemperature protection and  
enable function for control of the state of the output voltage. The  
NCV4266 is available in SOT223 surface mount package. The  
output is stable over a wide output capacitance and ESR range. The  
NCV4266 has improved startup behavior during input voltage  
transients.  
http://onsemi.com  
MARKING  
DIAGRAM  
SOT223  
(TO261)  
ST SUFFIX  
AYW  
4266xG  
G
CASE 318E  
1
A
Y
W
x
= Assembly Location  
= Year  
= Work Week  
= Voltage Option  
3.3 V (x = 3)  
Features  
3.3 V and 5.0 V Output Voltage  
150 mA Output Current  
500 mV (max) Dropout Voltage  
Enable Input  
5.0 V (x = 5)  
= PbFree Package  
G
(*Note: Microdot may be in either location)  
Very Low Current Consumption  
Fault Protection  
+45 V Peak Transient Voltage  
42 V Reverse Voltage  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 10 of this data sheet.  
Short Circuit  
Thermal Overload  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
These are PbFree Devices  
I
Q
Error  
Amplifier  
Current Limit and  
Saturation Sense  
Bandgap  
Reference  
+
Thermal  
Shutdown  
EN  
GND  
Figure 1. Block Diagram  
©
Semiconductor Components Industries, LLC, 2012  
1
Publication Order Number:  
June, 2012 Rev. 2  
NCV4266/D  
NCV4266  
PIN FUNCTION DESCRIPTION  
Pin No.  
Symbol  
Description  
1
2
3
4
I
Input; Battery Supply Input Voltage.  
EN  
Q
Enable Input; low level disables the IC.  
Output; Bypass with a capacitor to GND.  
Ground.  
GND  
MAXIMUM RATINGS*  
Rating  
Symbol  
Min  
42  
Max  
45  
Unit  
V
Input Voltage  
V
I
V
I
Input Peak Transient Voltage  
Enable Input Voltage  
Output Voltage  
45  
V
V
42  
1.0  
45  
V
EN  
V
40  
V
Q
Ground Current  
I
100  
40  
mA  
V
q
Input Voltage Operating Range  
V
V
Q
+ 0.5 V or  
4.5 (Note 1)  
I
ESD Susceptibility  
(Human Body Model)  
(Machine Model)  
4.0  
250  
kV  
V
Junction Temperature  
Storage Temperature  
T
40  
50  
150  
150  
°C  
°C  
J
T
stg  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
RecommendedOperating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
*During the voltage range which exceeds the maximum tested voltage of I, operation is assured, but not specified. Wider limits may apply. Thermal  
dissipation must be observed closely.  
1. Minimum V = 4.5 V or (V + 0.5 V), whichever is higher.  
I
Q
LEAD TEMPERATURE SOLDERING REFLOW AND MSL (Note 2)  
Rating  
Symbol  
Min  
Max  
Unit  
Lead Temperature Soldering  
T
SLD  
°C  
Reflow (SMD styles only), Leaded, 60150 s above 183, 30 s max at peak  
Reflow (SMD styles only), Free, 60150 s above 217, 40 s max at peak  
Wave Solder (through hole styles only), 12 sec max  
240  
265  
310  
Moisture Sensitivity Level  
MSL  
3
2. Per IPC / JEDEC JSTD020C.  
THERMAL CHARACTERISTICS  
Characteristic  
Test Conditions (Typical Value)  
Unit  
Min Pad Board (Note 3)  
1, Pad Board (Note 4)  
JunctiontoTab (psiJL4, y  
)
15.7  
96  
18  
C/W  
C/W  
JL4  
JunctiontoAmbient (R , q  
)
77  
q
JA JA  
2
2
2
2
3. 1 oz. copper, 0.26 inch (168 mm ) copper area, 0.062thick FR4.  
4. 1 oz. copper, 1.14 inch (736 mm ) copper area, 0.062thick FR4.  
http://onsemi.com  
2
 
NCV4266  
ELECTRICAL CHARACTERISTICS (V = 13.5 V; 40°C < T < 150°C; unless otherwise noted.)  
I
J
Characteristic  
OUTPUT  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage (5.0 V Version)  
Output Voltage (3.3 V Version)  
Output Current Limitation  
V
V
5.0 mA < I < 150 mA, 6 V < V < 28 V  
4.9  
3.234  
150  
5.0  
3.3  
200  
5.1  
3.366  
500  
10  
V
V
Q
Q
I
5.0 mA < I < 150 mA, 4.5 V < V < 28 V  
Q
Q
I
I
Q
V
V
= 90% V  
QTYP  
mA  
mA  
Q
Quiescent Current (Sleep Mode)  
I
q
= 0 V  
EN  
I = I I  
q
I
Q
Quiescent Current, I = I I  
I
I
I
I
I
= 1.0 mA  
= 150 mA  
130  
10  
200  
15  
500  
20  
25  
25  
mA  
mA  
mV  
mV  
mV  
mV  
dB  
q
I
Q
q
Q
Q
Q
Q
Quiescent Current, I = I I  
I
q
q
I
Q
Dropout Voltage (5.0 V Version)  
Load Regulation  
V
DR  
= 150 mA, V = V V (Note 5)  
250  
3.0  
10  
DR  
I
Q
DV  
= 5.0 mA to 150 mA  
Q,LO  
Line Regulation (5.0 V Version)  
Line Regulation (3.3 V Version)  
Power Supply Ripple Rejection  
Temperature Output Voltage Drift  
DV  
DV = 6.0 V to 28 V, I = 5.0 mA  
I Q  
Q
Q
DV  
DV = 4.5 V to 28 V, I = 5.0 mA  
10  
I
Q
PSRR  
f = 100 Hz, V = 0.5 V  
r
70  
r
PP  
d
0.5  
mV/K  
VQ/dT  
ENABLE INPUT  
Enable Voltage, Output High  
V
V
V
V
V
w V  
QMIN  
2.3  
2.2  
10  
2.8  
V
V
EN  
EN  
EN  
Q
Enable Voltage, Output Low (Off)  
v 0.1 V  
1.8  
5.0  
Q
Enable Input Current  
I
= 5.0 V  
20  
mA  
EN  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature*  
T
SD  
150  
210  
°C  
*Guaranteed by design, not tested in production.  
5. Measured when the output voltage V has dropped 100 mV from the nominal value obtained at V = 13.5 V.  
Q
Output  
I
I
I
Q
I 1  
3 Q  
Input  
C
I1  
C
I2  
C
Q
1.0 mF  
100 nF  
22 mF  
NCV4266  
EN  
R
L
2
4
I
EN  
GND  
Figure 2. Applications Circuit  
http://onsemi.com  
3
 
NCV4266  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
Unstable Region  
C
Q
= 10 mF 100 mF  
10  
1
Stable Region  
0.1  
0.01  
0
25  
50  
75  
100  
125  
150  
OUTPUT CURRENT (mA)  
Figure 3. Output Stability with Output Capacitor ESR  
5.2  
5.1  
5.0  
4.9  
4.8  
3.5  
V = 13.5 V  
R = 1 kW  
L
V = 13.5 V  
I
R = 660 W  
L
I
3.4  
3.3  
3.2  
3.1  
40  
0
40  
80  
120  
160  
40  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 4. Output Voltage vs. Junction  
Temperature, 5.0 V Version  
Figure 5. Output Voltage vs. Junction  
Temperature, 3.3 V Version  
6
25  
20  
15  
10  
5
T = 25°C  
R = 33 W  
L
T = 25°C  
J
R = 22 W  
L
J
5
4
3
2
1
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 6. Quiescent Current vs. Input Voltage,  
5.0 V Version  
Figure 7. Quiescent Current vs. Input Voltage,  
3.3 V Version  
http://onsemi.com  
4
 
NCV4266  
TYPICAL PERFORMANCE CHARACTERISTICS  
6
5
4
3
2
1
0
6
T = 25°C  
R = 22 W  
L
T = 25°C  
R = 33 W  
L
J
J
5
4
3
2
1
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 8. Output Voltage vs. Input Voltage,  
5.0 V Version  
Figure 9. Output Voltage vs. Input Voltage,  
3.3 V Version  
6.0  
4.0  
1
0
1  
2  
3  
4  
5  
2.0  
0
2.0  
4.0  
6.0  
T = 25°C  
R = 6.8 kW  
L
T = 25°C  
R = 6.8 kW  
L
J
J
8.0  
10  
6  
7  
50  
25  
0
25  
50  
50  
25  
0
25  
50  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 11. Input Current vs. Input Voltage,  
3.3 V Version  
Figure 10. Input Current vs. Input Voltage,  
5.0 V Version  
400  
350  
300  
250  
200  
150  
100  
50  
300  
250  
T = 25°C  
J
V
Q
= 0 V  
T = 125°C  
J
200  
150  
T = 25°C  
J
100  
50  
0
0
0
25  
50  
75  
100  
125  
150  
0
5
10  
15  
20  
25  
30  
35  
40  
I , OUTPUT CURRENT (mA)  
Q
V , INPUT VOLTAGE (V)  
I
Figure 12. Dropout Voltage vs. Output Current  
(5.0 V Version only)  
Figure 13. Maximum Output Current vs.  
Input Voltage  
http://onsemi.com  
5
NCV4266  
TYPICAL PERFORMANCE CHARACTERISTICS  
6
1
0.8  
0.6  
0.4  
0.2  
0
T = 25°C  
V = 13.5 V  
I
T = 25°C  
V = 13.5 V  
I
J
J
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
0
25  
50  
75  
100  
125  
150  
I , OUTPUT CURRENT (mA)  
Q
I , OUTPUT CURRENT (mA)  
Q
Figure 14. Quiescent Current vs. Output Current  
(Low Load), 5.0 V Version  
Figure 15. Quiescent Current vs. Output  
Current (High Load), 5.0 V Version  
6
5
4
3
2
1
0
1
0.8  
0.6  
0.4  
0.2  
0
T = 25°C  
V = 13.5 V  
I
J
T = 25°C  
V = 13.5 V  
I
J
0
5
10  
15  
20  
25  
30  
0
25  
50  
75  
100  
125  
150  
I , OUTPUT CURRENT (mA)  
Q
I , OUTPUT CURRENT (mA)  
Q
Figure 17. Quiescent Current vs. Output  
Current (High Load), 3.3 V Version  
Figure 16. Quiescent Current vs. Output Current  
(Low Load), 3.3 V Version  
http://onsemi.com  
6
NCV4266  
Circuit Description  
transient response and loop stability. The capacitor value  
and type should be based on cost, availability, size and  
temperature constraints. The aluminum electrolytic  
capacitor is the least expensive solution, but, if the circuit  
operates at low temperatures (25°C to 40°C), both the  
value and ESR of the capacitor will vary considerably. The  
capacitor manufacturer’s data sheet usually provides this  
information.  
The NCV4266 is an integrated low dropout regulator that  
provides a regulated voltage at 150 mA to the output. It is  
enabled with an input to the enable pin. The regulator  
voltage is provided by a PNP pass transistor controlled by  
an error amplifier with a bandgap reference, which gives it  
the lowest possible dropout voltage. The output current  
capability is 150 mA, and the base drive quiescent current  
is controlled to prevent oversaturation when the input  
voltage is low or when the output is overloaded. The  
regulator is protected by both current limit and thermal  
shutdown. Thermal shutdown occurs above 150°C to  
protect the IC during overloads and extreme ambient  
temperatures.  
The value for the output capacitor C , shown in Figure 2,  
Q
should work for most applications; see also Figure 3 for  
output stability at various load and Output Capacitor ESR  
conditions. Stable region of ESR in Figure 3 shows ESR  
values at which the LDO output voltage does not have any  
permanent oscillations at any dynamic changes of output  
load current. Marginal ESR is the value at which the output  
voltage waving is fully damped during four periods after  
the load change and no oscillation is further observable.  
ESR characteristics were measured with ceramic  
capacitors and additional series resistors to emulate ESR.  
Low duty cycle pulse load current technique has been used  
to maintain junction temperature close to ambient  
temperature.  
Regulator  
The error amplifier compares the reference voltage to a  
sample of the output voltage (V ) and drives the base of a  
Q
PNP series pass transistor via a buffer. The reference is a  
bandgap design to give it a temperaturestable output.  
Saturation control of the PNP is a function of the load  
current and input voltage. Oversaturation of the output  
power device is prevented, and quiescent current in the  
ground pin is minimized. See Figure 2, Test Circuit, for  
circuit element nomenclature illustration.  
Enable Input  
The enable pin is used to turn the regulator on or off. By  
holding the pin down to a voltage less than 1.8 V, the output  
of the regulator will be turned off. When the voltage on the  
enable pin is greater than 2.8 V, the output of the regulator  
will be enabled to power its output to the regulated output  
voltage. The enable pin may be connected directly to the  
input pin to give constant enable to the output regulator.  
Regulator Stability Considerations  
The input capacitors (C and C ) are necessary to  
stabilize the input impedance to avoid voltage line  
influences. Using a resistor of approximately 1.0 W in  
I1  
I2  
series with C can stop potential oscillations caused by  
I2  
stray inductance and capacitance.  
The output capacitor helps determine three main  
characteristics of a linear regulator: startup delay, load  
http://onsemi.com  
7
NCV4266  
Calculating Power Dissipation  
Heatsinks  
in a Single Output Linear Regulator  
The maximum power dissipation for a single output  
regulator (Figure 18) is:  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and  
the outside environment will have a thermal resistance.  
Like series electrical resistances, these resistances are  
P
+ [V  
I(max)  
* V  
]I  
(1)  
D(max)  
Q(min) Q(max)  
) V  
I
I(max) q  
summed to determine the value of R  
:
JA  
where  
q
(3)  
R
+ R  
qJC  
) R ) R  
qCS qSA  
V
V
I
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the  
application,  
qJA  
I(max)  
Q(min)  
Q(max)  
where  
R
R
R
is the junctiontocase thermal resistance,  
is the casetoheatsink thermal resistance,  
is the heatsinktoambient thermal  
resistance.  
JC  
q
q
q
CS  
SA  
I
is the quiescent current the regulator  
q
consumes at I  
.
Q(max)  
Once the value of P  
permissible value of R  
is known, the maximum  
D(max)  
R
q
appears in the package section of the data sheet.  
JC  
can be calculated:  
JA  
q
Like R , it too is a function of package type. R  
and  
JA  
CS  
q
q
o
T
150 C *  
A
R
qJA  
+
R
are functions of the package type, heatsink and the  
interface between them. These values appear in data sheets  
of heatsink manufacturers.  
(2)  
SA  
q
P
D
The value of R  
can then be compared with those in the  
JA  
q
package section of the data sheet. Those packages with  
Thermal, mounting, and heatsinking considerations are  
discussed in the ON Semiconductor application note  
AN1040/D.  
R
less than the calculated value in Equation 2 will keep  
JA  
q
the die temperature below 150°C.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
I
Q
I
I
SMART  
REGULATOR®  
V
I
V
Q
Control  
Features  
}
Iq  
Figure 18. Single Output Regulator with Key  
Performance Parameters Labeled  
http://onsemi.com  
8
 
NCV4266  
140  
130  
120  
110  
100  
90  
1 oz  
2 oz  
80  
70  
60  
0
100  
200  
300  
400  
500  
600  
700  
2
COPPER HEAT SPREADER AREA (mm )  
Figure 19. RqJA vs. Copper Spreader Area  
100  
10  
1
2
Cu Area 167 mm  
2
Cu Area 736 mm  
0.1  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
TIME (sec)  
Figure 20. SinglePulse Heating Curves  
100  
10  
1
50% Duty Cycle  
20%  
10%  
5%  
2%  
1%  
Nonnormalized Response  
0.1  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE WIDTH (sec)  
Figure 21. Duty Cycle for 1, Spreader Boards  
http://onsemi.com  
9
NCV4266  
ORDERING INFORMATION  
Device  
Output Voltage  
Package  
Shipping  
NCV4266ST33T3G  
3.3 V  
SOT223  
(PbFree)  
4000 / Tape & Reel  
4000 / Tape & Reel  
NCV4266ST50T3G  
5.0 V  
SOT223  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
10  
NCV4266  
PACKAGE DIMENSIONS  
SOT223 (TO261)  
CASE 318E04  
ISSUE N  
D
b1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M,  
1994.  
2. CONTROLLING DIMENSION: INCH.  
MILLIMETERS  
INCHES  
4
2
DIM  
A
A1  
b
b1  
c
D
E
e
e1  
L
L1  
MIN  
1.50  
0.02  
0.60  
2.90  
0.24  
6.30  
3.30  
2.20  
0.85  
0.20  
1.50  
6.70  
0°  
NOM  
1.63  
0.06  
0.75  
3.06  
0.29  
6.50  
3.50  
2.30  
0.94  
−−−  
1.75  
7.00  
MAX  
MIN  
0.060  
0.001  
0.024  
0.115  
0.009  
0.249  
0.130  
0.087  
0.033  
0.008  
0.060  
0.264  
0°  
NOM  
0.064  
0.002  
0.030  
0.121  
0.012  
0.256  
0.138  
0.091  
0.037  
−−−  
MAX  
0.068  
0.004  
0.035  
0.126  
0.014  
0.263  
0.145  
0.094  
0.041  
−−−  
H
E
E
1.75  
0.10  
0.89  
3.20  
0.35  
6.70  
3.70  
2.40  
1.05  
−−−  
2.00  
7.30  
10°  
1
3
b
e1  
e
0.069  
0.276  
0.078  
0.287  
10°  
C
q
H
E
A
q
0.08 (0003)  
A1  
L
L1  
SOLDERING FOOTPRINT  
3.8  
0.15  
2.0  
0.079  
6.3  
0.248  
2.3  
0.091  
2.3  
0.091  
2.0  
0.079  
mm  
1.5  
0.059  
ǒinches  
Ǔ
SCALE 6:1  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf . SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products  
for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including  
without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical  
experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was  
negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws  
and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your loca  
Sales Representative  
NCV4266/D  

相关型号:

NCV4269

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269A

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD133R2G

Micropower 150 mA LDO Linear Regulator
ONSEMI

NCV4269AD150G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD150R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD250G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD250R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269ADW50G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269ADW50R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269APD50G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269APD50R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269A_15

Micropower 150 mA LDO Linear Regulator
ONSEMI